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FOUR MOMENTS THEOREMS ON MARKOV CHAOS

S. BOURGUIN, S. CAMPESE, N. LEONENKO, AND M.S. TAQQU

Abstract. We obtain quantitative Four Moments Theorems establishing con-
vergence of the laws of elements of a Markov chaos to a Pearson distribution,
where the only assumption we make on the Pearson distribution is that it admits
four moments. These results are obtained by �rst proving a general carré du
champ bound on the distance between laws of random variables in the domain
of a Markov di�usion generator and invariant measures of di�usions, which
is of independent interest, and making use of the new concept of chaos grade.
For the heavy-tailed Pearson distributions, this seems to be the �rst time that
su�cient conditions in terms of (�nitely many) moments are given in order to
converge to a distribution that is not characterized by its moments.

1. Introduction

Four Moments Theorems are results which imply or characterize convergence
in law of some approximating sequence {Fk : k ≥ 0} of random variables towards
some target measure ν . A typical example of such an approximating sequence
(with the target measure ν being Gaussian) are homogeneous sums of the form

(1) Fk =
k∑

j1, ..., jp=1
aj1 · · ·jpWj1 · · ·Wjp ,

normalized to have unit variance. Here,
{
Wj : j ≥ 1

}
is an i.i.d. sequence of stan-

dard Gaussian random variables and the constants aj1 · · ·jp are symmetric in the
indices and vanish on diagonals. The classical fourth moment theorem of Nualart
and Peccati (see [NP05]) states that Fk converges in law to a standard Gaussian
distribution if and only if the fourth moment of Fk converges to the fourth mo-
ment of the standard Gaussian distribution, namely 3. In fact, the aforementioned
two authors have proven their result in in�nite dimensions, where the sequence
of Fk are sequences of multiple Wiener-Itō integrals of �xed order p. The original
proof in [NP05] uses stochastic analysis and shortly after its publication another
proof via Malliavin calculus was given by Nualart and Ortiz-Latorre in [NOL08].
Later, in [NP09a], Nourdin and Peccati used this approach to obtain a similar
result for approximation of the Gamma distribution. They showed, again for a
sequence of normalized Wiener-Itō integrals, that convergence of the third and
fourth moments is enough to converge to a Gamma distribution.
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In [Led12], Ledoux provided a new perspective. He gave new proofs of the
above results from the abstract point of view of Markov di�usion generators.
In this context, given a Markov di�usion generator satisfying a certain spectral
condition, convergence of a sequence of eigenfunctions of such a generator to
a Gaussian or Gamma distribution is still controlled by convergence of just the
�rst four moments. Multiple Wiener-Itō integrals �t the framework as they are
eigenfunctions of the in�nite-dimensional Ornstein-Uhlenbeck operator.

Building on [Led12], Azmoodeh et al. showed in [ACP14] that the spectral con-
dition can be replaced with a Markov chaos property of the eigenfunctions which
is less restrictive than the earlier notion of Markov chaos introduced in [Led12].
In addition to Four Moments Theorems for convergence towards the Gaussian
and Gamma distributions, a Four Moments Theorem for the approximation of the
Beta distribution was proven.

In this paper, we derive bounds on probabilistic distancesd (Gk ,Z ), where {Gk : k ≥ 1}
is a sequence of random variables related to Markov di�usion generators and a
target random variable Z whose distribution is an invariant measure of a di�u-
sion.

When the target distribution is viewed from the point of view of di�usion the-
ory, it is interesting to note that the Gaussian, Gamma and Beta distributions share
a common feature: they are the only invariant measures of a di�usion on the real
line admitting an orthonormal basis of polynomial eigenfunctions (see [Maz97]).
They also are the only members of the Pearson family of distributions (introduced
in [Pea95], see for example [FS08] for a modern treatment) which have moments
of all orders. This naturally leads to the question whether Four Moments Theo-
rems can also be proven when the target measure ν is one of the three remaining
heavy-tailed classes of Pearson distributions, commonly known as skew-t, F- and
inverse Gamma-distributions (see Subsection 2.3 for details). Here, heavy-tailed
is understood in the sense that only a �nite number of moments exist.

Target distributions ν belonging to the Pearson family (or more generally abso-
lutely continuous invariant measures of di�usions) have already been considered
in [EVq15, KT12] as possible limit laws ν for sequences of multiple Wiener-Itō
integrals. These integrals have the in�nite dimensional Ornstein-Uhlenbeck as
underlying Markov generator. For such multiple Wiener-Itō integrals, however,
as was also observed in [KT12], the only possible limit distributions belonging to
the Pearson family are the Gaussian and Gamma laws.

In this paper, we present a systematic approach to the problem and prove quan-
titative Four Moments Theorems for convergence to all six classes of the Pearson
distribution. The only assumption we make, which seems to be unavoidable in
this context, is that the parameters of the distribution are chosen in such a way
that the �rst four moments exist. Compared to [ACP14], we are not only able to
cover the full Pearson class as a target distribution ν , but also extend the admissi-
ble chaos structures, so that, for example, the laws of the converging sequence of
chaotic random variables can be heavy-tailed as well. In particular, no assumption
of hypercontractivity or diagonalizability of the underlying generator is made.
Our main result (Theorem 3.9 along with Proposition 3.12, to which we refer for
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full details and any unexplained notation) is a quantitative Four Moments Theo-
rem of the form

(2) d (Gk ,Z ) ≤ c

√∫
E
P (Gk ) d µk + ξk

∫
E
Q (Gk ) d µk ,

where d is a suitable probabilistic distance metrizing convergence in law, Z is a
random variable whose law ν belongs to the Pearson family, Gk is a chaotic ran-
dom variable de�ned below with some underlying Markov di�usion generator Lk
with invariant measure µk for each k ≥ 0. Moreover, in (2), c is a positive con-
stant, P and Q are polynomials of degree four, whose coe�cients are explicitly
given in terms of the parameters of the law of Z . In comparison to earlier Four
Moments Theorems, the linear combination of moments, given by the integral in-
volving the polynomial Q appearing in the bound on the right hand side of (2) is
new (and only appears in certain cases). The deterministic non-negative real se-
quence

{
ξk : k ≥ 0

}
in (2) is de�ned in terms of a new notion of chaos grade, which,

heuristically speaking, measures how similar the chaotic sequence {Gk : k ≥ 0} is
to the target random variable Z , when the latter is viewed as an element of the
Markov chaos of a Pearson generator.

To prove (2), we �rst obtain a generic bound of the form

(3) d (G,Z ) ≤ c

∫
E

���Γ(G,−L
−1G ) − τ (G )��� d µ

(see Theorem 3.2) for probabilistic distances d (G,Z ) between a target random
variable Z whose law can belong to a large class of absolutely continuous distri-
butions, and a random variableG coming from a Markov structure which involves
a generator L with invariant measure µ, the carré du champ operator Γ, the pseudo
inverse L−1 of the underlying Markov generator L and a function τ related to the
target Z . Again, we stress that both, the laws of Z and G do not need to have
moments of all orders. The bound (3) is of independent interest and obtained us-
ing a combination of Stein’s method and the so-called Gamma calculus. It can be
seen as an abstract version of the Malliavin-Stein method on Wiener chaos, �rst
introduced in [NP09b].

Then, in order to further bound (3) by the right hand side of (2) when G is a
chaotic element of the Markov structure and the law of Z belongs to the Pearson
family, we again make use of the Gamma calculus and spectral arguments that, in
a similar spirit as in [ACP14], allow us to obtain (2), and hence linear combinations
of the �rst four moments as a bound for the right hand side of (3).

Note that, in general, one cannot a priori use moments to prove convergence
towards a heavy-tailed distribution. However, our results provide a context in
which this is not only possible, but where convergence of only the �rst four mo-
ments su�ces.

As particular examples of Markov structures �tting our framework, we study
(tensorized) Pearson generators, which have multivariate Pearson distributions as
invariant measures. In this context, the chaos grade provides a heuristic for the
question which Pearson laws are compatible with each other, in the sense that
chaotic random variables (for example homogeneous sums of the type (1) with
the Gaussian laws replaced by arbitrary other Pearson laws with �nite �rst four
moments) with respect to one Pearson generator can converge in distribution to
the invariant measure of another (possibly di�erent) Pearson generator.
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The paper is organized as follows. In Section 2, we introduce the Markov frame-
work we will be working in and give a quick summary of Stein’s method as well
as an overview of the Pearson distributions. Our main results, in particular the
bounds (3) and (2) as well as the de�nition of Markov chaos are presented in Sec-
tion 3. As an application, we study in Section 4 the case of Pearson chaos, whose
chaos structure �ts our framework.

