
R E S E A R CH AR T I C L E

Spatiotemporal dynamics in human visual cortex rapidly encode
the emotional content of faces

Diana C. Dima2 | Gavin Perry2 | Eirini Messaritaki1,2 | Jiaxiang Zhang2 |

Krish D. Singh2

1BRAIN Unit, School of Medicine, Cardiff

University, Cardiff, CF24 4HQ, United

Kingdom

2Cardiff University Brain Research Imaging

Centre (CUBRIC), School of Psychology,

Cardiff University, Cardiff, CF24 4HQ,

United Kingdom

Correspondence

Diana C. Dima, Cardiff University Brain

Research Imaging Centre, CUBRIC Building,

Maindy Road, Cardiff, CF24 4HQ, United

Kingdom.

Email: DimaDC@cardiff.ac.uk

Funding information

Medical Research Council and Engineering

and Physical Sciences Research Council,

Grant/Award Number: MR/K005464/

Abstract
Recognizing emotion in faces is important in human interaction and survival, yet existing studies do

not paint a consistent picture of the neural representation supporting this task. To address this, we

collected magnetoencephalography (MEG) data while participants passively viewed happy, angry

and neutral faces. Using time-resolved decoding of sensor-level data, we show that responses to

angry faces can be discriminated from happy and neutral faces as early as 90 ms after stimulus onset

and only 10 ms later than faces can be discriminated from scrambled stimuli, even in the absence of

differences in evoked responses. Time-resolved relevance patterns in source space track expression-

related information from the visual cortex (100 ms) to higher-level temporal and frontal areas (200–

500 ms). Together, our results point to a system optimised for rapid processing of emotional faces

and preferentially tuned to threat, consistent with the important evolutionary role that such a sys-

tem must have played in the development of human social interactions.
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1 | INTRODUCTION

Owing to their high behavioral relevance, emotional cues present in

facial expressions are rapidly processed, with a vast literature pointing

to the rapid identification of threat-related expressions (Fox et al., 2000;
€Ohman, Lundqvist, & Esteves, 2001; Pichon, De Gelder, & Grèzes,

2012). According to the classic model of face perception (Haxby et al.,

2000), information about facial expression is represented in the superior

temporal sulcus (STS) based on inputs from the occipital face area

(OFA), while the fusiform face area (FFA) extracts invariant features

such as face identity. This model has been challenged by evidence of

expression processing in the FFA (Bernstein & Yovel, 2015) and of par-

allel pathways linking the visual cortex and the core face-selective areas

(Pyles et al., 2013), suggested that information is extracted from faces

by distributed and interacting modules (Duchaine & Yovel, 2015).

Rapid face processing facilitates fast evaluation and top-down

modulation by higher-level areas (Adolphs, 2002). However, there is

some debate on how such rapid perception is accomplished. A fast

subcortical thalamus-amygdala route bypassing the visual cortex is

thought to transmit coarse face-related information (LeDoux, 2009;

Morris et al., 1998), but its role in face perception is controversial (Kro-

lak-Salmon et al., 2004; Pessoa & Adolphs, 2011), including whether it

is fear-specific (M�endez-B�ertolo et al., 2016) or non-specific to expres-

sion (Garvert, Friston, Dolan, & Garrido, 2014; McFadyen et al., 2017).

On the other hand, multiple fast cortical pathways forming part of a

feedforward and feedback mechanism consistute an equally plausible

mechanism for rapid expression perception (Liu & Ioannides, 2010;

Pessoa & Adolphs, 2010).

Furthermore, electrophysiological investigations of emotional face

processing in humans are not always in agreement on the temporal

dynamics of expression perception. Early emotional modulations of the

posterior P1 evoked response component (�100 ms) are sometimes

reported (Aguado et al., 2012; Eger, Jedynak, Iwaki, & Skrandies, 2003;

Halgren et al., 2000; Pourtois et al., 2005), with other studies failing to

find early effects (Balconi, & Pozzolili, 2003; Fr€uhholz, Jellinghaus, &

Herrmann, 2011; Krolak-Salmon, Fischer, Vighetto, & Mauguiere, 2001;
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Schupp et al., 2004). On the other hand, modulations of the N170 face-

responsive component (120–200 ms) are consistently reported (see

Hinojosa, Mercado, & Carreti�e�e, 2015 for a meta-analysis).

While these results point to relatively late effects, high-level cate-

gorization has been shown to occur at shorter latencies in the visual

system of primates, especially when tested using sensitive multivariate

methods (Cauchoix et al., 2016). In humans, multivariate pattern analy-

sis (MVPA) of non-invasive electrophysiological data has shown poten-

tial to achieve a similar level of sensitivity, demonstrating rapid

categorization along the ventral stream (Cauchoix, Barragan-Jason,

Serre, & Barbeau, 2014; Isik, Meyers, Leibo, & Poggio, 2014; Ramku-

mar, Hansen, Pannasch, & Loschky, 2016). Fast decoding of object

category was achieved at �100 ms from small neuronal populations in

primates (Hung & Poggio, 2005) and from invasively recorded

responses in human visual cortex (Li & Lu, 2009). Furthermore, recent

applications of MVPA to electrophysiological data have resolved face

identity processing to early latencies (50–70 ms after stimulus onset;

Davidesco et al., 2014; Nemrodov et al., 2016; Vida, Nestor, Plaut, &

Behrmann, 2017). In addition to revealing the temporal dynamics of

visual processing, multivariate methods have furthered our understand-

ing of the transformations performed by cells in macaque face patches

to encode face identity (Chang & Tsao, 2017) and have allowed face

reconstruction based on non-invasive neural data in humans (Nemro-

dov et al., 2018; Nestor, Plaut, & Behrmann, 2016).

