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SUMMARY 

The last two decades have seen an increased drive to administer parenteral nutrition 

(PN) to patients in their home environments, thereby reducing associated hospital 

costs and improving patient quality of life. 

 

The occurrence of deranged nutritional biochemistry results has baffled PN experts 

for years because PN additives are marketed for the general needs of patients and PN 

is tailored to each patient’s requirements (both formulation and regimen). 

 

This thesis documents the investigations into HPN population characteristics, the 

extent of nutritional abnormalities (deficiencies and excesses) in a cohort of LT PN 

patients in Wales. Both cross-sectional and longitudinal retrospective study designs 

were employed alongside small-scale laboratory efforts to investigate stability of 

vitamin D in PN additives using High Performance Liquid Chromatography (HPLC). 

 

Characteristics of the HPN population in Wales were shown to be variable in terms of 

PN requirements for a predominantly female sample population (2:1); in whom 

78.6% of patients received PN for indications relating to short bowel syndrome (SBS). 

 

A database analysis of micronutrient test results revealed a high prevalence of 

deficiencies of vitamin D and selenium, as well as excesses of manganese and water-

soluble vitamins; which can lead to clinically relevant effects in patients. 

 

The sample population was shown to have impaired bone health since first receiving 

PN; respective sites of the femoral neck and total hip presented 58% and 60.8% of 

patients had osteopenia, while 28% and 19.6% had osteoporosis. Evidence in the 

literature links these clinical outcomes of metabolic bone disease (MBD) to patients’ 

inadequate vitamin D status. 

 

A final study exploring the adequacy of the trace element (TE) preparation 

Additrace®, found it lacking in selenium and excessive in manganese for the general 

requirements of the PN population. Clinician-directed supplementation of PN outside 

of Additrace® was associated with better micronutrient status in patients and more 

test results within range. 
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CHAPTER ONE 

Introduction: long-term (LT) home 

parenteral nutrition (HPN)
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1.1. INTRODUCTION TO PARENTERAL NUTRITION (PN) AND HPN 

1.1.1. PN 

PN is an intravenous (IV) mode of nutritional therapy established for patients 

who are intolerant of, or those who cannot receive adequate nutrition via the 

oral or enteral route. Over the last 40 years, it has allowed patients to lead as 

normal a life as possible, free to continue with their day-to-day activities. It is 

a complex nutritional admixture composed of many different chemical entities 

which must be chemically, physically and microbiologically robust in order to 

be safely administered to the patient (White 2011). Home parenteral nutrition 

(HPN) refers to PN given as nutritional therapy to patients in their domiciliary 

home environment. This falls in line with recent NHS efforts to treat patients 

at home, in so doing it helps to reduce the burden placed on hospitals, reduce 

associated costs and improve clinical outcomes (Department of Health 2009). 

 

PN is often referred to as “total” PN; in this sense it aims to provide the 

complete nutritional needs of the patient without any significant enteral 

intake. However PN can also be given supplementary to nutrition consumed 

via the gastrointestinal (GI) tract in those patients still capable of oral or 

enteral feeding (Rye and Nightingale 2015). HPN can be provided to patients 

in both these forms, as either their sole source of nutrition or supplementary 

to what they are capable of consuming orally or enterally (Pertkiewicz et al. 

2009). In this way, the PN formulation is adapted to suit the individual needs 

of the patient. 

 

The basic formula for PN includes a mixture of lipid (as an emulsion), 

carbohydrate (as glucose solution), amino acid solution (including essential 

and non-essential amino acids), vitamins, trace elements (TE), electrolytes and 

water, and can be produced as: 

- ‘Standard’ bags (feeds) are pre-compounded pre-filled PN bags. These 

are licensed ready-to-use pharmaceutical products with a set 

formulation, produced for convenience to cater for more generalised 

nutritional needs with longer shelf lives and without the need for 

refrigeration. These can be given with or without subsequent additions 

of electrolytes and/or micronutrients (standard vs tailored regimen), 
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although the National Institute for Health and Care Excellence (NICE) 

guidelines state that all patients should receive appropriate provision 

of micronutrients in their PN from the outset of feeding (NICE 2006). 