As a last remark, let us mention that speaking of Four Moments Theorems as
opposed to a Fourth Moment or generally a Third and Fourth Moment is merely
a question of style, depending on whether one normalizes the approximating se-
quences to have the correct mean and variance or not. We chose not to impose
any normalization.

2. Preliminaries

2.1. Markov di�usion generators. Our main results will be proven in the set-
ting of Markov di�usion generators, that is, we have some underlying di�usive
Markov process {Xt : t ≥ 0}with invariant measure µ, associated semigroup {Pt : t ≥ 0},
in�nitesimal generator L and carré du champ Γ, where all of these objects are in-
herently connected. The operators L and Γ play an important role here. From
an abstract point of view, a standard and elegant way to introduce this setting is
through so called Markov triples, where one starts from the invariant measure µ,
the carré du champ Γ and a suitable algebra of functions (random variables), from
which the generator L, the semigroup {Pt : t ≥ 0} (including their L2-domains)
and thus also the Markov process {Xt : t ≥ 0} are constructed. The assumptions
we will make here are those of a so-called Full Markov Triple (E, µ, Γ) in the sense
of [BGL14, Part I, Chapter 3]. Before introducing this setting rigorously, let us
give an informal description. Random variables are viewed as elements of an al-
gebra A of functions F : E → R, where (E,F , µ ) is some probability space. On
this algebra A, the generator L and the bilinear and symmetric carré du champ
operator Γ are de�ned and related via the identity

Γ(F ,G ) =
1
2
(L(FG ) − FLG −GLF ) .

They satisfy a di�usion property, which in its simplest form reads
Lφ (F ) = φ ′(F )LF + φ ′′(F )Γ(F , F )

or, expressed using the carré du champ,
Γ(φ (F ),G ) = φ ′(F )Γ(F ,G ).

The subset of random variables with �nite mean and variance is then L2 (E, µ ) ⊆
A. On this smaller space, L and Γ are typically only densely de�ned on their
domains D (L) and D (E) × D (E). The symbol E, de�ned below, stands for a
Dirichlet form (the so-called energy functional), which is used to construct the
domains. On these domains, an important relation between L and Γ holds, namely
the integration by parts formula∫

E
Γ(F ,G ) d µ = −

∫
E
FLG d µ .

We are now going to introduce this setting in a rigorous way, following closely [BGL14,
Part I, Chapter 3]. The needed de�nitions and assumptions are as follows.

(i) (E,F , µ ) is a probability space and L2 (E,F , µ ) is separable.
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(ii) A is a vector space of real-valued, measurable functions (random variables)
on (E,F , µ ), stable under products (i.e. A is an algebra) and under the action
of C∞-functions Ψ : Rk → R.

(iii) A0 ⊆ A is a subalgebra of A consisting of bounded functions which are
dense in Lp (E, µ ) for every p ∈ [1,∞). We assume that A0 is also stable
under the action of smooth functions Ψ as above and also thatA0 is an ideal
in A (if F ∈ A0 and G ∈ A, then FG ∈ A0)

(iv) The carré du champ operator Γ : A0×A0 → A0 is a bilinear symmetric map
such that Γ(F , F ) ≥ 0 for all F ∈ A0. For every F ∈ A0 there exists a �nite
constant cF such that for every G ∈ A0

�����

∫
E
Γ(F ,G ) d µ

�����
≤ cF ‖G‖2 ,

where ‖G‖22 =
∫
E G

2 d µ. The Dirichlet form E is de�ned on A0 × A0 by

E (F ,G ) =

∫
E
Γ(F ,G ) d µ .

(v) The domain D (E) ⊆ L2 (E, µ ) is obtained by completing A0 with respect to
the norm ‖F ‖E = (‖F ‖2 + E ( f , f ))

1/2. The Dirichlet form E and the carré
du champ operator Γ are extended to D (E) × D (E) by continuity and po-
larization. We thus have that Γ : D (E) × D (E) → L1 (E, µ ).

(vi) L is a linear operator, de�ned on A0 via the integration by parts formula

(4)
∫
E
FLG d µ = −

∫
E
Γ(F ,G ) d µ

for all F ,G ∈ A0. We assume that L(A0) ⊆ A0.
(vii) The domain D (L) ⊆ D (E) consists of all F ∈ D (E) such that

|E (F ,G ) | ≤ cF ‖G‖2

for all G ∈ D (E), where cF is a �nite constant. The operator L is extended
from A0 to D (L) by the integration by parts formula (4). On D (L), L is by
construction self-adjoint (as Γ is symmetric). We assume that L1 = 0 and
that L is ergodic: LF = 0 implies that F is constant for all F ∈ D (L).

(viii) The operator L : A → A is an extension of L : A0 → A0. On A × A, the
carré du champ Γ is de�ned by

(5) Γ(F ,G ) =
1
2
(L(FG ) − FLG −GLF ) .

(ix) For all F ∈ A, we assume Γ(F , F ) ≥ 0 with equality if, and only if, F is
constant. By the integration by parts formula (4), this implies in particular
that −L is a positive symmetric operator, and therefore the spectrum of L is
contained in (−∞, 0], with 0 always being an eigenvalue given that L1 = 0.

(x) The di�usion property holds. For allC∞-functionsΨ : Rp → R and F1, . . . , Fp ,G ∈
A one has

(6) Γ
(
Ψ

(
F1, . . . , Fp

)
,G

)
=

p∑
j=1
∂jΨ(F1, . . . , Fp ) Γ(Fj ,G )
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and

(7) LΨ(F1, . . . , Fp ) =

p∑
i=1
∂iΨ(F1, . . . , Fp )LFi +

p∑
i, j=1
∂i jΨ(F1, . . . , Fp ) Γ(Fi , Fj ).

(xi) The integration by parts formula (4) continues to hold if F ∈ A and G ∈ A0
(or vice versa).

Of course, one can also introduce a symmetric Markov semigroup and associated
Markov process with in�nitesimal generator L de�ned on its domainD (L) but as
we will not make direct use of both of these objects in this paper, we again refer
to [BGL14, Part I, Chapter 3] for details.

To summarize, we have an algebraA of random variables on some probability
space (E,F , µ ) on which the carré du champ operator Γ and the generator L act.
The measure µ is called the invariant measure of L. Note that there is no inte-
grability assumption on the elements of A. The L2 (E, µ )-domains of L and Γ are
denoted by D (L) and D (E) × D (E), respectively, and both, D (L) and D (E) are
dense in L2 (E, µ ). By construction, one has A0 ⊆ D (L) ⊆ D (E) ⊆ L2 (E, µ ) ⊆ A.

A model example of the setting described above is the Markov triple (Rd ,γd , Γ),
where γd is the d-dimensional Gaussian measure and Γ =

〈
∇f ,∇f

〉
Rd the carré

du champ of the d-dimensional Ornstein-Uhlenbeck generator L given by Lf =
x ·∇f +∆f . A suitable algebraA is given by polynomials ind variables. In in�nite
dimension, one obtains the in�nite-dimensional Ornstein-Uhlenbeck generator
on Wiener space with Wiener measure as invariant distribution. In this case, we
have that L = −δD, where δ is the Malliavin divergence operator (also called
Skorohod integral) and D the Malliavin derivation operator with carré du champ
operator Γ given by Γ(F ,G ) = 〈DF ,DG〉H, whereH denotes the underlying Hilbert
space. For further details on this example, see [BH91, Nua06], or [NP12].

The Ornstein-Uhlenbeck generator is a particular example of Pearson genera-
tors which will be discussed in detail in Section 4. General references with more
examples �tting our framework are [BÉ85, Bak14, BGL14, FOT11].

In what follows, we will also make use of the pseudo-inverse L−1 of L, satisfying
for any F ∈ D (L),

(8) LL−1F = L−1LF = F − π0 (F ),

where π0 (F ) =
∫
E F d µ denotes the orthogonal projection of F onto ker(L) (recall

that the kernel of L by assumption only consists of constants). For completeness,
we recall how this pseudo-inverse is constructed. By self-adjointness of L, con-
sidered as an operator on D (L), we have that D (L) = ker(L) ⊕ (ran(L) ∩ D (L)).
Therefore, we can de�ne L−1 on ran(L) ∩ D (L) (as L is injective there) and then
extend it to D (L) by setting L−1F = 0 if F ∈ ker(L).

We end this subsection by a useful lemma which combines the integration by
parts formula (4) and the di�usion property (6).

