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Abstract

The overall aim of this study is to develop and analyse the performance of a multiscale

framework involving arterial wall dynamics and blood flow in realistic vascular architectures

that can facilitate the understanding of the onset and progression of vascular disease. This

comprehensive modelling framework will also allow the virtual testing and ultimately inform

the design of novel pharmacological probes. To achieve this aim, we need to deliver an

arterial model able to account for i) the wall contractility triggered by biochemical processes

at the cellular level ii) the interaction between the flow and vessel deformation, and iii) the

transport phenomena along the arterial systemic circulation. For each problem component,

a solution procedure has been proposed and validated against benchmark theoretical results

and experimental measurements. First we characterised the structural behaviour of the arterial

media layer and its response to the active contractile activity modulated by the smooth muscle

Ca2+ dynamics. In this study, we modelled the activation, modulation and inhibition of the

smooth muscle contraction by pharmacological interventions. Subsequently we have focused

on the fluid structure interaction between wall mechanics and hemodynamics. This work

required coupling a traditional incompressible arterial fluid model to a solid boundary, which

represents the elastic arterial wall. The methodology proposed has been validated against a

set of classical benchmark cases and exhibits improved numerical efficiency and significant

memory savings. The third component of the work focuses on modelling transport and

diffusion phenomena along the arterial branching network and within surrounding tissues.

For the purpose of this study, a network of vessels was embedded within a solid tissue model

of the human body. This model was able to predict how a property (in this application energy,
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but equivalently drug concentrations) is transported and diffused from the blood vessels to

the tissues.
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Ẇshear Loss due to viscous effect
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This thesis presents the development of a modelling framework for the study of fundamental

mechanisms responsible for the onset and progression of cardiovascular disease. The formulation

of a comprehensive in silico system allows for the non-invasive testing of pathogenic hypotheses

and may inform the design of novel drugs. The first part of this chapter provides a characterisation

of the arterial system by defining the main physiological, morphological and structural features.

This outline focuses on the contractile activity of the arterial wall that occurs under physiological

conditions or induced by specific pharmacological interventions. A concise summary on the

current state of the vascular modelling techniques is then presented. The aims of the work

and the global methodology adopted are finally outlined.

1.1 Characterisation of the arterial system

The arterial systemic circulation consists of a branching network of blood vessels and provides

the means by which the oxygenated and nutrient-rich blood is transported from the left

cardiac ventricle to the body soft tissues. Classification of these blood vessels is commonly

based on their size and type. Large arteries (lumen >10 mm) are characterised by their elastic

behaviour (thus also called elastic arteries) and convey large volume of arterial blood from

the core region towards the main organs and the peripheral regions. Among these large

vessels are the aorta, its main branches and the pulmonary arteries. These vessels branch

into muscular/distributing arteries (lumen between 0.1-10.0 mm) which become smaller in

diameter as they get further from the parent branch. By comparison to the elastic vessels,

which store and dissipate the energy generated by the heart’s pumping, the muscular vessels

are characterised by a thick layer of smooth muscle, which enables the control of blood

flow by actively changing the vessel lumen diameter. Small arteries, called arterioles, are

characterised by a proximal diameter of around 50-100 µm which narrows down to 15 µm

as they penetrate into the tissues and form capillary networks. The terminal part of the

arterial network is also known as microcirculation and forms the level at which the exchange

of oxygen between blood and cells takes place. Consequently, microvessels are extremely

important for the cellular environment homeostasis. Arterial circulation is complemented by
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the venous system, which is deputed to drain blood from the tissues to the pumping heart,

forming a closed loop for the blood circulation. By comparison to veins of the same size,

arteries are characterised by a thicker wall and smaller lumen, as well as by the absence

of any internal valves for flow regulation. The arterial system can be also considered to

act as a pressure reservoir, as only one-quarter of the blood volume resides in arteries at

high transmural pressure, while the remaining is located in veins at low pressure. The

rhythmic blood ejection from the left ventricle, combined with the compliance of the arterial

wall, results in pulsatile circulation flow [10]. The resulting pressure and flow signals are

characterised by irregular patterns, as the propagation of the waveform along the arterial

tree is disturbed by reflections occurring at the singularities of the network, e.g. aortic

valve, branching points and terminals. The arterial blood is considered a non-Newtonian

fluid, and the viscous effect is extremely relevant when the pulsatile flow is separated at

bifurcation points [11]. For the vast majority of arterial vessels, including arterioles, the flow

is laminar. Turbulence may develop in large arteries, such as the ascending and descending

aorta segments (Reynolds number>3300) [12] but such a condition is limited to the proximity

of branching points or associated with pathological situations. In most cases, blood in large-

medium arteries can be treated as a homogeneous and incompressible fluid.

1.1.1 Arterial wall

Due to the high variability in flow and pressure along the arterial tree, each blood vessel

exhibits unique structural properties in order to sustain the physiological fluid load. The

vessel structure is generally very complex, as it is arranged in layers performing different

functions and constituted by several components, such as endothelium, smooth muscle,

elastin, collagen and connective tissue. The macroscopic wall mechanical response depends

on how the tissue components are arranged within each layer. A morphological characterisation

of the wall at microscopic scale is therefore necessary for elucidating the structural behaviour

of the material [13, 14]. The composite collagen/elastin, located in the extracellular space,

is the main load carrying element in the structure [15]. Collagen is a protein able to confer
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exceptional strength, toughness and mechanical stability to the tissue as it is able to re-

arrange its hierarchical structure, which is based on fibres called collagen fibrils (with thickness

around 50-300 nm). By comparison to collagen, elastin is much more flexible allowing the

vessel to sustain larger deformation and stress. The synthesis of both these proteins occurs

in the smooth muscle, the cellular layer that is responsible for the active contractility of the

wall. The smooth muscle is fundamental to the flow regulation by means of the mechanisms

of vasoconstriction and vasodilation. Vascular contraction is governed by a framework of

smooth muscle cells, whose contractile machinery is driven by the phosphorylation of the

myosin motors, associated with the sub-cellular contractile units and regulated by complex

intracellular Ca2+ dynamics. The endothelial cells regulate these processes by releasing

factors able to inhibit or activate specific ionic pathways within the smooth muscle [16].

Layers of the structure

The arterial wall is arranged in a multi-layered structure: the innermost layer, called intima,

the media layer and the external layer, called adventitia (see Figure 1.1).

Figure 1.1: Multi-layered structure of the arterial wall.
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Intima Consists of a monolayer of endothelial cells lining the inner surface of the blood

vessels and supported by the internal elastic lamina, a thick membrane made mostly of

collagen. It represents the interface for the transport of molecules from the bloodstream

to the media and vice versa. The endothelium layer is present in all arterial vessels. It

is important to note that, under healthy conditions, the intima itself does not confer any

significant structural property to the wall.

Media A layer consisting of smooth muscle cells embedded in an extracellular matrix

made of collagen and elastin. The arrangement of smooth muscle cells and elastic fibres

follow a concentric lamellar pattern. The fibres are mainly aligned along the circumferential

direction of the vessel. The relative amount of smooth muscle tissue increases in vessels

having vasoactive capabilities, such as muscular arteries and arterioles [17, 18].

Adventitia The adventitia tunica confines the inner layers and mainly consists of thick

bundles of collagen fibres arranged in helical structures. A loose connective tissue surrounds

the outer surface of the layer. In a large artery, this layer represents almost 10 % of the

wall thickness, while in a muscular blood vessel this fraction can increase significantly. The

artery may also have one or more internal elastic laminae, lying between the layers, able to

increase the resistance and the elastic response of the vessel. The presence of these laminae

is much more relevant in large rather than in muscular arteries [19]. In Figures 1.2 and 1.3

confocal microscope images show how the tissue morphology may differ depending on the

artery. Figure 1.2 shows a confocal image of a cross section of a rabbit ear central artery.

For this artery it is easy to distinguish the internal elastic lamina, but the external lamina is

indistinct and multifaceted. The structural morphology significantly changes when we look

at the arterial section from a rabbit carotid artery (see Figure 1.3). The image shows that other

than the internal lamina, the wall layers are much more complex in character. The elastin of

the laminae intertwines between the muscle layers, which themselves become more complex

and indeed form coils, or ropes, of muscle cells that wrap around and through the media of

the artery.
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Figure 1.2: Confocal image of a longitudinal section of the arterial wall from a rabbit
central ear artery (image generated in our laboratory by Dr. D. Edwards).

Structural properties

The macroscopic mechanical response of the vascular wall is characterised by a nonlinear

stress/strain relationship, anisotropy, incompressibility and viscous effects. By isolating

the elastin and collagen contributions, Roach and Burton [20], found that for low tension

conditions the wall response is dominated by elastin, while for high stress, the tissue exhibits

the characteristic stiffening of collagen. The arrangement of the dispersed collagen fibres in

both media and adventitia implies a considerable anisotropy of the material. Large arteries

are rich in elastic material, while smaller vessels present a stiffer behaviour, which is in line

with the increase of pulse wave velocity from core to peripheral regions [18]. Incompressibility

may generally be assumed, due to the high water content within the tissues. The mechanical

response is also affected by viscosity which makes the material inelastic. Hysteresis phenomena

are exhibited when arteries are subjected to cyclic loading but they are particularly relevant

during the initial loading phase. After this preconditioning, hysteresis tends to remain the

same over time and the stress-strain curve becomes repeatable. The importance of the pre-
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Figure 1.3: Confocal image of the arterial wall. Longitudinal and transversal sections
from a rabbit carotid artery (image generated in our laboratory by Dr. D. Edwards).

stress in the unloaded configuration of the wall was pointed out by Fung [21]. Across

the lifetime of an artery, several growing and remodelling processes may occur, involving

continuous and irreversible changes in the structure. These residual stresses are destined to

vary with age and eventual pathological conditions. The residual stresses in the wall, as well

as the viscoelastic effects, are not taken into account in this study, in order to simplify the

complex modelling process.
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1.1.2 Flow regulation

Arterial pressure control is necessary in order to ensure a sufficient and timely blood supply

to the vital organs and peripheral regions. At the capillary level, pressure control is fundamental

for maintaining the tissue volume and the interstitial fluid composition within well defined

physiological ranges. The mean arterial pressure is regulated by changes in cardiac output,

which are driven mainly by neurohumoral mechanisms and systemic vascular resistance.

The response associated with the nervous system relies on different receptors located at

various sites along the arterial tree, in order to monitor the state of the heart and the vascular

system [11]. The neural signals are transmitted, either in an individual or integrated manner,

from the receptors to the brain. The autonomous nervous system has two principal components:

the sympathetic system and the parasympathetic nervous system. If sympathetic nerves

are stimulated, the rate and contractile force of the heart rises and vasoconstriction occurs,

with a consequent increase in arterial blood pressure. Stimulation of the parasympathetic

system causes the opposite effects, with a resulting decrease in arterial blood pressure.

These two subsystems can be located in two functionally different areas of the medullary

cardiovascular centre and known as pressor and depressor regions [18]. Muscular arteries

and arterioles are able to modulate their lumen in order to regulate the blood perfusion

in the tissues. Microcirculation [22] represents the site of greatest pressure drop in the

arterial blood circuit. For this reason, arterioles play a dominant role in peripheral vascular

resistance, which affects the cardiac output [23]. The myogenic response represents an

important mechanism in the local regulations of blood flow, involving vasoconstriction when

intravascular pressure is high and, conversely, the dilation of the vessel at low pressure [24].

Experiments on isolated rabbit ear arteries demonstrated that such a mechanism has the

capacity to minimise changes in smooth muscle cell contractility over the full physiological

range of pulsatile intravascular pressure [25]. The relationship between flow and the vessel

dilation is modulated by the endothelium-derived relaxing factor nitric oxide (NO), which

maintains a fourth-power relationship between lumen and flow so that, in each vessel, the

pressure gradient tends asymptotically to a constant value for high flow rates [26]. Different
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studies [27, 28] found analogies between such myogenic mechanism and the phenomenon

called vasomotion, a spontaneous and rhythmic contractile activity, manifested by low frequency

oscillations in vessel caliber [29]. It is pointed out that such diameter oscillations do not

depend on the pulsating regime of the flow. Vasomotion has been predominantly found in

microcirculation [30, 31], but it also plays a significant role for large muscular arteries [32,

33]. Although the precise physiological function of vasomotion is still not fully understood,

this mechanism is relevant in small arteries and arterioles for regulating perfusion, filtration

and lymphatic drainage, and maintaining homeostasis [34, 35]. For large arteries, the role of

vasomotion is still a matter of debate, although it seems to affect considerably the elastic

properties of the arterial wall [36]. Vasomotion has also been proposed as a protective

mechanism under conditions of ischemia [37]. Mechanical factors affecting the endothelium,

such as the lumen shear stress, seem to be involved in the modulation of vasomotion [38, 39,

40], although there is no a clear evidence on how these factors are linked to the emergence

of the phenomenon. Several studies [41, 42, 43] support the claim that vasomotion may

originate from fluctuations in the cytosolic concentration of calcium ions. Variations in Ca2+

concentration observed in smooth muscle cells are the result of the continuous calcium ion

uptake/release through the cellular membrane (sarcolemma). Intracellular Ca2+ is of huge

importance for media tissue contractility as it is the primary catalyst for the phosphorylation

of cross-bridge formation that occurs within each smooth muscle cell, and which facilitates

the contractile response of the cellular cytoskeleton. Intercellular coupling within the smooth

muscle promotes the long distance entrainment of Ca2+ dynamics and the emergence of

synchronised contractile activity within the arterial wall.

Integration of all these mechanisms is therefore required to shed light on the effects of cellular

dysregulation onto macroscopic level events such as physiologically significant vascular flow

changes.
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1.2 Vascular modelling

A review of the main contributions to the field of vascular computational mechanics is

presented here.

1.2.1 Advanced arterial wall models

Due to the structural complexity of the arterial wall, the models available in the literature

generally account for only a subset of the features described in Section 1.1.1. Nevertheless

advanced computational models of the vascular structure have become very useful for the

study of pathological conditions that may involve the dysfunction of arterial wall components.

One of the early fundamental contribution in this field was due to Fung [44, 21], who

proposed a non-linear continuum mechanical formulation described in terms of a strain

energy function. Many other relevant models were derived from this reference work [45, 46,

19, 47]. Holzapfel et al. [19] added an isotropic Neo-Hookean contribution and reformulated

the exponential form of Fung in terms of tensor invariants. In this work the anisotropy

of the structure is introduced through the reinforcing collagen fibre contributions. This

type of (micro-)structural model was able to capture the characteristic S-shaped stress-strain

relationship, and became popular over the last two decades, giving rise to different extensions

that included visco-elasticity, fibre remodelling and fibre dispersion [48, 49, 50]. These

models were intended to simulate the passive response of arterial wall without taking into

account the active media layer contractility. The theoretical work by Rachev and Hayashi [51]

was one of the earliest to model the effects of smooth muscle contraction on strain and

stress distributions in arteries. Several methodologies have been subsequently proposed for

simulating the smooth muscle contractility [51, 52, 53, 54, 55, 8], that translate the kinetics

occurring within the smooth muscle contractile units into a macroscopic tissue structural

response.

At the same time a number of works accounting for the cellular Ca2+ dynamics has been

proposed [7, 56, 57]. These models have been systematically validated against a broad range
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of pharmacological interventions that specifically inhibit individual transport mechanisms

and modulate endothelial nitric oxide (NO) synthesis. The methodology proposed for single

cell dynamics has been subsequently extended to arrays of coupled cells with realistic architectures

of arterial vessels [58, 6]. This led to the study of Ca2+ synchronisation and wave formation

on the arterial wall under varying cellular coupling conditions. For an extended review on

structural modelling of arteries, the reader is referred to [59, 60].

1.2.2 Computational hemodynamics

With regard to arterial flow modelling, a large variety of computational methodologies has

been developed in the last three decades. They range from simple lumped parameter models

(0-D) [61], which consider a uniform distribution of the fundamental variables, to one-

dimensional (1-D) models [62, 63, 64, 65, 1, 66, 67] accounting for flow/pressure propagation

along the arterial network, to three dimensional (3-D) models, which may be characterised

by more realistic features, ie, detailed interaction with the wall (fluid structure interaction)

or realistic vascular geometry (patient-specific) [68, 69, 70, 71, 72]. Each computational

strategy has its own advantages and limitations and the choice must depend on the scale

relevant to the hemodynamics of the problem treated [73]. The 0-D models represent a

computationally inexpensive and mathematically simple choice, optimal for carrying out

a global analysis of the system. These models do not provide any spatial definition of the

problem and are therefore not suitable for modelling flow propagation/advection phenomena.

The one-dimensional methodologies allow the description of wave propagation along extensive

arterial vessel networks by requiring affordable computational cost, even for long time simulations.

The 1-D description of the flow, however, is not able to capture detailed flow features such

as the velocity and stress field distribution on the wall interface boundary. This information

may be extremely relevant in the study of certain pathological scenarios, such as stenosis and

aneurysms. Despite the enormous computational resources requested, the multidimensional

approach is probably the best candidate for representing complex flow in realistic geometries

and, in the case of coupling with the vascular structure, to account for both active and
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passive dynamic properties of the wall. A limiting factor to these approaches is the accurate

estimation of model parameters, such as material properties, vascular geometry and boundary

conditions which fundamentally affect the simulated outcome, regardless of the computational

methodology adopted. A way to overcome this constrain was suggested in [72], where it was

showed that accurate results can be obtained for different patient-specific models (1-D/0-D

and 3-D/0-D) even when parametric data were obtained through non-invasive techniques.

For multidimensional fluid structure interaction problems, many computational methods are

available ranging from monolithic strategies [74, 75, 76, 77], where all the field equations

are solved at the same time in a unique block, to segregated strategies [78, 79, 80, 81], which

compute the solution by treating each subsystem in a segregated fashion. The choice of

the numerical method, however, has a significant impact on the computational time. The

partitioned schemes generally guarantee lower computational costs but at the same time

may suffer numerical issues, such as added mass effect or incompressibility dilemma [82,

83, 84], due to a lack of robustness of the coupling algorithm. FSI remains a research

area in continuous expansion, within which the cardiovascular system constitutes one of

the most important and challenging application cases [85]. Several hemodynamics FSI

studies have been carried out by considering a variety of complex vascular domains, ranging

from idealised aneurysms to geometries derived from MRI scans [71, 86, 87, 88]. There is

still however the need to render such algorithms computationally more efficient, in order to

extend the FSI analysis to larger portions of the arterial system. More importantly, in light

of the present work, the number of FSI works employing advanced wall structural models

is extremely limited. A successful compromise can be achieved by employing multiscale

strategies, such as in [89], where a localised, detailed arterial model is coupled with an

extensive model of systemic circulation, modelled with a reduced order methodology. In this

case the reduced model can impose "realistic" boundary conditions at the interface with the

more sophisticated component. This allows modelling simplifications as well as significant

computational savings.
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1.2.3 Modelling blood transport and diffusive processes along the arterial

tree

A fundamental understanding of blood transport in the human body is important for studying

a broad range of situations, such as the effect of temperature controlled surgeries and the

impact of dramatic change in atmospheric or surrounding temperature. The thermal manipulation

of body temperature has been used for a long time in cryosurgery and cancer treatment

(hyperthermia) [90, 91, 92]. It is also known that dramatic changes in weather (extremely

cold seasons or heat waves) can lead to adverse health conditions and in some cases death.

In thermally controlled surgeries, understanding the heat or cold dissipation mechanism in

a human body can be critically important. In a more ordinary situation, seasonal changes

in atmospheric temperature require the body to adapt fast to keep the stimuli under control.

Despite all the regulatory mechanisms of the human body, whenever temperature reaches a

threshold value, tissue damage and/or alterations to biological processes may occur. When

subjected to varying temperature conditions, the thermo-regulatory system enables the control

mechanisms of the body to keep tissue temperature within the threshold limit. Modelling

such a control mechanism and resulting temperature behaviour in time and space within a

human body is extremely complex.

A number of modelling attempts have been made in the past using lumped models or models

that have only accounted for conduction and perfusion to understand the heat transfer in a

human body. While these models provide a good starting point, they are not comprehensive

as they do not include the effect of pulsatility and flow in arteries. A brief overview of the

existing models is given below. The available bio-heat transfer models for a human body

may be conveniently divided into lumped models, segmented models and multidimensional

models. In addition, there are models that fall between these categories. The lumped

models are the simplest as they treat the human body as a single point with temperature

change allowed only in time. Since the thermo-regulation effects and heat transfer processes

within the body were not accounted in the lumped models, applications of such models are

extremely limited. By comparison, fully three dimensional models represent thermal changes
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in a human body close to reality. Such representations are however complex, extremely

expensive computationally and difficult to implement. Thus, the segmented models that

carefully account for various biological and physical processes are probably the best templates

for understanding the human body bio-heat transfer. Alternatives to lumped models were

developed in the late sixties and the first of such models consist of two nodes, representing

a human body by two concentric shells. The first, central shell represents internal organs,

bone, muscle and subcutaneous tissue and the second, outer shell represents the skin layer.

The model presented by Gagge et al. [93] is one of the best-known two-node models. It

calculates the thermal response by means of two energy balance equations, one for the

core node and one for the skin node. Gagge et al.’s model accounts for the effects of heat

accumulation, conductive and convective heat transfer via blood flow between the core and

skin shells, metabolic heat generated during exercise and shivering. The energy exchange

with the environment has been modelled by considering respiration, convection, radiation

and evaporation of moisture. Gagge et al.’s model is simple to use, but it can only be

applied to situations with moderate levels of activity and uniform environmental conditions.

Although this model is an improvement on lumped models, it does not allow for the computation

of detailed body temperature distribution. An obvious extension to the two node model is

to introduce multi-nodes to discretely represent different parts of the body. Stolwijk and

co-workers [94, 95, 96] divided the human body into five cylindrical parts to individually

represent the trunk, arms, hands, legs and feet and a spherical body part for the head. Each

part was further divided into four concentric shells representing the core, muscle, fat and skin

layers. In this model, the blood circulation system is represented by a blood pool located in

the trunk. The trunk is connected to all tissue nodes by a network of blood vessels. The

heat transfer between tissue nodes occur by conduction while between the central blood

node and the adjacent tissue nodes by convection. The energy balance equation includes

heat accumulation, blood convection, tissue conduction, metabolic activity, respiration and

heat transfer to the environment by convection, radiation and evaporation. A thermal control

system is also included. A fundamental limitation of this methodology is that it is restricted

to isothermal blood flow. The model developed by Wissler [97, 98], consists of 6 (later
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15) elements connected by a vascular system. The vascular network is composed of arteries,

veins and capillaries and the blood temperatures are assumed to be uniform. Arteries connect

the heart to the arterial pool of each element and further into the capillaries. From the

capillaries, the blood circulates to the venous pool of the element and back to the heart.