- ‘Bespoke’ bags (feeds) are compounded from individual components as 

per individualised patient needs, usually for patients with sensitive 

and/or long-term requirements (outside of remit of standard bags). 

 

Lipid, glucose and amino acids comprise the main components (macro-

nutrients) of PN. Vitamins and TE collectively are known as micronutrients, 

with electrolytes sometimes falling into this category as well. TE are inorganic 

elements included as integral parts of metabolically active organic complexes 

such as enzymes (e.g. iron, zinc). Vitamins split into two broad categories, 

either fat-soluble or water-soluble vitamins.  

 

There is a wide range of commercially available standard bags to meet the 

variable needs of PN patients cared for by hospitals without or with limited 

compounding facilities. The general advantages of using standard prefilled PN 

bags are that they avoid the need to compound bags locally, and avoid the costs 

associated with buying in bespoke or aseptically prepared bags. Also, they do 

not require refrigeration, which makes them a useful option for stable home 

PN patients for short periods away, e.g. for holidays. As bespoke bags require 

sterile aseptic preparation conditions, American Society for Parenteral and 

Enteral Nutrition (ASPEN) have recently issued standardised competencies 

and safe practice recommendations regarding their order, review, preparation 

(including compounding) to reduce risks from differences in local procedures 

(Boullata et al. 2016); as yet there are no formalised recommendations for 

standardised competencies from European or UK PN working groups.  

 

1.1.2. Indication for PN 

PN is used in the treatment of patients with long-term (LT) chronic conditions. 

HPN patients are often maintained on PN for long periods of time and may 

require close monitoring and tailoring of their ‘PN regimen’ to suit their needs. 
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Throughout this report, the abbreviation ‘LT PN’ will be used to refer to a 

duration of least six months within which patients have been receiving PN.  

 

NICE has clearly defined candidates for PN as being those who are 

malnourished or at risk of malnutrition as well as being either unsafe for oral 

nutrition or having functional problems associated with the GI tract (NICE 

2006). As such, LT PN is indicated for those with chronic intestinal failure (IF), 

in particular IF type 3, a condition characterised by reduced intestinal 

absorption to the extent where HPN therapy is needed to maintain health 

and/or growth (Pironi et al. 2015). The most commonly implicated underlying 

diseases which contribute to IF are inflammatory bowel disease (IBD), 

complications following surgery, mesenteric vasculitis, radiation enteritis and 

chronic short bowel disease with severe malabsorption and dysmotility 

syndromes (Staun et al. 2009). The indications for LT PN for patients with 

chronic IF are typically short bowel syndrome (SBS), fistula, bowel dysmotility 

and radiation enteropathy (Nightingale 2006; Staun et al. 2009). SBS has been 

defined as a state of malabsorption following intestinal resection where there 

is less than 200cm of remaining intestinal length (Robinson and Wilmore 

2001; Buchman 2006). However in practice it is when there is less than 100cm 

of remaining short bowel that patients risk under-nutrition and interventions 

requiring LT PN may be necessary (S Harwood, A Juckes, June 2015, personal 

communication). Practically, it can be hard to ascertain the remaining length 

of bowel or its remaining functionality in these patients; estimations are 

usually made at the end of surgical procedures. Cancer patients who 

experience severe malnutrition and weight loss are also candidates for PN to 

improve their nutritional status before surgery or therapy (Sexton et al. 2009). 

The chronic nature of all these conditions mean that people often require PN 

for long periods of time, which makes home administration very beneficial. 

The goal for many patients as they recover from their illness or surgery would 

be that they are able to consume adequate oral or enteral nutrition and not 

require further PN therapy; however this possibility decreases with the 

severity of the patients’ underlying disease, the length of their remaining 

functional bowel and their ability to sustain themselves nutritionally; 
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ultimately resulting in patients necessitating the use of PN (Nightingale 2006; 

Van Gossum et al. 2009; Rye and Nightingale 2015). 