Lemma 2.1. In the setting introduced above, let F ∈ D (E), G ∈ D (L) such that∫
E G d µ = 0 and φ : R → R be a di�erentiable function such that φ (F ) ∈ D (E).
Furthermore, assume that φ (F )G ∈ L1 (E, µ ). Then, one has∫

E
φ (F )G d µ =

∫
E
φ ′(F )Γ(F ,−L−1G ) d µ .
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Proof. By (8) and the assumption that G is centered, we have that G = LL−1G.
Therefore, by the integration by parts formula (4) and the di�usion property (6),
one has ∫

E
φ (F )G d µ =

∫
E
φ (F )LL−1G d µ

=

∫
E
Γ

(
φ (F ),−L−1G

)
d µ

=

∫
E
φ ′(F )Γ(F ,−L−1G ) d µ .

�

2.2. Stein’s method for invariantmeasures of di�usions. In this section, we
present Stein’s method for invariant measures of di�usions. Note that if µ is a
measure which is absolutely continuous with respect to the Lebesgue measure
and admits a density p as well as a second moment, then under very minimal
assumptions there exists a Markov di�usion generator L having µ as its invariant
measure.

To be more precise, let µ be a probability measure admitting a density p with
support (l ,u) ⊆ R, −∞ ≤ l < u ≤ +∞. Furthermore, let θ > 0, denote m =∫
R
xp (x )dx and

(9) σ 2 (x ) =
−2θ

∫ x
−∞

(y −m)p (y) dy
p (x )

, x ∈ (l ,u),

which is a non-negative quantity. Then, the stochastic di�erential equation

(10) dXt = −θ (Xt −m) d t + σ (Xt ) dBt , Xt ∈ (l ,u),

where {Bt : t ≥ 0} is a Brownian motion, has a unique weak Markovian solution
with invariant measure µ (see [BSSr05], Theorem 2.3). The support of the density
p could very well be taken to be a union of open intervals, but we treat here the
case of one open interval in order not to make the notation heavier than it needs
to be.

Stein’s density approach (see [Ste86] for a detailed treatment) allows us to char-
acterize the invariant measure µ of the di�usion (10) through the following theo-
rem, called Stein’s lemma for invariant measures of di�usions (see [NP09b, Propo-
sition 6.4] or [EVq15, Lemma 6]).

Theorem 2.2. Let µ be a probability measure admitting a density p with support
(l ,u) ⊆ R, −∞ ≤ l < u ≤ +∞, such that

∫
R
|x | p (x )dx < ∞ and

∫
R
xp (x )dx = m.

De�ne the function

τ (x ) =
1
2
σ 2 (x )1(l,u ) (x ), x ∈ R,

where σ 2 is de�ned in terms of p by (9) and let Z be a random variable having
distribution µ. Suppose

(i) For every di�erentiable φ such that τ (Z )φ ′(Z ) ∈ L1 (Ω), one has that (Z −
m)φ (Z ) ∈ L1 (Ω) and

E (τ (Z )φ ′(Z ) − θ (Z −m)φ (Z )) = 0.
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(ii) Let X be a real-valued random variable with an absolutely continuous distri-
bution. If for every di�erentiable φ such that τ (X )φ ′(X ) ∈ L1 (Ω) and (X −
m)φ (X ) ∈ L1 (Ω), one has that

(11) E (τ (X )φ ′(X ) − θ (X −m)φ (X )) = 0,

then X has distribution µ.

Based on the above Stein lemma, one can use the now well established Stein
methodology to quantitatively measure the distance between the law of a random
variableX and the law of a random variableZ corresponding to an invariant mea-
sure of a di�usion. The generalization of the original Stein method to invariant
measures of di�usions has been recently studied in [KT12] and further developed
in [EVq15]. In order to present this method, we need to introduce separating
classes of functions and probabilistic distances.

De�nition 2.3. Let H be a collection of Borel-measurable functions on R. We
say that the class H is separating if the following property holds: any two real-
valued random variablesX ,Y verifyingh(X ),h(Y ) ∈ L1 (Ω) and E(h(X )) = E(h(Y ))
for every h ∈ H , are necessarily such that X and Y have the same distribution.

Separating classes of functions can be used to introduce distances between
probability measures in the following way.

De�nition 2.4. Let H be a separating class in the sense of De�nition 2.3 and
let X ,Y be real-valued random variables such that h(X ),h(Y ) ∈ L1 (Ω) for every
h ∈ H . Then the distance dH (X ,Y ) between the distributions X and Y is given
by

(12) dH (X ,Y ) = sup
h∈H

|E(h(X )) − E(h(Y )) | .

One can show that dH is a metric on some subset of the class of all probability
measures onR (see [Dud02, Chapter 11]). With some abuse of language, one often
speaks of the “distance between random variables” when really the distance be-
tween the laws of these random variables is meant. We will call a given distance
dH admissible for a setM of random variables if dH (X ,Y ) is well de�ned for all
X ,Y ∈ M, i.e. if it holds that E[h(X )] < ∞ for allX ∈ M andh ∈ H . As an exam-
ple of a distance as introduced above, one can take H to be the class of Lipschitz
continuous and bounded functions. This yields the well-known Fortet-Mourier
(or bounded Wasserstein) distance denoted by dFM , which metrizes convergence
in distribution and is de�ned for all real-valued random variables. It is therefore
admissible for any setM of random variables. Other distances (with smaller do-
mains) are the total variation, Kolmogorov or Wasserstein distance (see [NP12,
Appendix C]). A Stein equation is an ordinary di�erential equation linking the
notion of distance (through the left-hand side of (12)) to the characterizing ex-
pression of a distribution appearing in Stein’s lemma (the right-hand side of (11)
for instance). More precisely, a Stein equation associated to the Stein characteri-
zation (11) is given by

(13) τ (x ) f ′(x ) − θ (x −m) f (x ) = h(x ) − E(h(Z )),

where Z is a random variable with distribution µ given by the invariant measure
of the di�usion in (10). It is straightforward to check that this equation has a
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continuous solution on R for each h ∈ H , denoted by fh , and given by

fh (x ) =
1

τ (x )p (x )

∫ x

l
(h(y) − E(h(Z )))p (y)dy

= −
1

τ (x )p (x )

∫ u

x
(h(y) − E(h(Z )))p (y)dy

for x ∈ (l ,u), and by

fh (x ) = −
h(x ) − E(h(Z ))

θ (x −m)
when x < (l ,u) (as in that case, τ (x ) = 0). Now, let X be a real-valued random
variable with an absolutely continuous distribution. By letting x = X in (13),
taking expectations and the supremum over the separating class of test functions
H on both sides, we can express the distance dH in (12) as

(14) dH (X ,Z ) = sup
h∈H

���E
(
τ (X ) f ′h (X )

)
− E (θ (X −m) fh (X ))��� .

The following result, a proof of which can be found in [EVq15, Lemma 7], com-
bines results from [KT12] and [EVq15] and provides su�cient conditions under
which useful estimates for f ′h can be obtained.

Lemma 2.5. Let the function σ 2, associated to a density p with support (l ,u) ⊆ R,
−∞ ≤ l < u ≤ +∞, be given by (9). If u = ∞, then assume that limx→u σ

2 (x ) > 0,
and if l = −∞, assume that limx→l σ

2 (x ) > 0. Furthermore, suppose that there
exists a positive function д ∈ C1 ((l ,u),R+) such that

(i) 0 < limx→u σ
2 (x )/д(x ) ≤ limx→u σ

2 (x )/д(x ) < ∞;
(ii) limx→u д

′(x ) ∈ [−∞,+∞];
(iii) 0 < limx→l σ

2 (x )/д(x ) ≤ limx→l σ
2 (x )/д(x ) < ∞;

(iv) limx→l д
′(x ) ∈ [−∞,+∞].

Then the solution fh to the Stein equation (13), for a given test function h ∈ H such
that ‖h′‖∞ < ∞, satis�es 


f

′
h




∞ ≤ k 

h′

∞ ,
where the constant k does not depend on h.

2.3. Pearson di�usions. Pearson distributions were �rst classi�ed in [Pea95]
by Pearson who noticed that some of the most important distributions in statis-
tics, namely the Gaussian, exponential, gamma, uniform, beta, Student-t, F, and
inverse gamma distributions, share the common feature that their logarithmic de-
rivative can be represented as the ratio of a linear and a quadratic polynomial (see
(16)). The corresponding class of di�usions having these distributions as invari-
ant measures play an equally central role and include, for example, the Ornstein-
Uhlenbeck and Cox-Ingersoll-Ross processes, which are ubiquitous in physics and
�nance.