Between large arteries and large veins countercurrent heat exchange is modelled. It also

accounts for breathing losses and is able to simulate transient states. The 3-D transient

multi-element model developed by Smith [99] is based on a more realistic representation

of the entire human body than previous models. The body here is composed of 15 elements,

which are connected by the central macrocirculation and superficial veins. For the blood

network, 1-D steady-state Newtonian flow is assumed. An accurate evaluation of breathing

losses is proposed by considering the respiration cycle. In this thermo-regulatory system

proposed, variation of skin blood vessel radii during vasomotor response, the sweat rate and

the shivering metabolic rate are functions of the core and mean skin temperatures. The 3-D

approach makes the model suitable for situations with high temperature gradients or highly

non-uniform thermal conditions. However in such model fat and skin layers are modelled

as a single layer; this may affect the heat convection to the skin surface carried by blood

flow and thus the entire body thermal response. Moreover, blood perfusion occurring in

capillary beds is not considered. Another relevant work is that of Fiala et al. [100, 101],

who divide the body into cylindrical and spherical elements. Such subdivision was enforced

whenever a significant change of body tissue properties occurred. The heat produced within

the body is dispersed to the environment by convection, radiation and moisture evaporation

at the skin, and in the lungs/respiratory tract. Such multi-layered model consists of annular

concentric tissue layers and uses seven different tissue materials: brain, lung, bone, muscle,

viscera, fat and skin. For the solid conduction problem 1-D Pennes’ equation was used. Body

elements are supplied with warm blood from the central pool by the major arteries. Along

the pathway, arterial blood exchanges energy with returning veins as in a countercurrent

heat exchanger. This was introduced in order to obtain a more realistic distribution of the

arterial blood temperature instead of assuming a constant arterial blood temperature for all

body elements equal to the temperature of the central blood pool. Perfusion is used as the
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mechanism of exchange between blood and tissues. The effects of the thermo-regulatory

system are also accounted. Cropper et al. [102] coupled the human model of [100] with a

CFD for external airflow and obtained a tool able to predict the response of body temperature

to several detailed local environmental conditions. Tanabe et al. [103] modelled human

thermal system in a similar way. In this case each individual body elements consists of a

core layer and a skin layer and in the centre of each core layer there are artery and vein

blood pools. Between the artery and the superficial vein blood pools, an additional vessel is

introduced to account for changes in blood flow due to changes in the ambient environment.

The model developed by Huizenga et al. [104] is based on the Stolwijk model [94, 95, 96]

as well as on work by Tanabe [103], but includes several significant improvements, as it can

simulate an arbitrary number of human body segments. Each of these segments consists of

four body layers (core, muscle, fat, and skin tissues) while a clothing node has been added

to model heat and moisture capacitances. The improved blood flow model includes central

artery/vein countercurrent heat exchange and blood perfusion model to estimate blood flow to

local tissue. The model also calculates the heat transfer by conduction to surfaces in contact

with the body. A better estimation of the convection and radiation transfer coefficients, an

explicit radiation heat transfer calculation using angle factors and the addition of a radiation

heat flux model are notable additions. Besides this, the model allows simulation of any

sequential combination of environmental, clothing and metabolic conditions. Although the

latter models with arterial systems [100, 101, 103, 104] represent a step forward, they do

not explicitly include a systemic circulation and the resulting inner convection occurring

between the arterial blood and wall. Other notable models include the one developed by The

National Renewable Energy Laboratory (NREL) [105], which contains a detailed simulation

of human internal thermal physiological systems and thermo-regulatory responses. Another

multi-segmented human thermal model developed by Salloum et al. [106] for bare human

body consists of a comprehensive blood network. Flow rates are based on exact physiological

data, real dimensioning and anatomic positions of the arteries in the body. Holopainen [9]

combined the human thermal modelling with a thermal sensation and comfort model inside

a simulated building. The models by Karaki et al. [107] and Rida et al. [108] also incorporate
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dynamic thermal response associated with arterio-venous anastomoses (AVA) functions. Several

works including [109, 110] and [111] report that AVAs in the distal parts of the extremities

play a significant role in the heat exchange with the environment. For example, exposure to

extremely cold environment, causing cold induced vasodilation (CIVD) to protect hands or

feet from cold injury and very high temperature environments causing heat induced vasoconstriction

(HIVC) so that the warm blood cannot reach the human core easily. However, as reported

in [109], these two exceptions for the AVA function during CIVD and HIVC do not apply to

the vasoconstriction or vasodilation of the arterial system triggered by decreased or increased

body core temperature. The ability to appropriately characterise the inner convection between

tissue and vessels, introduced here, has been a weak point in many recent models. Following

the work by Smith [99], Sun [112] derived a comprehensive 3-D model that is able to

highlight the heat transfer for walking conditions. Although a blood network was included

within solid tissues, this was under the assumption that blood nodes exchange heat with

surrounding tissue only via conduction. Moreover, vessels were considered inelastic and

thus pulsatile velocity was not accounted for. Ferreira and Yanagihara [113] proposed a 3-

D conduction model, where arterial and venous flows are considered as reservoirs and the

tissue temperature does not account for any flow temperatures. In subsequent work Ferreira

and Yanagihara [114] modelled heat transfer at a steady state in the upper limbs. Although

tissue matter was modelled via partial differential equations, the conditions considered were

stationary. Furthermore only two different tissues were used, while a reduced, arterial network

was adopted.

In the literature there is no clear evidence on the role of the venous system on the global

thermal balance of the body. Indeed the importance of the heat exchanged between arteries

and veins is still a matter of debate, as highlighted by an analytical model by Mitchell and

Myers [115], demonstrating no significant counter-current effect in the human arm. This

can be mainly justified because the distance between large arterial and venous vessels is

significant; the high velocity blood flow and the too short length of the vessels may affect

further the counter-current heat exchange. Vanggaard [116] confirmed that counter-current

heat exchange is of minor importance in total heat exchange. He concluded that counter-
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current heat exchange either had to be always 100% effective or negligible, and naturally

opted for the latter. Some studies have reported heat transfer in the blood but without the

surrounding body tissues. For example, Craciunescu and Clegg [117] analysed the effect of

a pulsating blood velocity field on temperature. In their studies they obtained some important

results on the relationship between the pulsating axial velocity and temperature profile and

the effect of the Womersley number variation. In the work proposed by Bommadevara

et al. [118] a sophisticated bio-heat transfer model representing neck is presented. They

evaluate temperatures along common and internal carotid arteries for various environmental

conditions. However, blood vessels in this study are treated as rigid tubes and thus the

effects of area variations are not accounted for. Ying et al. [119] proposed a thermo-fluid

model valid for a circulation system of the upper limb which involves arteries, capillaries,

and veins. Here, the temperature is evaluated along the network by considering the effects of

blood flow rate, transmural pressure, cross-sectional area and elasticity. However, this model

is not comprehensive as reflections due to variations in vessel topology and properties are

not accounted for.

1.3 Aims of the work

As discussed in Section 1.1, characterisation of the interaction between the blood flow and

the vascular wall is vital for a better understanding of the mechanisms underlying the transport

and regulation of the flow. Phenomena like vasomotion are the result of intimate coupling

between cellular biochemical processes, wall structural mechanics and blood flow. With

this work we aim to develop and validate an arterial fluid model accounting for smooth

muscle dynamics and wall-blood flow interaction in a robust multiscale formulation. The

designed framework will provide a platform for testing hypothesis on the mechanistic origin

of vascular disease and suggest pharmacological interventions able to inhibit pathogenic

processes at the cellular level. This methodology may provide the foundation for future

applications, such as the study of vascular disease in diabetes and tumour neovascularisation.

Figure 1.4 illustrates the global modelling methodology we intend to develop, highlighting
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the main focus of the present work (A,B) along with potential future applications (C,D,E).

Figure 1.4: Schematic of integrated framework (A,B) and potential applications
(C,D,E).

This methodology requires integration of a fluid dynamics framework for collapsible vessel

with a model describing the wall contractile behaviour. The arterial wall can be seen as a

control system of the blood flow and its subsystems/layers dependencies, depicted in Figure

1.5. Unlike a common collapsible-passive vessel, the arterial wall includes a smooth muscle

cellular layer which forms an active source of contractility. Concentration of Ca2+ ions in

the cytosol plays a fundamental role in the excitation of the smooth muscle’s contraction.

Such contractile mechanism acts in parallel to fluid traction load in wall deformation and is

regulated by the endothelium monolayer. The adventitia has no active contractile capacity

but plays a fundamental role in the passive response of the material.

This multiscale approach will allow us to study the effect of localised (e.g. cellular) dysregulation
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Figure 1.5: Virtual artery system components.

as manifested in global circulatory dysfunction. Integration of this multi-physics platform

will be performed along three distinct steps:

• Coupling arterial wall mechanics with Ca2+ dynamics.

The contractile state of the vascular wall constitutes one side of the non-linear relationship

between stress and deformation of the wall structure. In absence of arterial flow, the

smooth muscle layer becomes the only driving force that may cause wall deformation.

In this area of the work, we aim to integrate the cellular Ca2+ dynamics into a tissue

structural model, so that the resulting structural response of the media will be able to

account for different levels of contractility driven by the cellular biochemical processes.

• Development of efficient fluid structure interaction for hemodynamics problems

To describe the interaction between the vascular wall and the blood flow, an FSI
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scheme needs to be developed. For this purpose we adopt one of the best tested

approaches: the partitioned coupling scheme which utilises subsequent solutions of

both the fluid and the structure sub-problems, thus enabling existing fluid and structure

solvers to be re-used. To overcome any numerical instability issues, we employ a

strongly coupled scheme which utilises multiple iterations per time step (dual time

stepping) to converge to the monolithic solution. The use of such dual time stepping

allows us to employ a larger time step, resulting in a considerable improvement in

efficiency.

• Modelling transport along the systemic circulation

Computing the transport of drugs and fluid properties within the tissues requires coupling

the vascular network with the solid tissues system. To represent the arterial systemic

circulation we adopted the model proposed in [64, 1]. The methodology allows the

computation of 1-D flow along a network composed by 63 blood elastic vessels (Figure

1.6). This approach results in a comprehensive model as reflections due to variations

in vessel topology and properties, and aortic valve effects are accounted for. Since

temperature is a fundamental blood property (e.g. in terms of drug solubility and

viscosity) we extended the model proposed in [64, 1] by incorporating fluid energy

conservation equations. We thus developed a novel thermal model able to account

for embedded arterial circulation. Importantly, this multi-branching circulatory model

of blood flow-body tissue interaction can be used to describe a variety of diffusive

processes, such as drug delivery into tissue in 1-D blood flow, as it relies on the same

transport equations employed for fluid energy conservation.
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Figure 1.6: Arterial systemic circulation (from [1]).
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Chapter 2

General methods
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The theoretical background underlying the numerical solution procedures employed for solving

the problems identified in Section 1.3 is presented below. A more detailed presentation

of the methodology employed for each section of the work is provided within the relevant

results chapters. The latter part of the chapter outlines the experimental techniques used to

investigate arterial tissue contractility.

2.1 Computational methods

A wide variety of physical field problems can be described by a set of partial different

equations in conjunction with conditions imposed at the spatial border, called boundary

conditions. In seeking a solution difficulties may arise from the problem formulation and/or

the geometry of the physical domain. There is thus the need to adopt robust numerical

techniques in order to limit as much as possible eventual numerical issues. The finite element

method has emerged as one of the most reliable and widely used techniques for solving this

type of problems. In this section, we introduce the basics of the computational procedure

necessary to advance from the solid mechanics governing equations to the numerical solution.

Although the presented procedure is an introduction to finite element method, it also represents

the common methodological basis underlying a broad range of problems, including fluid

dynamics and fluid-structure interaction. For a more rigorous introduction to the finite

element method, we address the reader to more systematic reference works [120, 121, 122].

2.1.1 Kinetics and deformations

Space is defined with respect to a Cartesian coordinate system (c1,c2,c3). A continuous body

is assumed to deform from a reference configuration Ω to a deformed configuration Ω′. For

any of its points, the position can be represented in terms of reference (material) coordinates

X=(X1,X2,X3) or current (spatial) ones x=(x1,x2,x3).

The deformation gradient tensor F, describing the deformation from configuration Ω to Ω′,
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Figure 2.1: Deformation from a reference configuration Ω to a deformed configuration
Ω′.

is defined as

F =


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 (2.1)

Thus, it is possible to write the differential of x as

dx = F dX (2.2)

Spatial coordinates are also related to material ones by means of the following kinematic

relationship

x = X+d (2.3)

where d is the displacement vector with respect to reference coordinates.
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The relationship between the strain tensor ε and the displacement d is expressed in matrix

form via

ε= B d (2.4)

where

BT =


∂

∂x1
0 0 ∂

∂x2
0 ∂

∂x3

0 ∂

∂x2
0 ∂

∂x1

∂

∂x3
0

0 0 ∂

∂x3
0 ∂

∂x2

∂

∂x1

 (2.5)

The Green strain tensor E can be written as:

E =
1
2
(FT F− Id) =

1
2
(∇d+∇

T d+∇d∇
T d) (2.6)

in which Id is the identity matrix. We note that if a linearity assumption is made for the

material (as in the case of the fluid), the product of displacement gradients in Equation (2.6)

is negligible; thus each component of tensor E becomes

E≈ 1
2
(∇d+∇

T d) (2.7)

Extremely important for computational mechanics calculations are the Left Cauchy deformation

tensor b, which can be written as

b = FFT (2.8)

and the Right Cauchy deformation tensor C, defined as

C = FT F (2.9)
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Notes on tensors

For a generic tensor A, the deviatoric part Ā, also called dev(A), is given as

Ā = A− tr(A) (2.10)

where tr(A) is the trace of A, calculated as

tr(A) =
∑

3
i=1 Aii

3
Id (2.11)

in which Id is the identity matrix.

2.1.2 Governing Equations

A generic field problem can be generally described by means of one or more conservation

equations. If an infinitesimal solid volume dΩ is considered, the balance of linear momentum

along the ith direction may be written as

σi j, j +gi = ρSd̈i i, j = 1,2,3 (2.12)

where σi j, j (σi j, j=
∂σi j
∂x j

) are components of the Cauchy stress, ρS is the material density, gi

and d̈i are the body force and material acceleration components, respectively. The stress

tensor σ is defined by means of a constitutive relationship, which depends on the type of

material assumed. For each equilibrium equation, it is possible to associate a weak form by

multiplying the equation by an appropriate arbitrary function, integrating over the problem’s

domain Ω, and setting this quantity equal to zero. For the formulation of the non-linear

elasticity problem we start from the virtual work variational principle, which applied to
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Equation (2.12), leads to the following form [123]

∫
Ω

δdi[ρSd̈i−gi−σi j, j]dΩ = 0 (2.13)

where δdi is the virtual displacement. Integration by parts of the stress components yields

∫
Ω

δdiρSd̈idΩ−
∫

Ω

δdigidΩ+
∫

Ω

δε i jσi jdΩ−
∫

Γ

δdit f ,idΓ = 0 (2.14)

where δεi j is the virtual strain components and t f ,i is the current traction vector acting on

the surface Γ. Equation (2.14) may be expressed also in a matrix form (neglecting the body

force component) as

∫
Ω

δdT
ρSd̈dΩ+

∫
Ω

δ (Bd)TσdΩ−
∫

Γ

δdT t f dΓ = 0 (2.15)

Enforcing incompressibility

In order to prevent volumetric locking a three field Hu-Washizu formulation can be used as

an alternative to the virtual work principle. The functional ΠHW depends on the state of

deformation (φ ), the volume change independently of the motion (J̄) and the pressure (p)

that is a Lagrange multiplier enforcing the condition that J = J̄, as follows

ΠHW (φ , J̄, p) =
∫

Ω

Ψ̄(C)dΩ+
∫

Ω

Uvol(J̄)dΩ+
∫

Ω

p(J− J̄)dΩ−Πext(φ) (2.16)

where Ψ̄ is the deviatoric component of the energy stored during the deformation, whilst

Πext(φ) depends on the external forces.

Given a direction δν, the stationary conditions of Equation (2.16) with respect to φ , J̄ and

p yield the virtual work principle and the constitutive and kinematic relationships associated
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with the volumetric conditions


DΠHW (φ , J̄, p)[δν] =

∫
Ω′σ : δd dΩ′−δWext(φ ,δν) = 0

DΠHW (φ , J̄, p)[δ J̄] =
∫

Ω
(dUvol

dJ̄ − p)δ J̄ dΩ = 0

DΠHW (φ , J̄, p)[δ p] =
∫

Ω
(J− J̄)δ p dΩ = 0

(2.17)

where J is the pointwise jacobian such that J = dΩ′

dΩ
. As δ J̄ and δ p can be any arbitrary

functions, Equation (2.17) gives J̄ = J and p = dUvol
dJ̄ . We note that in this system of equations

the first expression is the virtual work principle. More details on the procedure can be found

in [124].

2.1.3 Finite element procedure

If the finite element approximation is adopted for discretizing the space, the domain of

interest, Ω, is divided into a set of sub-domains (called elements), Ωe, such that

Ω≈ Ω̂ = ∑
e

Ωe (2.18)

The same treatment applies for the boundary

Γ≈ Γ̂ = ∑
e

Γe (2.19)

Equation (2.15) for the problem domain Ω̂ is written as a sum over the element domains

∑
e

[∫
Ωe

δdT
ρSd̈dΩ+

∫
Ωe

δ (Bd)TσdΩ−
∫

Γe

δdT t f dΓ

]
= 0 (2.20)

With the Galerkin method, the virtual variables are defined as approximations of the independent

variables of the variational form. It is also required that the highest derivative in Equation

(2.20) must be at least piecewise continuous over the considered domain, so that all integrals

exist.
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Approximation of displacement

For each element the displacement field may be approximated as

d(x, t)≈ d̂ = ∑
b

Nb(x)d̃b(t) = N(x)d̃(t) (2.21)

where Nb are element shape functions, d̃b(t) are nodal displacements and the sum ranges

over the number of nodes associated with the element.

The element coordinates may be also defined with a parametric mapping ξ (see Figure 2.2

for the two-dimensional quadrilateral).

Figure 2.2: Isoparametric map for four-node quadrilateral: (a) element defined in local
coordinates (ξ) and element in cartesian coordinates (x).
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For such isoparamteric elements the displacement x can be written as

x(ξ) = ∑
b

Nb(ξ)x̃ (2.22)

where x̃ represents the nodal coordinate parameters. Thus the displacement field can be also

defined as

d(ξ, t)≈ d̃(ξ, t) = ∑
b

Nb(ξ)d̃b(t) = N(ξ)d̃(t) (2.23)

Shape function derivatives

The weak formulation introduced previously requires the calculation of the first derivatives

of displacements with respect to x. For the isoparametric approximation, it is possible to

establish a relationship between derivatives for x and ξ systems

∂Na

∂ξ
= Jx,ξ

∂Na

∂x
(2.24)

in which

∂Na

∂x
=


∂Na
∂x1

∂Na
∂x2

∂Na
∂x3

 , Jx,ξ =


∂x1
∂ξ 1

∂x2
∂ξ 1

∂x3
∂ξ 1

∂x1
∂ξ 2

∂x2
∂ξ 2

∂x3
∂ξ 2

∂x1
∂ξ 3

∂x2
∂ξ 3

∂x3
∂ξ 3

 , ∂Na

∂ξ
=


∂Na
∂ξ 1

∂Na
∂ξ 2

∂Na
∂ξ 3

 (2.25)

where Jx,ξ is the Jacobian transformation between x and ξ. Thus

∂Na

∂x
= J−1

x,ξ
∂Na

∂ξ
(2.26)
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Strain-displacement equation

From the strain-displacement relationship defined in Equation (2.4), it is possible to write

ε= B d≈∑
b
(BNb) d̃b = ∑

b
B∗b d̃b = B∗d̃ (2.27)

For the three dimensional problem, the matrix B∗b is defined as

B∗Tb =


∂Nb
∂x1

0 0 ∂Nb
∂x2

0 ∂Nb
∂x3

0 ∂Nb
∂x2

0 ∂Nb
∂x1

∂Nb
∂x3

0

0 0 ∂Nb
∂x3

0 ∂Nb
∂x2

∂Nb
∂x1

 (2.28)

Semi-discrete form

Substituting Equations (2.21) and (2.27) into the weak formulation given in Equation (2.20)

yields

∑
e

δdT
[∫

Ωe

NT
ρSN ¨̃ddΩ+

∫
Ωe

B∗TσdΩ−
∫

Γe

NT t f dΓ

]
= 0 (2.29)

As the virtual parameter δd is arbitrary, the previous equation can be re-written in the

following compact matrix form

M ¨̃d+P(σ) = f (2.30)

where

M = ∑
e

M(e) = ∑
e

∫
Ωe

NT
ρSNdΩ (2.31)
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P(σ) = ∑
e

P(e) = ∑
e

∫
Ωe

B∗TσdΩ (2.32)

f = ∑
e

f(e) = ∑
e

∫
Ωe

NT t f dΓ (2.33)

The integrals of Equations (2.31), (2.32) and (2.33) are generally performed numerically via

(second order) Gauss-Legendre integration [123]. The vector P is referred to as stress force

term.

Boundary conditions

In order to construct the solution from a weak form, two different boundary conditions

can be imposed: traction conditions that are satisfied naturally by the variational form and

displacement conditions, which must be imposed separately. A displacement condition

requires imposing the value d̄ directly at the node

(d̃a)i = d̄i (2.34)

where (d̃a)i is the value at node a in the direction i.

Imposing a traction (different from zero) on the boundary Γt requires an integration over the

surface of each element. Thus for a boundary node a it is necessary to evaluate the following

integral

fa = ∑
e

∫
Γt

Nat f dΓt (2.35)

where e ranges over all elements belonging to Γt that include node a.
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2.1.4 Time integration

To solve any transient problem, a discretization in time is necessary. Such approximation

will transform the system described by Equation (2.30) into a set of algebraic equations. The

solution of the problem is approximated as

d̃(tn+1)≈ dn+1,
˙̃d(tn+1)≈ ḋn+1,

¨̃d(tn+1)≈ d̈n+1 (2.36)

The force P may be written directly in terms of displacement dn+1

P(σ) =
∫

Ω

B∗Tσ(dn+1)dΩ = P(dn+1) (2.37)

Equation (2.30) may now be written in a residual form for each time step tn+1

Rn+1 = fn+1−Md̈n+1−P(dn+1) = 0 (2.38)

We note that Equation (2.30) is not valid for the inelastic case, as vector P would depend on

internal state variables. We point out that the system described above is second order in time

as it presents second order time derivatives. A practical procedure for tackling this class of

problems is the Newmark method [125], which relates the discrete displacement, velocity

and acceleration by the following formulas

dn+1 = dn +∆tḋn +(
1
2
−βN)∆t2d̈n +βN∆t2d̈n+1 = d̆n +βN∆t2d̈n+1 (2.39)

ḋn+1 = ḋn +(1− γN)∆td̈n + γN∆td̈n+1 =
˘̇dn + γN∆td̈n+1 (2.40)

where ∆t=tn+1− tn is the time step, d̆n and ˘̇dn are predicted variables depending only on

the previous time step tn, whilst βN and γN are parameters for controlling the stability and
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accuracy of the scheme. Importantly, the choice of parameter βN leads to either explicit or

implicit treatment of the time-related variables.

Explicit method

For βN=0, it is possible to obtain

dn+1 = d̆n (2.41)

and therefore, from Equation (2.30),

M ¨̃dn+1 = fn+1−P(d̆n) (2.42)

The right hand side of Equation (2.42) is a known term at time step tn+1; this leads to a linear

system having ¨̃dn+1 as an unknown variable. The mass matrix may be approximated by a

diagonal/lumped form

ML
ab = δab

∫
Ω

NadΩ (2.43)

In this way the inversion of ML is trivial, leading to another diagonal matrix

ML−1 =


1/ML

11
. . .

1/ML
mm

 (2.44)

where m is the total number of equations in the system. Such diagonalization allows the

computation of ¨̃dn+1 explicitly via

¨̃dn+1 = ML−1[fn+1−P(d̆n)
]

(2.45)
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Computing the solution in explicit manner is extremely convenient when the priority is

saving RAM memory, as no matrix needs to be stored. However, explicit schemes are

conditionally stable and thus the maximum time step ∆t must be lower than a critical time

step ∆tcrit , which is related to the wave propagation velocity across the element. For long

transient problems, it is generally more efficient to adopt implicit schemes as they allow the

employment of larger time steps.