 

PN is also needed for a shorter duration of time by patients in hospital who 

have more self-limiting conditions which put them at risk of malnutrition, as it 

has long been acknowledged that maintaining adequate nutrition is associated 

with better clinical outcomes (Studley 1936; NICE 2006). A recent national 

enquiry identified that 93% of patients receiving PN in hospital required PN 

for less than 30 days (n=1053)(Stewart et al. 2010). This figure mainly 

resulted from post-surgical complications for those patients requiring the 

need for nutritional support. It helps to show the small proportion of patients 

who require LT PN as an inpatient by comparison to those who receive it 

short-term for more acute conditions/indications.   

 

1.1.3. Background for HPN 

The field of HPN is a diverse setting with many differing practices and 

guidelines between continents (ASPEN Board of Directors and the Guidelines 

Clinical Task Force 2002; Staun et al. 2009). This is thought to be due to the 

different approaches in handling such a relatively small, complex group of 

patients, who have such different and individual problems in terms of their 

underlying disease and specific PN requirements. In the UK, HPN patients are 

managed out of specialised HPN centres catering for broad surrounding areas. 

The largest HPN centres being St Mark’s Hospital in London and Hope Hospital 

in Salford, Manchester. In Europe, HPN practices were first initialised in 

specialised centres like these which developed expertise over time. However 

Pironi et al. (2006) expressed concern over a potential loss of expertise when 

their survey revealed that 50% of forty-one centres in Europe catered for less 

than ten patients. Another concern being the growing use of standard all-in-

one PN bags with longer shelf lives over the practice of more precise 

prescribing on an individual basis for clinically sensitive and unstable HPN 

patients (bespoke PN formulations) (BPNG 2010). 

 

Commercial homecare companies are involved in the manufacture and 

distribution of PN from these centres (Jones 2003). In 2010, companies such 



 23 

as Calea, Baxter and BBraun provided HPN services for all new patient 

registrations as well as up to 94% of the patients already maintained on LT 

HPN (Smith et al. 2011), demonstrating the dependency of HPN patients on 

these services. Although providing PN in a home setting has proven expensive, 

it appears to cut the total management costs by around a half by comparison 

to hospital-based management (Howard 2006).  

 

Although PN is an artificial source of nutrition aiming to nutritionally mimic a 

healthy, well-balanced oral diet, its use still carries certain risks and 

complications. Patients receiving LT HPN receive a fixed nutritional PN 

regimen with less control over their nutritional intake by comparison to 

healthy individuals who are not on PN. Changes to their PN regimen may only 

occur after clinical review or intervention. As such, abnormalities of 

nutritional balance are known to occur in HPN patients as their nutritional 

requirements change over time. Although HPN has proven a lifesaving therapy 

for more than four decades, its use is associated with complications that 

compromise patients’ quality of life (QOL). Most problems relate to the 

presence of the venous access device to administer PN and concern line 

infections, sepsis, risk of pulmonary embolism or vascular occlusion; patient 

training is a key factor in preventing these complications. Patients are 

susceptible to other noteworthy complications which include metabolic 

complications, cholestatic liver disease, fatty liver and exacerbation of 

systemic inflammation (Meadows 1998; Berger 2014). 

 

1.1.4. Monitoring in LT HPN 

Patients on LT PN require monitoring to ensure they receive best effect from 

their HPN therapy. This is with particular reference to the provision of calories 

and fluid from parenteral nutrition to meet the individual patient 

requirements.  

 

Monitoring usually occurs at the discharging base hospital (usually a HPN 

centre) via access to a specialised nutrition support team (Micklewright et al. 

2002). It is essential for evaluation of the clinical effect of PN therapy and for 

management of any associated complications. 
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Key monitoring milestones recommended by The European Society for 

Clinical Nutrition and Metabolism (ESPEN) include measurement of blood 

biochemistry and anthropometry at all clinic visits, micronutrient 

measurement at intervals of at least six months and bone mineral density 

(BMD) assessment by dual-energy x-ray absorptiometry (DEXA) scanning at 

yearly intervals (Staun et al. 2009). 