Previous studies have demonstrated successful decoding of facial

expression from face-selective areas using fMRI (Wegrzyn et al., 2015;

Zhang et al., 2016a). Some studies have also decoded emotion from

EEG data (Kashihara, 2014; Li et al., 2009; Petrantonakis, & Hadjileon-

tiadis, 2010) and target happy expressions from MEG data (Cecotti

et al., 2017), while an intracranial EEG study has demonstrated late

decoding of facial expression (fear and happiness) from the human fusi-

form gyrus (Tsuchiya et al., 2008). However, MVPA has not so far been

used, to our knowledge, to study the spatiotemporal dynamics of

expression processing. In the present study, we exploited the temporal

and spatial resolution of MEG and the ability of MVPA to identify dif-

ferences in activation patterns as a window into the whole-brain

dynamics of emotional face perception.

MEG can resolve the timecourse of fast processes with a resolu-

tion in the order of milliseconds, while source localization and

information-based mapping through multivariate techniques can effec-

tively increase its spatial resolution (Cichy et al., 2015; Kriegeskorte,

Goebel, & Bandettini, 2006). MVPA offers increased sensitivity through

its ability to extract information from responses at multiple locations in

space and time, and it can thus resolve differences in overlapping pat-

terns that averaging-based statistical analyses fail to detect (Norman,

Polyn, Detre, & Haxby, 2006). At the minimum, successful decoding

points to the availability of information at certain time points and sour-

ces, although it does not tell us how or if this information is used in

neural computation (DeWit et al., 2016; Kriegeskorte et al., 2006). We

thus focus on MVPA in the present study as a tool that can elucidate

previous mixed results on the temporal dynamics of expression proc-

essing by examining pattern information that may not be present in

averaged evoked responses.

Using MVPA, we first interrogated the fine temporal dynamics

underpinning expression perception, including discrimination between

emotional and neutral expressions and between different emotions.

Next, we applied a novel approach to source-space decoding to track

the brain regions encoding the emotional content of faces and their rel-

ative contribution over time. We were thus able to identify early differ-

ences between responses to angry faces and happy/neutral faces

within 100 ms of stimulus onset and we localized them to the visual

cortex, while later responses originated in higher-level temporal and

frontal cortices. Our results suggest that the perceptual bias towards

threatening expressions begins with the early stage of visual process-

ing, despite a lack of significant differences in trial-averaged ERFs.

2 | MATERIALS AND METHODS

2.1 | Participants

The participants were 15 healthy volunteers (8 females, mean age 28,

SD 7.63) with normal or corrected-to-normal vision. All volunteers gave

informed written consent to participate in the study in accordance with

The Code of Ethics of the World Medical Association (Declaration of

Helsinki). All procedures were approved by the ethics committee of the

School of Psychology, Cardiff University.

2.2 | Stimuli

Forty-five angry, happy and neutral male and female face images (15

images per condition) were selected from the NimStim database (Tot-

tenham et al., 2009). We note that the NimStim database includes both

closed-mouth (low arousal) and open-mouth (high arousal) versions of

each emotional expression; for this study, we selected closed-mouth

neutral expressions, open-mouth happy expressions, and a balanced

set of closed-mouth and open-mouth angry expressions, which

accounted for the higher arousal associated with negative expressions.

In practice, this stimulus selection enhances visual differences (i.e., in

terms of visible teeth) between the happy and neutral face sets.

The fourth condition contained 15 scrambled face stimuli, which

were noise images created by combining the average Fourier amplitudes

across stimuli with random phase values. The images were 506 3 560

pixels in size and were converted to grayscale (Figure 1). To ensure

matched low-level properties between stimuli, the 2D Fourier amplitude

spectrum of each image was set to the average across all stimuli. This

was done by calculating the average amplitude spectrum across images

in the Fourier domain, and replacing individual amplitude spectra with

the average when performing the inverse transformation of each image.

2.3 | Data acquisition

All participants underwent a whole-head T1-weighted MRI scan on a

General Electric 3 T MRI scanner using a 3D Fast Spoiled Gradient-

Recalled-Echo (FSPGR) pulse sequence in an oblique-axial orientation

with 1 mm isotropic voxel resolution and a field of view of

256 3 192 3 176 mm (TR/TE 5 7.9/3.0 ms, inversion time 5 450 ms,

flip angle 5 208).

2 | DIMA ET AL.



Whole-head MEG recordings were made using a 275-channel CTF

radial gradiometer system at a sampling rate of 600 Hz and an associ-

ated anti-aliasing low-pass filter at 150 Hz. Three of the sensors were

turned off due to excessive sensor noise and an additional 29 reference

channels were recorded for noise rejection purposes. The data were

collected in 2.5 s epochs centered around the stimulus onset. A contin-

uous bipolar electrooculogram (EOG) was recorded to aid in offline

artefact rejection.

Stimuli were centrally presented on a gamma-corrected Mitsubishi

Diamond Pro 2070 CRT monitor with a refresh rate of 100 Hz and a

screen resolution of 1024 3 768 pixels. Participants viewed the stimuli

from a distance of 2.1 m at a visual angle of 8.38 3 6.18.