Implicit method

In an implicit scheme it is generally convenient to use dn+1 as the basic variable and to

compute ḋn+1 and d̈n+1 by means of Equations (2.39) and (2.40). Thus, Equation (2.38)

becomes

Rn+1 = fn+1−
1

βN∆t2 M
[
dn+1− d̆n+1

]
−P(dn+1) = 0 (2.46)

If the resulting system is linear, a vast variety of solution techniques can be employed

ranging from direct methods, such as LU factorization, to iterative methods, such as Jacobi

or conjugate gradient methods. For more details about linear system solvers we address the

reader to reference [126].

If any term of Equation (2.46) is non-linear, an iterative process is required for solving the

system. The Newton Raphson (NR) method represents the basis for most of the schemes

used for this type of problems. In this method the residual at iteration k+1 can be written as

Rk+1
n+1 ≈ Rk

n+1 +dRk
n+1 = 0 (2.47)

where the differential dRk
n+1 is

dRk
n+1 =−

[ 1
βN∆t2 M+

∂Pn+1

∂dn+1
|kn+1

]
ddk

n+1 =−Ak
T,n+1ddk

n+1 (2.48)
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For each element the derivative of P may be computed as

∂P(e)
n+1

∂dn+1
|kn+1 =

∫
Ωe

B∗T Dk
T B∗dΩ≡Kk

T (2.49)

in which Dk
T is the tangent modulus matrix for the stress-deformation relation and KT is the

tangent stiffness matrix. We note that the load vector fn+1 has been considered independent

of deformation. Combining Equations (2.47) and (2.49) yields

Rk
n+1 = Ak

T,n+1ddk
n+1 (2.50)

from which it is possible to compute the displacement increment ddk
n+1. Direct elimination

methods or iterative techniques can be used for solving the linear equations associated with

each nonlinear iteration. Such a displacement correction is used for updating the solution via

dk+1
n+1 = dk

n+1 +ddk
n+1 (2.51)

d̈k+1
n+1 =

1
βN∆t2

[
dk+1

n+1− d̆n+1
]

(2.52)

ḋk+1
n+1 =

˘̇dn+1 + γN∆td̈k+1
n+1 (2.53)

At the initial iteration of each time step, it is common practice to initialise the variable with

the value of the previous time step

d1
n+1 = dn (2.54)
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The iterative process continues until a convergence criterion of the form

‖Rk
n+1‖

‖R1
n+1‖

≤ εtol (2.55)

is satisfied for a given tolerance εtol .

2.1.5 Strain energy function

A common approach to non-linear elasticity is defining a potential energy Ψ, also called

strain energy function, which represents the energy stored in the material due to deformation.

If this expression is known, it is possible to derive the constitutive relationships for σ and

DT . The scalar quantity Ψ depends on the current deformation

Ψ = Ψ(ε) = Ψ(C) (2.56)

and is generally used for defining the Second Piola-Kirchhoff stress tensor S

S = 2
∂Ψ

∂C
(2.57)

This is related to the Cauchy stress tensor σ via

σ = J−1FSFT (2.58)

Therefore the tangent modulus DT can be computed, by using the push forward operator φ∗

defined in [124], as

DT = J−1
φ∗[2

∂S
∂C

] = J−1
φ∗[4

∂ 2Ψ

∂C∂C
] (2.59)
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2.2 Experimental methods

The contractile ability of an artery may be altered by specific pharmacological interventions,

which primarily influence the ionic homeostasis of the smooth muscle cells where the contractile

apparatus is located. Arterial smooth muscle cells may be thought as a system communicating

with the external environment via a range of channel-specific ionic currents. These currents

synergistically affect the levels of cytosolic Ca2+, which is the catalyst for actin-myosin

phosphorylation and cross-bridges kinetics. Importantly, Ca2+ is sequestered within intracellular

stores, called Sarcoplasmic Reticulum (SR), able to regulate cytosolic Ca2+ concentrations.

The scheme presented in Figure 2.3 shows a drug intervention specifically affecting a single

cellular channel type. In this example the flux through CHAN1, is increased following the

intervention. This single channel intervention will generally affect Ca2+ equilibrium in both

the cytosol and the sarcoplasmic reticulum.

Drugs that have been used for experimental probing in the present study are phenylephrine

(Phe), ryanodine (Rya) and cyclopiazonic acid (CPA). Each having a specific effect on

vascular contractility based on their ability to affect Ca2+ homeostasis. From a modelling

point of view, the action of Phe at the cellular level can be mimicked by simply increasing

the cellular Ca2+ uptake via specific Ca2+ influx channels. Similarly, the action of CPA,

an inhibitor of the SERCA pump responsible for re-filling the SR, and Ryanodine, which

affects Ca2+ release from the SR, can each be simulated by varying the corresponding model

parameters.

2.2.1 Preparation

In vitro experiments modulating vascular tissue tone can be carried out by using two different

protocols: the cannulated method and the wire-myograph/ring method [127]. Each experimental

approach can extract specific characteristics of the vessel physiological response. The main

features of each method are reported below. In the ring preparation the vessel is segmented in

a number of arterial rings of∼2 mm in length. These rings are mounted on steel hooks/wires
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Figure 2.3: Ca2+ currents in the smooth muscle cell under a pharmacological
intervention.

in a myograph containing normally oxygenated (95 % O2-5 % CO2) buffer, with the temperature

kept constant around physiological values ∼37.0 oC. Figure 2.4 shows a scheme of the

device. Prior to any pharmacological intervention, the ring is stretched radially by means of

a loading mechanism connected to the wires in order to activate the contractile machinery

of the media. This loading phase is often performed in a cyclic manner in order to avoid

the rupture of the tissue. Once the luminal diameter reaches the optimal value, the hooks

are fixed. From this stage onwards, the operating conditions are isoparametric and the force

developed at the hooks is recorded for a constant inner diameter.

In the cannulated method an intact vascular segment is mounted on a pressure gauge, with

both extremities cannulated with small glass cannulae. The upstream cannula is connected

to a feeding reservoir, where different types of solution, including fluorescent dye tracer,
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Figure 2.4: Wire myograph with four chambers (DMT, Aarhus, Dk).

may be contained. A downstream reservoir is connected to the other cannula in order to

receive the perfusate. Figure 2.5 shows a cannulated rabbit central ear artery (G0) and its

generations (G1 And G2). The vessel is subjected to transmural pressure and is allowed to

deform in diameter. The luminal pressure is recorded continuously by connecting a pressure

transducer to the reservoir and may be adjusted by varying the relative height between the

two reservoirs. Before starting any drug intervention, the cannulated segments and the lumen

vessel may be superfused with a gas mixture containing high volume percentage of oxygen

(∼ 95 % O2). The temperature is maintained constant in order to recreate physiological tissue

conditions. The chamber of the vessel is generally placed under a microscope, equipped with

a fluorescent attachment, which allows the continuous measurement of the luminal cross-

sectional area.
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Figure 2.5: Rabbit central ear artery G0 and its generations G1 and G2 (image
generated in our laboratory).

2.3 Concluding remarks

Through this chapter we have provided the background on the modelling and experimental

methodologies adopted in this study. The description of the theoretical/numerical strategy

includes the mathematical formulation of a generic elastic problem and the subsequent discretization

of the equations. For the space discretization, the finite element method is used, whilst

for the time integration, both explicit and implicit techniques are presented. Details on the

iterative solution procedure, typical of the non-linear finite element analysis (such as the

Netwon-Raphson method), are also reported. In the latter part of the chapter, we have also

outlined the experimental techniques which are commonly used for investigating arterial

tissue contractility.
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Chapter 3

Structural behaviour of the arterial wall

with emphasis on the media layer
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The vascular wall represents one fundamental component of the framework proposed in

Section 1.3. The current chapter introduces a theoretical model able to reproduce the active

structural response of the arterial tissue for various mechanical and biochemical conditions.

The design of the proposed study allows us to focus on the solid tissues properties, avoiding

any effect due to the interaction with the blood flow.

3.1 Background

As mentioned in Section 1.1, the arterial wall can be viewed as a control system able to

regulate blood flow in order to satisfy local tissue oxygenation and nutrition requirements.

This function is principally performed by spontaneous fluctuations in vascular tone and

diameter, known as vasomotion, and is facilitated by the contractile apparatus located within

the smooth muscle layer of the arterial wall [128]. Arteries form an anisotropic structure

composed of three primary layers that perform distinct functions. The outermost layer,

adventitia, is made of a tissue with fiber dispersion which confines the inner arterial structures.

Active vascular contractility is governed by the smooth muscle cells (SMCs) located in

the second layer, called media. The endothelium, a cellular monolayer lining the inner

surface of the blood vessels, operates as an active interface which translates and amplifies the

electrochemical signal between the blood flow and the medial layer. Much of the mechano-

elastic properties of the vascular wall are conveyed by the external and internal elastic laminae,

which lie between the three layers previously described [129]. The active contractile machinery

of SMCs, driven by the phosphorylation of the actin-myosin motors, is catalyzed by intracellular

Ca2+. Under physiological conditions the intracellular Ca2+ concentration exhibits modest

variations, however, when operative conditions deviate far from normal, such as in the case of

injury or under pharmacological interventions, significant fluctuations in intracellular Ca2+

concentrations may occur that are reflected in the pronounced dynamical variation in vascular

tone [130, 131, 132]. The complex structure and function of the arterial wall, even in the

absence of blood flow, suggest that a mathematical/computational multi-physics approach is

necessary in order to elucidate the dynamical intricacy of the underlying biological system
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and to address questions that so far evade experimental investigations. To address this

problem, a considerable number of multiscale/multi-component models for the arterial wall

have been proposed in recent years [133, 134, 135, 136]. The development of models

accounting for the elastic behaviour of the vascular wall has been based on extensive experimentation

on the mechanical properties of vascular tissue under a variety of stress-strain conditions [29,

19, 47, 137, 138]. Based on these findings, several methodologies have been proposed in the

last decade for simulating the smooth muscle contractility [51, 52, 53, 54, 55, 8]. In spite

of considerable advances, the active component of vascular contractility, centered on the

cellular Ca2+ dynamics of the smooth muscle has not been incorporated in a systematic

way. This is particularly important as, according to classification by Fischer [139], the

smooth muscle responsible for arterial vasomotion can be considered of the "fast type"

from a mechano-elastic point of view, and is therefore markedly sensitive to the cellular

wall dynamics. Detailed modelling of vasomotion as an expression of multi-channel ionic

signalling that regulates arterial smooth muscle Ca2+ dynamics, has been proposed in [7, 56].

This work was extensively validated against a broad range of pharmacological interventions

that specifically inhibit individual transport mechanisms. Extended cellular arrays of coupled

smooth muscle cells were subsequently used to study the emergence of large scale synchronization [58].

3.2 Objectives

In the present work we employ a hybrid model, based on [7, 56], to integrate the active

contractile behaviour of the media smooth muscle layer with the structural response of the

arterial wall. The computational model developed incorporates two distinct scales: the

cellular, where cytosolic Ca2+ catalyzes cross-bridge kinetics, and the continuous where

the contractile units (CU), and therefore the arterial tissue, exhibit deformation and stress.

Evaluation of the cross-bridges kinetics at cellular level relies on a modified version of the

Hai and Murphy model [140, 141]. The cellular network finite element design follows the

anatomical morphology of the tissue considered. For the mechano-elastic characterisation of

the arterial wall we follow the work of [53, 55, 8]. From the structural point of view the tissue
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is assumed to be a fiber reinforced hyper-elastic material [19, 50] and incompressibility is

enforced by means of a standard penalty method. To validate the proposed methodology

we employ an experimental protocol involving the placement of arterial rings excised from

central rabbit ear arteries on a myograph that records vascular tone under isometric conditions.

In the absence of fluid flow, the relationship between stress and deformation of the vascular

structure becomes the only stress/deformation-generator mechanism. In addition, we are able

to minimise the role of the endothelium on the contractile activity at the smooth muscle, by

the administration of L-NAME, well before the onset of any experimental probing. L-NAME

is shown to suppress NO production at the endothelium, while in the context of a central

rabbit ear artery only a small NO-independent component remains [142]. The performance

of the modelling framework is tested against a number of cellular Ca2+ dynamics scenarios,

induced by drug interventions able to specifically modulate the SMCs contractile machinery.

The objectives of such work can be summarised as follows

• to introduce a novel multiscale methodology able to predict the structural response for

a medium/small arterial vessel activated by drug interventions

• to analyse the effects of different level of cellular coupling on Ca2+ transport

• to test such model in a case study consisting of an arterial section under isometric

conditions and subjected to different pharmacological interventions. Such interventions

are able to stimulate, modulate and inhibit the contractility of the SMC tissue.

In the next two sections, a description of the arterial wall model is presented. A subsection is

dedicated to each sub-model level followed by a description of the coupling strategy. Section

3.6 outlines the case study, including the experimental setup, the model initialisation and the

comparison between experimental and theoretical/computational results. The concluding

remarks are made in Section 3.7.
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3.3 Modelling methodology of the media layer

In the following subsections a description of the multiscale modelling methodology for the

arterial media layer is reported. The model accounts for the dynamics occurring at two

different levels, each constituted by more than one subsystems. Figure 3.1 shows how

each subsystem is allocated in the model and exchanges information with the others. At

cellular level the Ca2+ dynamics is described by a model whose variables are the cytosolic

Ca2+ concentration (χ), the store Ca2+ concentration (ζ ) and the membrane potential (η).

These variables’ behaviour may be affected by drug interventions, which can be simulated by

opening or blocking some specific cellular channels. The kinetics related to the formation of

cross-bridges and subsequent contraction generation occurs within the cell in the contractile

units. In this subsystem four different states that represent the kinetics are taken into account

(nM, nMp, nAM, nAMp). The rate associated with the phosphorylation of myosin and actin

(either attached or detached) strongly depends on the intracellular Ca2+ concentration (χ).

Since χ is a constant quantity over a cell, the variables representing the kinetic states are also

assumed to be spatially uniform within a cell. The stress and deformation of the system

are computed at continuous level. From the cellular level, the cross-bridges (CB) state

describing the fractions of actin myosin filaments attached (nAM,nAMp) serves as an input for

the contractile unit model. The mechano-chemical model of the CU also uses the variable λ ,

describing the deformation of the CU as an input. This quantity is computed as the stretch

ratio in the tissue structure model and passed to the calculations at the next time step. All the

calculations performed in the CU model depend on the internal variable ū f s, which represents

the current relative sliding between the filaments. The derivatives of the active free energy

function with respect to the fourth invariant (∂ Ψ̄a
∂ Ī4

, ∂ 2Ψ̄a
∂ Ī2

4
), calculated at the CU subsystem, are

then passed directly to the tissue structural mechanics model (displacement u and pressure p

as variables), which evaluate the total (passive and active) tissue stress and deformation.

In the following sub-sections descriptions of the subsystems, coupling and solution procedure

are reported. All the parameters of the cellular and continuous level models are listed,

respectively, in Tables 3.1 and 3.2.
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Figure 3.1: Levels and subsystems of the media multiscale model (from [2]). Thin
arrows indicate quantities transmitted between the subsystems. Variables in the boxes
are internal variables of the subsystems. Thick arrows represent the input and output
of the model.

3.3.1 Cellular level model

Cellular Ca2+ dynamics

To describe the Ca2+ dynamics occurring in the SMCs, the model proposed in [7, 56] is

adopted (see Figure 3.2). For a rigorous methodology we refer the reader to the previously

mentioned works. Here, each cell is modelled as a system composed of a membrane and

an intracellular oscillator. The mechanism underlying the intracellular variation of Ca2+

concentration is known as Ca2+ induced-Ca2+ release (CICR) from intracellular stores via

ryanodine receptors (RyR). Calcium ions entering the cell via Voltage Operated Ca2+ Channels
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(VOCCs) and Non-Specific Cation Channels (NSCCs) are primarily sequestered within intracellular

stores via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump. A small subsequent

rise in cytosolic Ca2+ will initiate a rapid Ca2+ by opening the ryanodine-sensitive Sarcoplasmic

Reticulum (SR)-Ca2+ release channel. Once released into the cytosol, Ca2+ is partly pumped

out of the cell, and partly re-sequestered by the stores, thus resetting the process that sustains

oscillatory activity. Membrane potential is mainly influenced by the balance between K+ and

Cl− gradients, and by the reverse mode Na+-Ca2+ exchange (NCX), depending on whether

the exchanger operates in forward or reverse mode.

Figure 3.2: Cellular Ca2+ model constituted by the membrane and intracellular
oscillators (from [2]).

Ionic channels The extracellular influx is the sum of the concentration currents ΦA, ΦS,

ΦV and ΦN , which represent the Ca2+ permeable Non-Selective Cation Channels (NSCCs),

Store-Operated Ca2+ Channels (SOCCs), Voltage Operated Ca2+ Channels (VOCCs) and

reverse mode Na+-Ca2+ exchange (NCX), respectively. In the present study the first current

is assumed to be constant whilst the others depend on χ and η via the following equations:
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ΦS(ζ ) = AS(ζS−ζ ) (3.1)

ΦV (η) = ECa

[
η− zCa1

1+ exp(−(η− zCa1)/RCa)

]
(3.2)

ΦN(χ,η) = ENCX

[
χ

χ + xNCX
(η− zNCX)

]
(3.3)

where AS, ζS, ECa, zCa1, RCa, ENCX , xNCX and zNCX are cellular model parameters.The

sarcoplasmic reticulum (SR) acts as an inner store, uptaking cytosolic Ca2+ by means of

the SERCA pump (ΦB(χ)) and releasing it into the cytosol through ryanodine-sensitive SR-

Ca2+ release channel (ΦC(χ,ζ )). Store leakage (ΦL(χ,ζ )) is also accounted for. These

fluxes are described through the following expressions:

ΦB(χ) = BSR

[
(χ)nSR

(χ)nSR +(xSR)nSR

]
(3.4)

ΦC(χ,ζ ) =CRy

[
χ pRy

χ pRy +(xRy)pRy

(ζ )mRy

(ζ )mRy +(yRy)mRy

]
(3.5)

ΦL(ζ ) = LSRζ (3.6)

where BSR, nSR, xSR, CRy, pRy, mRy, xRy, yRy and LSR are cellular model constants. The Ca2+

extrusion from cytosol by ATPase pump (ΦD(χ,η)) is modelled as:

ΦD(χ,η) = DEX(χ)
kEx(1+

η− zEx

REx
) (3.7)

where DEX , kEX , zEX and REX are cellular model parameters.
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The chloride (ΦCl(χ,η)) and potassium (ΦK(χ,η)) ion membrane fluxes are modelled as:

ΦCl(χ,η) = ECl

[
χ

χ + xCl
(η− zCl)

]
(3.8)

ΦK(χ,η) = EK

[
(η− zK)

χ

χ +βKexp(−(η− zK)/RK)

]
(3.9)

where ECl , xCl , zCl , EK , zK , βK and RK are cellular model constants.

Intercellular communication In a cellular cluster each cell is able to communicate with

its neighbours by exchanging Ca2+ ions (JCa) and voltage (JV ) gradients. If the cellular size

(ratio between the volume and surface) is uniform along the grid, we can define the net fluxes

J̄C,i and J̄V,i exchanged by the ith cell as:

J̄C,i = αC

nNeigh

∑
j=1

(χi−χ j) (3.10)

J̄V,i = αV

nNeigh

∑
j=1

(ηi−η j) (3.11)

where nNeigh is the number of adjacent elements and ᾱC and ᾱV are the intercellular diffusion

coefficients.

Global cellular balance The system variables χ , ζ and η evolve in time according to the

following system of non linear ordinary differential equations:

χ̇ = ΦA +ΦS(ζ )−ΦV (η)+ΦN(χ,η)−ΦB(χ)+ΦC(χ,ζ )−ΦD(χ,η)+ΦL(ζ )+ J̄C,i

(3.12)

ζ̇ = ΦB(χ)−ΦC(χ,ζ ) (3.13)

η̇ =−γm(ΦCl(χ,η)+2ΦV (η)+ΦN(χ,η)+ΦK(χ,η))+ J̄V,i (3.14)
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where γm is a scaling factor relating the net movement of ion fluxes to the membrane potential.

Cross-bridges kinetics

Following [140, 141], the kinetics is described through four different states representing the

fraction of i) CB attached and dephosphorylated (nAM), ii) CB attached and phosphorylated

(nAMp), iii) CB detached and dephosphorylated (nA) and iv) CB detached and phosphorylated

(nAp). The temporal evolutions of these variables are described through the following system

of ordinary differential equations:

ṅM =−τ1nM + τ2nMp + τ7nAM (3.15)

ṅMp = τ1nM− (τ2 + τ3)nMp + τ4nAMp (3.16)

ṅAMp = τ3nMp− (τ2 + τ4)nAMp + τ1nAM (3.17)

ṅAM = τ2nAMp− (τ1 + τ7)nAM (3.18)

where τ2, τ3, τ4 and τ7 are the kinetic rate constants and τ1 depends on the intracellullar

Ca2+ concentration (χ) via:

τ1 = τ0

[
χ2

χ2 +χ02

]
(3.19)

where τ0 and χ0 are material constants. The four state kinetics is shown in Figure 3.3. Since

nM+nMp+nAMp+nAM=1, then one state (nM in the current work) can be rewritten as dependent

on the other three states, leading to a three independent variables system.
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Parameter Description Value
Ca2+ dynamics
ΦA Ca2+ influx via NSCC 0.6 (µM/s)
LSR SR leak rate constant 0.025 (s−1)
γm Scaling factor 1.0 (V/µM)
AS SOCC parameter 0.0 (s−1)
ζS SOCC parameter 4.0 (µM )
ECa VOCC influx cell conductance 12.0 (µM/(V s))
zCa1 VOCC influx reversal potential 0.13 (V)
zCa2 VOCC influx half point of activation sigmoid -0.024 (V)
RCa VOCC influx max slope of activation sigmoid 0.0085 (V)
ENCX NCX cell conductance 43.8 (µM/(V s))
zNCX NCX reversal potential -0.04 (V)
xNCX NCX half point of Ca2+activation 0.5 (µM)
BSR SR uptake rate 400.0 (µM/s)
xSR SR uptake half point of ATPase activation sigmoid 4.4 (µM)
nSR SR uptake Hill coefficient 2 (-)
CRy RyR CICR rate 1250.0 (µM/s)
yRy RyR CICR half point of Ca2+ efflux sigmoid 8.9 (µM)
xRy RyR CICR half point of CICR activation sigmoid 0.9 (µM)
mRy RyR CICR Hill coefficient 2 (-)
pRy RyR CICR Hill coefficient 4 (-)
DEX Ca2+ extrusion by ATPase pump rate 6.25 (µM/s)
zEx Ca2+ extrusion by ATPase pump constant -0.1 (V)
REx Ca2+ extrusion by ATPase pump constant 0.25 (V)
kEx Ca2+ extrusion by ATPase pump constant 2
ECl Cl− channels cell conductance 65.0 (µM/(V s))
zCl Cl− channels reverse potential -0.025 (V)
xCl Cl− channels Ca2+ sensitivity 0.0 (µM)
EK K+ efflux cell conductance 43.0 (µM/s)
zK K+ efflux reverse potential -0.095 (V)
zCa3 K+ efflux half point of activation sigmoid -0.027 (V)
RK K+ efflux max. slope of KCa activation sigmoid 0.012 (V)
βK K+ efflux Ca2+ sensitivity of KCa channel

activation sigmoid
0.0 (µM)

αC Cellular Ca2+ diffusivity 1.0 (s−1)
αV Cellular voltage diffusivity 1.0 (s−1)
CB kinetics
τ0 Kinetic model fitting parameter 1.7 (s−1)
τ2 Kinetic rate 0.5 (s−1)
τ3 Kinetic rate 0.4 (s−1)
τ4 Kinetic rate 0.1 (s−1)
τ5 Kinetic rate 1.0 (s−1)
χ0 Kinetic saturation constant 0.6 (µM)
θk Enhancement kinetics coefficient 1.0 (-)

Table 3.1: Table of parameters: Ca2+ dynamics and cross-bridges kinetics. Parametric
values associated with Ca2+ dynamics are taken from [6], while parameters for CB
kinetics are from [7].
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Figure 3.3: Four states of the actine-myosin cross-bridges kinetics (from [2]). Each
arrows represents a transition between two states and it is associated to a specific kinetic
rate. The arrow’s direction indicates the final state of the transition.