 

A stable patient would be well maintained on their PN feed and over time 

would show consistent blood test results within their reference range limits. 

Typically, the unstable patient requires closer attention and more frequent 

monitoring than a stable patient. For instance, closer adjustment of their PN 

prescription in relation to their blood test results. Monitoring for an unstable 

patient would occur at weekly or monthly intervals, while stable patients 

would be monitored at two to four monthly intervals (Staun and Pironi 2015). 

In practice, stable patients are monitored in the IF clinic at least every six 

months at the site used in this research, Cardiff and Vale University Health 

Board (C&V UHB). 

 

1.1.5. HPN prevalence 

Epidemiological data has shown that the use of HPN has grown over the last 

four decades, particularly in the 1990s (Van Gossum and Messing 1997; 

Glencorse et al. 2003; Smith et al. 2011). Causes are thought to centre around 

growing experience of specialised centres, increased survival of HPN patients 

and increased cost-effectiveness in the treatment of patients with benign 

disease, as well as the development of home care service provision. 

 

It has been difficult to ascertain the point prevalence for the number of 

patients receiving HPN in the UK. In the UK, the British Artificial Nutrition 

Survey group (BANS) keep a register for the number of people on HPN 

(Glencorse et al. 2003). They are a committee of British Association for 

Parenteral and Enteral Nutrition (BAPEN) who report on data and trends of 

adults and children receiving LT enteral tube feeding or PN in the UK (Smith 

et al. 2011). The 2011 BANS report documented the point prevalence statistic 
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of 8.40 per million which roughly equated to 531 patients receiving HPN in the 

UK at that time (Smith et al. 2011). However, this figure should be interpreted 

carefully because the report documented gross-under reporting of HPN 

patients, particularly in Wales.  At a recent conference, the estimated number 

of patients registered as receiving HPN in the UK was stated to rest somewhere 

around 1800-2000 (Smith 2015). More recently, the latest BANS report 

detailed a record for the number of patients registered as receiving HPN in UK 

as a period prevalence of 1360 patients in 2015, yet there are still reservations 

regarding its true accuracy (Smith and Naghibi 2016). 

 

HPN patients in Wales are managed via one large beacon HPN centre in Cardiff 

and two smaller HPN centres in Swansea and Wrexham. After personal 

communications with the HPN Nutrition Support Team (NST) at C&V UHB, an 

accurate point prevalence was obtained for the number of HPN patients in 

Wales. As of July 2015, there were ninety-eight adult patients registered as 

receiving LT HPN in Wales (ninety-three in Cardiff, three in Swansea and two 

in Wrexham). 

 

Although HPN is a small-scale service area, it is clear to see that its provision 

is a unique and distinctive feature of current healthcare and nutrition practice. 

 

1.1.6. Homecare services  

Under the Welsh Health Specialised Services Committee (WHSSC) HPN policy 

contract, WHSSC will fund HPN for adult and paediatric patients with LT IF 

who are either awaiting reconstructive surgery leading to restoration of gut 

continuity and function, or for those with irreversible IF (except patients who 

require short term feeding). The contract also allows funding for a nurse to 

assist with administration of PN if the carer and/or patient are unable to 

administer it themselves. 

 

The process typically involves management of patients with IF within a HPN 

centre base hospital i.e. Hope Hospital, Salford Royal NHS Foundation Trust 

and University Hospital of Wales, C&V UHB. The contract permits preparation 

and delivery of PN from a home care company, in this instance Calea. Patients 
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are referred to the homecare company by the NST at the base hospital. 

Sometimes exceptional grounds for funding is considered when patients do 

not meet the explicit criteria and an Individual Patient Funding Request (IPFR) 

can be made to WHSSC.  
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1.1.7. Initiation for LT PN (flow diagram) 

The flow diagram in Figure 1.1 depicts the standard procedure for the 

initiation of a patient on LT HPN. 

 

  

A patient is identified with a need for LT PN, usually at base hospital (e.g. 

post-surgery or via referral). 