Mathematically, Pearson di�usions are Itō di�usions with mean reverting lin-
ear drift whose squared di�usion coe�cient is a quadratic polynomial, i.e., a sta-
tionary solution of the stochastic di�erential equation

(15) dXt = a(Xt ) d t +
√
2θb (Xt ) dBt ,

where a(x ) = −θ (x −m) and
b (x ) = b2x

2 + b1x + b0.
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Here,m,b2,b1,b0 are real constants, θ > 0 determines the speed of mean reversion
and m is the stationary mean. Recall that the scale and speed densities s and p,
respectively, are de�ned as

s (x ) = exp
(
−2

∫ x

x0

a(u)

σ 2 (u)
du

)
and p (x ) =

1
s (x )σ 2 (x )

.

In our case, we have the above-mentioned relation

(16) p ′(x ) = −
(2b2 + 1)x −m + b1
b2x2 + b1x + b0

p (x ),

which was originally used by Pearson (see [Pea95, page 360]) to introduce these
distributions. From (16) one also sees that the class of Pearson di�usions is closed
under linear transformations. Explicitly, if Xt satis�es the stochastic di�erential
equation (15), then X̃t = γXt + δ satis�es

d X̃t = ã(X̃t ) d t + σ̃ (X̃t ) dBt ,

where ã(x ) = −θ (x − γm − δ ) and

σ̃ 2 (x ) = 2θ
(
b2x

2 + (b1γ − 2b2δ ) x + b0γ 2 − b1γδ + b2δ 2
)
.

Up to such linear transformations, Pearson di�usions can be categorized into
the six classes listed below together with their invariant distributions, densities,
means and di�usion coe�cients. A detailed analysis and classi�cation of Pearson
di�usions can for example be found in [JKB94, JKB95, FS08].
1. Gaussian distribution with parameters m ∈ R and σ > 0. It has state space R,

meanm, as well as density function and di�usion coe�cients given by

p (x ) ∝ e−
(x−m )2

2σ 2 , b (x ) = σ 2.

The Gaussian distribution has moments of all orders.
2. Gamma distribution with parameters α , β > 0. It has state space (0,∞), mean

α
β , as well as density function and di�usion coe�cients given by

p (x ) ∝ xα−1e−βx , b (x ) =
x

β
.

The Gamma distribution has moments of all orders.
3. Beta distribution with parameters α , β > 0. It has state space (0, 1), mean α

α+β ,
as well as density function and di�usion coe�cients given by

p (x ) ∝ xα−1 (1 − x )β−1, b (x ) = −
x2

α + β
+

x

α + β
.

The Beta distribution has moments of all orders.
4. Skew t-distribution with parameters m,ν , λ ∈ R, α > 0. It has state space R,

mean (2m−1)λ+αν
2(m−1) , as well as density function and di�usion coe�cients given

by

p (x ) ∝ *
,
1 +

(
x − λ

α

)2
+
-

−m

e−ν arctan( x−λα ) ,

b (x ) =
x2

2(m − 1)
−

λx

2(m − 1)
+

λ2 + α2

2(m − 1)
.

The skew t-distribution has moments of order p for p < 2m − 1.
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5. Inverse gamma distribution with parameters α , β > 0. It has state space (0,∞),
mean β

α−1 , as well as density function and di�usion coe�cients given by

p (x ) ∝ x−(α−1)e−
β
x , b (x ) =

x2

α − 1
.

The inverse gamma distribution has moments of order p for p < α .
6. F -distribution with parameters d1,d2 > 0. It has state space (0,∞), mean d2

d2−2 ,
as well as density function and di�usion coe�cients given by

p (x ) ∝ x
d1
2 −1

(
1 +

d1
d2
x

)−d1+d22

, b (x ) =
2x2

d2 − 2
+

2d2x
d1 (d2 − 2)

.

The F -distribution has moments of order p for p < d2
2 .

Pearson di�usions are particular (one-dimensional) examples �tting the Markov
triple structure introduced in Subsection 2.1. The generator L acts on L2 (E, µ ) via
(17) Lf (x ) = −(x −m) f ′(x ) + b (x ) f ′′(x ),

where b is the quadratic polynomial appearing in (15). Its invariant measure µ is
a Pearson distribution and it is furthermore symmetric, ergodic and di�usive (in
the sense of (7)). The set Λ of eigenvalues of L is given by (see for example [FS08])

(18) Λ =
{
−n (1 − (n − 1)b2) θ : n ∈ N0, b2 <

1
2n − 1

}
and the corresponding eigenfunctions are the well-known orthogonal polynomi-
als associated with the respective laws (Hermite, Laguerre and Jacobi polynomials
for the Gaussian, Gamma and Beta distributions, respectively, and Romanovski-
Routh, Romanovski-Bessel and Romanovski-Jacobi polynomials for the skew t-,
inverse gamma and F -distributions. From formula (18), we see that polynomials
up to degree n, where n is the largest integer strictly less than 1+b2

2b2 , are (square
integrable) eigenfunctions, so that µ has moments up to order 2n. Note that the
cardinality of Λ is in�nite ifb2 ≤ 0 and �nite ifb2 > 0. Consistent with the general
theory of Markov generators presented in Subsection 2.1 (see (ix)), zero is always
contained in Λ and all other eigenvalues are negative.

The structure of the spectrum S of such a Pearson generator can thus be described
as follows.

(i) If µ is a Gaussian, Gamma or Beta distribution, then S is purely discrete
and consists of in�nitely many eigenvalues, each of multiplicity one. In the
Gaussian and Gamma case, where b2 = 0, these eigenvalues are the negative
integers (up to the common scaling factor θ ) including zero. Eigenfunctions
are the associated orthogonal polynomials (Hermite, Laguerre or Jacobi).

(ii) If µ is a skew t-, inverse Gamma or scaled F -distribution, then S contains
a discrete and a continuous part. The discrete part consists of only �nitely
many eigenvalues.

For later reference, we note that for a Pearson distribution µ, the Stein character-
ization (11) in Theorem 2.2 becomes

(19) E
[
b (X )1(l,u ) (X )φ ′(X ) − (X −m)φ (X )

]
= 0,

where again b (x ) = b2x
2 + b1x + b0 is the associated quadratic polynomial.
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Identity (19) gives a recursion formula for computing the moments of a given
Pearson distribution. Indeed, if the law of X is a Pearson distribution with mo-
ments up to order p + 2, then (19) with φ (x ) = xp+1 reads

(p + 1) E
[
b (X )Xp ] − E[

(X −m)Xp+1
]
= 0.

This yields

(b2 (p + 1) − 1) E
[
Xp+2

]
+ (b1 (p + 1) +m) E

[
Xp+1

]
+ (p + 1)b0 E

[
Xp ] = 0

with E[X ] = m. Recall from the previous discussion that the condition for the
existence of moments of order p is p < 1 + b−12 , so that four moments exist if and
only if b2 < 1

3 . In this case, we start with with E[X ] =m and get

E
[
X 2

]
=

(b1 +m)m + b0
1 − b2

,

E
[
X 3

]
=

(2b1 +m) ((b1 +m)m + b0)

(1 − b2) (1 − 2b2)
+

2b0m
1 − 2b2

,

E
[
X 4

]
=

(3b1 +m) (2b1 +m) ((b1 +m)m + b0)

(1 − b2) (1 − 2b2) (1 − 3b2)
+

(3b1 +m)2b0m
(1 − 2b2) (1 − 3b2)

+
3b0 ((b1 +m)m + b0)

1 − 3b2
.

For further analysis of the spectrum of such Pearson generators and general mo-
tivation on studying Pearson di�usions, see [ALŠ13].

3. Main results

Throughout this section, we always work in the Markov setting introduced in
Subsection 2.1. We thus have a probability space (E,F , µ ) and the two operators L
and Γ with their L2-domainsD (L) andD (E)×D (E) respectively, whereD (L) ⊆
D (E) ⊆ L2 (E, µ ). As is customary in this context, we continue to use the integral
notation for mathematical expectation, so that for example the expectation of a
random variable G ∈ L1 (E, µ ) is denoted by

∫
E G d µ.

3.1. Carré du champ characterization. As a �rst result, we show how the Stein
characterization (11) can be used in order to naturally characterize, in terms of
the carré du champ operator Γ, when a random variableG has a given probability
distribution ν .

Theorem 3.1. Let ν be a probability measure admitting a density p with support
(l ,u) ⊆ R, −∞ ≤ l < u ≤ +∞, such that

∫
R
|x | p (x )dx < ∞ and

∫
R
xp (x )dx = m.