3.3.2 Continuous level model

Contractile unit mechanics

In order to model the mechanics occurring at the CUs the works done by Murtada et al. [53,

55, 8] are followed. Both phosphorylated and de-phosphorylated attached cross-bridges

(nAMp, nAM) are considered elastic with the same mechanical stiffness. As mentioned previously

λ is the current stretch of the CU and it can also be defined as ratio between the current and

reference CU length. Thus the average elastic elongation of the attached cross-bridge (ūcb)

can be calculated as:

ūcb = λ −1− ū f s (3.20)

We note that both ū f s and ūcb are normalised with respect to the reference CU length and
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are taken to be negative for contraction. The relative actin-myosin filament sliding ū f s in

the CU can be driven either by the myosin power-stroke or the external force/deformation.

This internal variable is thus decomposed into a chemical (ūchem
f s ) and mechanical (ūmech

f s )

component. The temporal evolution of the chemical component ūchem
f s can be derived from

the following force balance:

(Pa +αa)(− ˙̄uchem
f s +βa) = βa(Pc +αa) (3.21)

where Pc is the stress associated with the driving force from the cross-bridges whilst βa and

αa are fitting parameters. The internal driving stress Pc depends on the contraction/relaxation

state of the CU, ie,

Pc =


L̄0κAMpnAMp i f Pa < L̄0κAMpnAMp (contraction state)

L̄0(κAMpnAMp +κAMnAM) i f Pa > L̄0(κAMpnAMp +κAMnAM) (relaxation state)

Pa else (neutral state)
(3.22)

where κAMp is a parameter related to the force of a power-stroke of a single cross-bridge

and κAM is related to the force-bearing capacity of a dephosphorylated cross-bridge during

muscle extension.

The energy stored in the CU is related to the filament sliding resistance from the surrounding

matrix (Pa), which can also be seen as the (averaged) first Piola-Kirchhoff stress over the CU:

Pa = µaL̄0(nAMp +nAM)ūcb (3.23)

where µa behaves like an active shear modulus and L̄0 defines the relative filament overlap
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as a parabolic function of ū f s:

L̄0 = (ū f s−
ū2

f s

2ūopt
f s

+ x̄0) (3.24)

where ūopt
f s and x̄0 are material parameters.

Tissue structure

From the structural point of view the medial tissue is considered as a hyper-elastic fiber

reinforced material, with the fibres aligned along the circumferential direction [19, 50]. The

free energy function (Ψmed) is split into volumetric (Ψmed
vol ) and isochoric components; the

latter is then decomposed into active (Ψ̄med
a ), accounting for the CU chemo-mechanics, and

passive parts (Ψ̄med
p ), ie,

Ψ
med = Ψ

med
vol + Ψ̄

med
a + Ψ̄

med
p (3.25)

Both Ψ̄med
a and Ψ̄med

p depend on the CU stretch (λ ), that can also be related to the fourth

invariant as

λ =
√

Īmed
4 =

√
amed

0 · C̄amed
0 (3.26)

where C̄ is the deviatoric part of the right Cauchy deformation tensor and amed
0 is the direction

of the media unstressed fibre.

The active component depends directly on the cross-bridges attached (nAMp, nAM), ie,

Ψ̄
med
a =

µaL̄0

2
(nAMp +nAM)(ūcb)

2 (3.27)
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The passive part is modelled as a classical anisotropic material with one fiber aligned with

the smooth muscle cells as

Ψ̄
med
p =

µmed
p

2
(Īmed

1 −3)+
cmed

p1

2cmed
p2
{exp[cmed

p2 (Īmed
4 −1)2]−1} (3.28)

where µmed
p , cmed

p1 and cmed
p2 are material constants.

Parameter Description Value
CU mechanics
αa Material parameter 26.68 (kPa)
βa Material parameter 0.00833

(s−1)
κAMp Parameter related to the force of a power-stroke of a

single cross-bridge
203.71
(kPa)

κAM Parameter related to the force-bearing capacity
of a dephosphorylated cross-bridge during muscle
extension

61.14 (kPa)

ūopt
f s Material parameter 0.48 (−)

x̄0 Material parameter 0.4255 (−)
Tissue structure
κ Bulk modulus 4.0 (kPa)
µa Active shear modulus 5301.0

(kPa)
µp Passive shear modulus 0.84 (kPa)
cp1 Material parameters 3.15 (kPa)
cp2 Material parameter 0.035 (-)

Table 3.2: Table of parameters: Contractile units mechanics and tissue structure. All
parametric values reported in the table are from [8].

Details on Cauchy stress calculation for the media layer can be found in the Appendix.
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3.4 Modelling methodology of the adventitia layer

3.4.1 Tissue structure

This layer, that is passive, is modelled as a Neo-Hookean material reinforced by two family of

collagenous fibres, characterised by two reference direction vectors aadv
0i with i=4,5. Under

high pressure regimes, the resistance to stretch is mostly borne by these fibres and such

mechanical response is modelled by means of an anisotropic function [19].

The free energy function of the adventitia (Ψadv) is constituted by a volumetric and an

isochoric components

Ψ
adv = Ψ

adv
vol + Ψ̄

adv (3.29)

The volumetric part is assumed to be proportional to the energy potential as

Ψ
adv
vol = κ

(J−1)2

2
(3.30)

where κ and J are respectively the penalty number and the determinant of the deformation

tensor F (J = detF). The isochoric strain energy function of the adventitia is written as

Ψ̄
adv =

µadv
p

2
(Īadv

1 −3)+ ∑
i=4,5

cadv
p1

2cadv
p2
{exp[cadv

p2 (Īadv
i −1)2]−1} (3.31)

where µadv
p , cadv

p1 and cadv
p2 are material parameters, whilst the invariants Īadv

i , which describe

the deformation of the fibres, are computed as

Īadv
i = aadv

0i · C̄aadv
0i with i = 4,5 (3.32)
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Fibre direction under the current deformation are computed as

aadv
i = F̄aadv

0i with i = 4,5 (3.33)

Details on Cauchy stress calculation for the adventitia layer can be found in the Appendix.

3.4.2 Multiscale coupling and solution procedure

Space Discretization

Each level of the framework is discretized by a spatial grid. The cellular network grid reflects

the morphology of the tissue, so that each element represents a "real" cell. For the continuous

level, a finite element discretization of the domain was carried out. By assigning each smooth

muscle cell to each finite element the connectivity of the cellular grid and the mesh coincide.

The variables computed at the cellular level (i.e. Ca2+ dynamics and CB kinetics) may

be considered as internal variables in the finite element framework. The contractile unit

variables (ū f s, λ , etc.) are evaluated at the Gauss integration points of the finite element,

in order to take into account the spatial diversity of deformation over the element. For

the structural problem, staggered finite elements are used in which the displacement field

is interpolated linearly whilst the pressure and dilation coefficient are constant over each

element. The non-linear problem is solved via a classical Newton-Raphson procedure.

Time integration

The models/subsystems constituting the framework are solved in a block segregated fashion,

as depicted in Figure 3.1. As there is no feedback between the subsystems, it is possible to

employ a different and optimal time integration strategy for each of them. Thus, the Ca2+

dynamics is solved by an explicit and adaptive scheme (Runge Kutta Merson), whereas the

time-dependent equations for both the CB kinetics and CU mechanics are solved by the

Forward Euler method (as in [8]). Note that for computing the CU mechanics the deformed
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configuration (expressed in terms of λ ) of the previous time step is used. By comparison,

the tissue mechanics problem is solved in an implicit manner. The methodology proposed is

valid for either quasi static or dynamic problems, depending on whether the case considered

is under isometric or non-isometric conditions. The same time step was employed for all

subsystems. The solution procedure is presented step by step in Table 3.3.
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Cellular level (solving consecutively two linear problems for nAM and nAMp)

1. Loop over the temporal discretization ∆τ1 points

2. Loop over the cell framework (the FE mesh in the current work)

3. Computing Ca2+ variables explicitly (Runge-Kutta) from Equations (3.12,3.13,3.14)

4. Compute rate constant τ1

5. Compute CB kinetic states explicitly (Forward Euler) from Equation (3.15,
3.16,3.17,3.18)

6. t = t +∆τ1

Continuous level (solving a non linear problem for u and p)

1. Loop over the temporal discretization ∆τ2 points

2. Newton-Raphson (NR) algorithm

3. Loop over the finite elements

4. If it is the first NR iteration

then interpolate CB kinetic states in time from ∆τ1 to ∆τ2

(also in space if cellular and FE meshes do not match)

5. Loop over the Gauss integration points

6. Compute CB mechano-chemical variables, Equations (3.20,3.23,3.24,3.21,3.22)

7. Compute first and second order derivatives of Ψ̄a with respect to Ī4

8. Compute total stress and elastic moduli

9. Assemble stiffness matrix and residual vector

10. Solve linearized system and variables updating

11. If the residual error condition is satisfied

then t = t +∆τ2 and go to 2.

Table 3.3: Solution procedure for evaluating all the system variables along the time
(from [2]).
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3.5 Experimental study

The pharmacological studies employed in the validation of the modelling methodology along

with the model setup developed to reproduce the experimental settings are reported below.

3.5.1 Experimental protocol

Isolated rabbit ears were obtained as described previously [128], the central ear artery was

removed and cleaned of adherent fat and connective tissue. To measure force, 2 mm wide

rings were mounted on 0.25 mm diameter steel hooks in a myograph (model 610M, Danish

Myotechnology, Aarhus, Denmark) containing oxygenated (95% O2; 55% CO2) Holman’s

buffer (composition in mM: NaCl 120, KCl 5, NaH2PO4 1.3, NaHCO3 25, CaC(12) 2.5,

glucose 11, and sucrose 10) at 37.0 oC. Prior to any pharmacological interventions the rings

were maintained at a resting tension of 1 mN over a 60 min equilibration period, with frequent

readjustments in baseline tension to correct for stress relaxation. The average inner and

outer diameters of the annular segments were approximately 0.7 and 0.8 mm, respectively

(see Figure 3.4a). Following the loading phase, the arterial rings obtained the deformed

configuration shown in Figure 3.5, by considering a Cartesian reference system, the loading

is applied along the x direction.

In order to considerably reduce the effect of the endothelium as a control mechanism on

the smooth muscle contractile apparatus, preparations were incubated for 30 min with both

the endothelial nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (L-NAME,

300 µM) and the cyclooxygenase inhibitor indomethacin (10 µM) to inhibit prostanoid

formation. Rings were then constricted with phenylephrine (Phe, 1 µM) and, once constrictor

responses had reached a stable plateau, cumulative concentration-response curves to CPA

and/or ryanodine were obtained.



3.5 Experimental study 63

(a)

(b)

Figure 3.4: Figure 3.4a (top): Size and geometry of the arterial section set in the
myograph through two hooks. Figure 3.4b (bottom): Location of cell1, cell2 and cell3
in the 3D mesh representing one eight of the arterial section (from [2]).
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Figure 3.5: Arterial section deformation during the loading phase, initial (top) and
stretched (bottom) configurations (from [2]).

3.5.2 Model settings

From a structural point of view, each ring is assumed to deform symmetrically with respect

to the x plane, while no translations along y and in the longitudinal direction (z) are expected.

The system can thus be reduced to one eighth of the ring. A finite element mesh consisting

of 11000 linear hexahedral elements is used in the calculations (see Figure 3.4b). For

the cellular cluster, each cell was associated with one element. At sub-cellular level we

associate a CU to each Gauss integration point. The values for all model parameters can

be found in Tables 3.1 and 3.2. To account for cellular variability (e.g. size, rates of Ca2+

uptake/extrusion) the term corresponding to the influx via Ca2+ permeable non-selective

cation channels (ΦA) is randomised with a normal distribution (mean value=1.0 µM/s and
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standard deviation=0.1 µM/s). For all simulations, the initial values for χ , ζ and η are set

equal to 0.1 µM, 0.2 µM and -0.02 mV , respectively. The reference set of kinetic rates (τ0,

τ2, τ3, τ4, τ5) necessary for solving the cross-bridge dynamics are taken from [7].

3.6 Results

3.6.1 Cellular coupling conditions

The proposed analysis is carried out for varying levels of cellular coupling in order to establish

the dependency between the diffusion coefficients αC, αV and the global Ca2+ dynamics.

These simulations are carried out for an unloaded ring configuration. The variables associated

with the Ca2+ dynamics are monitored for three different cells: cell1, cell2 and cell3 (see

Figure 3.4b). In Figure 3.6 the time evolution of χ for (αC,αV ) equal to 0.0, 0.1, 1.0 s−1 are

shown. The plot shows clearly that coupling does not affect significantly the amplitude of χ

signal. The cellular coupling tends to synchronise the χ beating pattern along the cluster.

The spatial distribution of χ for two coupling levels (weakly coupled: (αC,αV )=0.1 s−1,

strongly coupled: (αC,αV )=1.0 s−1) at two different time instants (t=0.1 s, t=6.0 s) are shown

in Figure 3.7. It is evident that coupling promotes the formation of travelling waves along

the annular domain.

3.6.2 Framework validation

A range of pharmacological interventions associated with the activation/inhibition of specific

cellular mechanisms was employed for the validation of the model. To mimic the diffusion

of pharmacological agents, parametric changes were applied in a graded fashion to all the

cells constituting the network. The interventions selected (i.e. phenylephrine, CPA and

ryanodine), are associated with the modulation of the cellular Ca2+ homeostasis which is

reflected in the contractile state of the smooth muscle. The actions of these pharmacological
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Figure 3.6: Temporal evolutions of χ at three different cells (labelled cell1, cell2, cell3)
for different αC and αV (from [2]).

probes were simulated by the gradual variations of the associated model parameters, reported

in Table 3.4. The actin and myosin filaments are assumed to be detached for t=0 s (nM =0.5

and nMp =0.5), whilst the initial ū f s is set equal to 0 for each CU. Cells are assumed to be

strongly coupled with (αC,αV ) set equal to 1.0 s−1. The simulated drug interventions were

performed only after the Ca2+ and CB variables reached stationary conditions. For each

plotted result the drug intervention occurred at t=0 s unless otherwise stated.

Parameter Phenylephrine CPA Ryanodine
ΦA (µM s−1) 0.6→ 4.2 in Var s 0.8 0.8
BSR (µM s−1) 400 400→ 200 in 1000 s 400
CRy (µM s−1) 1250 1250 1250→ 312.5 in 2000 s

AS (s−1) 0.0 0.0 0.1
θk 1.0 30.0 0.5

Table 3.4: Ca2+ dynamics and CB kinetics parameters for simulating the drug
interventions. The variation of parameters is carried out linearly.

As the ring is clamped at the hooks, the resultant between internal and external forces at the
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Figure 3.7: Temporal evolutions of χ along the spatial domain for (αC,αV )=0.1 s−1 and
(αC,αV )=1.0 s−1 (from [2]). At the top of the figure χ is showed at t=0.1 s for a weakly
coupled cluster of cells (left) and a strongly coupled cluster one (right). At the bottom
part the figure χ is shown at t=6.0 s for a weakly coupled cluster of cells (left) and a
strongly coupled one (right).

nodes in contact with the hooks must be null. In the current study we are mainly interested in

the global force developed at the hooks, which can be seen as the sum of nodal contributions

along the contact surface. In addition to this, we consider also the force developed locally at

cell1, which is assumed to be proportional to the sum nAMp+nAM [7].

Phenylephrine intervention

Phenylephrine is a selective agonist of α-adrenergic receptors, associated with vasoconstriction.

The action of phenylephrine at cellular level was modelled by increasing the cytosolic Ca2+
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influx via NSCCs. A more complete picture of the action of phenylephrine involves an initial

Ca2+ release from the sarcoplasmic reticulum, via inositol 1,4,5-trisphosphate-sensitive Ca2+

release channels (IP3R channels), followed by sustained Ca2+ influx into the cytosol through

NSCCs [143]. Although Ca2+ release from intracellular stores affects the superficial oscillatory

characteristics of the response, it has been previously shown theoretically that it cannot

account for sustained increase in arterial tone [7]. The prolonged contractile response is

therefore due to the raised levels of intracellular Ca2+ which in turn promote the formation

of actin/myosin cross-bridges, reflected in increase of variables nAMp and nAM. To simulate

the action of phenylephrine, coefficient ΦA was increased linearly from 0.5 to 2.5 µM/s.

Two different drug dilution times (∆tdil =50 and 100 s) were used, as shown in Figure 3.8.

With the increasing of the cytosolic Ca2+ uptake, χ in cell1 starts beating periodically. This

pattern is reflected also in the store Ca2+ concentration variations (Figure 3.8). As expected,

higher ∆tdil involves longer transient before reaching stationary conditions.

Figure 3.8: Time evolutions of χ cell1 and ζ cell1 for a simulated phenylephrine
intervention (from [2]). The results are shown for different drug dilution times (∆tdil=50
and 100 s) and coupling conditions ((αC,αV )=0.1 s−1 and (αC,αV )=1.0 s−1).
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The forces generated by this intervention, normalised with respect to the force developed at

the beginning of the intervention, are shown in Figure 3.9, where three responses are shown

for different dilution times (∆tdil) and different cellular coupling (αC, αV ). By comparison

to the simulated results, it appears that the drug was able to activate the muscle tissue at a

dilution time ∆tdil ∼ 50 s. We also observe that the final magnitude of the simulated and

measured force is very similar.

Figure 3.9: Time evolutions of the experimental and simulated forces at the hooks for a
simulated phenylephrine intervention (from [2]). Experimental forces (coloured lines)
are plotted for four different ring measurements. The theoretical results are shown for
different drug dilution times (∆tdil=50 and 100 s) and coupling conditions ((αC,αV )=0.1
s−1 and (αC,αV )=1.0 s−1). The cellular forces values are normalised with respect to the
initial force F0.

CPA intervention

Cyclopiazonic acid (CPA) is an inhibitor of the SERCA pump, preventing refilling of the

store and is thus associated with Ca2+ store depletion. The effect of CPA, in terms of

modulating the intracellular Ca2+ oscillator, is highly dose-dependent as shown previously [144].
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CPA was administered through a sequence of concentration increases from 10 µM up to 30

µM. For simulation purposes, the action of CPA was reproduced by linearly decreasing

coefficient BSR from 400 to 350 µM in 2000 s. In both the experiment and simulations

CPA caused a small reduction in the oscillatory amplitude, while a regular waveform was

maintained throughout the intervention (Figure 3.10). A comparison between the experimental

and simulated time series is shown in Figures 3.11 and 3.12.

Figure 3.10: Time evolutions of χ cell1 and ζ cell1 for a simulated CPA intervention for
different coupling conditions ((αC,αV )=0.1 s−1 and (αC,αV )=1.0 s−1) (from [2]). Black
arrows show the intervention time.

The shrinking effect on the oscillatory amplitude is visible in both curves, while the period

of the oscillations is almost the same.

Ryanodine intervention

Increasing concentrations of ryanodine (from 10 µM after 100 s up to 30 µM) were administrated

at each arterial sample. As discussed previously, the action of ryanodine can be simulated



3.6 Results 71

Figure 3.11: Time evolutions of the experimental and simulated cellular forces at the
hooks for a simulated CPA intervention for different coupling conditions ((αC,αV )=0.1
s−1 and (αC,αV )=1.0 s−1) (from [2]). Black arrows show the intervention time. The
plotted values are normalised with respect to the initial force F0.

in different ways depending on the dosage [7, 56]. This is due to the complex multi-stage

configuration of the ryanodine receptor tetramer. For the concentrations of ryanodine used

in the present study, it is accepted that the compound will block Ca2+ release from the

sarcoplasmic reticulum in a concentration related fashion. The action of ryanodine was

simulated according to [7], by decreasing linearly the coefficient CRy at t=100 s from

1250 µM/s down to 312.5 µM/s. The temporal evolution of variables χ cell1 and ζ cell1

within the reference cell is shown in Figure 3.13 for different cellular coupling conditions

((αC,αV )=0.1 s−1 and (αC,αV )=1.0 s−1). Gradual attenuation of Ca2+ release via the ryanodine

receptor channels is associated with a decrease in frequency. This pattern is consistent with

experimental observations, presented in Figures 3.14 and 3.15.

The forces obtained from the model are compared against the experimental values in Figures

3.14 and 3.15. In this case coefficient θk was equal to 0.5. The pattern of the forces follows
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Figure 3.12: Time evolutions of the experimental and simulated forces at the hooks
for a simulated CPA intervention for different coupling conditions ((αC,αV )=0.1 s−1

and (αC,αV )=1.0 s−1) (from [2]). The plotted values are normalised with respect to the
initial force F0.

the Ca2+ variables, with the same gradual decreasing magnitude. To simulate this aspect

of the experimental traces, we needed to employ the term in Equation (3.1) associated

with store-operated Ca2+ entry, which is triggered in response to levels of sarcoplasmic

reticulum Ca2+. Note that this mechanism only had a minor effect in the simulation of the

phenylephrine and CPA responses.
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Figure 3.13: Time evolutions of χ cell1 and ζ cell1 for a simulated ryanodine
intervention for different coupling conditions ((αC,αV )=0.1 s−1 and (αC,αV )=1.0 s−1)
(from [2]). Black arrows show the intervention time.

3.7 Concluding remarks

We have developed a multi-component mathematical modelling framework that accounts for

the structural response of the arterial wall under the active contractile activity of the media

smooth muscle layer. The methodology was applied to a set of pharmacological interventions

that probe the contractile apparatus at the cellular level. The multiscale modelling approach

combines dynamics and mechanics occurring at different levels, each requiring a specific

solution strategy. Regarding the mechano-elastic component, the study was performed under

isometric conditions, and thus the inertial force is neglected. This allowed us to deal with

a simplified system, in which the evaluation of a number of dynamic parameters (such as

density) was not necessary. Moreover, the ability to choose a finite element discretization

that conformed to the cellular grid, eliminated the need for spatial and temporal interpolation

between the two subsystems. As a consequence, it was possible to adopt the same time step
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Figure 3.14: Time evolutions of the experimental and simulated cellular forces at
the hooks for a simulated ryanodine intervention for different coupling conditions
((αC,αV )=0.1 s−1 and (αC,αV )=1.0 s−1) (from [2]). Black arrows show the intervention
time. The plotted values are normalised with respect to the initial force F0.

for all elements of the model. In general, however, different integration steps can be selected

for each model level if required by the specific problem. This strategy can be implemented

in conjunction with interpolation techniques that allow information transmission between

the various contributing systems. Although necessary in many cases, this approach can

result in loss of accuracy. All experiments in the present study were performed following

administration of L-NAME to eliminate the inhibitory effect of endothelium derived nitric

oxide on the smooth muscle contractile apparatus [145]. The involvement of secondary

endothelium produced electrochemical factors in the contractile activity of the arterial wall

has not been included, and should form the basis for further elaboration of the current

model [146, 128]. The main focus of the present work has been the integration of the smooth

muscle based contractile apparatus and the mechano-elastic properties of the arterial wall.