 

The patient successfully qualifies as a candidate for HPN. Exclusion is based 

on several factors: intellect, physical disability, social situation, underlying 

disease and age (Micklewright et al. 2002). 

 

NST complete contract and financial arrangements with the homecare 

company to provide PN services. 

 

Patient (or carer) undertake training in aseptic technique for the 

administration of HPN (before discharge). 

 

Pharmacy input: arrangement of patients’ HPN prescription (based on 

hospital PN requirements, blood biochemistry, potential stoma losses, 

remaining functional bowel, underlying disease) and liaison with homecare 

company. 

 

Upon hospital discharge, the patient is provided telephone contact details for 

complications and advice. 

 

Homecare company provide administration equipment (e.g. infusion pump) 

and nurse assistance if necessary. 

 

Patient is reviewed in intestinal failure (IF) clinic. Early and more frequent 

review initially, then when the patient is considered stable, six monthly review 

where possible. 

 
Figure 1.1. Flow chart to show initiation process for patients on LT HPN 
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1.2. COMPONENTS OF PN AND TYPICAL PATIENT REQUIREMENTS 

For patients who are still able to consume nutrition orally, the extent should 

be taken into account in the first instance to gauge estimated patient 

requirements; alongside other factors including knowledge of their remaining 

gut anatomy, GI absorption, intended activity needs, underlying diseases and 

any fistula/stomal losses. As such, patient PN requirements vary considerably 

and current ‘standard’ bags aim to cater for a range of patient needs. For 

patients who are initially commenced on PN, their requirements are based on 

best estimates and then further refined over time according to their state of 

hydration and target weight as well as their personal preferences. 

 

Table 1.1 summarises guidelines for typical adult nutritional requirements 

(before GI losses are taken into account). The individual requirements are 

further discussed throughout this chapter (Section 1.2.1.). 
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Table 1.1: Typical adult nutritional requirements for PN 

 

Nutrient Estimated patient requirements 

(before GI losses taken into 

account)  
BW=body weight 

Reference 

Nitrogen 

(excluding 

amino acid 

source) 

0.14-0.2 g nitrogen/kg BW/day (Elia 1990) 

Protein 

(amino acid) 

ESPEN: unstressed adult HPN 

patient requires 0.8–1.0 g/kg BW 

per day. 

ASPEN: 0.8-2 g/kg BW/day. 

(ASPEN Board of 

Directors and the 

Guidelines Clinical 

Task Force 2002; 

Staun et al. 2009) 

Carbohydrate 

(glucose) 

25–35 kcal/kg BW/day (ASPEN Board of 

Directors and the 

Guidelines Clinical 

Task Force 2002; 

NICE 2006) 

Lipid Between 1 g/kg BW/day and 1 g/kg 

BW/week. Risk-benefit analysis 

between essential fatty acid 

deficiency and intestinal-failure 

associated liver disease (IFALD). 

(Dupont et al. 

2015a) 

Water (fluid) 30-35 mL/kg BW (Tyler 1989) 

Sodium 1-1.5 mmol/kg BW (Micklewright and 

Todorovic 2011) Potassium 1-1.5 mmol/kg BW 

Magnesium 0.1-0.2 mmol/kg BW 

Calcium 0.1-0.15 mmol/kg BW 

Phosphate 0.5-0.7 mmol/kg BW 

Chloride 1-1.5 mmol/kg BW 

 

1.2.1. Energy sources and provision in PN 

Glucose and lipid comprise the main sources of energy in PN with 

recommended glucose requirements set at 3-6g/kg body weight/day (Staun 

et al. 2009). Most patients are provided with lipid yet efforts are made to 

ensure its long-term provision is kept below 1g/kg body weight/day as over 

provision is associated with chronic cholestasis and IFALD (Cavicchi et al. 

2000; Staun et al. 2009). On the other hand, caution needs to be taken with 

glucose provision as excess causes hyperglycaemia and likewise liver damage, 
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as evidenced by deranged liver function tests (LFTs) and steatosis/‘fatty’ liver, 

in which case, calculation of glucose oxidation rate gives an idea of the 

maximum amount of glucose an individual’s body is able to utilise (Hartl et al. 