De�ne the function

τ (x ) =
1
2
σ 2 (x )1(l,u ) (x ), x ∈ R,

where σ 2 is de�ned in terms of p by (9). LetG ∈ D (L) with an absolutely continuous
distribution and meanm. Then G has distribution ν if, and only if,

Γ(G,−L−1G ) = θ−1τ (G )

almost surely.
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Proof. Letφ ∈ C∞ (R,R) be such that τ (G )φ ′(G ) ∈ L1 (E) and (G−m)φ (G ) ∈ L1 (E).
By Lemma 2.1, one has

(20)
∫
E
(G −m)φ (G ) d µ =

∫
E
φ ′(G )Γ(G,−L−1G ) d µ .

This implies
(21)∫

E
τ (G )φ ′(G ) − θ (G −m)φ (G ) d µ = θ

∫
E
φ ′(G )

(
θ−1τ (G ) − Γ(G,−L−1G )

)
d µ,

so that the assertion follows from Theorem 2.2. �

Using Stein’s method, we obtain the following quantitative version of Theo-
rem 3.1.

Theorem 3.2. Let ν be a measure with density p and let σ 2 be given by (9). Assume
that σ 2 satis�es the assumptions of Lemma 2.5, and let τ (x ) = 1

2σ
2 (x )1(l,u ) (x ),

x ∈ R. Furthermore, let G ∈ D (L) such that
∫
E τ (G ) d µ < ∞ and

∫
E G d µ = m.

Finally, let Z be a random variable with distribution ν . Then one has

(22) dH (G,Z ) ≤ cH

∫
E

���Γ(G,−L
−1G ) − θ−1τ (G )���dµ,

where dH is an admissible distance forG and Z , de�ned via (12) using a separating
class H of absolutely continuous test functions such that suph∈H ‖h′‖∞ < ∞ and
cH is a positive constant depending solely on the class H .

Remark 3.3. Note that the Fortet-Mourier metric always satis�es the assumptions
of Theorem 3.2, as, by de�nition, ‖h′‖∞ ≤ 1 for all h in the Fortet-Mourier class
of test functions (see for example [NP12, Appendix C]). In concrete situations,
when both the law ν and the generator L are explicit, one can often take stronger
distances such as Kolmogorov or total variation.

Proof of Theorem 3.2. On the one hand, by using Stein’s method for invariant mea-
sures of di�usions (see Subsection 2.2), we can write, using (14),

(23) dH (G,Z ) = sup
h∈H

�����

∫
E
τ (G ) f ′h (G )dµ −

∫
E
θ (G −m) fh (G )dµ

�����
,

where fh denotes the solution to the Stein equation (13). On the other hand, by
Lemma 2.1, one has∫

E
(G −m) fh (G ) d µ =

∫
E
f ′h (G )Γ(G,−L−1G ) d µ .

Plugged into (23) and applying the Hölder inequality, we obtain

dH (G,Z ) = sup
h∈H

�����

∫
E

(
τ (G ) f ′h (G ) − θ f ′h (G )Γ(G,−L−1G )

)
d µ

�����

≤ sup
h∈H




f
′
h




∞ θ
∫
E

���Γ(G,−L
−1G ) − θ−1τ (G )��� d µ,

so that the assertion follows by Lemma 2.5 with cH = kθ suph∈H ‖h′‖∞ < ∞. �

Remark 3.4. Let us point out some key features of the results of this subsection.
Firstly, to avoid any confusion, note that the target measure ν appearing in

Theorems 3.1 and 3.2 is not related to the invariant measure µ of the generator



14 S. BOURGUIN, S. CAMPESE, N. LEONENKO, AND M.S. TAQQU

L, in the domain of which G lies. As pointed out in Subsection 2.2, almost any
distribution admitting a density can be regarded as an invariant measure of a
di�usion, and is therefore admissible as a target distribution ν . Secondly, observe
that our assumptions on the random variableG are quite mild, hence providing a
lot of �exibility for applications.

In the speci�c case where the underlying generator is the in�nite-dimensional
Ornstein-Uhlenbeck generator (Wiener space) and the target law ν is Gaussian
(constant di�usion coe�cient), a bound of this type had been obtained in [NP09b],
which has been applied in several contexts, for example to obtain Berry-Esséen
theorems for parameter estimation of stochastic partial di�erential equations (see
[KP17]) or in the context of fractional Ornstein-Uhlenbeck processes (see [HNZ17]).

Theorems 3.1 and 3.2 in this section extend the class of possible target distribu-
tions from Gaussian to general invariant measures of di�usions, and also allows to
consider functionals of non-Gaussian random �elds. In particular, both the target
law and the underlying random �eld can have heavy tails.

3.2. Markov chaos and FourMoments Theorems. This subsection introduces
the concept of chaotic eigenfunctions, for which the general bound obtained in
Theorem 3.2 can further be bounded by a �nite linear combination of moments.
Chaotic eigenfunctions have �rst been introduced in [Led12] and a more gen-
eral de�nition has been given in [ACP14]. In order to also be able to deal with
heavy-tailed invariant measures, we have to extend this de�nition once again by
introducing the new notion of chaos grade.

We continue to assume as given a Markov structure as introduced in Subsec-
tion 2.1 and denote the spectrum of the generator L (de�ned on D (L)) by S . As
−L is non-negative and symmetric, one has S ⊆ (−∞, 0]. Let Λ ⊆ S denote the set
of eigenvalues of L. We always have that 0 ∈ Λ as by assumption L1 = 0. Chaotic
random variables are then de�ned as follows.

De�nition 3.5. An eigenfunction F with respect to an eigenvalue−λ of L is called
chaotic, if there exists η > 1 such that −ηλ is an eigenvalue of L and

(24) F 2 ∈
⊕
−κ ∈Λ
κ≤ηλ

ker (L + κ Id) .

In this case, the smallest η satisfying (18) is called the chaos grade of F .

In other words, an eigenfunction is called chaotic if its square can be expressed
as a sum of eigenfunctions.

Remark 3.6. (i) As we assume that L2 (E,F , µ ) is separable, the set Λ and there-
fore the direct orthogonal sum (24) of eigenspaces is at most countable.

(ii) The chaos grade is invariant under scaling of the generator, in the sense that
if F is a chaotic random variable of L with chaos grade η, then the chaos
grade of F remains unchanged when viewed as a chaotic random variable of
αL for any α ∈ R.

Let us give some examples to illustrate the concept.

Example 3.7. 1. An example is the generator L of a Pearson distribution and we
will study this example in detail in Section 4. At this point, let us brie�y il-
lustrate the chaos grade concept by treating the concrete case of the Gaussian
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distribution µ. Here, the generator is the one-dimensional Ornstein-Uhlenbeck
generator, acting on L2 (R, µ ). As is well known, the spectrum of L consists of
the negative integers and zero, which all are eigenvalues with the respective
Hermite polynomials as eigenfunctions (the Hermite polynomial Hp of order p
being an eigenfunction with respect to the eigenvalue −p). The square of such
a Hermite polynomial Hp can of course be expressed as a linear combination
of Hermite polynomials up to order 2p, so that the chaos grade of Hp is η = 2.
This expansion is given explicitly by the well-known product formula

H 2
p (x ) =

p∑
j=0

cp, jH2(p−j ) (x ),

where cp, j = j!
(
p
j

)2
.

2. The preceding example can also be looked at in in�nite dimensions. Here, the
one-dimensional Gaussian distribution is replaced with Wiener measure and
L is the in�nite dimensional Ornstein-Uhlenbeck generator. The spectrum of
L still consists of the negative integers and zero, with the eigenfunctions now
being multiple Wiener-Itō integrals of the form F = Ip ( f ) (so that LIp ( f ) =
−pIp ( f )). The product formula for such integrals says that

F 2 = Ip ( f )
2 =

p∑
j=0

cp, j I2(p−j ) ( fj ),

where the constants cp, j are de�ned as in the previous example and the kernels
fj are given in terms of so-called contractions of the original kernel f . This
shows that any such multiple Wiener-Itō integral is a chaotic eigenfunction in
the sense of De�nition 3.5 with chaos grade 2.

3. Another example in dimension one is obtained by taking L to be the Jacobi
generator acting on L2 ([0, 1],ν ), with invariant measure ν given by ν (dx ) =
cα,βx

α−1 (1 − x )β−11[0,1] (x ) dx for some positive parameters α , β . Then L is
such that

Lf (x ) = x (1 − x ) f ′′(x ) + (α − (α + β )x ) f ′(x ).