To probe this fundamental interaction in the genesis of arterial tone, we have employed a

series of experimental studies that probe distinct aspects of these mechanisms [7, 56]. By
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Figure 3.15: Time evolutions of the experimental and simulated forces at the hooks for
a simulated ryanodine intervention for different coupling conditions ((αC,αV )=0.1 s−1

and (αC,αV )=1.0 s−1) (from [2]). The plotted values are normalised with respect to the
initial force F0.

simulating experimental findings with the vasoconstrictor phenylephrine, we were able to

match the response time of the drug, and demonstrate the direct link between cellular Ca2+

dynamics and the development of force at the tissue level. Indeed, the cellular events occur at

the same time-scale as the global tissue contraction. This finding is correlated to the increased

cytosolic Ca2+ concentrations associated with the administration of phenylephrine. This

observation highlights the central role of Ca2+ uptake in the generation of vascular tone and

the onset of oscillatory activity observed in both experiments and simulations. It has been

previously shown that the levels of Ca2+ influx can determine other ionic signalling path-

ways in a specific, clinically relevant manner [7]. The potential of Ca2+ influx to determine

the natural frequency of the cell’s contractile apparatus was the main reason that parameter

ΦA was selected for randomisation across the cellular population. By comparison, cellular

dynamics are considerably less sensitive to variations of other system parameters, associated

with alternative ionic fluxes [6]. Blockage of the SERCA pump with CPA resulted in a
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modest reduction in oscillatory activity that highlights the robustness of the store-refilling

mechanism. The resilience of Ca2+ dynamics under CPA was reproduced by the simulations.

A noteworthy aspect of the function of CPA is its ability to transform arterial vasomotion in a

controlled manner that follows hallmark transition routes out of chaotic behaviour [144, 147].

Evidence of this behaviour is shown in Figures 3.11 and 3.12 although detailed investigation

of nonlinear oscillatory transitions was not an aim of the present work. Ryanodine receptor

dysregulation is implicated in a range of neuromuscular disorders and arrhythmogenesis in

cardiovascular diseases [130]. This is mainly due to the complex inter-and intra-subunit

interactions within the ryanodine receptor homotetramer [131, 132]. Considering the intricate

multi-stage dynamics of the ryanodine channel, computational simulation work can elucidate

some of the dominant components of the mechanism. In this case, we were able to highlight

the role of store-operated Ca2+ entry associated with the suppression of the Ca2+- induced

Ca2+ release mediated by the ryanodine channel. Although studied here in isolation, dysregulation

of the ryanodine channel has been associated with up-regulation of the SERCA pump protein,

to allow for the maintenance of a level of sustainable homeostasis [57, 148]. Such findings

support the proposed methodology as a testing ground for hypotheses on the pathogenesis of

vascular disease. For instance, it will be possible predicting and characterizing the effects of

a Ca2+ cellular dysregulation on the arterial muscular tone. The same kind of testing could

be done for a case of electrical coupling dysfunction.



3.7 Concluding remarks 77

Appendix

Constitutive relationships

Tunica media

For this layer, the Cauchy stress derived from Equation (3.28) is

σmed = σmed
vol + σ̄med

a + σ̄med
p (3.34)

where:

σmed
vol = κ

J−1
J

Id (3.35)

σ̄med
a =

2
J

dΨ̄med
a

dĪmed
4

dev(amed⊗amed) (3.36)

σ̄med
p =

µmed
p

J
devb̄+

2
J

dΨ̄med
p

dĪmed
4

dev(amed⊗amed) (3.37)

with:

dΨ̄med
a

dĪ4
= µaL̄0(nAMp +nAM)

λ −1− ū f s

2Īmed
4

(3.38)

dΨ̄med
p

dĪmed
4

= cmed
p1 (Īmed

4 −1)exp
[
cmed

p2 (Īmed
4 −1)2] (3.39)

This structural model is generally discretized by using the finite element procedure previously

reported in Section 2.1.3.
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Tunica adventitia

The Cauchy stress derived from Equation (3.31) can be written like

σadv = σadv
vol + σ̄

adv (3.40)

where:

σadv
vol = κ

J−1
J

Id (3.41)

σ̄adv =
µadv

p

J
devb̄+ ∑

i=4,5

2
J

dΨ̄adv

dĪadv
i

dev(aadv
i ⊗aadv

i ) (3.42)

with

dΨ̄adv

dĪadv
i

= cadv
p1 (Īadv

i −1)exp
[
cadv

p2 (Īadv
i −1)2] (3.43)

As for the media layer, such structural model is discretized by using the finite element

procedure presented in Section 2.1.3.
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Chapter 4

Developing an efficient method for

fluid-structure interaction problems in

hemodynamics
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As mentioned in Section 1.3, the deformation of the vessel wall is the result of the combination

of the media contractile machinery and the blood traction load. In the present chapter we only

consider the latter source of deformation, and therefore the wall can be considered a purely

passive structure. For describing the relationship between flow and wall in a collapsible

vessel, a Fluid-Structure interaction (FSI) approach is required. In the following a novel

FSI method for hemodynamic problems is presented and validated by means of classical

benchmark cases.

4.1 Background

In the last two decades different FSI schemes have been proposed, ranging from partitioned

approaches, where the fluid and solid problems are solved separately, to monolithic schemes,

where all the solution variables are computed at the same time with a unique solver. Despite

recent findings [75, 76] on the superiority of monolithic over partitioned approaches to FSI,

there are many advantages that make the latter a valuable alternative [80, 81]. For example, in

a segregated approach, individual solution strategies can be employed independently to fluid

flow and solid dynamics and they can be coupled through robust interface coupling methods.

This allows well-established solution methods to be employed without radically changing the

solution strategies for fluid and solid. Strongly coupled segregated schemes demonstrated

robustness when an accurate coupling strategy at the interface is employed [149, 150, 151,

80, 81]. Generally, in many FSI problems the fluid side requires a much finer discretization

than the solid; which may result in a large difference in terms of degrees of freedom between

the two fields. As a consequence, within a partitioned FSI approach, the fluid system

efficiency affects enormously the performance of the coupled scheme. This trait becomes

crucial once strong coupling between the two systems is adopted.

The characteristic based split scheme [152] is a popular and efficient fractional step method

that has been employed for solving both incompressible and compressible fluid problems.

Standard versions of the CBS algorithm, such as semi-implicit and quasi-implicit, present
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a first order pressure accurate in time due to the complete removal of the pressure term

from the momentum equation in the first step of the splitting. This splitting error may have

overwhelming effect if this fluid solver is employed into a partitioned strongly coupled FSI

scheme. This is because generally the solid solvers rely on higher order methods in time

(α-generalised method for instance) for computing the transient solution. The discrepancy

in accuracy between the two solvers may cause failure in the convergence of the scheme.

Among the strategies for eliminating this error, the dual time stepping for the fluid solver has

been demonstrated as a promising candidate [153, 154] based on simplicity and efficiency.

4.2 Objectives

In the current work we propose the employment of the Characteristic Based Split method

augmented with artificial compressibility within a strongly coupled partitioned FSI framework.

The dual time step approach in a CBS scheme has been initially introduced by Nithiarasu [153]

in conjunction with artificial compressibility (AC-CBS). We note that no scheme from the

CBS family combined with dual time stepping has ever been used for dealing with FSI

problems. In the CBS procedure the pressure gradient in the momentum equation is considered

a source evaluated apart. The convective term can thus be treated by numerical techniques

valid for "Convection dominated problems". By using AC, the incompressible fluid states

are considered as the steady state solutions of a compressible system. For each dual time

step procedure we need to define a "pseudo time step" (∆t) and a "real time step" (∆tR). To

implement this, we need to add a true transient term to the momentum equation; the solution

converges to a prescribed pressure residual (an instantaneous steady state) by pseudo time-

stepping within each real time step. If the dual time stepping is combined with AC all fluid

variables are computed explicitly and no matrix coefficient storing is required. This make

the solver extremely fast and efficient as no linear system need to be solved; this results

in important savings in terms of RAM memory. Furthermore, the stabilising properties

of the CBS algorithm allow the employment of low order elements (linear isoparametric

triangles in this case) without violating the Babuska-Brezzi condition. All these features
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make the current approach very suitable for large scale simulations of bio-medical and

industrial problems.

The solid is assumed to be under large strain regime and constitutive relationships are defined

through a hyper-elastic potential. The structural problem is dealt with a mixed (Jacobian-

pressure) finite element formulation. The displacement field is linearly interpolated whilst

for the other variables discontinuous functions are used. For the temporal discretization the

standard α-method is used. Fluid variables are computed through an Arbitrary Lagrangian

Eulerian (ALE) frame. Both fluid grid updating and information transmission at the interface

between the two systems are carried out via Radial Basis Function (RBF) interpolation.

This technique is extremely appealing in terms of efficiency as no connectivity information

between nodes is required.

Regarding the coupling between fluid and solid, different techniques have been employed.

We initially tested simple approaches such as fixed point or Aitken methods. We also

employed a more sophisticated technique, that is a variant of the Quasi-Newton method

recently proposed by Bogaers et al. [155]. This strong coupling strategy allows us to deal

with high mass ratio cases. By comparison, methods such as fixed point techniques often

fail [156, 155].

The proposed methodology represents a novel approach in the FSI field, as a dual time

step is adopted in computing the solution. Considering the solid and coupling time step

limitations, this method may lead to a larger time step used. Moreover, since the fluid solver

is explicit/matrix free, significant computer memory savings are guaranteed.

The objectives of the present work can be summarised in the following points:

• to test each sub-component of the framework by using benchmark cases

• to verify the efficiency of the fluid solver employed

• to investigate the temporal stability and robustness of the global FSI scheme

• to propose a representative case for the arterial system
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In Section 4.3 we present a brief theoretical background on solid and fluid dynamics, while

the numerical procedure is outlined in Section 4.4. Benchmark cases for validating the

framework are proposed in Section 4.5 followed by concluding remarks (Section 4.6).

4.3 Governing equations

In a generic FSI problem the space domain Ω can be split into fluid and solid sub-domains

(ΩF and ΩS respectively) interacting through a separating interface ΓI (see Figure 4.1).

Figure 4.1: Domains of FSI problem. Blue lines identify the fluid domain ΩF , whilst the
white colour indicates the solid ΩS. These two domains are separated by an interface
ΓI , depicted in red colour.

The field governing and boundary equations for each sub-domain are described below.
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4.3.1 Solid domain

With regard to the solid formulation, either Equation (2.15) or (2.17) can be used, depending

on whether incompressibility must be enforced. The material is assumed to be nearly-

incompressible hyper-elastic and therefore, as anticipated in Section 2.1.5, a strain energy

function Ψ needs to be defined. This energy is decomposed into deviatoric Ψ̄ and volumetric

U components

Ψ = Ψ̄+Uvol (4.1)

A generalised Neo-Hookean model is adopted as constitutive relationship, and thus

Ψ̄(C) = µS(trC̄−3) (4.2)

where C̄ is the isochoric Right Cauchy deformation tensor, whereas µS is the shear stress.

The volumetric strain energy function is defined as follows

Uvol =
κ

2
(J2−1) (4.3)

where κ is a penalty number. According to Equation (2.57) the Cauchy stress tensor yields

σ =
µS

J
dev(b̄)+κ

J2−1
2J

Id (4.4)

where b̄ is the isochoric Left Cauchy deformation tensor.

4.3.2 Fluid domain

In the current implementation the flow is assumed to be incompressible, Newtonian and

laminar. The fluid variables (u,p) are described via the dimensional version of Navier-Stokes



4.4 Solution procedure 85

for incompressible flow in an Arbitrary Lagrangian Euler (ALE) formulation:

∇ ·U = 0

∂U
∂ t |x0 =−c ·∇U−∇p+∇ ·τF

(4.5)

where c is the fluid velocity relative to the arbitrarily moving domain, U is the flow variable

(U= ρFu), ∂

∂ t |x0 stands for the time derivative with respect to the initial configuration whereas

τ is the deviatoric stress tensor, evaluated as

τF = µF(∇u+∇uT ) (4.6)

4.3.3 Interface

The intimate coupling between the fluid and structural domain can be described as follows:

the flow of the fluid generates a traction which acts upon the structure. This traction on the

structure results in a deformation which alters the geometry of the fluid domain and thus also

alters the fluid flow. We define ΓI as the fluid/structure interface boundary and n the normal

at a point of ΓI . An intimately coupled system like this requires certain coupling conditions

to be employed in order to be solved. These are:

ḋ = u on ΓI (4.7)

σ ·n= (−pId +τF ) ·n on ΓI (4.8)

4.4 Solution procedure

The numerical schemes for each sub-component of the framework are presented below,

followed by a description of the strategy employed for coupling the solvers.
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4.4.1 Solid discretization

Space discretization

The finite element discretization of the structural problem, outlined in Section 2.1.3, leads to

the following formulation

fS−
∫

ΩS

BTσdΩ−MS
¨̃d = 0 (4.9)

where fS accounts for all forces acting on the boundary, including the interface load. This

system can be re-written (adding damping) in a matrix form:

MS
¨̃d+CS

˙̃d+KS(d̃) = fS (4.10)

We note that all integrals for the solid domain are performed numerically via second order

Gauss-Legendre integration. Equation (4.10) is non-linear and thus a linearization of the

stiffness matrix KS is required. This is carried out by using the definition of Equation (2.59).

If the problem requires the enforcement of incompressibility constrain, it is necessary to

adopt a more sophisticated technique than the standard penalty function. In the current work

we adopted the mean dilation technique reported in [124].
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Time integration

For temporal discretization the α-method is employed. The sought solution is recovered by

solving the following system of equations:



MS
¨̃dn+α +CS

˙̃dn+α +KS(d̃
n+α

) = fn+α

S

d̃n+α
= (1−α f )d̃

n
+α f d̃n+1

˙̃dn+α = (1−α f )
˙̃dn +α f

˙̃dn+1

¨̃dn+α = (1−αm)
¨̃dn +αm

¨̃dn+1

d̃n+1
= d̃n

+∆t ˙̃dn +∆t2((1
2 −βα)

¨̃dn +βα
¨̃dn+1)

˙̃dn+1 = ˙̃dn +∆t((1− γα)
¨̃dn + γα

¨̃dn+1)

βα = 1
4(1+αm−α f )

2

γα = 1
2 +αm−α f

α f =
1

1+ρh
∞

αm = 2−ρh
∞

1+ρh
∞

(4.11)

where ρh
∞ is defined as the spectral radius for ∆t →0, whilst βα , γα , α f and αm are time

integration parameters. For linear problems, the scheme can be proven to be second order

accurate and unconditionally stable for 0≤ ρh
∞ ≤ 1. This can be re-written as a system with

only d̃n+1 as unknown variable. The solution of such a system is sought by employing a

Newton-Raphson procedure.

4.4.2 Fluid discretization

To derive the fluid solution in time from the system of Equations (4.5) we use continuous

linear finite elements combined with the characteristic based split (CBS) algorithm.
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Space-time discretizations

Equations (4.5) are discretized by means of the standard weighted residual Galerkin method

with Taylor stabilisation


∫

ΩF
(Np)

T ∇ ·UdΩ = 0∫
ΩF

(Nu)
T ∆U

∆t |x0dΩ =
∫

ΩF
(Nu)

T{−c ·∇U−∇p+∇ ·τF + ∆t
2 [∇

T (uNu)]
T [∇T (uU)+∇p]}dΩ

(4.12)

where Np and Nu are the test functions for the continuity and momentum equations, respectively.

We note that the time discretization of the right side of Equation (4.12) will be performed

in the Section Characteristic based split method. After performing integration by parts of

the viscous term, the semi-discrete form of these equations can be written in the following

matrix form

GFŨ = 0

MF
∆Ũ
∆t =−CFŨ− KF

ρF
Ũ−GF p̃+ ∆t

2 (CF,stabŨ+Gp,stab p̃)+ fF

(4.13)

where MF is the mass matrix, CF is the convection matrix, KF is the viscous matrix, GF

is the gradient matrix, CF,stab is the convective stabilisation matrix, Gp,stab is the pressure

stabilisation matrix, while fF is the force obtained by integrating the deviatoric stress component

along the boundary.
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Characteristic based split method

Before proceeding with the split, the right side of system of Equations (4.13) is discretized

in time by using the coefficients θ1, θ2, θ3 and θ4

GFŨn+θ1 = 0

MF
∆Ũ
∆t =−CFŨn+θ4− KF

ρF
Ũn+θ3−GF p̃n+θ2 + ∆t

2 (CF,stabŨn+θ4 +Gp,stab p̃n+θ2)+ fn
F

(4.14)

The choice of the time scheme depends on the values adopted for such coefficients. Generally

θ4=0, leading to an explicit evaluation of the convective terms. Setting both θ2>0 and θ3>0

leads to the quasi-implicit scheme. We note that if only θ2>0 the scheme is called semi-

implicit and only pressure is calculated implicitly. The fully explicit scheme (θ1≥0, θ2=0,

θ3=0, θ4=0) is generally combined with dual time stepping and artificial compressibility

(AC) in order to speed up the calculations [153, 154, 157].

The temporal split is carried out by introducing the intermediary velocity U∗ such that

∆Ũ = ∆Ũ∗+∆Ũ∗∗ = (Ũ∗− Ũn
)+(Ũn+1− Ũ∗) (4.15)

This procedure decouples pressure from velocity variables and from the momentum equation

we have

MF
∆Ũ∗

∆t
=−CFŨn− KF

ρF
Ũn+θ3 +

∆t
2

CF,stabŨn
+ fn

F (4.16)

MF
∆Ũ∗∗

∆t
=−GF p̃n+θ2 +

∆t
2

Gp,stab p̃n+θ2 (4.17)

The scheme for the fully explicit case augmented with artificial compressibility (CBS-AC) is

outlined here. This means that the fluid is treated as compressible and the solution is found
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iteratively, once the incompressibility limit is reached. This introduces the "pseudo time

step" concept which is an artificial time step used to compute the solution for a specific real

time step. For transient recovery with the CBS-AC scheme, a dual time stepping procedure is

employed. This involves adding an extra source term in the momentum equation, accounting

for real time velocity variations. Since it is an explicit method, local calculation of the time

step is carried out in order to increase the efficiency of the method. We note that, for the

other CBS version, e.g. the quasi-implicit, the procedure is similar except for the viscous and

pressure terms, which are treated implicitly. The CBS fractional method requires performing

three steps.

Step 1

An intermediate velocity Ũ∗ is evaluated without considering the pressure contribution:

∆Ũ∗ =−∆tM−1
F [(CF +

KF

ρF
− ∆t

2
CF,stab)Ũ

n
+ fn

F ] (4.18)

Step 2

Once Ũ∗ is known, it is possible to evaluate the pressure from the mass continuity equation

accounting for artificial compressibility

∫
Ω

(Np)
T (

1
c2

s
)
∆p
∆t

dΩ = Mp
∆p̃
∆t

=−[GFŨn
+θ1GF(∆Ũ∗)−∆tθ1H∗ p̃n] (4.19)

in which Mp=
∫

Ω
(Np)

T ( 1
c2

s
)NpdΩ H∗=

∫
Ω
(∇Np)

T ∇NpdΩ

where cs is the speed of sound. We note that the results for such an equation are self-adjoint

for the pressure variable, and thus it is possible to apply Galerkin method without any further

stabilisation techniques.

Step 3

The velocity correction is found by adding the transient recovery term ∆ŨR
∆tR

to the new
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calculated pressure gradient contribution (with stabilisation)

∆Ũ∗∗ =−∆tM−1
F [(GT

F +
∆t
2

Gp,stab)p̃n+1− ∆ŨR

∆tR
] (4.20)

where ∆tR is the real time step. The true transient term ∆ŨR
∆tR

is evaluated with a second-order

real-time approximation

∆ŨR

∆tR
=

3Ũn+1−4Ũn
+ Ũn−1

∆t
(4.21)

Time step restrictions Since the fully explicit method is employed, the local stability limit

for the pseudo-time step is

∆tlim < min(
hele

|u|+βC
,
heleRe

2
) (4.22)

in which hele is the characteristic element length, Re is the Reynolds number while βC is a

parameter calculated as the maximum between the convective and diffusive velocities.

4.4.3 Mesh movement

If an arbitrary Lagrangian-Eulerian (ALE) approach is employed, a third non-physical mesh

field is needed. It accounts for the fluid domain’s deformation, an extension of the FSI

interface deformation caused by the interaction. After each FSI iteration the fluid grid is

updated by using the RBF interpolation technique proposed in [81]. By comparison to

classical techniques, such as treating the grid as an elastic solid, this method is very efficient,

since only a simple linear system has to be solved. In addition it does not require any

information about grid connectivity of the two meshes. This makes it especially appealing

for non-conforming meshes.
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RBF interpolation

A brief description of the method is reported below. We assume that we want to transmit

information from mesh m1 to mesh m2. We need to build an interpolation function Z(x)

which will be able to provide back a discrete value for any point of the spatial domain.

From mesh m1 we know n1 discrete values gm1 and the associated spatial coordinates (or

integration points) xm1:

gm1,i = Z(xm1,i) i = 1, ...,n1 (4.23)

For mesh m2, we want to evaluate n2 interpolated discrete values gm2 for points located at

xm2.

The interpolation function may then be written as:

Z(x) =
n1

∑
i=1

αZ,iφZ(||x−xm1,i||)+ pk
m(x) (4.24)

where φZ is a generic radial basis function, pk
m(x) is a polynomial of degree k, and αZ,i

and βZ j are constants to be determined. For the present study we select the multi quadratic

biharmonic (MQ) radial basis function regarded as one of the most promising RBF [81]. In

our case pm(x) is a first order polynomial and therefore we need to evaluate 4 polynomial

coefficients (pm(x) = βZ0 +βZ1x+βZ2y+βZ3z). The coefficients αZi and βZ j are evaluated

by imposing conditions expressed in Equation (4.27) and the following constrains:

n1

∑
i=1

pk
m(xm1i)αZi = 0 k = 1, ...,k (4.25)

Once the interpolation function Z(x) has been built, the discrete values can be found by:

gm2,i = Z(xm2,i) i = 1, ...,n2 (4.26)
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Once the new fluid node coordinates are known it is possible to calculate the grid velocity

via:

un+1
g =

2(dn+1−dn)

∆t
−un

g (4.27)

4.4.4 Interface

In an FSI algorithm, all the fluid and solid equations reported above need to be solved with

respect to the interface displacement dI . Operators ϒ and Λ are used for indicating the fluid

and solid solver respectively. Each field operator can be written, with its input and output, in

a compact form as a black box:

tI = ϒ(dI) (4.28)

d̄I = Λ(tI) (4.29)

where tI is the fluid traction computed at the interface, d̄I is the approximation of the interface

displacement computed from the solid system.

An FSI cycle leads to the approximation of the interface displacement, that is computed by

combining Equations (4.28) and (4.29)

d̄k+1
I = Λ(ϒ(dk

I )) (4.30)

From this approximation of the interface displacement, it is possible to calculate the interface

displacement dI by using a coupling technique. The fluid and solid solvers are strongly

coupled in the sense that dI must satisfy both fluid and solid equations within a certain

tolerance. Therefore an iterative loop of FSI cycles is employed until the dI residual reaches

the tolerance imposed. Figure 4.2 shows how the fluid structure interaction scheme is structured.



4.4 Solution procedure 94

Figure 4.2: Partitioned strongly coupled fluid structure interaction scheme. For each
FSI iteration the fluid and solid systems exchange information twice through the
interface. The fluid remeshing is carried out according to dI , and this step takes place
within (just before) the fluid solver. Once the fluid solution is computed, the fluid
traction is passed to the solid boundary as prescribed load. The solid solution d̄I is
then adjusted by means of a coupling technique. Once the interface displacement dI
has been computed, it is compared against the previous dI . If the residual is lower than
the tolerance, the FSI loop ends and the current values of dI are used for the next time
step. If the residual check fails, dI is transmitted again to the fluid solver, restarting a
new FSI cycle.

Coupling technique

The fixed point method with relaxation is a straightforward technique to apply. This scheme

corrects the approximation of d̄I in the following way

dk+1 = d̄k+1
I +ωR(dk

I − d̄k+1
I ) (4.31)
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where ωR is a relaxing factor.