2009; Rye and Nightingale 2015). Initially, patients are given glucose and lipid 

at a ratio of 50:50 (or 60:40), as provided by most triple chamber bags; in 

subsequent months this ratio is then reduced to 70:30 (or 85:15) for patients 

with long-term PN requirements (Staun et al. 2009). If patients show evidence 

of deranged liver function e.g. raised LFTs, cholestatic liver disease, then 

consideration is given to reducing or stopping parenteral lipid provision.  

 

It is worth noting that the source of lipid incorporated in PN differ between 

manufacturers. Lipid emulsions containing long-chain triglycerides (LCT) (e.g. 

Intralipid®) or a mixture of LCT and medium-chain triglycerides (MCT) (e.g. 

Lipofundin®) have proven established use in PN. Meanwhile, more recent 

olive oil (e.g. SMOFLipid®, Clinoleic®) and structured lipid emulsions (e.g. 

Structolipid®) have also been safely used in PN, yet this area still requires 

significant research to consolidate their preferential use (Dupont et al. 2015a). 

 

1.2.2. Carbohydrate provision in PN 

Carbohydrate intake accounts for 45-55% of total dietary energy intake for 

most industrialised countries (Tappy 2015). Carbohydrates have a variety of 

forms, complex carbohydrates e.g. starch, disaccharides or simple sugars (e.g. 

glucose, fructose). Only glucose can be used as a carbohydrate energy 

substrate in PN since no enzymes exist outside the gut to break it down from 

more complex forms e.g. disaccharides, and fructose provision has been 

associated with adverse effects (Bode et al. 1973); consequently PN patients 

receive a greater proportion of carbohydrates as simple sugars than the 

general population. Glucose is used by all cells in the body and is the sole 

substrate used by the brain in regular, non-starved conditions. For people not 

requiring PN, after administration of a carbohydrate-rich meal, some glucose 

is temporarily stored as hepatic glycogen so that it is readily available when 

glucose absorption declines; however this capacity is limited to ∽100g (Tappy 

2015). By comparison to administration of PN containing high amounts of 

carbohydrate, the temporary glycogen stores become saturated and excess 
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glucose is converted to fat by ‘de novo’ lipogenesis, in turn leading to 

deposition of intracellular lipids in organs and tissues, notably the liver, where 

over provision of glucose in PN is known to result in hepatic steatosis (Hartl et 

al. 2009). For this reason, carbohydrate content in PN should be optimally 

rationalised to prevent overprovision. Carbohydrate delivery in PN patients 

differs to that of a normal feeding pattern in the general population in that it 

is given continuously, with consequent risks of hyperglycaemia and ‘de novo’ 

lipogenesis; prevention lies in limiting excess glucose administration. 

 

1.2.3. Lipid provision in PN 

Healthy adults on an oral diet have recommended lipid requirements of 1-

1.5g/kg/body weight/day. There exists a benefit-risk ratio analysis for the 

provision of lipid in PN and research suggests that lipid provision in PN should 

not exceed 1g/kg/body weight/day for those on LT PN (Cavicchi et al. 2000). 

The rationale for inclusion of lipid in PN is based upon the limited capacity for 

an individual on PN to oxidise glucose, alongside the provision of a calorie 

dense and rapidly usable energy source (9kcal/g metabolised fatty acids). 

Also, by supplying lipid to patients one also covers patients’ essential fatty acid 

requirements (e.g. linoleic acid and α-linolenic acid) as well as fat soluble 

vitamins (Jeppesen et al. 1997). Lipids additionally have key bodily roles in 

phospholipid composition of cell membranes, receptor activities, cell 

signalling, cytokine function and gene expression (Wanten and Calder 2007). 