Participants underwent two scanning sessions with a few

minutes of break in between. Each session comprised 360 trials,

with the 15 images corresponding to each condition presented six

times in random order. On each trial, the stimulus was presented on

a mean gray background for 1 s, followed by an interstimulus inter-

val with a duration selected at random from a uniform distribution

between 600 and 900 ms (Figure 1). A white fixation cross was pre-

sented at the center of the screen throughout the experiment. Par-

ticipants performed a change detection task to ensure maintained

attention: the fixation cross turned red at the start of a pseudoran-

dom 10% of trials (during the inter-stimulus interval) and participants

had to press a button using their right index finger in order to

continue. The paradigm was implemented using Matlab (The Math-

works, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997;

Kleiner et al., 2007; Pelli, 1997).

Participants were seated upright while viewing the stimuli and

electromagnetic coils were attached to the nasion and pre-auricular

points on the scalp to determine head location. Head position was

monitored continuously and head motion did not exceed 6.6 mm in

any given session. High-resolution digital photographs were used to

verify the locations of the fiducial coils and co-register them with the

participants’ structural MRI scans.

2.4 | Data analysis

2.4.1 | Pre-processing

Prior to sensor-space analyses, the data were pre-processed using Mat-

lab and the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen,

2011; www.fieldtriptoolbox.org). Trials containing eye movement or

muscle artefacts were rejected after visual inspection. One participant

was excluded due to excessive artefacts and analysis was performed

on the remaining 14 subjects. Across the remaining subjects, the per-

centage of trials excluded did not exceed 12.7% (mean 40 trials

excluded across both sessions, SD 24.3), and the number of trials

excluded did not significantly differ between conditions (p 5 .86, F

(2.2,28.9)5 0.18).

To monitor head motion, the position of the three fiducial coils rel-

ative to a fixed coordinate system on the dewar was continuously

recorded during data acquisition. Head motion was quantified as the

maximum displacement (difference in position between sample points)

of the three coils during any given trial. Using this metric, we excluded

trials with maximum motion of any individual coil in excess of 5 mm.

To account for changes in head position, head coil position was

changed to the average position across trials for each dataset.

For sensor-space analyses, a 50 Hz comb filter was used to

remove the mains noise and its harmonics and baseline correction was

applied using a time window of 500 ms prior to stimulus onset.

2.4.2 | Event-related field (ERF) analysis

We inspected event-related fields in order to examine differences

between conditions present in single-channel responses. The data

were bandpass-filtered between 0.5 and 30 Hz using fourth-order IIR

Butterworth filters. ERFs were realigned to a common sensor position

(Kn€osche, 2002) and averaged across subjects (Supporting Information

Figure S1a). We then identified three time windows of interest based

on local minima in the global field power across all face conditions

(Supporting Information Figure 1b; Perry & Singh, 2014): �60–127 ms

(M100), 127–173 ms (M170), and 173–317 ms (M220). ERF responses

FIGURE 1 Experimental paradigm, together with examples of one scrambled image and two face stimuli from the NimStim database, after
normalization of Fourier amplitudes [Color figure can be viewed at wileyonlinelibrary.com]
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were averaged within each time window of interest. For each time win-

dow, we tested for differences between trial-averaged responses to

neutral and scrambled faces and between emotional faces using a

paired t test and a repeated-measures ANOVA respectively and ran-

domization testing (5,000 iterations, corrected using the maximal

statistic distribution across sensors).

2.4.3 | MVPA pre-processing and feature selection

Sensor space. Prior to sensor-space MVPA analyses, the data were

averaged in groups of 5 trials to improve SNR (Grootswagers et al.,

2017; Isik et al., 2014; Wardle et al., 2016). The number of observa-

tions was not significantly different between conditions (Angry:

33.6 6 1.6; Happy: 33.4 6 1.4; Neutral: 33.5 6 1.1; Scrambled:

33.6 6 1; F(3,13) 5 0.64, p 5 .59). To assess differences between

responses to neutral and emotional faces as well as between different

emotional expressions, binary classification was applied to all pairs of

emotional conditions.

We assessed the presence, latency and coarse spatial location of

expression-specific information at the sensor level by performing

within-subject time-resolved classification on data from four anatomi-

cally defined sensor sets (occipital, temporal, parietal, and frontocentral;

Figure 5a). MVPA was performed at each sampled time point (every

�1.67 ms) between 0.5 s pre-stimulus onset and 1 s post-stimulus

onset. Compared to a whole-brain approach, this method served to

reduce the number of features while also providing some spatial

information.

To maximize the number of informative features used as input to

the classifier, we conducted an additional sensor-space MVPA analysis

in which feature selection was performed based on differences

between faces and scrambled stimuli. This ensured unbiased feature

selection based on an orthogonal contrast and led to the selection of

sensors responding most strongly to faces, in order to maximize the

interpretability of our results.

To determine sensors responding differentially to faces and

scrambled stimuli we used a searchlight MVPA approach, whereby

each MEG channel and its neighboring sensors, defined according to a

Fieldtrip template based on the CTF 275-sensor array configuration,

were entered separately into the MVPA analysis. Searchlights were

defined to include only sensors directly connected to the centroid

according to the template, and searchlight size thus ranged between 4

and 10 sensors (mean 7.36, SD 1.12). The analysis was performed using

time windows of �16 ms (10 sampled time points) and stratified five-

fold cross-validation was used to evaluate classification performance.

Data from the cluster centroids found to achieve above-chance decod-

ing performance in 100% of participants (regardless of latency) were

then entered into the three emotional expression classification analyses

(Figure 5b).

Two additional feature selection methods based on the face versus

scrambled contrast, which achieved lower or similar decoding perform-

ance, are described in the supporting information (Supporting Informa-

tion Analysis S1).