It is well known that the eigenvalues of L are given by the Jacobi polynomi-
als. The chaos grade of an eigenfunction associated to the eigenvalue λn =
−n

(
1 + n−1

α+β

)
is given by 2

(
1 + n

n−1+α+β

)
(see Section 4 for a full treatment of

chaos grade characterizations). Note that the chaos grade in this case is no
longer 2 and depends on the eigenvalue the eigenfunction is associated to. As
in the Wiener case, a tensorization procedure (see Section 4) allows to gener-
alize this example to higher dimensions.

Remark 3.8. For a systematic study of the chaos grades of eigenfunctions of Pear-
son generators, see Section 4.

We are now ready to prove Four Moments Theorems for Pearson distributions.
In all that follows, F will denote an eigenfunction of L, which is necessarily cen-
tered, and G = F +m a translated version of F which has then expectationm ∈ R
as in the previous section. Furthermore, as the six classes of Pearson di�usions
given by (15) are invariant under linear transformations (see Section 2.3), we as-
sume from here on without loss of generality that θ = 1

2 .
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Theorem 3.9. Let ν be a Pearson distribution associated to the di�usion given
by (15) with meanm and di�usion coe�cient

σ 2 (x ) = b (x ) = b2x
2 + b1x + b0,

where b0,b1,b2 ∈ R. Let F be a chaotic eigenfunction of L with respect to the eigen-
value −λ, chaos grade η and moments up to order 4. Set G = F + m. Then, if
η ≤ 2(1 − b2), one has

(25)
∫
E

(
Γ(G,−L−1G ) − b (G )

)2
d µ ≤ 2

(
1 − b2 −

η

4

) ∫
E
U (G ) d µ,

whereas if η > 2(1 − b2), one has

(26)
∫
E

(
Γ(G,−L−1G ) − b (G )

)2
d µ

≤ 2
(
1 − b2 −

η

4

) ∫
E
U (G ) d µ +

ξ (1 − b2)
2

∫
E
Q2 (G ) d µ,

where
ξ = η − 2(1 − b2) > 0,

and where the polynomials Q andU are given respectively by

Q (x ) = x2 +
2(b1 +m)

2b2 − 1
x +

1
b2 − 1

(
b0 +

m(b1 +m)

2b2 − 1

)
,

and

U (x ) = (1 − b2)Q2 (x ) −
1
12

(Q ′(x ))3 (x −m).

Remark 3.10.
(i) Observe that both

∫
E U (G ) d µ and

∫
E Q

2 (G ) d µ are linear combinations of
the �rst four moments of G, i.e. there exists coe�cients c j ,dj , j = 0, . . . , 4
such that∫

E
U (G ) d µ =

4∑
j=0

c j

∫
E
G jdµ and

∫
E
Q2 (G ) d µ =

4∑
j=0

dj

∫
E
G jdµ .

The coe�cients c j ,dj only depend on the coe�cients of the polynomialb and
the meanm of the target distribution, and hence only on ν . For convenience,
they are given in Table 1. We provide some examples of such linear moment
combinations below.

(ii) In Theorem 3.13, we will use Theorem 3.9 to obtain moment conditions for
the convergence in law of a sequence {Gk : k ≥ 1} to a random variable Z
with distribution ν . Consider for example (25). If

∫
E U (Gk ) d µ → 0 as

k → ∞, then the left-hand side of (25) converges to zero, and hence the
distribution of Gk converges to the Pearson distribution µ by Theorem 3.2.

(iii) Note that by the identities (31) and (27) in the forthcoming proof of Theo-
rem 3.9 and the Cauchy-Schwarz inequality,∫

E
U (G ) d µ ≤

√∫
E
Q2 (G ) d µ

√∫
E
(Γ(G,−L−1G ) − b (G ))2 d µ,
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Table 1. Coe�cients in the linear combinations of moments in
Remark 3.10.i

j c j

0

(
b0 +

m (b1+m)
2b2−1

)2
1 − b2

+
2m(b1 +m)3

3(2b2 − 1)3

1
4b0 (b1 +m)

1 − 2b2
+
2(b1 +m)2 (b1 + 2m(3b2 − 1))

3(1 − 2b2)3

2 −2b0 −
2(b1 +m)2

2b2 − 1
3 −2b1 −

4m
3

4
1
3
− b2

j dj

0
(b0 (2b2 − 1) +m(b1 +m))2

(1 − 2b2)2 (1 − b2)2

1
4(b1 +m) (b0 (2b2 − 1) +m(b1 +m))

(1 − 2b2)2 (b2 − 1)

2
2
(
b0 (1 − 2b2)2 + (b1 +m) (2b1 (b2 − 1) + (4b2 − 3)m)

)
(1 − b2) (1 − 2b2)2

3
4(b1 +m)

2b2 − 1
4 1

showing that the moment combination
∫
E U (G ) d µ indeed vanishes for a

random variable G having the law ν of the target distribution (as the Γ ex-
pression is zero if the law of G is ν by Theorem 3.1).

(iv) In order to understand the presence of the additional moment combination

ξ (1 − b2)
2

∫
E
Q2 (G ) d µ

in the bound (26), let L̃ be the Markov di�usion generator of the di�usion
(15) with mean m and di�usion coe�cient σ 2 (x ) = b (x ) as in the statement
of Theorem 3.9, so that the Pearson distribution ν is its invariant measure
and its support is Ẽ = (l ,u). Let F̃ = x −m and G̃ = F̃ +m = x . Then, F̃ is an
eigenfunction of L̃ (as it is the �rst orthogonal polynomial with respect to ν )
and G̃ has distribution ν . Indeed, for any smooth function φ, (17) yields

0 =
∫
Ẽ
L̃G̃ dν =

∫
R
b (x )1(l,u ) (x )φ

′′(x ) − (x −m)φ ′(x )ν (dx ),

where the right-hand side is exactly the Stein characterization (19). By Propo-
sition 4.2 for n = 1, F̃ has chaos grade η̃ = 2(1 − b2). Therefore, ξ = η − η̃
measures how much the chaos grade η of G exceeds the chaos grade η̃ of G̃.
IfG is replaced by a sequence {Gk : k ≥ 0} with chaos grades

{
ηk : k ≥ 0

}
, as

will be done in Proposition 3.13, then in order to converge, it is necessary
that ηk converges to η̃.
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Proof of Theorem 3.9. As LF = −λF and L1 = 0, we have that LG = −λ(G −m).
Also, by de�nition L−1G = L−1F = − 1

λ F = −
1
λ (G −m). Therefore, also using the

fact that Γ vanishes if any of its two arguments is a constant, it follows that

Γ
(
G,−L−1G

)
=

1
λ
Γ (G −m,G −m)

=
1
2λ

(L + 2λ Id) (G −m)2

=
1
2λ

(L + 2λ Id) (G2 − 2mG +m2).

Using this identity, it is straightforward to verify that the polynomial Q satis�es

(27) Γ
(
G,−L−1G

)
− b (G ) =

1
2λ

(L + 2(1 − b2)λ Id)Q (G ),

so that we can write, using ξ = η − 2(1 − b2),∫
E

(
Γ(G,−L−1G ) − b (G )

)2
d µ =

∫
E

( 1
2λ

(L + 2(1 − b2)λ Id)Q (G )
)2

d µ

=
1
4λ2

∫
E
((L + ηλ Id)Q (G ) − ξλQ (G ))2 d µ

=
1
4λ2

(∫
E
((L + ηλ Id)Q (G ))2 d µ + Rη (G )

)
,(28)

where

Rη (G ) = ξ 2λ2
∫
E
Q2 (G ) d µ − 2λξ

∫
E
Q (G ) (L + ηλ Id)Q (G ) d µ

= −2λξ
∫
E
Q (G ) (L + 2(1 − b2)λ Id)Q (G ) d µ − ξ 2λ2

∫
E
Q2 (G ) d µ .(29)

As L is symmetric,∫
E
((L + ηλ Id) (Q (G )))2 d µ =

∫
E
Q (G ) (L + ηλ Id)2Q (G ) d µ

= ηλ

∫
E
Q (G ) (L + ηλ Id)Q (G ) d µ

+

∫
E
Q (G )L(L + ηλ Id)Q (G ) d µ

≤ ηλ

∫
E
Q (G ) (L + ηλ Id)Q (G ) d µ

= ηλ

∫
E
Q (G ) (L + 2(1 − b2)λ Id)Q (G ) d µ

+ ηξλ2
∫
E
Q2 (G ) d µ,(30)

where the inequality follows from the fact that∫
E
Q (G )L(L + ηλ Id)Q (G ) d µ ≤ 0.