If the scale of the FSI problem is large, it may be convenient to apply a more sophisticated

technique, in order to increase the efficiency and accuracy of the calculation. In this study

we adopted the Multi Vector Quasi-Newton (MVQN) method proposed in [81]. In this case

the interface displacement is computed as:

dk+1
I = dk

I −Jk+1
I Rk (4.32)

where Rk is the displacement residual vector whilst Jk+1
I = ( ∂R

∂dI
)−1 is the Jacobian of the

system.

Information transfer

Traction The evaluation of fluid load induced to the structure tI is described below. The

tractions are calculated at the fluid nodes and are then projected to the structural nodes. Such

a conservative method, valid for non-conforming meshes, is extensively described in [158].

Along the interface each fluid node is paired to a single wet solid element; then natural

coordinates for such fluid (ξ ) are calculated. The load tI,k at kth solid node can be then

evaluated as:

tI,k =
l=lF

∑
l=1

ΦpFNk(ξl) (4.33)

where ΦpF is the numerical pressure flux at lth fluid node:

ΦpF =
∫

ΓI

Nl(−pn j + τF,i jn j)ds (4.34)

As linear triangular elements are adopted for the fluid system, all the integrals in Equation

(4.34) can be performed in a direct way.
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Displacement As reported previously, RBF is able to pass accurately rigid motion between

two systems. We therefore adopt this technique for passing the computed displacement from

solid to fluid at the interface nodes.

4.5 Simulation results

The following section provides a validation of the FSI framework and presents simulations

of a pressure wave propagating along an artery. The validation of the solution procedure is

carried out by testing component by component against benchmark cases from the literature.

4.5.1 Cook’s membrane

This problem is useful for assessing the convergence properties of the FE scheme under

a mixture of bending and shear strains. A membrane is subjected on the right edge to a

uniformly distributed vertical load F equal to 100 N (see Figure 4.3) and is fixed on the

opposite edge. The applied force remains vertical throughout the loading programme. For

this problem plane strain condition is assumed and a generalised Neo-Hookean material with

shear modulus µS = 80.1938 dyne/cm2 and bulk modulus (which in this study is also the

penalty number) κ =40.0942 104 dyne/cm2 adopted. Convergence of the solution with mesh

refinement is assessed by employing four different meshes. Each of these has the same

number of elements per edge. Figure 4.3 shows a mesh of 4 by 4 elements and the problem

geometry.

In this problem the configuration is analysed at stationary conditions. The vertical displacement

of the membrane’s top right corner for different type of meshes is shown in Figure 4.4. This

shows that there is a critical mesh size beyond which the displacement does not vary much.

The values obtained from simulations are in good agreement with literature results, with the

absolute relative error less than 2 %.
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Figure 4.3: Cook’s membrane. Geometry of the problem, expressed in cm.

4.5.2 Oscillations of a rigid beam

With this particular problem we intend to study the transient response of the solid scheme.

More specifically, this case allows us to assess the energy conservation along the process.

Figure 4.5 depicts the geometry of the problem. No load is applied on the boundary but initial

velocity along the x axis (u) is prescribed. The initial velocity on the y axis is set equal to zero.

This is distributed uniformly along the thickness (x axis) and varies linearly along the vertical

axis (y axis) from 10 cm/s at the top to 0 cm/s at the bottom. The material is considered

Neo-Hookean, with Young’s modulus Y equal to 17000000.0 N/mm2 and Poisson’s ratio

νPois equal to 0.3. The density of the material ρS is equal to 1.1 g/cm3. The time step ∆t

adopted was 10−3 s.

To assess the quality of the time-integration scheme we plotted the time evolution of both
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Figure 4.4: Cook’s membrane. Vertical displacement of the top right corner vs number
of element employed per edge. Reference results are from [3].

kinetic and potential energies for different coefficient ρh
∞ (see Figure 4.6). We note that these

energies present an oscillatory pattern which is specular but out of phase. For both ρh
∞=0

and ρh
∞=0.5 cases a gradual reduction in kinetic and potential energy along the time axis is

recorded. This is because the schemes corresponding to such ρh
∞ choice include dissipation

and thus the total energy is not conserved. The situation is different for ρh
∞=1.0. In this case,

since no damping is accounted for, the beam is destined to oscillate periodically around its

vertical axis. The sum of kinetic and potential energy remains constant over time.

4.5.3 Flow in a rigid tube

A classic fluid mechanics problem of flow transport along a rigid tube is presented here. The

geometry of the problem is depicted in Figure 4.7. A Poiseuille velocity profile is prescribed

at the inlet of the tube, with an average amplitude equal to 1 cm/s. The dynamic viscosity µF

is set equal to 0.035 poise, whilst the fluid density ρF =1.0 10−2 g/cm3. No-slip condition is
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Figure 4.5: Oscillations of a rigid beam. Geometry of the problem, expressed in cm.

applied at the top of the lateral wall edge whilst symmetric flow condition is imposed for the

bottom wall edge.

In Figures 4.8 and 4.9 the velocity and pressure fields are plotted after 1.4 s the beginning

of the transient. The latter figure shows that the isobaric lines are parallel, as expected for a

developed flow.

4.5.4 Flow passing a circular cylinder

This case represents a popular testing scenario of a numerical scheme for a flow transient

problem. Through this example we intend also to verify how the fluid traction is transmitted
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Figure 4.6: Oscillations of a rigid beam. Temporal evolutions of the kinetic energy,
potential energy and global energy for different ρh

∞.

to a rigid body. In addition, this case allows us to assess the accuracy of the AC explicit CBS

against the quasi-implicit version. The definition of the problem is standard (see Figure 4.10

for the definition of the problem’s geometry). The flow at the inlet is uniform and the cylinder

is placed at a centerline between two walls where no-slip condition is assumed. The distance

from the inlet to the centre of the cylinder is 4D, where D is the diameter of the cylinder. The

total length of the domain is 16D. No-slip condition is applied on the cylinder surface. The

explicit scheme does not require the imposition of pressure boundary conditions at the outlet.

For this scheme the minimum number of pseudo-time steps is one hundred whilst the real

time step is set equal to 0.166 s. For the quasi-implicit version, a time step equal to 0.00333

s is employed.

Figure 4.11 shows the evolution in time of the drag and lift coefficients for both fully explicit

and quasi-implicit CBS versions. Note that the plotted variables CD and CL are in non-

dimensional scales. The results are in agreement with simulated results reported in [153].

The results for the quasi-implicit approach are more diffused than the ones obtained with the
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Figure 4.7: Flow in a rigid tube. Geometry of the problem, expressed in cm.

fully explicit case. Between these 2 methods (explicit case as reference), the relative errors

of CD (in average value) and CL (in amplitude) are respectively 1.7 % and 1.8 %.

The efficiency of the two CBS versions is compared in Figure 4.12. The fully explicit CBS-

AC converges faster, requiring less than one third of the computational time needed by the

quasi-implicit version. This makes CBS-AC a valuable candidate for performing large scale

fluid simulations. We note that for the quasi-implicit method the time step chosen is very

close to the limit imposed by the CFL (Courant-Friedrichs-Lewy) condition. By using dual

time stepping, the CBS version has no strict limitation on the real time step. This gives a great

computational advantage, especially if a detailed evolution of the transient is not necessary.

The computational time required for each of these two time steps is different and does not

substantially change along the transient (see Figure 4.13).
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Figure 4.8: Flow in a rigid tube. Velocity magnitude field after 1.4 s, expressed in
(cm/s)..

4.5.5 Vortex-induced vibrations of a flexible beam

Both solid and fluid solvers have been validated separately against reference testing cases,

as suggested in [74]. In order to validate the integrated framework, we employ the well-

known benchmark case proposed in [159]. It consists of a beam anchored to a block located

in the middle of a channel (see Figure 4.14). The numerical experiment settings are as

follows: The dynamic viscosity of the fluid (µF ), the fluid and solid densities (ρF ,ρS) are

assumed respectively equal to µF=1.82 10−4 Pa s, ρF=1.18 10−3 g/cm3 and ρS=0.1 g/cm3.

The other material parameters set are the solid Young’s modulus (Y =2.5 10 6 N/cm2 )

and the Poisson’s ratio (νPois=0.35). Plane stress conditions are assumed to hold for the

solid. The inflow velocity is chosen as uinl=51.3 cm/s. The Reynolds number is thus
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Figure 4.9: Flow in a rigid tube. Isobaric lines (dyne/cm2) after 1.4 s.

Re = ρF Duinl
µF

=333, whereby D=1 is the characteristic length of the square rigid body. For

the domain discretization we adopted 3920 nodes and 4013 linear element for the fluid,

while 46 nodes and 24 linear elements for the solid. In Figures 4.15 and 4.16 the velocity

magnitude and pressure fields are reported for t=1.2 s. In the non-deformed configuration the

beam is aligned with the far field flow. The vortices, which separate from the corners of the

rigid body, generate lift forces which excite oscillations of the flexible beam. To verify the

scheme accuracy we consider the vertical displacement of the beam (see Figure 4.17). The

results obtained are in agreement with those reported in the reference work [74], in which the

recorded maximum tip displacement and frequency are, respectively, 1.1 cm and 2.96 Hz.

The corresponding relative errors are 17.2 % and 1.4 %, respectively. It is worth noticing

that the difference in amplitude may be due to the different polynomial order adopted for the
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Figure 4.10: Flow passing a circular cylinder. Geometry of the problem, expressed in
cm. Blue arrows indicate the direction of the velocity at the boundaries.

spatial discretization and the method used for dealing with the incompressibility constrain.

4.5.6 Pressure wave along an artery

The case of a 2-D vessel architecture is used to approximate flow and pressure distribution

within an artery. For this numerical experiment all the constitutive data have been taken

from the work by Zulliger et al. [47, 160]. The following parameters are set as constant: the

dynamic viscosity of the blood (µF=1.82 10−3 Pa s), the fluid density (ρF =1.0 10−2 g/cm3),

the solid density (ρS =1.0 g/cm3) and the Poisson’s ratio (νPois = 0.35). The parameter we let

vary is the Young’s modulus; we consider a case with extremely stiff wall (Y =3.0 106 N/cm2)

and a case in which the wall is much more flexible (Y =5.0 105 N/cm2). These distinct cases
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Figure 4.11: Flow passing a circular cylinder. Temporal evolution of drag and lift
coefficients (CD and CL respectively). For the explicit CBS case the real time step ∆t
is equal to 0.166 s, while for the quasi-implicit case ∆t is set equal to 0.00333 s.

provide a good perspective on the range of wall and flow responses. At the inlet a Poiseuille

signal is applied and the Reynolds number is set equal to 400.

Figures 4.19, 4.20, 4.21, 4.22 present snapshots of the pressure and velocity magnitude fields

for both cases. We note that these results are at 1.0 s and therefore transients are not yet

fully eliminated. We observe that in case of a stiff artery (Figures 4.19 and 4.21) a small

deformation of the wall occurs, while the pressure and velocity exhibit uniform patterns. In

the case of a much more elastic vessel (Figures 4.20 and 4.22), the behaviour is significantly

different. The wall swells due to momentary force impairment at the interface, followed by

structure collapsing. At the shrinkage tract the flow accelerates and the velocity increases

also in the radial direction, due to momentum conservation.
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Figure 4.12: Flow passing a circular cylinder. Computational time vs real time. For the
explicit CBS case the real time step ∆t is equal to 0.166 s, while for the quasi-implicit
case ∆t is set equal to 0.00333 s.

4.6 Concluding remarks

A novel methodology has been developed and validated against literature benchmarks. Results

from both solid and fluid solvers are in good agreement with the literature. The CBS-AC

emerges as one of the most promising methods to be employed in large scale simulations.

Moreover, results for the case presented in Section 4.5.5 prove the temporal stability of the

global FSI framework. The fully explicit CBS method results are shown to be suitable for

handling an FSI scheme. This methodology has also been used to represent an arterial

vessel with elastic walls. In this study the constitutive parameter E has been varied along

simulations and the findings qualitatively match observations. In the future we intend to

employ this methodology to account for full 3D arterial geometries, and to incorporate the

active contractile dynamics of the arterial wall. We also note that in accordance to current

state of art the library is ran in serial mode. A future code parallelization would further

enhance the software performance.
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Figure 4.13: Flow passing a circular cylinder. Computational time per step vs real
time. For the explicit CBS case the real time step ∆t is equal to 0.166 s, while for the
quasi-implicit case ∆t is set equal to 0.00333 s.
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Figure 4.14: Vortex-induced vibrations of a flexible beam. Geometry of the problem,
expressed in cm.
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Figure 4.15: Vortex-induced vibrations of a flexible beam. Velocity magnitude field at
t=1.2 s.

Figure 4.16: Vortex-induced vibrations of a flexible beam. Pressure field at t=1.2 s.



4.6 Concluding remarks 110

Figure 4.17: Vortex-induced vibrations of a flexible beam. Beam vertical displacement
in time. For this case the real time step ∆t is equal to 0.005 s.
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Figure 4.18: Pressure wave along an artery. Geometry of the problem (in cm).
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Figure 4.19: Pressure wave along an artery. Velocity magnitude field at t=1.0 s (Y =3 106

N/cm2).

Figure 4.20: Pressure wave along an artery. Velocity magnitude field at t=1.0 s (Y =3 105

N/cm2).
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Figure 4.21: Pressure wave along an artery. Pressure field at t=1.0 s (Y =3 106 N/cm2).

Figure 4.22: Pressure wave along an artery. Pressure field at t=1.0 s (Y =3 105 N/cm2).
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Chapter 5

Modelling energy transport within the

human body
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As anticipated in Section 1.3, computing blood transport along the arterial tree requires a

multiscale approach for representing the vascular network. The methodology developed in

Chapters 3 and 4, able to calculate accurately blood flow variables in a localized region of

the vasculature, can be coupled with a reduced order (1-D) model representing the whole

systemic circulation. This also allows the prescription of realistic boundary conditions. In

this chapter, we report a model based on such a 1-D vessel framework, which allows to

compute the transport of a blood property (in this case energy) within the solid tissues.

5.1 Background

The review of human body bio-heat transfer, presented in the Introduction, highlights the

need for a step change in the modelling approach. A new generation model is therefore

required as a basis for future development. In this regard, the present work combines a

state of the art systemic circulation model with heat transfer to a segmentation model for

body tissue. The methodology thus developed has been conceived as a combination of a

multi segmental solid model, derived mostly from Fiala [101] and the arterial modelling

methodology proposed by Mynard and Nithiarasu [64]. For the thermo-regulatory equations

we refer to Smith [99]. The blood flow is considered laminar and a non-linear wall law is

used for describing blood-wall interaction. With these assumptions, the final expressions of

governing equations depend only on cross-sectional area, velocity and temperature of blood.

The physical model of the arterial system is adopted from Low et al. [1], where the flow and

pressure distributions in the arterial system are extensively compared to measurement data.

The methods for dealing with ventricle, valve, bifurcations, coronary arteries and peripheral

boundaries are detailed in [64, 161].
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5.2 Objectives

As the present methodology is based on two robust models, it is able to respond to a wide

spectrum of conditions without losing integrity of the solution. An example to this effect is

the straightforward calculation of conduction in the solid system. The inherent robustness

of the proposed model is one of its main advantages when compared to relevant recent

works such as Salloum et al. [106] and Karaki et al. [107]. It would be fair to say that

these modelling works have demonstrated good performance in simulating various situations,

such as the evaluation of local thermal comfort and human physiological responses to cold

water immersion. By comparison, the main aim of the proposed work is not to provide an

analysis of the thermal performance of a specific subsystem, but to characterise the heat

exchanges occurring within the multi-layer solid tissues. A further aim is to investigate how

the two intrinsically coupled subsystems interact whenever the body is exposed to a range

of external conditions (especially during non-thermal neutral settings). We were thus able to

demonstrate that, depending on the conditions, flow may have either a rewarming or cooling

effect on the surrounding tissues. These results have emphasised the modulatory role of

arterial inner convection. Although processes involving cold induced vasodilation (CIVD)

and arterio-venous anastomoses (AVA) would improve the predictive quality of our model,

they were not incorporated in the formulation as they would disproportionately complicate

the proposed methodology. Indeed, the main aim of this work is to provide a robust tool able

to evaluate temperature distribution along tissues, which offers a different perspective in the

study of bio-heat transfer within the human body, rather than to improve on the accuracy of

existing models.

The aims of the work can be summarised in the following points:

• to present a one-dimensional thermo-fluid model for an elastic tube and tube network

• to investigate the influence of structural properties of the vessel wall and network

singularities on property transport
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• to deliver a comprehensive methodology for predicting the energy/property transport

within the human body

• to investigate the role of internal convection on the global body thermal balance

• to validate the proposed model for different conditions against experimental/literature

data

In Section 5.3 we present the methodology developed. Then in Section 5.4 the numerical

procedure is outlined. Results and discussion are reported in Section 5.5, followed by the

concluding remarks (Section 5.6).

5.3 Mathematical formulation of the problem

The human body bio-heat transfer can be modelled using a combination of "passive" and

"active" systems. The passive part consists of transport in arteries and solid tissues while

the active system is the thermo-regulatory part of the model that attempts to keep the body

temperature within predetermined boundaries. This section starts by introducing the governing

equations valid for a monodimensional elastic vessel, which represents the fundamental

element of the global methodology. This is followed by a description of the system circulation,

solid tissues, and thermo-regulatory system.

5.3.1 Flow in 1-D elastic vessel

The variables considered in the system are cross sectional area (A), the average values of

velocity (u), fluid pressure (p) and temperature (T ) over the cross section (see Figure 5.1).

The density (ρF ) of the fluid and wall are considered constant due to the incompressible

nature of the materials assumed. The viscosity (µF ) of the fluid is also assumed to be a
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constant. Due to the one-dimensional nature of the model, the shear stress is evaluated using

Poiseuille’s flow assumption, i.e.,

dτF

dx
=−8πµFu(x, t)

A(x, t)
(5.1)

where Q = Au is the volume flow rate averaged over a cross-section. Due to the simplified

assumptions, the model is not valid for cases in which flow is non-Newtonian or turbulent.

In order to reduce the number of parameters, specific heat (cF ) and thermal conductivity (kF )

of the materials are also assumed to be constant.

Figure 5.1: Schematic representation of flow and energy transport in a flexible tube
(from [4]).

The full problem could be described by four equations: the conservation laws of mass,

momentum and energy and a constitutive elastic wall model to define the relationship between

the fluid pressure and the cross section area. Following the existing literature [162], the

equations of mass and momentum for an elastic vessel can be written as

∂A(x, t)
∂ t

+
∂Q(x, t)

∂x
= 0 (5.2)
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∂u(x, t)
∂ t

+u(x, t)
∂u(x, t)

∂x
+

1
ρF

∂ p(x, t)
∂x

− 1
ρF

∂τF(x, t)
∂x

= 0 (5.3)

It is important to note that these equations are valid for an infinitesimal cylindrical element

of area A and length dx. For relating pressure and cross sectional area, a non-linear relation

used by Formaggia et al. [163] and Olufsen et al. [62] is employed, i.e.,

p(x, t) = pext +β

(√
A(x, t)−

√
A0(x)

)
(5.4)

where pext is the external pressure acting on the walls of the tube, A0 is the unstressed cross-

section area and β is the characteristic property of elastic material, defined as

β =

√
πhY

A0(1−ν2
Pois)

(5.5)

where Y is Young’s modulus of the wall material, h is the wall thickness (see Figure 5.1)

and νPois the Poisson ratio of the wall material. By inserting Equations (5.1) and (5.4) into

Equation (5.3), it is possible to express the momentum equation only in terms of area and

velocity:

∂u(x, t)
∂ t

+u(x, t)
∂u(x, t)

∂x
+

β

2ρF
√

A(x, t)

∂A(x, t)
∂x

+
8πµF

ρF

u(x, t)
A(x, t)

= 0 (5.6)

Considering the 1-D elastic vessel shown in Figure 5.1, the integral balance of energy can be

written as:

Φ̇conv(t) =Ẇwall(t)+Ẇshear(t)+ Φ̇cond(0, t)− Φ̇cond(l, t)

+ρFQ(l, t)
(

Es(l, t)+
p(l, t)

ρF

)
−ρFQ(0, t)

(
Es(0, t)+

p(0, t)
ρF

)
+ρF

∂

∂ t

∫ l

0
A(x, t)Es(x, t)dx

(5.7)
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where Es represents the specific energy of the fluid obtained as a sum of the specific internal

energy and the kinetic energy (Es = e + u2

2 ), Φ̇cond is the conduction fluxes in the fluid,

while Φ̇conv, Ẇwall and Ẇshear are respectively the thermal flux exchanged by convection,

integral quantities along the tube due to fluid forces on the walls and viscous losses. After

simplification, the differential one-dimensional energy conservation equation for an infinitesimal

tube (without considering viscous effects) can be written as,

∂T (x, t)
∂ t

+u(x, t)
∂T (x, t)

∂x
−αF

∂ 2T (x, t)
∂x2 =

2hin

ρFcF
√

A(x, t)/π
(Tw,in(x, t)−T (x, t)) (5.8)

where αF is the thermal diffusivity of the fluid, hin is the heat transfer coefficient at the inner

surface of the wall and Tw,in is the inner wall temperature. The full system of equations

composed of Equations (5.2), (5.6) and (5.8) is non-linear and the first and second equations

are strongly coupled. However, the mass and momentum conservation equations do not

depend on the temperature. Thus, it is possible to split the solution process into two steps: in

the first step one can calculate the velocity, cross sectional area and pressure using Equations

(5.2) and (5.6) before computing the temperature in the second step.

Characteristic system

In order to assign boundary conditions and to apply the Taylor Galerkin method, it is convenient

to write the whole system in a linearized de-coupled form. In Formaggia et al. [164] and

Sherwin et al. [162], the system composed of mass and momentum conservation equations is

written in a quasi linear form. Incorporating the energy equation requires a similar procedure.

The system of Equations (5.2), (5.6) and (5.8) may be written as

∂ ŪF

∂ t
+HF

∂ ŪF

∂x
+

∂ ḠF

∂x
= S̄F (5.9)
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with:

ŪF =


A

u

T

 ; HF =


u A 0
β

2ρF
√

A
u 0

0 0 u

 ; ḠF =


0

0

−αF
∂T
∂x

 and S̄F =


0

−8πµF
ρF

u
A

2hin

ρF cF
√

A/π
(Tw,in−T )



where ŪF , ḠF and S̄F are the vectors of primitive variables, the diffusive and source terms,

while HF is the matrix associated to convective term. If diffusion and sources are considered

negligible (∂ ḠF
∂x = 0 and S̄F = 0), the characteristic variables of Equation (5.9) may be

determined.

Eigenvalues (Λ̄F,i) and eigenvectors (LF,i) of the characteristic system are evaluated respectively

by solving |Λ̄FId−HF |= 0 and LF,iHF = Λ̄F,iLF,i [165]. In this case all eigenvalues associated

to matrix HF are real numbers, i.e.,

Λ̄F =


Λ̄F,1

Λ̄F,2

Λ̄F,3

=


u+ cs

u− cs

u

 (5.10)

where cs is the intrinsic wave speed associated with the flexible wall material, expressed as

cs =

√
β
√

A
2ρF

(5.11)

Eigenmatrix is:

L̄F =


cs/A 1 0

−cs/A 1 0

0 0 1

 (5.12)
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The characteristic variables are defined as

dwi = LF,iŪF (5.13)

and integration gives,


w1

w2

w3

=


u+4cs

u−4cs

T

 (5.14)

By rearranging the above equations, it is possible to express the primitive variables in terms

of the characteristic variables as

A =
(w1−w2)

4

1024

(
ρF

β

)2

, u =
1
2
(w1 +w2) and T = w3 (5.15)

Writing Equation (5.9) in terms of characteristic variables allows one to understand how

information is transported in the domain considered. The physical interpretation of the

first and second characteristic variables is that pressure and velocity wave fronts propagate

forward (towards the exit) at a speed of u+ cs and backwards (towards the inlet) at u− cs. A

wave front may be considered to be a particular point on a pulse [166] (for example, the peak

or the foot). The third characteristic variable instead, has the eigenvalue equal to the velocity

u. Thus it means that the temperature is a property transported by the flow with the effective

velocity of the fluid u.