Source space. To move beyond the limitations of sensor-space spa-

tial inference in our MVPA analysis (including concerns of signal

leakage, head motion and inter-individual variability; Zhang et al.,

2016), the data were projected into source space using the linearly

constrained minimum variance (LCMV) beamformer (Hillebrand et al.,

2005; Van Veen, van Drongelen, Yuchtman, & Suzuki, 1997). This

approach combines the forward model and the data covariance matrix

to construct an adaptive spatial filter. Beamformer weights were nor-

malized by their vector norm to alleviate the depth bias of MEG source

reconstruction (Hillebrand et al., 2012). The participant’s MRI was used

to define the source space with an isotropic resolution of 6 mm and

the output for each location was independently derived as a weighted

sum of all MEG sensor signals using the optimal source orientation

(Sekihara, Nagarajan, Poeppel, & Marantz, 2004).

The data were projected into source space using trials from all con-

ditions filtered between 0.1 and 100 Hz to calculate the beamformer

weights. A frequency analysis was performed using the multitaper

method based on Hanning tapers in order to identify the peak virtual

channel in each of 84 Automated Anatomical Labeling (AAL; Tzourio-

Mazoyer et al., 2002) atlas-based ROIs (excluding the cerebellum and

some deep structures; see Figure 6a). The classifier input consisted of

the raw time-series for each of the 84 virtual sensors, baseline cor-

rected and averaged in groups of 5 trials to improve SNR. Decoding

was performed per sampled time point as in sensor space.

2.4.4 | Classifier training and testing

A linear L1 soft-margin Support Vector Machine (SVM) classifier

(Burges, 1997) was implemented in Matlab using the Machine Learning

and Statistics Toolbox and the Bioinformatics Toolbox (Mathworks,

Inc.). SVM finds the optimal separating hyperplane between classes

and implements a sparse solution by assigning non-zero weights exclu-

sively to data points situated closest to the decision boundary (support

vectors). It is known to generalize well even in cases of high dimension-

ality due to its in-built regularization (Nilsson, Pena, Bjorkegren, &

Tegner, 2006).

Stratified five-fold cross-validation was implemented for training

and testing and data points were standardized for each time window

using the mean and standard deviation of the training set. The box con-

straint parameter c, which controls the maximum penalty imposed on

margin-violating observations, was set to 1.

2.4.5 | Computing relevance patterns in source space

For each decoding problem, participant and time point, the SVM model

based on source-space data was retrained on the full dataset to obtain

the final model and calculate the weight vector. The weight vector for

a linear SVM is based on the Lagrange multipliers assigned to each data

point. To achieve interpretable spatial patterns (Haynes, 2015), feature

weights were transformed into relevance patterns through multiplica-

tion by the data covariance matrix (Haufe et al., 2014). This allowed us

to dynamically and directly assess the relative importance of all virtual

electrodes used in source-space decoding, as each ROI was repre-

sented by one feature and each decoding iteration was run on the

whole brain.
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2.4.6 | Significance testing

To quantify classifier performance, we report average accuracies across

subjects (proportions of correctly classified cases), as well as F1 scores

(harmonic means of precision and sensitivity) and bias-corrected and

accelerated bootstrap confidence intervals using 1,000 resampling iter-

ations (Efron, 1987; Efron & Tibshirani, 1986).

In order to account for the potentially skewed distribution of

cross-validated accuracies given our limited observation numbers

(Jamalabadi et al., 2016), significance was assessed using permutation

testing, which offers a robust measure of significance compared to the-

oretical chance levels (Combrisson & Jerbi, 2015) or binomial tests

(Noirhomme et al., 2014). For each individual dataset, labels were shuf-

fled 1,000 times across the training and test sets to create an empirical

null distribution and classification was performed on the randomized

data at the time point achieving the highest classification performance

across subjects on the real data. For searchlight classification, p values

were calculated for each subject and combined to achieve a group map

quantifying the proportion of subjects achieving significance in each

searchlight (Pereira, & Botvinickck, 2011). For all other analyses, ran-

domization was performed within-subject and empirical null distribu-

tions were calculated in an identical manner as the observed statistic

(i.e., average accuracy over subjects).

To correct for multiple comparisons, we tested average accuracies

against the omnibus null hypothesis by thresholding using the maxi-

mum accuracy distribution (Nichols & Holmes, 2002; Singh, Barnes, &

Hillebrand, 2003). For classification on different sensor sets, this was

done by selecting the maximum average performance across sensor

sets to create a null empirical distribution. For searchlight classification,

p values were thresholded using the maximum performance across sen-

sor clusters. For sensor-space classification based on feature selection

and for source-space classification, p values were adjusted using the

false discovery rate and cluster-corrected across time. Permutation p

values were calculated taking the observed statistic into account, using

the conservative estimate p5 b11ð Þ= m11ð Þ; where b is the number of

simulated statistics greater than or equal to the observed statistic and

m is the number of simulations (Phipson, & Smythth, 2010).

To identify the ROIs significantly contributing to decoding

performance in source space, permutation testing (5,000 sign-flipping

iterations) was applied to baselined mean relevance patterns for each

ROI and time window. P-values were corrected for multiple compari-

sons using the maximum statistic distribution across ROIs, and a further

Bonferroni correction was applied to account for the multiple time

windows tested.

Decoding was also performed on the EOG timeseries to control

for the possibility of eye movements driving decoding performance,

and the impact of low-level features was assessed by applying

classifiers to image properties, specifically pixel intensity levels and the

spatial envelope obtained using the GIST descriptor (Oliva, Hospital, &

Ave, 2001). The latter consisted of 256 values for each image, obtained

by applying Gabor filters at different orientations and positions to

extract the average orientation energy. As such, the spatial envelope is

a holistic representation of image properties, without extracting face-

specific features that can be expected to encode emotion and deter-

mine expression recognition.