Indeed, as by assumption

Q (G ) =
∑

−κ ∈Λ : κ≤ηλ
πκ (Q (G )),
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where πκ (Q (G )) denotes the orthogonal projection of Q (G ) onto the eigenspace
ker(L + κ Id), one has∫

E
Q (G )L(L + ηλ Id)Q (G ) d µ

=
∑

−κ ∈Λ : κ≤ηλ

∫
E
πκ (Q (G ))L(L + ηλ Id)πκ (Q (G )) d µ

= −
∑

−κ ∈Λ : κ≤ηλ
κ (ηλ − κ)

∫
E
πκ (Q (G ))2 d µ ≤ 0.

Plugging (30) and (29) into (28) yields∫
E

(
Γ(G,−L−1G ) − b (G )

)2
d µ ≤

η − 2ξ
4λ

∫
E
Q (G ) (L + 2(1 − b2)λ Id)Q (G ) d µ

+
ξ (1 − b2)

2

∫
E
Q2 (G ) d µ .

In order to prove that

(31)
∫
E
Q (G ) (L + 2(1 − b2)λ Id)Q (G ) d µ = 2λ

∫
E
U (G ) d µ,

we use integration by parts and the di�usion property of Γ, as well as the fact that
(Q ′(x )3)′ = 6Q ′(x )2, to write∫

E
Q (G )LQ (G ) d µ = −

∫
E
Γ(Q (G ),Q (G )) d µ

= −

∫
E
(Q ′(G ))2Γ(G,G ) d µ

= −
1
6

∫
E
Γ((Q ′(G ))3 ,G ) d µ

=
1
6

∫
E
(Q ′(G ))3 LG d µ

= −
λ

6

∫
E
(Q ′(G ))3 (G −m) d µ .

Hence,

(32)
∫
E

(
Γ(G,−L−1G ) − b (G )

)2
d µ

≤
η − 2ξ

2

∫
E
U (G ) d µ +

ξ (1 − b2)
2

∫
E
Q2 (G ) d µ

proving (26) since (η − 2ξ )/2 = 2(1 − b2 − η/4). Note �nally that if η ≤ 2(1 − b2),
then ξ ≤ 0 and hence ξ (1 − b2) ≤ 0, so that the second term in (32) is negative
and can be dropped. This proves (25). �

Remark 3.11. In view of the general bound (22) obtained in Theorem 3.2, it is
natural to ask whether the quantity∫

E

(
Γ(G,−L−1G ) − θ−1τ (G )

)2
dµ,

where G is an eigenfunction, can be bounded by the �rst four moments of G,
when τ is the di�usion coe�cient of a di�usion with invariant measure outside
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of the Pearson class. Inspecting the proof of Theorem 3.9, one sees that, after
expanding the square, the �rst four moments appear naturally from the term∫
E Γ(G,−L

−1G )2 d µ. The remaining terms
∫
E τ (G )Γ(G,−L−1G ) d µ and

∫
E τ (G )2 d µ

yield moments up to order four if, and only if the di�usion coe�cient τ is a poly-
nomial of degree at most two, for which the corresponding invariant measures
are exactly the Pearson distributions. In this sense, the class of Pearson target
laws for which we provide four moment theorems is exhaustive.

By combining Theorem 3.9 with Theorem 3.2, we obtain quantitative moment
bounds for suitable distances.

Proposition 3.12. In the setting and with the notation of Theorem 3.9, let Z be a
random variable with distribution ν . Then, if η ≤ 2(1 − b2), one has

dH (G,Z ) ≤ cH

√(
1 − b2 −

η

4

) ∫
E
U (G ) d µ,

whereas if η > 2(1 − b2), one has

dH (G,Z ) ≤ cH

√(
1 − b2 −

η

4

) ∫
E
U (G ) d µ +

ξ (1 − b2)
2

∫
E
Q2 (G ) d µ .

Here, dH denotes an admissible distance forG and Z , de�ned via a separating class
H of absolutely continuous test functions such that suph∈H ‖h′‖∞ < ∞. The posi-
tive constant cH depends solely on the class H .

Proof. We have to check that the function σ 2 satis�es the assumptions of Lemma
2.5. This is immediate by taking д = σ 2. We then apply Cauchy-Schwarz to (3.2)
and use (25) and (26). �

At this point it is straightforward to state the following quantitative Four Mo-
ments Theorems for approximation of any Pearson distribution admitting at least
four moments by a sequence of chaotic eigenfunctions.

Theorem 3.13. Let ν be a Pearson distribution associated to the di�usion given by
(15) with meanm and di�usion coe�cient σ 2 (x ) = b (x ) = b2x

2+b1x +b0, and let Z
be a random variable with law ν . For k ∈ N, let Fk be a chaotic eigenfunction with
chaos grade ηk of a Markov di�usion generator Lk and letGk = Fk+m. Furthermore,
letdH be an admissible distance for {Gk : k ∈ N}∪{Z }, de�ned via a separating class
H of absolutely continuous test functions with uniformly bounded derivative. Then,
if ηk ≤ 2(1 − b2), one has

dH (Gk ,Z ) ≤ cH

√(
1 − b2 −

ηk
4

) ∫
E
U (Gk ) d µ

whereas if ηk > 2(1 − b2), one has

dH (Gk ,Z ) ≤ cH

√(
1 − b2 −

η

4

) ∫
E
U (Gk ) d µ +

ξk (1 − b2)
2

∫
E
Q2 (Gk ) d µ,

where ξk = ηk − 2(1 − b2). Here, cH is a positive constant solely depending on the
separating class H . In particular, the following two conditions are su�cient for the
sequence {Gk : n ≥ 0} to converge in distribution to Z :
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(i)

(33)
∫
E
U (Gk ) d µ → 0.

(ii) For every subsequence (ηkr ) of (ηk ) such that ηkr > 2(1 − b2) for every r ∈ N
one has

sup
r ∈N

∫
E
Q2 (Gkr ) d µ < ∞

and ηkr → 2(1 − b2).

Proof. This is an immediate consequence of Theorem 3.13. The su�cient condi-
tion (ii) ensures that the second term on the right-hand side of (26) converges to
zero. �

Remark 3.14. To the best of our knowledge, Theorem 3.13 is the �rst instance
where moment conditions are given in order to converge to heavy-tailed distri-
butions (which are not characterized by moments). Furthermore, the main results
(all non-heavy-tailed) of [NP05, NP09a, NP09b, Led12, ACP14] are included as
particular cases and in a uni�ed way.

Example 3.15. Let us give some explicit examples of the moment combinations ap-
pearing in Condition (33) for several target distributions. To improve readability,
we abbreviate the p-th moment

∫
E G

p
k d µ bymp (Gk ).

(i) For convergence towards a centered Gaussian distribution with variance σ 2,
we have b (x ) = σ 2 andm = 0, so that by Table 1, we get that c0 = σ 4, c1 = 0,
c2 = −2σ 2, c3 = 0 and c4 =

1
3 , hence recovering the well-known moment

condition
1
3
m4 (Gk ) − 2σ 2m2 (Gk ) + σ

4 → 0,

which becomesm4 (Gk ) → 3 whenm2 (Gk ) = σ
2 = 1.

(ii) For a (heavy-tailed) Student t-distribution with mean zero and τ degrees of
freedom (which is a particular case of a Skew t-distribution with parameters
m = τ+1

2 , λ = ν = 0 and α =
√
τ ), we have b (x ) = x 2

τ−1 +
τ

τ−1 . Therefore, the
moment condition becomes

(τ − 4)
3(τ − 1)

m4 (Gk ) −
2τ

(τ − 1)
m2 (Gk ) +

τ 2

τ 2 − 3τ + 2
→ 0.

This moment condition is new.
(iii) For the inverse gamma distribution with shape parameter α > 0 and scale

parameter β > 0, which is non-centered (as opposed to the two previous
examples) with mean β

α−1 , we have b (x ) = x 2

α−1 . We hence obtain new mo-
ment conditions as well, ensuring convergence to the (heavy-tailed) inverse
gamma distribution. For instance, setting the shape parameter α = 5, we get
that

1
12
m4 (Gk ) −

β

3
m3 (Gk ) +

β2

4
m2 (Gk ) −

β3

24
m1 (Gk ) → 0.
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4. Pearson chaos

As an application of our results, we treat the case where the converging se-
quence of chaotic eigenfunctions itself comes from a generator associated to a
Pearson law. To avoid technicalities, we present here only the �nite-dimensional
case, analogous results in in�nite dimension can be obtained in a similar way. We
begin by describing a general and well-known tensorization procedure of Markov
generators.