These relationships are employed at the boundaries to apply boundary conditions.
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Figure 5.2: Arterial network considered (from [5]).



5.3 Mathematical formulation of the problem 124

5.3.2 Systemic circulation

Arterial network

The systemic circulation is subdivided into large and small vessels. The large arteries are

shown in Figure 5.2 as proposed in Low et al. [1]. In the present study, only major arteries

are included. The microcirculation is represented by tapering vessels at the extremities of

the network [64] and the energy exchange occurs only through a perfusion mechanism. The

venous system is not included for the reasons mentioned previously. The whole network is

composed by 91 segments (28 are tapering vessels), 6288 elements and 6379 nodes. Full

details about the parameters and dimensions of the network are reported in [1].

Inlet flow conditions

Modelling the heart’s pumping action is implemented by employing the method proposed

in [64, 1]. The action of the heart allows one to set inlet boundary conditions and the

system includes the left ventricle (LV) and aortic valve (AV) models. The LV is treated

as a prescribed forward pressure source, which describes the cardiac cycle and the number of

heart beats per unit time or heart rate (HR). The input of the model is a ventricular (forward)

pressure prescribed in the ventricle’s point just before the valve. Prescribing inlet and outlet

variables is carried out by means of characteristic variables. By rearranging formulations in

Equations (5.4) and (5.14) and prescribing forward pressure (pin), it is possible to evaluate

the forward characteristic at the inlet (w1in):

wn+1
1in = w0

2 +4

√
2

ρF

√
(pn+1

in − pext)+β
√

A0 (5.16)

where w0
2 is the initial value of w2 and is also equal to the value of w2 at any time, if no

backward-running waves reach the inlet. The backward characteristic variable (w2) may be
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evaluated via linear extrapolation in the x− t plane, where for the next time step n+1,

wn+1
2 |x=x0 = wn

2|x=x0−Λ̄n
F,2∆t (5.17)

Primitive variables A and u at the inlet node can be evaluated by using Equation (5.15). The

behaviour of the AV is represented by a time-varying transmitter and reflector at the inlet. For

each impedance of the network, a characteristic reflection coefficient (Rz) could be defined

as

Rz =−
∆w2

∆w1
=

wn+1
2 −w0

2

wn+1
1 −w0

1
(5.18)

where w0
1 is the initial value (corresponding to no-pulse situation). Including the contribution

from the AV, the total forward characteristic variable (w∗1in) can be written as

w∗1in = w1p +w1r +w0
1 (5.19)

where w1p is the change in the incoming characteristic associated with the ventricular pump

and w1r is the change associated with backward-travelling waves that are partially or completely

reflected from the valve.

Using Equation (5.18) to model the AV impedance, it is possible to write:

w1r = RV r(t)∆w2 (5.20)

where RV r(t) is a time-varying valve reflection coefficient for backward-travelling waves. It

is assumed that RV r = 0 when the valve is open, RV r = 1 when it is closed, and that this value

varies exponentially when the valve is opening or closing. Further details on the boundary

conditions may be obtained from [64, 1].
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Extremities and branching points

To model branch ending, tapering vessels are used. These terminal tubes present multiple

step decreases in A0 or step increases in β . Thus characteristic reflections of the downstream

vasculature are accounted for. Calculation of the backward characteristic variable on the exit

node may also be performed by prescribing reflections at the exit. The reflection coefficient

of the terminal vessel (Rt) can be determined again by means of Equation (5.18), while the

value of w1 for the next time step (t = n+1) is extrapolated. Thus the unknown (wn+1
2 ) is

wn+1
2 = w0

2−Rt(wn+1
1 −w0

1) (5.21)

In the present work, Rt is set equal to 0 for each tapering vessel. Further details on the flow

boundary conditions may be obtained from relevant published work [64]. At the extremities,

we assume that the incoming flow is in thermal equilibrium with the surrounding tissue

nodes. When the flow is outgoing from the system, the temperature at the downstream

point is assigned by characteristic variable extrapolation. As tapering vessels used at the exit

boundaries represent microcircualtion, adiabatic conditions are assumed within these vessels

(no heat exchange through convection occurs). Robust modelling requires consideration of

branching points such as bifurcations or discontinuities in geometrical and material properties.

The works of Mynard and Nithiarasu [64] are adopted in the present work.

5.3.3 Solid tissues

For the solid tissue representation, we follow the work of Fiala et al. [100]. The body

consists of fourteen multi-layered cylindrical elements representing head, neck, shoulders,

thorax, abdomen, arms, forearms, thighs and legs (details are reported in Table 5.1). The

segments representing shoulders, legs, thighs, arms and forearms are constituted by four

layers of materials with different properties; from inside to outside the cylinder consists of

bone, muscle, fat tissue and skin layers. In the head, thorax and abdomen segments, inner
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organs, brain, lung and viscera respectively are also included. We note that some geometrical

parameters differ because cylinders have been adapted to the arterial tree.

Cylinder Tissues Layer radii (cm) Length (cm)
head brain, bone, fat, skin 6.6, 7.6, 7.8, 8.0 23.5
neck bone, muscle, fat, skin 1.9, 5.4, 5.6, 5.8 7.9

thorax lung, bone, muscle, fat, skin 7.7, 8.9, 12.3, 12.6 12.9 15.6
abdomen viscera, bone, muscle, fat, skin 7.9, 8.3, 10.9, 12.4, 12.6 24.8
shoulder bone, muscle, fat, skin 3.7, 3.9, 4.4, 4.6 13.4

arm bone, muscle, fat, skin 1.5, 3.4, 4.0, 4.2 29.6
forearm bone, muscle, fat, skin 1.5, 3.4, 4.0, 4.2 23.7

thigh bone, muscle, fat, skin 2.2, 4.8, 5.3, 5.5 58.5
leg bone, muscle, fat, skin 2.2, 4.8, 5.3, 5.5 34.3

Table 5.1: Tissue distribution within body. Note that the thorax length is smaller than
the real average size as heart region is not included.

We note that, in agreement with [100], we model the head as a cylinder and not a sphere;

thus the layer radii are resized in order to keep the head volume constant.

In the current model a local thermal equilibrium between the venous blood and the tissue

temperatures is assumed. The heat transfer by perfusion is assumed to be proportional to

the temperature difference between arterial blood entering the tissue and the tissue itself. In

order to evaluate tissue temperature (Tt), the one-dimensional bio-heat transfer equation in

cylindrical coordinates is solved. For a single layer, the heat conduction is described by the

following expression [167]

ρtct
∂Tt

∂ t
− kt

1
r

∂

∂ r
(r

∂Tt

∂ r
) = qm +φper f ρFcF(T −Tt) (5.22)

In the above equation, r is the radial coordinate, qm is the volumetric heat generation associated

with the metabolism and ρt , ct , kt , φper f are respectively the density, specific heat, thermal

conductivity and perfusion coefficient of the tissue. The metabolism term qm represents

mainly the energy generation due to biological processes. If the body is subjected to work,

an enhancement of metabolism in muscle tissue occurs.
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5.3.4 Thermo-regulatory system

Studies show that a state of thermo-neutrality exists when the core and mean skin temperatures

of the body are respectively 36.8oC and 33.7oC [9]. When an imbalance in energy exchange

between the body and environment occurs, the thermo-regulatory system is activated to

maintain the body homeostasis. The core body temperature is controlled by the thermo-

regulatory system consisting of thermoreceptors and the hypothalamus. Three control mechanisms,

shivering (lower skin temperatures), sweating (higher skin temperatures) and vasomotion

(flow control), are considered here. We define Tcore as the mean temperature between the

first layer inner nodes of head, neck, thorax and abdomen, while Tskin is the average value on

the skin surface. With these integral variables, we can evaluate the shivering and vasomotion

contributions [99]. The shivering heat per unit volume, qshiv, may then be obtained by

dividing the total segmental heat production by muscle volume. In the present study, the

basal and vasomotor blood flows are taken from [99]. The corresponding perfusion rate

φper f is evaluated by dividing the flow rate by the skin mass of the segment considered.

The total evaporative heat loss qswe is computed following [168]. For these calculations

we assume that the vapour pressure on skin is equal to that of saturated water vapour at

skin temperature [169]), while the evaporative heat transfer coefficient (hswe) is taken from

( [170]). We include also the clothing model proposed in [9]. The most relevant equations

for modelling the regulatory processes are reported here.

Shivering

From [99] it is assumed that the shivering temperature, Tshiv, is a function of the core

temperature, i.e.,


Tshiv = 35.5oC i f Tcore < 35.8 oC

Tshiv =−10222+570.9 Tcore−7.9455 T 2
core (

oC)

i f 35.8 oC ≤ Tcore ≤ 37.1 oC

(5.23)
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It should be noted that for Tcore greater than 37.1oC, shivering does not occur. The maximum

increase in total metabolic heat generation caused by shivering (Qshiv,max) can be written as

Qshiv,max =
1

3600
(−1.1861 109 +6.552 107 Tcore−9.0418 105 T 2

core) (W ) (5.24)

The shivering metabolic heat generation Qshiv can now be calculated as

Qshiv = Qshiv,max[1− (
Tskin−20
Tshiv−20

)2] (W ) i f (40−Tshiv)≤ Tskin ≤ Tshiv (
oC) (5.25)

Vasodilation and vasoconstriction

Vasodilation and vasoconstriction increase and decrease, respectively, arterial flow in the skin

layers. To model these processes we follow the method proposed in [99]. At thermoneutrality

condition, flow assumes a basal value (ṁskin,bas). Whenever core temperature increases

over its neutral value, vasodilation occurs. When the core temperature reaches 37.2 oC,

the maximum flow in the skin layer is recorded (ṁskin,max). Between the core temperatures

of 36.8 oC and 37.2 oC, the skin blood flow follows the core temperature linearly. As mean

skin temperature falls below its neutral value of 33.7 oC, vasoconstriction occurs. The state

of maximum vasoconstriction is recorded for a mean skin temperature equal to 10.7 oC [99].

At this temperature the skin blood flow assumes a minimum value (ṁskin,min). Between skin

temperatures of 33.7oC and 10.7oC the skin blood flow is assumed to vary linearly with

temperature.

The evaluation of vasodilation and vasoconstriction flows (ṁskin,dil and ṁskin,con) for a body
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segment can be calculated via the following expressions:



ṁskin,dil = ṁskin,bas (kg/s) i f Tcore < 36.8oC

ṁskin,dil =
Tcore−36.8
37.2−36.8 (ṁskin,max− ṁskin,bas)

+ṁskin,bas (kg/s) i f 36.8oC ≤ Tcore ≤ 37.2oC

ṁskin,dil = ṁskin,max (kg/s) i f Tcore > 37.2oC

(5.26)

and



ṁskin,con = ṁskin,min (kg/s) i f Tskin < 27.8oC

ṁskin,con =
Tskin−27.8
33.7−27.8(ṁskin,bas− ṁskin,min)

+ṁskin,min (kg/s) i f 27.8oC ≤ Tskin ≤ 33.7oC

ṁskin,con = ṁskin,bas (kg/s) i f Tskin > 33.7oC

(5.27)

Sweating

The sweating threshold Tswe is approximated as a function of mean skin temperature as [168]:


Tswe = 42.084−0.15833 Tskin (

oC)

i f Tskin ≤ 33.0 oC

Tswe = 36.85 oC i f Tskin > 33.0 oC

(5.28)

The sweat rate ṁswe may now be evaluated as

ṁswe =
45.8+739.4(Tcore−Tswe)

3.6 106 (kg/s) i f Tcore > Tswe (5.29)
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The relative skin wetness wskin is given as

wskin = 0.06+
ṁswe(1−0.06)

0.000193
(5.30)

The total evaporative heat loss qswe may now be written as [168]

qswe =
wskin(pskin− pout)

Rswe,cl +
1

fclhswe

(W/m2) (5.31)

where pskin is water vapour pressure on skin, Rswe,cl is the evaporative heat transfer resistance

of the clothing layer, fcl is the clothing area factor (the surface of the clothed body divided

by the area of the bare body), and hswe is the evaporative heat transfer coefficient.

5.4 Numerical schemes

5.4.1 Fluid discretization

A brief overview on the numerical method employed is provided in this section. The details

of the isothermal formulation are discussed in reference [171]. Equation (5.9) requires a

scheme with a stabilisation term to obtain a stable solution. Thus, in this study the Locally

Conservative Taylor Galerkin (LCG) method is used, which is the finite element equivalent

of Lax-Wendroff stabilisation in finite difference discretization. Using this method, the semi-

discrete form of Equation (5.9) can be written as,

Ūn+1
F − Ūn

F
∆t

=−
[

Hn
F

∂ Ūn
F

∂x
+

∂ Ḡn
F

∂x
− S̄n

F

]
+

∆t2

2

{
∂

∂x

[
Hn

F

(
Hn

F
∂ Ūn

F
∂x
− S̄n

F

)]
−Qn

F

(
Hn

F
∂ Ūn

F
∂x

+
∂ Ḡn

F
∂x
− S̄n

F

)} (5.32)
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where QF is the Jacobian matrix of the source. Applying LCG method, Equation (5.32) can

be written as [172, 173]:

∫
Ωe

NT
∆Ūn+1

F dx =−∆t
∫

Ωe

NT
[

Hn
F

∂ Ūn
F

∂x
+

∂ Ḡn
F

∂x
− S̄n

F

]
dx

+
∆t2

2

∫
Ωe

NT
{

∂

∂x

[
Hn

F

(
Hn

F
∂ Ūn

F
∂x
− S̄n

F

)]
+Qn

F

(
Hn

F
∂ Ūn

F
∂x

+
∂ Ḡn

F
∂x
− S̄n

F

)}
dx

(5.33)

The evaluation of Equation (5.33) for mass or momentum has been discussed by Mynard and

Nithiarasu [171] in detail. The final discrete form of Equation (5.33) can now be written as

[Me]{∆UF}n+1 = ∆t ([Ke]{FF}n +[Le]{SF}n + fΓe
n) (5.34)

where [Me], [Ke] and [Le] are the element mass matrix, the coefficient matrix for convection,

Taylor-Galerkin and source terms for the coupled continuity and momentum equations, respectively.

These element matrices of the system of equations are solved on individual elements, independent

of surrounding elements. Information is transmitted between elements via the numerical flux

term (fΓe) that is imposed along the boundaries of each element [171, 172]. As mentioned

previously, the energy equation may be decoupled from the other equations due to the one

way nature of the coupling. If decoupled, the energy Equation (5.33) may be discretized as

[MeT ]{∆T}n+1 = ∆t{([KeT ]+ [DeT ]+ [LeT ]){T}n +qn
Γe
} (5.35)

where the matrix [DeT ] is the coefficient matrix for diffusion and qΓe is the numerical conduction

flux exchanged between two adjacent elements. The time step restrictions of the numerical

scheme employed may be computed using the condition [171],

∆t = 0.9
∆xmin

cmax
(5.36)
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5.4.2 Solid discretization

For the problem of heat conduction in the wall, the standard forward Euler method is used.

The method uses the central difference scheme for spatial discretization and a first order

discretization for the time term. Thus, the discrete form of Equation (5.22) for a node i may

be written as

T n
t,i−1

∆tkt

ρtctri
(− ri

∆r2 +
1

2∆r
)+T n

t,i(1+
2∆tkt

ρtct∆r2 )−T n
t,i+1

∆tkt

ρtctri
(

ri

∆r2 +
1

2∆r
)

=
∆t

ρtct
qm +T n−1

t,i , i = 1,2, ..m
(5.37)

Since the matrix of the linear system is tridiagonal, Thomas algorithm is used to solve the

above system.

5.4.3 Coupling blood with solid systems

The coupling between the blood vessels and surrounding tissue is critical to obtain sensible

results. As mentioned previously, a one-dimensional bio-heat transfer model along the radial

direction of body segment is used. The blood vessels are embedded into these segments

as shown in Figure 5.2. This approach is considerably more advanced than the common

assumption of a single core node, which implies that in each cylinder all types of convection

losses are depending only on a scalar value. Furthermore, such a model is a good compromise

between computational cost and accuracy [174].

The locations of arteries within the solid body are estimated from [175]. As reported previously,

the heart represents the inlet to the fluid system and is not part of any cylindrical segment.

The large arteries proposed in [1] are subdivided into three categories of heart region, central

and transversal vessels. As arteries in the heart region are not included in the tissue discretization,

no heat transfer with solid tissues occurs; the only exception is represented by the inlet

flow node (which is isothermal with surrounding tissues). Each and every central artery is
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Figure 5.3: Longitudinal and radial discretizations for one cylinder (from [5]).

assumed to coincide with the axis of one or more cylindrical segments, while transversal

vessels cross transversely one or more cylinders. The arrangement of these vessels within

the cylindrical segment is shown in Figure 5.2, where central arteries are depicted as chained

lines while transversal ones are represented by dashed lines. Figure 5.3 shows a typical

section of the cylindrical segment with embedded central and transversal arteries. It should

also be noted that while the geometrical and mechanical properties of elastic vessel may be

allowed to change along the longitudinal coordinate, the solid tissue properties along the

axial direction of the cylindrical segment are fixed. In addition, cylindrical segments are not

considered deformable. The geometrical, thermophysical and basal physiological properties

of tissue materials and the body features are adopted from [100]. The inner wall heat transfer

coefficient is set up following [176] (Nusselt number is assumed be equal to 4).

Figure 5.3 shows the spatial discretization adapted in the present study. The body is assumed

to be axisymmetric and the nodes of the central arteries are linked to the first node of the

surrounding tissue layers as shown via a convective boundary condition. For every node

along the central artery, a matching radial set of nodes are introduced into the surrounding

solid tissues. Each central vessel node is therefore identified by two coordinates, a longitudinal

and radial coordinate. As shown, the transversal vessels are embedded into the cylindrical
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segment and at the intersecting point of tissue mesh and transversal artery, a flow node is

introduced that coincides with the solid node (see Figure 5.3).

The temperature calculation at fluid-solid interface nodes includes the following steps. The

temperature transported through the systemic circulation network forms the basis for the

boundary condition to Equation (5.22). The fluid inlet node (first node of seg. 1) is assumed

to be in thermal equilibrium with a tissue node located in the middle of the thorax, having

radial coordinate equal to 8 cm. The nodal temperatures of the central arteries provide

the wall temperature for the convective boundary condition between the blood and arterial

wall (first tissue node). Where a transversal vessel node coincides with the tissue node, a

volumetric source term is explicitly evaluated based on the expected convection contribution

and added to the discrete heat conduction equation of the tissue (increasing the term qm).

In cylinders representing head, neck, legs and forearms there are no central arteries. Thus,

along the axis of these cylindrical segments an adiabatic condition is adopted.

The perfusion in solid tissue segments is modelled through the perfusion coefficients (see

Equation (5.22)). The temperature difference in the perfusion term is calculated as the

difference between the section average blood (mean between all vessels crossing the section)

and tissue temperatures. Equation (5.22) is applied to all tissue nodes by setting the appropriate

material constants kt , ρt , and ct , qm and φper f . It should be noted that qm and φper f are

variables regulated by the thermo-regulatory system (for further details see Subsection 5.3.4).

In the present study, the tissue temperatures are computed after the evaluation of blood

temperatures at every time step. All the components of qm are evaluated before computing

the tissue temperature at each time step.

The respiration losses are incorporated by considering a negative volumetric heat source qbre

at all lung nodes. To estimate such losses the following formulation has been used [99]

qbre =
1

Vlung
[0.0014 Qm,glob (34−Tout)+0.0173 Qm,glob (5.87− pout)] (W/cm3) (5.38)
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where Qm,glob is the global metabolic heat generation rate, Vlung is the lung volume (respectively

58.2 W/m2 and 5631.41 cm3) and pout is the ambient water vapour pressure. Further details

may be found in [99].

5.4.4 Heat exchanged with the environment

The body exchanges heat with the environment through the skin and breathing. The skin is

represented by the outer most part of the cylindrical segment. The flux exchanged between

the skin layer and outside environment qskin is the sum of the convection (qcon,out), radiation

(qrad) and evaporation (qswe) losses. The Neumann boundary condition used in the present

study is

−ktAout
∂Tt

∂ r
|rout = qcon,out +qrad +qswe (5.39)

For the evaluation of qcon,out and qrad the methodology proposed by Fiala et al. [100] is

followed. The convective heat transfer between skin node and the external environment may

be evaluated with the following expression.

qcon,out = hcon,out(Tt(rout)−Tout) (5.40)

where hout,con is the convection heat transfer coefficient and it is a function of the node

location in the body, the air velocity and the temperature difference between the outer surface

and environment. For the radiative exchange the evaluation of the mean temperature of the

surrounding surfaces (Tsur,m) is necessary before applying

qrad = hrad(Tt(rout)−Tsur,m) (5.41)

where hrad is the radiative heat transfer coefficient depending on the temperatures, the emission

coefficients and the view factors of the surrounding surfaces considered.
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5.4.5 System interconnections and solution procedure

Here we describe how all the subsystems are interconnected and coupled (see Figure 5.4).

The thermo-regulatory response is evaluated by knowing Tcore and Tskin of the previous time

step and comparing them with thermo-neutrality reference values. Such a control system is

able to modify tissue balance through shivering heat source, increment or decrement of skin

perfused flow, sweating losses. As blood variables are evaluated in an explicit way, we use Tt

of the previous time step for prescribing interacting wall and fluid inlet temperatures. Once

the blood system output is calculated, tissue temperatures are calculated before starting a

new cycle.

Figure 5.4: Global system (from [5]).

The calculation procedure for evaluating temperatures of the global system at each time step

is carried out as follows:

1. T n+1 is calculated explicitly by means of third equation of (5.9) using T n
w,in;

2. At the extremities of fluid network T n+1 are assigned equal to T n
t of the interacting

tissue nodes;

3. Tcore and Tskin are derived from T n
t field;
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4. Convection from transversal vessels, breathing, sweating and shivering contributions

are calculated using T n+1 and T n
t ;

5. T n+1
t is computed implicitly with Equation (5.22).

5.5 Results

5.5.1 Convection in an elastic tube

The energy transport results obtained for straight and bifurcating vessels are reported in the

following subsections. The Locally Conservative Taylor Galerkin method used in the present

study is extensively tested previously for fluid flow, and a detailed discussion on the accuracy

of the method is provided in references [171, 1]. Thus, no further validation for accuracy is

reported here. The fluid properties used for the simulations are summarised in Table 5.5. The

fluid motion is generated by applying an inlet pressure signal to the first node of the domain.

It should be reiterated that other primitive variables at the inlet and exit are computed via the

characteristic variables. This is the more natural way of determining the boundary conditions

at the inlet and exit of the domain. The inlet temperature of the fluid is set at 37 ◦C to reflect

the human body temperature. The external pressure acting on the wall is taken equal to zero.

Density of fluid, ρF (g/cm3) 1.06
Viscosity of fluid, µF (poise) 3.5x10−2

Thermal conductivity of fluid, kF (W/cmoC) 0.05
Specific heat of fluid, cF (J/goC) 3.9
Inner wall heat transfer coefficient, hin (W/oCcm2) 0.01

Table 5.2: Fluid parameters and properties used in simulations.
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Poisson’s ratio, νPois 0.5
Unstressed area, A0 (cm2) 1.0
Material wall parameter, β (dyne/cm2) 2.26974 105

Wall thickness, h (cm) 0.05
Tube length, L (cm) 20
Finite element size, le (cm) 2.0x10−2

Table 5.3: Geometrical and material properties of the vessel used.