3 | RESULTS

3.1 | Evoked responses to faces

When assessing the effect of emotional expression on event-related

fields, we found no modulation of any of the three ERF components (F

(2,26) < 9.37, p > .061 across all three comparisons). Conversely, we

found significant differences between responses to faces and

scrambled faces at the M170 latency (t(1,13) > 5.43, p < .0078;

maximum t(1,13) 5 7.17, p 5 .0008) and at the M220 latency

(t(1,13) > 5.38, p < .0099; maximum t(1,13) 5 6.54, p 5 .0016; Figure

2). At the M100 latency, no differences survived correction for multiple

comparisons (t(1,13) < 4.41, p > .04).

FIGURE 2 (a) Sensors exhibiting significant differences to faces
compared to scrambled stimuli (marked with asterisks) at the M170
latency (left) and M220 latency (right; p < .01). (b) Timecourses of
the evoked responses to neutral faces and scrambled stimuli from
right occipital and temporal sensors averaged across subjects
(6SEM) [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | MVPA results: Decoding faces from scrambled

stimuli

A searchlight MVPA analysis was performed on the face versus

scrambled decoding problem to identify sensors of interest for emo-

tional expression classification. Faces were decoded above chance

starting at �80 ms over occipito-temporal sensors (Supporting Informa-

tion Figure 2b). We identified a set of 40 occipito-temporal sensors

achieving above-chance decoding performance in all participants at any

time point after stimulus onset (Figure 3).

Source-space face decoding showed a similarly early onset

(�100 ms), with slightly lower decoding accuracies. Relevance patterns

based on classifier weights highlighted the visual cortex and fusiform

gyrus between 100 and 200 ms post-stimulus onset (coinciding with

the M170 effects found in the ERF analysis; Figure 4).

3.3 | MVPA results: Decoding emotional faces

3.3.1 | Sensor space decoding

When using anatomically defined sensor sets to define the feature

space, MEG data from occipital sensors successfully discriminated angry

and neutral faces (at 93 ms post-stimulus onset), as well as angry and

happy faces (at 113 ms post-stimulus onset). The classification of happy

and neutral faces was less consistent, showing only a weak effect (which

reached significance for a brief time window at 278 ms). The temporal

sensor set successfully decoded angry versus neutral faces starting at

262 ms. Other sensor sets did not achieve successful classification (Fig-

ure 5a). The maximum average accuracy across subjects was achieved in

the occipital sensor set decoding of angry versus neutral faces (65.39%,

bootstrap 95% CI [60.83%, 69.51%); Supporting Information Table S1).

Feature selection of sensors that successfully decoded faces ver-

sus scrambled stimuli marginally improved classification performance

(Supporting Information Table S1) and led to above-chance accuracy

on all three pairwise classification problems, starting at �100 ms for

angry faces and at �200 ms for happy and neutral faces (Figure 5b).

3.3.2 | Source space decoding

We used 84 peak virtual electrodes in AAL atlas-based ROIs to perform

whole-brain decoding of emotional expression in source space. Angry

faces were decodable from neutral faces at 155 ms and from happy

faces at 300 ms, while happy and neutral faces were less successfully

decoded, with a non-significant peak at 363 ms.

Later onsets of significant effects in source space are likely to be

due to the whole-brain approach and the subsequently lower accura-

cies obtained in source space. Accuracy may have been decreased by

the higher number of features and by our choice of one peak time-

course per ROI as input to the classification, which may have filtered

out informative signal. However, as optimizing accuracy was not the

main goal of this study, our method offers interpretability advantages,

such as the ability to assess the relative roles of different ROIs without

the confound of unequal ROI or feature vector sizes. Although feature

selection could improve classification performance, we decided against

optimizing accuracy in favor of deriving whole-brain maps from classi-

fier weights.

3.3.3 | Source-space relevance patterns

To assess ROI contributions to source-space decoding performance,

classifier weights were converted into relevance patterns and then

averaged across subjects and over time using 100 ms time windows.

Relevance patterns attributed a key role to occipital regions within

200 ms of stimulus onset, with temporal and frontal regions contribut-

ing information at later stages (Figure 6). This was confirmed by permu-

tation testing results, which highlighted the role of the right lingual

gyrus in discriminating angry and neutral faces within 200 ms (Figure

FIGURE 3 Searchlight MVPA analysis of differences in face/scrambled stimulus processing. The left-hand panel summarizes time-resolved decod-
ing accuracy (averaged across subjects and 50 ms time windows). The right-hand figure depicts the proportion of participants achieving above-
chance decoding at each sensor regardless of latency (sensors significant in all subjects and selected for further analysis are marked with asterisks)
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 (a) Decoding accuracy for the face vs scrambled problem in source space with 95% CI and significant decoding time window (black
horizontal line, starting at �100 ms). (b) Patterns derived from broadband source-space decoding of faces and scrambled stimuli for 8 key ROIs

for the 0–500 ms time window after stimulus onset. (c) Whole-brain patterns averaged across the first 250 ms after stimulus onset and plotted
on the semi-inflated MNI template brain. Bilateral ROI labels: CA: calcarine cortex; CU: cuneus; LI: lingual gyrus; OS: occipital superior; OM: occipi-
tal medial; OI: occipital inferior; PC: precuneus; FG: fusiform gyrus [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 (a) Accuracy traces averaged across participants for each emotion classification problem and each of the four sensor sets (shown in the left-
hand plot). The vertical lines mark the stimulus onset and the shaded areas depict 95% bootstrapped CIs. The horizontal lines represent clusters of at
least five significant timepoints (FDR-corrected p < .05). Significant decoding onset is marked with vertical lines (at �100 ms for the angry vs. neutral/
happy face decoding using occipital sensors). Accuracy traces were smoothed with a 10-point moving average for visualization only. (b) As above for the
sensor set based on the searchlight feature selection method (shown in the left-hand plot) [Color figure can be viewed at wileyonlinelibrary.com]
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7). Information in the left calcarine sulcus and inferior occipital gyrus