Fix N ≥ 2 and, for 1 ≤ i ≤ N , let Li be a generator with invariant probability
measure µi and L2-domainD (Li ) ⊆ L2 (Ei ,Fi , µi ). Let (E,F , µ ) be the product of
the probability spaces (Ei ,Fi , µi ). Then we can de�ne a generator LN = ⊗Ni=1Li

on D (LN ) =
⊗N

i=1D (Li ) by

LN (F1 × F2 × · · · × FN ) =
N∑
i=1

F1 × · · · × Fi−1 × (LiFi ) × Fi+1 × · · · × FN .

From this de�nition, it follows that if Fi is an eigenfunction of Li with eigenvalue
λi , then F = ⊕Ni=1Fi is an eigenfunction of LN with eigenvalue λ =

∑N
i=1 λi . The

following corollary describes how the chaos grade behaves under tensorization.

Corollary 4.1. In the above setting, let each eigenfunction Fi be chaotic with chaos
grade ηi . Then F is chaotic and its chaos grade η is bounded as follows:

min
{
η1,η2, . . . ,ηN

}
≤ η ≤ max

{
η1,η2, . . . ,ηN

}
.

The above inequalities become equalities, if, and only if, all of the chaos grades ηi
are equal.

Proof. By de�nition, the squares F 2i can be expanded as sums of eigenfunctions,
with the eigenvalue of largest magnitude in such an expansion being λiηi . There-
fore, F 2 can also be expanded as a sum of eigenfunctions, with the eigenvalue of
largest magnitude, say λmax, being given by

λmax =

N∑
i=1

λiηi .

Applying the de�nition of chaos grade (see De�nition 3.5) now yields that

η =
λmax

λ
=

∑N
i=1 λiηi∑N
i=1 λi

,

from which the assertion follows as all λi have the same sign. �

In the following proposition, we calculate the possible range of values of the
chaos grade for eigenfunctions related to all six Pearson distributions.

Proposition 4.2. Let L be the generator associated to a Pearson di�usion de�ned
by (15) and denote the eigenvalues of L by −λn where λn = n(1 − (n − 1)b2)θ for
b2 <

1
2n−1 . Let Fn be an eigenfunction of L with respect to −λn . Then Fn is chaotic,

if, and only if, b2 < 1
4n−1 , and in this case its chaos grade ηn is given by

(34) ηn = ηn (b2) =




2 if b2 = 0,

2
(
1 + n

n−1− 1
b2

)
if b2 , 0.

Furthermore, the following is true.
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(i) If µ is a Student, F - or inverse Gamma distribution, then ηn ∈
(
4
3 , 2 − 2b2

]
.

(ii) If µ is a Gaussian or Gamma distribution, then ηn = 2.
(iii) If µ is a Beta distribution then ηn ∈ (4, 2 − 2b2], if b2 < −1, ηn = 4, if b2 = −1

and ηn ∈ [2 − 2b2, 4), if −1 < b2 < 0.

Proof. An eigenfunction Fn of a Pearson generator with respect to the eigenvalue
−λn = n(1− (n−1)b2)θ is an orthogonal polynomial of degree n. Its square is then
a polynomial of degree 2n. In order for F 2n to be expressable as a sum of square
integrable eigenfunctions, we therefore need that the �rst 2n eigenfunctions of L
are square integrable, or equivalently that moments up to order 4n exist. Hence,
by (18), the condition required is

(35) b2 <
1

4n − 1
.

Let us assume that the above inequality is satis�ed. Then, by its very de�nition,
ηn is given by the quotient of the 2n-th eigenvalue with the n-th one. Indeed, as
ηn is the multiplicative factor that indicates what eigenvalue the highest-order
eigenfunction in the decomposition of the square of Fn is associated to. On the
other hand, we know that the square of the polynomial eigenfunction of degree n
produces a sum of polynomial eigenfunctions up to degree 2n, corresponding to
the eigenvalue −λ2n . Hence we have

(36) ηn =
λ2n
λn
=

2n(1 − (2n − 1)b2)θ
n(1 − (n − 1)b2)θ

,

so that (34) follows. Assertion (ii) is immediate as in this case b2 = 0 and the chaos
grade is constant. In order to show assertion (i) in which b2 > 0, note that the
function n 7→ ηn (b2) is decreasing. Therefore, the largest possible chaos grade is
obtained by taking n = 1 in (36), which gives 2(1 − b2). On the other hand, as by
(35), n < 1

4

(
1
b2
+ 1

)
, the lower bound 4

3 of the chaos grade is obtained by taking
n =

⌊
1
4

(
1
b2
+ 1

)⌋
. Assertion (iii) where b2 < 0 follows in a similar way.

�

Proposition 4.2 shows that on a global level, the chaos grade η of chaotic eigen-
functions of a Pearson generator lies in the interval

(
4
3 ,∞

)
. Furthermore, all val-

ues in this interval can be attained, in the sense that if x is such a value, then there
exists a generator L of a Pearson di�usion (15) which has a chaotic eigenfunction
of chaos grade x . The six types of Pearson distributions are partitioned into three
classes with disjoint intervals for the chaos grade values of the corresponding
eigenfunctions. These intervals are all of the form

{2(1 − b2) : b2 ∈ I } ,
where I is the set of allowed values for the corresponding class, i.e., I = (−∞, 0)
for the class of student, F - and inverse Gamma distributions, I = {0} for Gaussian
and Gamma distributions and I = (0,∞) for the Beta distributions.

Applying the tensorization procedure described above to the case where all
generators Li are equal to some generator L of a Pearson di�usion immediately
yields the following result.

Theorem 4.3. Let µ be a Pearson distribution and L be the associated Markov gen-
erator. Denote its eigenvalues by {−λi : 0 ≤ i < I }, where I ∈ N∪ {∞} and such that
λi < λi+1. Furthermore, denote by Pi the i-th orthogonal polynomial associated to
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Figure 1. Possible chaos grades for the Pearson distributions

µ. Let LN = L⊗N be the generator obtained by the tensorization procedure described
above and denote by µN the associated product measure. Then the set of eigenvalues
of LN is given by

S =


−

N∑
i=1

λki : k1, . . . ,kN ∈ I


.

If−λ = −
∑N

i=1 λki is such an eigenvalue, then all eigenfunctions F of LN with respect
to −λ are of the form

F =
∑
|α |=p

aαPα ,

where
(i) p =

∑N
i=1 ki ,

(ii) the sum is taken over all N -dimensional multi-indices α = (α1, . . . ,αN ) of
order p,

(iii) the aα are real constants,
(iv) Pα (x ) = Pα (x1,x2, . . . ,xN ) =

∏N
i=1 Pαi (xi ).

Combining Corollary 4.1 with Proposition 4.2 and the discussion thereafter,
we see that for the six classes of Pearson distributions the intervals for the chaos
grades of the respective chaotic eigenfunctions are invariant under tensorization.
In other words, the chaos grades of chaotic eigenfunctions of LN

(i) assume values in the interval
(
4
3 , 2

)
, if the tensorized distribution is Student,

F - or inverse Gamma,
(ii) are equal to two in the case of tensorized Gaussian or Gamma distributions,

(iii) lie in the interval (2,∞) if the distribution is Beta.
Coming back to the Four Moments Theorems proved in Section 3.2, the possible
chaos grades also yield a heuristic about “compatible” Pearson distributions, in
the sense that one can be obtained as a limit of a chaos of another Pearson distri-
bution. Recall from Section 3.2 (in particular Remark 3.10.iv) that if we want to
approximate a random variable Z with a Pearson law and chaos grade η̃ to be the
limit of a sequence (Gn ) of chaotic random variables with corresponding chaos
grade sequence (ηn ), we need that ηn ≤ η̃ or ηn → η̃, where η̃ is the chaos grade of
Z when seen as a chaotic random variable itself. For example, if Z has a Gaussian
or Gamma distribution, then η̃ = 2. Therefore, chaotic random variables coming
from a heavy tailed Pearson chaos are compatible, as in this case we always have
ηn ≤ 2. The Gamma and Gaussian chaos is of course compatible as well as here
the two chaos grades coincide and for convergence from Beta chaos to a Gauss-
ian or Gamma distribution, our conditions require that ηn → 2. This translates
to the parameters of the underlying invariant Beta measure growing to in�nity.
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Taking Z to be a heavy tailed Pearson distribution yields a chaos grade η̃ which is
strictly less than two. Here, our conditions suggest that only heavy-tailed chaos
are compatible. The aforementioned heuristic could likely be made rigorous by a
detailed study of the carré du champ characterization given in Theorem 3.1 and
is left for future research.
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