These factors lead to a consensus opinion for the advantages of lipid provision 

in PN over the concerns for its adverse effects, with particular reference to 

liver health (Dupont et al. 2015b). Lipid stability and decomposition in PN is 

still being researched, and as yet the clinical effects are still relatively 

unquantified. The potential for lipid peroxidation to occur can result in 

harmful labile peroxide radical species, Biesalski (2009) recommends the 

adequate provision of vitamin E as an antioxidant to ensure patient vitamin E 

requirements are met for the neutralisation of lipid peroxides. 
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1.2.4. Protein provision in PN 

All adults require amino acids for various functions as structural proteins 

(muscle and collagen), plasma proteins (e.g. albumin, haemoglobin) and other 

specialised proteins (e.g. enzymes, cytokines, hormones, carrier/signalling 

proteins). Protein is provided in PN as solutions of mixtures of essential and 

non-essential amino acids; examples include Aminoven® and Intrafusin®. An 

amino acid intake of 0.8 g/kg/day is generally recommended for adult patients 

with a normal metabolism, which may be increased to 1.2–1.5 g/kg/day, or to 

2.0 or 2.5 g/kg/day in exceptional cases (Stein et al. 2009). Sufficient non-

nitrogen energy sources (e.g. carbohydrate and lipid) should be added in order 

to assure adequate utilisation of amino acids. Usually the gut mediates control 

of ingested protein and intermediary amino acid metabolism. When PN is 

administered, the protein sparing-function of the gut is bypassed; for this 

reason longer durations of PN administration are preferable to mimic nitrogen 

and protein homeostasis of regular adults (Soeters and Van de Poll 2015). 

 

1.2.5. Water and electrolytes 

Patient PN fluid requirements aim to ensure patients are well hydrated, taking 

into account any fluid and/or stoma losses as well as fluid cover for days when 

they do not infuse. Fluid requirements can vary greatly depending on gut 

anatomy and underlying disease states (Staun et al. 2009; Rye and Nightingale 

2015). Initial requirements are based upon a best estimate and then further 

refined according to state of hydration (both patient reported and as 

evidenced by urea and creatinine results) as well as patient preferences in 

terms of length of PN administration (larger PN volumes requiring longer PN 

administration times) and/or nights requiring PN. Ideally, clinicians aim for 

patients to achieve a 1L/24 hour urine output with a random urine sodium 

level above 20mmol/L (Rye and Nightingale 2015). 

 

For electrolytes, baseline requirements are calculated (see Table 1.1) and are 

then refined over time according to electrolyte blood test results. The guidance 

for estimation of baseline requirements assume normal organ function 

without any intestinal losses, further knowledge of anatomy helps to gauge 
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extra requirements. For instance, patients with greater small bowel loss will 

require greater amounts of sodium in their PN, or similarly, those with a 

jejunostomy may require magnesium supplementation. Once patient PN 

requirements are well-established in terms of fluid, calories and electrolytes, 

consistent blood tests are satisfied and the patient is deemed medically stable, 

the HPN prescription (and regimen) can be organised. 

 

1.2.6. Micronutrients (vitamins and TE) 

As they are a main feature of this PhD project, micronutrients are discussed in 

greater detail later in this thesis within Chapter 4 in relation to nutritional 

abnormalities. 

 

In brief, micronutrients comprise the nutritional components of the human 

diet that are required in ‘smaller’ trace doses and quantities. They include 

vitamins and TE, each of which have essential roles in human health and 

physiology; contributing to the normal growth and development of living 

organisms (Forbes and Forbes 1997; Buchman et al. 2009). Micronutrients are 

supplemented to PN according to dosing guidelines and specific patient 

requirements (Staun et al. 2009). Micronutrient dosing is generally guided by 

blood serum monitoring in which the individual nutrient reference range 

determines whether the test result is within range. When the test result is out 

of range (i.e. in deficiency or excess), efforts are made to reduce or increase 

micronutrient provision in a patient’s PN regimen. 
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1.3. COMPLICATIONS OF PN 

Although the appropriate provision of parenteral nutrition has been heralded 

a success over the years, nevertheless there are still numerous troublesome 

complications associated with its use (Meadows 1998). 