(with a potential source in the occipital face area) appeared to differen-

tiate angry and happy faces, while areas in the temporal, insular and

inferior orbitofrontal cortices were involved at later stages in all three

classification problems.

3.3.4 | Control analyses

For all three decoding problems, time-resolved decoding performed on

the EOG timeseries (using 25 time points from each of the two EOG

channels as features) achieved a maximum accuracy no higher than

50.9% (bootstrapped 95% CIs [47.75%, 52.6%]). Classification per-

formed on the entire EOG timeseries did not exceed 52.49% (CI

[48.6%, 56.3%]). This suggests that decoding results were unlikely to

be driven by eye movement patterns.

Binary classification between conditions based on raw image prop-

erties (intensity levels per pixel ranging between 0 and 1, mean 0.53,

SD 0.16) was not significant, although suggestive for one decoding

problem (happy vs. neutral: 33% accuracy, p 5 .9; angry vs. neutral:

60% accuracy, p 5 0.24; and angry vs. happy: 70% accuracy, p 5 .053,

permutation testing).

Finally, we performed binary classification between pairs of

emotional expression conditions, using the spatial envelope values

calculated using the GIST descriptor for each image. Two of the

decoding problems were successfully solved (happy vs. neutral:

82.6% accuracy, p 5 .0032, happy vs. angry: 78.7%, accuracy,

p 5 .0062), while angry faces could not be decoded from neutral

faces above chance (55.67% accuracy, p 5 .33). This suggests that

in our stimulus set, visual properties distinguish happy faces from

neutral and angry faces (unsurprisingly, given the consistency in

happy expressions), while angry faces are not easily distinguishable

from neutral faces. These results stand in contrast to results from

MEG decoding (Supporting Information Figure S3), which follow an

inverse pattern, with the highest accuracies obtained when decod-

ing angry and neutral faces.

Together, the control analyses suggest that our MEG results can-

not be readily explained by low-level confounds in our stimulus set.

The increase in accuracy when decoding angry faces from other

expressions (�100 ms), while likely to be based on low-level informa-

tion associated to emotional expression, is not easily explained by unre-

lated visual properties.

4 | DISCUSSION

We used sensor-space and source-localized MEG data and data-driven

multivariate methods to explore the spatiotemporal dynamics of emo-

tional face processing. We report three main findings based on our

analyses. First, the emotional valence of faces (especially angry expres-

sions) can be robustly decoded based on data from occipito-temporal

sensors, as well as whole-brain source-space data. Second, information

related to emotional face category is available as early as 90 ms post-

stimulus onset, despite a lack of effects in trial-averaged ERFs. Third,

data-driven relevance maps link different stages in expression

FIGURE 6 (a) Accuracy traces averaged across participants for each
emotion classification problem in source space using the 84 AAL atlas-
based ROIs (shown in the left-hand plot). (b) Broadband relevance pat-
terns derived from classifier weights in source space for all three decoding
problems, averaged across subjects and 100 ms time windows, baselined
and normalized, mapped on the semi-inflatedMNI template brain for time
windows between 100 and 500 ms post-stimulus onset. Patterns visual-
ized here are descriptive and represent each ROI in terms of its relative
role in classification across subjects without statistical testing [Color figure
can be viewed at wileyonlinelibrary.com]
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perception to visual cortex areas (early stages) and higher-level tempo-

ral and frontal cortices (later stages).

4.1 | Early processing of facial expressions

Although we found no modulation of trial-averaged ERF compo-

nents by emotional expression, our ERF analysis revealed a face

response over temporal sensors at the M170 and M220 latencies

and no face-specific M100 component, in line with previous studies

using matched control stimuli and similar designs (Perry et al., 2014;

Rossion, & Caharel, 2011). On the other hand, an early occipito-

temporal response to faces at M100 latencies was revealed in the

MVPA analysis. Together, these results appear to point to different

components in face processing—an early occipital effect not present

in the trial-averaged ERFs, and a later, mainly right-lateralized tem-

poral effect. Note that although the sensors contributing the most

information to the MVPA analysis are different to the sensors identi-

fied in ERF analysis, the latter set of sensors do perform above

chance when used in MVPA analysis in a majority of subjects

(Supporting Information Figure S3); the increased heterogeneity can

be explained by lower cross-subject consistency at the sensor level

of a late, higher-level response.