Solid wall density, ρt (g/cm3) 1.30
Solid wall thermal conductivity, kt (W/cmoC) 0.075
Solid wall specific heat, ct (J/goC) 3.0
Outside atmosphere temperature, Tout (oC) 20.0
Outside wall heat transfer coefficient, hext (W/oCcm2) 0.001 - 0.01

Table 5.4: Solid parameters and the outside conditions.

Constant inner wall temperature

In order to check the performance of the method, a simple problem of straight tube with

constant inlet temperature is considered first. In this case the inner wall temperature is

assumed to be constant in space and time (Tw,in=35.3 ◦C). All the parameters related to the

straight tube problem are listed in Table 5.3. All the variables are monitored at the midpoint

of the segment.

The effects of a constant and pulsatile flow on temperature field are compared in Figure

5.5. The periodic signal is characterised by a pressure pulse with a width equal to 0.43 s.

For both cases, pressure, area, velocity and temperature evolutions in time at midpoint are

shown in Figure 5.5. As discussed in Section 5.3.1, A, u and p waveforms propagate in time

along the tube at an intrinsic wave speed velocity of c, while T is transported by velocity

field u. For the case in which velocity is constant, the temperature reaches an expected

steady and stable value, slightly lower than the inlet temperature due to lower inner wall

temperature. With a periodic pressure pulse, the behaviour is completely different. While

there are no surprises in the velocity, area and pressure value distributions, very small local

oscillations in temperature are observed. This is inline with the variations in velocity values,

as reported in [177]. When the velocity value peaks, it introduces a reduced cooling effect
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resulting in a slightly higher temperature than average temperature. However, when the

velocity value is reduced, increased flow stagnation decreases the temperature value. This

decrease in temperature is a result of enhanced heat transfer between the fluid and the wall

due to reduced velocity. Such behaviour continues according to the prescribed pressure pulse

in a cyclic manner as shown in Figure 5.5.
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Figure 5.5: Flow and heat transfer in a flexible tube with a constant inner wall
temperature (from [4]). Pressure, area, velocity and temperature variations for
constant (left) and pulsating (right) pressure inputs.

To investigate the effects of reflections on heat transfer, three cases with prescribed exit

reflection coefficients are examined next. A case without reflection (Rt=0), partial reflection

(Rt=0.5) and total reflection (Rt=1) are studied. The results are shown in Figure 5.6. As seen,

the flow and heat transfer results with zero reflection coefficient are not different from the

one discussed previously. However, as the wave reflection is introduced at the exit the reverse



5.5 Results 141

wave produces a strong cooling effect on the fluid. This is due to the fact that the reflected

flow waves increase the fluid contact duration with the cold inner wall surface. This cooling

effect is particularly pronounced when the wave is fully reflected. It is worth mentioning that

setting Rt different from 0 is physiologically more correct, because in this case the reflected

wave also depends on the forward characteristic variable.
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Figure 5.6: Flow and heat transfer in a flexible tube with a constant inner wall
temperature (from [4]). Effects of reflections on velocity and temperature.

Convective inside/outside wall conditions

In this problem, the inner wall surface temperature is allowed to vary in time and space.

Thus, the heat conduction model for the surrounding wall material is now invoked. The
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model parameters and the outside conditions are reported in Table 5.4. All the remaining

parameters for the study are the same as in the previous section.

To study the influence of the external heat transfer coefficient, the temperature is monitored at

three points at the mid cross section of the vessel as shown in Figure 5.7. To clearly quantify

the influence of external heat transfer coefficient, all other parameters, including internal

wall heat transfer coefficient are fixed as given by Tables 5.5, 5.3 and 5.4. In Figure 5.7,

temperature evolutions at points 1, 2 and 3 are shown for different heat transfer coefficients.

As seen, the cooling effect is enhanced as the heat transfer coefficient is increased. Also, the

temperature pattern with respect to time in the fluid is very similar to the previously observed

pattern. However, the difference here is that the reduction in temperature is controlled by the

external heat transfer coefficient at the outer surface of the vessel. In all cases, the time

taken for the temperature to reach a steady state is much higher than the previously observed

constant wall temperature example. Moreover, the temperature of the fluid shows minor

oscillatory activity representing the pulsatile motion of the fluid. This activity is especially

enhanced at higher external heat transfer coefficient values.

Next, we investigate the effect of wall properties on heat transfer. A combination of wall

properties may be represented through the material parameter β . However, the wall thickness

(h), unstressed area (A0) and Young’s modulus of the material (Y ) may also be changed along

with β . Apart from β , other parameters used in the calculations remain the same. The effect

of wall thickness and corresponding β variation on flow and heat transfer is shown in Figure

5.8. As seen, both the velocity and temperature exhibits pulsatile behaviour. It is clear that

when β decreases, the higher elasticity increases the average flow speed. The average fluid

temperature also slightly decreases with β value. However, the peak temperature values

slightly increase with decrease in β values. This may be due to the increased flow speed and

reduced contact time between fluid and cold wall. The pulsating behaviour of the temperature

remains the same as in the problem with constant inner wall temperature.
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Figure 5.7: Flow and heat transfer in a flexible tube with convective wall conditions
(from [4]). Effect of hext on temperature at points 1 (top right), 2 (bottom left) and 3
(bottom right).

Vessel branching

In this section, the effect of introducing a bifurcation is studied. The system considered

includes three tubes that are linked by means of a bifurcation. Each of them has a length

equal to 10 cm. Monitoring points (4 and 5) are positioned at the midpoint of the segment, as

shown in Figure 5.9. The tube associated with the point 5 has an unstressed area (A0) that is

equal to half of the unstressed area of point 4. A comparison is carried out against a straight

tube of identical total length with monitoring points at 6 and 7, as shown in Figure 5.9. In

the straight tube case, the unstressed area is equal to the area at point 4. The heat transfer
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Figure 5.8: Flow and heat transfer in a flexible tube with a constant inner wall
temperature (from [4]). Effects of wall thickness (h) on fluid velocity and temperature.

results are also shown in Figure 5.9. As expected, the bifurcation modifies the velocity field

slightly. Both the velocity amplitude values, before and after the bifurcation, have been

reduced in comparison to the straight tube value. While there is no significant difference in

heat transfer between the parent vessel of the bifurcation and the straight tube, a reduction

in temperature is observed in the daughter vessels. This is the result of smaller velocity in

comparison to the straight tube and also due to an increase in the ratio between surface area

and cross sectional area of daughter vessels.
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Figure 5.9: Flow and heat transfer in a bifurcating vessel with convective wall
conditions (from [4]). Velocity and temperature in a bifurcation.

5.5.2 Energy transport within the human body

Although the model proposed in the present work is novel, different components of the

methodology have undergone extensive testing in the past. The systemic circulation model,

for example, has been extensively used in different studies and compared against experimental

flow and pressure measurements [64, 1]. Thus, the focus of the results in the present study
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is the bio-heat transfer within a human body for various governing parameters. We consider

a bare body and thus Rswe,cl and fcl are set equal to 0 and 1, respectively. For the cases

considered, we assume the same radiative parameters presented in [100], while air velocity

(vair) is set equal to 4 m/min. The initial temperature at all nodes is set at 36.8oC in order to

reflect an initial thermo neutral condition. The fluid properties and outside conditions used

in the study are listed in Tables 5.5 and 5.6.

Density of fluid, ρF (g/cm3) 1.060
Viscosity of fluid, µF (poise) 0.035
Thermal conductivity of fluid, kF (W/cmoC) 0.050
Specific heat of fluid, cF (J/goC) 3.900

Table 5.5: Fluid parameters and properties used in the simulations.

Tissue ct (J/gK) qm,0 (W/cm3) ρt (g/cm3) kt (W/cmK) φper f (1/s)
brain 3.850 0.013400 1.080 0.0049 0.011320
lung 3.718 0.000600 0.550 0.0028 0.004310

viscera 3.697 0.004100 1.000 0.0053 0.000500
bone 1.700 0.000000 1.375 0.0075 0.000000

muscle 3.700 0.000727 1.085 0.0042 0.000538
fat 2.300 0.000003 0.850 0.0016 0.000004

skin 3.680 0.001096 1.085 0.0047 variable

Table 5.6: Solid properties used in the simulations. For the cutaneous perfusion we
adopted a specific coefficient for each cylinder (more details can be found in [9]).

A comparison of the current model for various atmospheric conditions against measurement,

is provided in the following subsection. This is followed by an investigation on the contribution

of inner convection to the body thermal balance and finally the thermo-regulatory response

of the body in a cold environment is quantified.

Comparison against measurements

At first a validation of the model with experimental data is presented. For doing this the

relevant works by Stolwijk and Hardy [95], and Hardy and Stolwijk [178] are used. In these

studies volunteers have undergone exposure to various environmental conditions. Temperatures

were recorded for the tympanic and rectal regions and also the evaporative losses (sweating
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Figure 5.10: Tympanic and rectal temperatures for various external conditions
(from [5]).

and breathing latent losses) were evaluated. In order to test systematically the current model,

we simulate the body response for three different external exposures. The considered conditions

are (Tout=28.5oC-r.h.=31%), (Tout=17.7oC-r.h.=31%) and (Tout=13.0oC-r.h.=45%). For the

rectal temperature calculation, we use the tissue node at an axial distance of 22 cm from the

top of abdominal cylinder and at a radius of r=3.5 cm. The tympanic site is assumed to be at

a distance of 12 cm from the bottom of the head cylinder and at r=5.0 cm. The evaporative

losses are evaluated by summing the contributions of each cylinder section and then dividing

by the total skin surface. We note that the initial temperature field imposed slightly differs

from the one of a body under thermo neutral conditions. However, after a long transient all
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results have to converge to the same value range.

In Figure 5.10 the time evolutions of tympanic, rectal temperatures and evaporative losses

are reported. For all exposure conditions considered, the simulated results are in agreement

with the experimental data. For the tympanic and rectal temperatures, the maximum relative

errors are 0.7 % and 1.1 %, respectively. It can be seen that the temperature errors decrease

significantly with time. At quasi-steady state, the largest difference in temperature is less

than 0.25oC. The accuracy of the evaporative losses calculated is difficult to evaluate as the

experimental data is widely scattered.

Next, we report the thermal body response under controlled external conditions providing

comparisons with experimental measurements and other numerical models. Specifically,

the model is tested under exposure to heat for 1 hour at (28.1oC,43% r.h.), 2 hours at

(47.8oC,27% r.h.) and 1 hour at (28.3oC,44% r.h.). Findings for these simulated conditions

are compared with experimental data [178] and solutions provided by "Smith" and "Karaki"

models, respectively presented in [99, 107]. The core and mean skin temperature responses

in time are shown in Figure 5.11. Our simulation results are in line with expectations. The

maximum relative errors for core and mean skin temperatures are, respectively, 1.3 % and

3.6 %. As seen the mean skin temperature curve rises suddenly as the step change occurs but

then it remains within an acceptable range of temperatures.

The model is also tested when the naked body is exposed to cold conditions. The core

temperature prediction is compared against the findings reported in one of the most recent

works [107]. Here the body is exposed to (13oC,45% r.h.) for 65 min. The results are

reported in Figure 5.12. This figure shows a good agreement between experimental and

numerical results, with a maximum relative error ∼ 0.8 %.

Role of inner convection

To understand the temperature changes in blood, four representative arteries, Abdominal

Aorta II (seg. 43, abdomen), Left external carotid (seg. 25, head), Right External Iliac (seg.
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Figure 5.11: Benchmark case for naked body under heat exposure (from [5]).

58, right thigh) and Right Radial (seg. 16, right arm) are selected (for more detail about artery

labelling see [1]). The temperatures at these locations are recorded once a quasi-steady state

is reached. The tissue temperature distributions are recorded for the sections corresponding

to the nodes selected in the arteries mentioned (abdomen, head, thigh, and arm).

Since the flow is pulsatile in nature [1], pulsatility of temperature is also anticipated. In

addition, the wave nature of the flow leads to reflected temperature waves. Although a

number of different parameters such as elastic properties of the vessels can be tested using

the proposed model, all the material properties, heart rate and flow boundary conditions

at the extremities are fixed to produce an understanding of normal human body behaviour.

Note that describing bio-heat transfer in a body subjected to some disease states or extreme

environmental conditions needs parameter changes.

Figure 5.13 shows the blood temperature at three selected monitoring points in the systemic

circulation. As anticipated, the temperature follows a mild periodic pattern in line with the
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Figure 5.12: Benchmark case for naked body under cold exposure (from [5]).

velocity changes. As seen the frequency and amplitude of oscillations differ for different

environmental conditions. In general the amplitude of the temperature waves is low and

thus no dramatic local change in temperature is possible. The blood temperature is mildly

influenced by the atmospheric temperature in the core part of the body. The pronounced

effect in the radial artery is due to the smaller dimensions of the forearm and to the absence

of any metabolic active tissue.

In order to evaluate the effect of heat convection on tissues, the results obtained from the

proposed model are compared to the approach used in other reference works [100, 103]

where heat conduction is exclusively used to model heat transfer occurring between blood

and tissue system. Figure 5.14 shows the temperature distribution with and without heat

convection and perfusion in arteries. As seen a local temperature variation of more than

1.0oC is observed in tissues in the abdominal area. Although this variation decays as we

approach the skin layer, this finding is important for further investigation. In the abdomen and

head, convection involves a smaller average tissue temperature compared to the case without
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Figure 5.13: Blood velocity and temperature along the arterial tree for various external
conditions (from [5]).

convection. The situation in the arm instead is the opposite. This can suggest that, with

convection, a more uniform energy redistribution is enforced. It can therefore be reasonably

concluded that flow and convection heat transfer play an important regulatory role that may

be further enhanced in abnormal conditions such as high blood pressure and stiffer arteries.
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Figure 5.14: Tissue temperatures for two different modelling approaches at t=33.0 min
(from [5]).

Influence of thermo-regulation

It is often difficult to evaluate the effect of thermo-regulation as this is highly coupled with

different external parameters. Thus, in this section an example is provided to demonstrate the
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effect of thermo-regulation when the body is subjected to cold exposure. To achieve this, we

consider also a case in which all control mechanisms (shivering, cutaneous vasomotion and

sweating) are shut down. All other parameters are assumed to be the same as in the previous

subsections.

Figure 5.15: Thermo-regulation effects (active/inactive) on tissue temperatures at
t=33.0 min (from [5]).
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Figure 5.15 highlights the influence of the thermo-regulatory system in all four regions

considered. While the core temperature remains approximately the same, the temperature at

the periphery has dropped without thermo-regulation. Most consistent temperature variations

occur in the peripheral body cylinders (arm and thigh). The reduction after 33.0 min is as

high as 1oC. The shivering effect is not included as the core temperature needed to trigger

shivering has not been reached. For a longer time or more extreme external conditions, such

profiles could change significantly.

5.6 Concluding remarks

A novel computational framework able to predict the energy transport within the human body

has been developed and tested. The systemic circulation embedded human body model is

more comprehensive than existing models. Further improvements are nevertheless possible

by including more generations of arteries and veins. The proposed model in its present form

can test various parameters including arterial stiffness, blood pressure, various branching

architectures, tissue properties, surrounding conditions and many more. The results produced

clearly highlight the effect of arterial heat convection on the surrounding tissues. The heat

convection and perfusion enhances the energy exchange between the blood and surrounding

tissues. As expected surrounding temperature-changes significantly affect the skin temperature;

however, the control system limits the rapid variation of temperature whenever external

conditions are far from a thermally neutral equilibrium.

There are numerous potential applications of the proposed model, such as better understanding

of hyperthermia/hypothermia and the detailed study of resulting temperature transport and

distribution. Furthermore, the proposed model can study the influence of disease conditions

such as hypertension and arterial dysfunction and even ageing on energy exchange. The

model can also be used to evaluate the effects of changing environments as a condition for

enhanced quality of life.
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Chapter 6

Global discussion
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A summary of the results presented in the previous chapters is provided along with further

and general conclusions. Potential future studies for the continuation of the present work are

also proposed and discussed.

6.1 Results summary

The work presented in this thesis provides a number of key steps towards the integration

of arterial wall mechanics and cellular signalling into a virtual arterial framework, able

to test hypotheses on the origins of vascular disease and assist with the design of novel

pharmacological and bio-mechanical probes. An important component of this modelling

approach is the evaluation of the combined response due to the mechano-elastic properties of

the vasculature with the active contractile response of the smooth muscle layer of the arterial

wall, as presented in Chapter 3. The numerical methodology proposed combines dynamics

and mechanics occurring at different scales, either under mechanical load or pharmacological

stimuli, incorporating specific numerical solution strategies for each component. A number

of specific outcomes are highlighted here. We were able to demonstrate the role of cell-

cell communication (described by diffusion coefficients αV and αC) in emergent large scale

synchronisation within the arterial wall. These findings highlighted the role of Ca2+ concentration

distribution along the network, with the formation of localised contractile responses evolving

into travelling waves for low and high coupling scenarios, respectively. Specific pharmacological

probes (i.e., phenylephrine, CPA, ryanodine) able to either stimulate or inhibit smooth muscle

contractile activity, were employed to evaluate the performance of the numerical framework.

The combined passive (structural) response and active contractile response of SMC tissue

accurately reproduced the distinct effects associated with the administration of the three

pharmacological interventions. The role of the endothelium has not been accounted by

the present methodology and will form a future addition to the model. To overcome this

simplifying assumption, all experiments were performed in the presence of L-NAME which

suppressed the NO endothelium production. In this study all experimental data were obtained

from arterial samples maintained under isometric conditions. This allowed us to deal with a
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simplified system where the inertia force is null, and the estimation of material parameters,

such as densities of media and adventitia, was not necessary. In addition, any issue related

to the time stability was also avoided. For the current study, several arterial ring experiments

under isometric conditions have been carried out, each involving four rings≈ 2 mm in length

excised from the same animal. In spite of efforts to maintain identical conditions, variability

was present, particularly between individual animals. With respect to the four arterial rings

from the same arterial sample (e.g., Figure 3.9), experimental and biological variability that

could not be eliminated was due to differences in length, diameter (all rings were from

adjacent sections, but there is, inevitably, a reduction in diameter as you descend the vessel),

and purely initial condition considerations, such as Ca2+ and ionic uptake levels, which have

been shown both theoretically and experimentally to greatly affect the oscillatory response

of the arterial wall [7, 56, 179]. Due to these factors, each arterial ring is at a different initial

contractile state, reflected in variable unloaded geometry.

A novel, dual time step Fluid Structure Interaction framework is proposed in Chapter 4.

This includes an extensive validation with several benchmark cases in order to test each

subsystem. For the first time a quantitative comparison on the efficiency between standard

and AC based CBS algorithms is carried out, showing, for the latter method, significant

computational time savings on the problem analysed. Implementation of the proposed methodology

demonstrated that it is possible to employ dual time stepping within the solution procedure.

We need to note that the computational efficiency was not compared against any other

segregated approaches employing a different fluid solver. Moreover, the methodology was

not tested for any problem characterised by added mass effect. Importantly the use of a

matrix free method for the fluid solver allows significant RAM memory savings, becoming

an ideal candidate for large size problems.

Methodology for the incorporation of a one-dimensional vessels network into a solid tissue

model is presented in Chapter 5. Firstly the model valid for a single 1-D elastic vessel

surrounded by tissue is formulated. This formulation is subsequently extended to a realistic

human body model. By contrast to the existing pure conduction/perfusion based models,
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the present methodology couples the arterial fluid dynamics of a human body with a multi-

segmental bio-heat model of surrounding solid tissues. More than a dozen segments are

employed to represent the heat conduction in the surrounding tissues and each segment is

constituted by a multi-layered circular cylinder. Multi-layers allow flexible delineation of the

geometry and incorporation of properties of different tissue types. The global passive system

is conjugated to the thermo-regulatory system, which is assumed to be underpinned by

shivering, sweating, and perfusion changes. The extended framework allows for computation

of the transport of a scalar field (i.e. the fluid temperature) along the arterial blood stream.

The blood input was diffused within the tissues by coupling at the interfaces of the fluid and

solid subsystems. Important features like fluid pulsatility and regulatory mechanisms were

also accounted for. Initially we performed a sensitivity analysis on the vessel properties and

parameters affecting the heat transfer between fluid and surrounding tissues. This analysis

showed that vessel elasticity can affect the energy transfer due to changes in the contact

time between the fluid and wall. For a tube of greater elasticity we obtained higher velocity

and thus a smaller cooling effect (when the fluid is warmer than the surrounding tissues).

On the other hand, by increasing the reflection coefficient at the vessel extremity, the fluid

alternates direction promoting thermal exchange. Heat transfer was then simulated within

the whole human body for different internal (i.e., internal convection thermo-regulation

active/inactive) and external conditions. We proposed different cases for validating the

methodology including cold and hot stress exposures. Blood temperature was monitored

along the tree, as well as tissue temperature distribution along the radial section. The global

body thermal response was evaluated by means of indicators, such as core and average skin

temperatures. In spite of the model parameter uncertainty, the predicted results agreed with

the experimental observations. Computational results show that the convection introduces

pulsatility to the temperature distribution within the solid tissues in the vicinity of the arteries.

This finding suggests that the inner convection has a more predominant role in the human

body heat balance than previously believed.
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6.2 Potential future work

The methodology developed embodies a number of crucial steps towards the development

of a comprehensive computational platform for the in silico testing of mechanistic theories

on the pathophysiology and progression of vascular and cardiac disease. At the fundamental

level, this approach has incorporated intra- and inter-cellular signalling within the smooth

muscle layer of the arterial wall. Upscaling allowed us to quantify the global manifestation

of cellular processes in the arterial wall contractile response. At this fundamental level,

a more comprehensive approach will require to account for the regulatory action of the

endothelial layer, which plays a key role as the interface between blood flow and contractile

media layer. The precise way in which the endothelium regulates the contractile apparatus

of arterial smooth muscle by releasing a number of chemical agents is still not completely

understood and needs further experimental and computational investigation. Coupling of

the smooth muscle and endothelial layers, operating as distinct entities will require a multi-

physics interface approach. Further integration of a comprehensive vascular wall model

with a robust and computationally efficient Fluid Structure Interaction framework would

allow us to quantify the effect of the muscle contractility on the vessel lumen. A fully

responsive virtual artery incorporating blood flow will thus become feasible. This inclusive

system would allow the detailed study of the effects of vascular disease on peripheral tissue

perfusion and oxygenation. Generalisation of such a broad scheme to realistic branching

architectures, would inevitably be very expensive computationally. A way to significantly

reduce the computational effort, would be to couple the current multidimensional model,

valid for any specific arterial region of interest, with a reduced order model representing

an extended and comprehensive arterial network. With such a multiscale approach the

computed results of the 1D model would be used as boundary conditions for a detailed

domain analysis by the 3-D model. This strategy would maintain a sufficient degree of

accuracy and, at the same time, will not be limited by computational efficiency issues.

As an integrated framework the proposed modelling methodology has important potential

healthcare applications. From a heuristic point of view, it can be employed as a testing
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ground for the evolution of vascular disease, such as observed in diabetes and ageing. From

a functional point of view, it can be employed to predict the transport of pharmacological

compounds along the full arterial network, accounting for elastic, muscular-contractile and

peripheral resistance vessels. Similarly it can be used to evaluate oxygen and nutrient transport

to organs/specific tissues for healthy and diseased contractile response states. Additionally it

can help to elucidate fundamental physiological concepts such as the precise role of arterial

vasomotion in the optimisation of blood transport.
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