Using MVPA, we were able to identify expression-related informa-

tion at early latencies in our sensor-level MEG data. Expression (angry

and neutral/happy faces) could be decoded at 93 and 113 ms respec-

tively, only 10–30 ms later than faces were decoded from scrambled

stimuli, and earlier than latencies reported by previous ERP studies

(even by those showing emotional modulation of P1; e.g., Aguado et al.,

2012). Such early latencies are consistent with neurophysiological inves-

tigations in primates: for example, multivariate analysis of LFP data in

monkeys has shown early categorization of faces at 60–90 Cauchoix,

Arslan, Fize, & Serre, 2012), while face-selective cells in primate tempo-

ral cortex respond to faces or facial features at 80–100 ms (Perrett,

Rolls, & Caan, 1982; Hasselmo, Rolls, & Baylis, 1989). Our results add to

recent evidence of rapid visual categorization occurring during the early

stages of ventral stream visual processing (Cauchoix et al., 2016; Clarke

et al., 2013) and show that this extends beyond broad stimulus catego-

ries. Moreover, we reveal differences in patterns that can be detected in

FIGURE 7 Results of permutation testing of relevance patterns shown in Figure 7 for each decoding problem and time window between 100
and 500 ms. Highlighted ROIs were assigned significant weights (p < .05 corrected) [Color figure can be viewed at wileyonlinelibrary.com]
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the absence of trial-averaged ERF effects. Such differences, together

with method heterogeneity, could explain previous mixed results in ERF

studies, and speak to the sensitivity advantage of MVPA.

On the other hand, the lower performance and later onset of

happy versus neutral face decoding suggests a categorization advant-

age inherent in angry expressions. Angry faces were decoded from

both happy and neutral faces almost simultaneously, suggesting a bias

related to threat and not to emotion in general. This points to a system

preferentially responsive to threat, consistent with models placing con-

flict resolution at the core of social interaction (de Waal, 2000). We

note that our whole-brain, data-driven analysis pipeline revealed this

bias without entailing assumptions about the temporal or spatial loca-

tion of an effect.

4.2 | Spatial patterns of expression-related

information

We implemented an atlas-based approach to our source-space decod-

ing analysis in order to improve the interpretability of the resulting

maps and to facilitate cross-modality comparisons (Hillebrand et al.,

2012). This approach has been successfully applied to resting-state

MEG studies (e.g., Brookes et al., 2016) and, together with the selec-

tion of a peak source per ROI, allowed us to increase the computation

speed of our whole-brain decoding analysis, while at the same time

reducing data dimensionality and allowing for direct comparison

between ROIs. The relevance patterns in this study became stronger at

time points corresponding to accuracy increases (starting at �100 ms),

but we refrain from directly linking the two because we did not opti-

mize accuracy in this study.

When decoding angry and neutral/happy faces, early differential

processing was localized to the calcarine, lingual and inferior occipital

ROIs, starting at �100 ms post-stimulus onset (Figures 6 and 7). Other

occipital ROIs showed a weaker contribution to decoding, with pat-

terns later spanning a range of temporal and frontal areas. Early pat-

terns differentiating neutral and happy faces were weaker (as

confirmed by the lack of significant ROIs for this problem in the first

200 ms, and explained by the low decoding accuracy), but evolved simi-

larly over time (Figure 7). Strong patterns in the early visual cortex and

the occipital face area may be evidence of preferential threat process-

ing based on coarse visual cues which are rapidly decoded and for-

warded to higher-level regions. Emotional modulation in the visual

cortex has previously been reported (Fusar-Poli et al., 2009; Herrmann

et al., 2008; Padmala, & Pessoa, 2008), and the current results suggest

that this effect occurs at the early stages of visual processing (within

200 ms in calcarine cortex and lingual gyrus).

The traditional model postulating different pathways for process-

ing static facial features (such as identity) and changeable features

(such as expression; Bruce & Young, 1986) has been challenged by

mounting evidence of interaction between the two systems (Rivolta

et al., 2016). Our results suggest that face-responsive areas, including

those thought to process identity, respond to emotional expression.

The OFA/inferior occipital gyrus appears to be involved at an early

stage, while the fusiform gyrus and the superior temporal ROIs

(locations of the FFA and STS) are recruited at later time points. This is

consistent with a hierarchical model based on feedforward processing

of expression (Lohse et al., 2016; Wang et al., 2016). Later time win-

dows are characterized by patterns in the insular, prefrontal and orbito-

frontal cortices, previously associated with emotional processing

especially at the later stages of integration and evaluation (Chikazoe,

Lee, Kriegeskorte, & Anderson, 2014; Phan, Wager, Taylor, & Liberzon,

2002).

The timing of expression processing as evaluated with MEG

MVPA can offer indirect evidence on the hierarchy of the modules

involved. In the current study, the short latencies of emotional face dis-

crimination in visual cortex can be interpreted as supporting a feedfor-

ward account of expression perception. Since we find the earliest

differential effects in early visual cortex (within 100 ms), this appears to

be somewhat inconsistent with the preferential relaying of expression

information via the subcortical route to the amygdala (Pessoa et al.,

2011). However, the current data are not incompatible with the possi-

bility of a subcortical route with no preference to expression (Garvert

et al., 2014; McFadyen et al., 2017).

Our results are in line with previous fMRI MVPA studies demon-

strating above-chance expression decoding in all face-selective regions

(Wegrzyn et al., 2015) and particularly in the FFA, STS, and amygdala,

in the absence of univariate effects (Zhang et al., 2016a). Notably, the

latter found that the STS could classify neutral and emotional faces

above chance, whereas here we show an advantage for angry expres-

sions. Further research is needed to elucidate the emergence of

expression-specific representations in the face-selective network.

4.3 | What does successful emotional face decoding

tell us?

Naturalistic and high-level stimuli, although appropriate for linking per-

ception to cognitive processing, may give rise to ambiguities in inter-

pretation. In this study, we attempted to strike a balance by matching

low-level characteristics across stimuli to the detriment of their natural-

istic qualities. As emotional processing can encompass several distinct

processes, we opted for a passive viewing paradigm that would elimi-

nate task-related or top-down attention effects. Attentional effects

would thus be expected to arise due to the stimuli themselves

(increased salience due to emotional or threatening component) in a

bottom-up fashion compatible with our results. Without making claims

as to the nature of the underlying processes, we argue that our design

and results have relevance to real-life perception of emotion in others.

Global low-level matching of stimuli does not preclude the exis-

tence of local differences between images that are likely to play a part

in early decoding. However, we note that the fact that angry faces are

decoded more successfully than happy/neutral faces points to their

relevance rather than to non-specific decoding based on low-level

properties; for example, happy faces could be expected to be success-

fully decoded by a low-level classifier due to their consistent smiles, as

suggested by their successful decoding based on spatial envelope fea-

tures. Furthermore, classification based on sensors that successfully

discriminate between faces and scrambled stimuli adds to the evidence
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that our data do reflect face processing. It is likely that local low-level

properties play a part in decoding (especially in early time windows and

low-level visual areas); however, we view such properties as informa-

tive in the emergence of high-level categories. Our results suggest that

behaviorally relevant (threat-related) low-level cues are detected and

relayed preferentially compared to benign emotional cues.

One limitation of our study is the fact that we could not perform

cross-exemplar decoding to test classifier generalization to a novel set

of stimuli, as the occurrence of each exemplar was not recorded in our

paradigm. Thus, there is a concern about the classifier potentially

exploiting stimulus repetitions in order to successfully classify the two

categories. However, as repetition numbers were balanced across con-

ditions, we would expect this concern to affect all three decoding prob-

lems equally. As the control analyses do not point to the angry faces as

more classifiable in terms of low-level properties, we conclude that the

successful decoding of angry faces from MEG data is consistent with

their behavioral relevance and not with recognition of individual exem-

plars and stimulus properties. However, future studies could test the

generalization of MEG responses to emotional faces to novel stimulus

sets using cross-classification in order to elucidate their mechanisms.

Furthermore, our choice of using stimulus repetitions to achieve

robust responses to a limited stimulus set poses the concern of poten-

tial differences in repetition suppression effects. Such effects have

been shown to covary with a number of factors, including time lag, task

type, stimulus familiarity and valence (Morel et al., 2009). In particular,

a stronger repetition suppression effect was shown for fearful faces

than for neutral faces in both fMRI and MEG (Ishai, Pessoa, Bikle, &

Ungerleider, 2004; Ishai, Bikle, & Ungerleider, 2006), although this

effect was only present for target faces that were the object of a work-

ing memory task. On the other hand, repetition suppression was shown

to be absent for happy faces and reduced for angry faces as compared

with neutral faces in an fMRI study with an implicit paradigm (Suzuki

et al., 2011). Such a pattern is inconsistent with a large contribution of

repetition suppression effects to the current results. Furthermore, pre-

vious studies have shown differential repetition effects in evoked

response potentials, while evoked responses in the current data

revealed no differences between expressions. Due to stimulus labels

not being recorded, we were unable to investigate this possibility fur-

ther; however, future studies could test the robustness of expression-

specific neural responses to a larger stimulus set.

Although multivariate decoding is more sensitive to differences in

neural responses than traditional methods, a necessary caveat of

decoding-based inference is that information relevant in classification

may not be equally relevant in brain computation (Kriegeskorte, 2011).

By restricting ourselves to a linear classifier, we ensure that the

decoder focuses on information explicitly present in the neural activity,

as the feature vector is only a linear transformation away from the neu-

ral data (King & Dehaenene, 2014; Ritchie & Carlson, 2016). However,

it remains an open question whether the brain uses similar mechanisms

in its own computations, whether non-classifiable responses are other-

wise represented in the brain, or indeed whether there is a causal link

between such neural responses and perception or behavior.

On a similar note, patterns derived from classifier weights indicate

the availability of decodable information, but it is difficult to assess the

type of information used by the classifier or whether this same infor-

mation is functionally relevant. However, our results are validated by

existing models of emotional face processing, whereby large-scale dif-

ferences in spatial patterns over time may be elicited by different path-

ways involved in processing neutral and emotional/threat-related and

benign stimuli. On the other hand, the role played by individual ROIs in

decoding can be interpreted as reflecting differences in neuronal popu-

lation activity, as suggested by fMRI, MEG and electrophysiological

investigations establishing correlations between face-selective cell

activity, the BOLD signal (Hasselmo et al., 1989; Tsao, Freiwald, Too-

tell, & Livingstone, 2006) and gamma oscillations (Muthukumaraswamy,

& Singhgh, 2008; Perry, 2016; Perry et al., 2014). It is likely that differ-

ent regions contribute different types of discriminating information and

further study is needed to tease apart the underlying neural activity.

While the overlap in areas between classification problems and the dis-

tributed nature of expression-related information hint at the existence

of a core system that efficiently identifies and relays emotional cues,

the spatial resolution of our data is too coarse to make strong claims

about the structure of this system.

The findings we discuss here extend beyond successful decoding

of emotional stimuli to reveal a system optimized for rapid processing

of emotional content in faces and particularly tuned to angry expres-

sions. Decoding timecourses and relevance patterns indicate that affec-

tive information is rapidly relayed between early visual cortex and

higher-level areas involved in evaluation, suggesting that in our passive

viewing paradigm, behavioral relevance impacts the processing speed

of emotional expressions. Such a system is likely to confer an evolu-

tionary advantage in terms of rapid processing of threat cues from

other humans, consistent with models highlighting social processing

skills as an essential asset in human evolution and the development of

the human brain.
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