 

1.3.1. Central catheter care and line infections 

The most frequently documented complication associated with LT PN use is 

infection related to the presence of the venous access device (Hartl et al. 2009; 

Pittiruti et al. 2009). The often high osmolarity of PN solutions require their 

provision via a large central vein e.g. subclavian or internal jugular vein. 

Tunnelled subcutaneous catheters or fully implanted ports are most 

frequently used for LT PN as they are associated with less infection risk over 

non-tunnelled catheters, which are more commonly seen for short term PN 

during a hospital stay. The occurrence of catheter-related infections causes 

significant discomfort and impairment of QOL, increases associated treatment 

costs as well as compromises the integrity of the catheter in situ, which may 

require replacement, and in more dire situations may compromise future 

venous access at the specific site. Treatment of bacterial infection includes the 

use of systemic antibiotics and successful recovery of the line is considerably 

variable, successfully reported in 30-80% of cases; however if fungi are shown 

to be present, line removal is necessary (Jeppesen et al. 1998; O’Grady et al. 

2011). Patient education and training in aseptic technique as well as general 

barrier precautions are of the utmost importance to minimise the risk of 

venous access complications and/or infections (Sutton et al. 2005). Line locks 

with pharmacological agents such as ethanol, taurolidine, trisodium citrate 

(alone or in combination with anticoagulants e.g. heparin) are suggested for 

those experiencing repeated line infections. 

 

  



 35 

1.3.2. Acute metabolic complications 

Long-term complications of PN garner significant attention in research, yet the 

more acute complications still occur in some patients requiring PN. They 

include disorders relating to water and electrolytes which may require strict 

fluid restriction and control (e.g. via extra supplementation). Also, disorders 

related to glucose control e.g. hyper/hypo-glycaemia, in which case continual 

PN administration may be beneficial or reducing the rate of PN infusion, 

otherwise insulin administration may be necessary. Other acute metabolic 

complications include hypercalciuria and hypertriglyceridemia which will 

require optimisation of the PN feed for calcium and vitamin D, and the 

quantity/choice of lipid emulsion, respectively. Similarly, hypophosphataemia 

and hypomagnesaemia should be corrected before starting PN to avoid the 

onset of refeeding syndrome (see below).  

 

1.3.2.1. Refeeding syndrome 

Mehanna et al. (2008, p. 1495) has defined refeeding syndrome as the ‘the 

potentially fatal shifts in fluids and electrolytes that may occur in 

malnourished patients receiving nutrition’. It results from the provision of 

nutrition to undernourished catabolic patients, causing a quick shift to 

anabolism and a surge in insulin release. The insulin causes an intracellular 

shift in magnesium, potassium and phosphate, resulting in hypomagnesaemia, 

hypokalaemia and hypophosphataemia respectively. To prevent the onset of 

refeeding syndrome, nutrition should be given to patients at a maximum of 

10kcal/kg/day and gradually increased over 4-7 days (NICE 2006). 

Appropriate provision of B-group vitamins (pyridoxine, riboflavin, thiamine) 

and electrolytes also need to be ensured to prevent associated Wernicke’s 

encephalopathy (Mehanna et al. 2009). 

 

1.3.3. Long-term metabolic complications 

1.3.3.1. Nutritional abnormalities 

Patients sustained on LT PN experience nutritional abnormalities for specific 

nutrients, most commonly micronutrients; that is to say they experience a 
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greater degree of both extremes of out-of-range blood test results, deficiencies 

and toxicities/excesses (Rudman and Williams 1985; Hardy 2009; Conway et 

al. 2014; King 2015; Murphy and Lewis 2016). The implications of out-of-

range blood test results can manifest themselves in a variety of ways 

depending on the individual patient and the nutrients involved (Fuhrman 

2006; Shenkin 2008; Shenkin 2015). 

 

Further detail regarding the occurrence of nutritional abnormalities 

(deficiencies/excesses) is given in Chapter 4. Each micronutrient is discussed 

in turn regarding its physiological role and what is known regarding its 

nutritional supplementation in PN with particular reference to any 

documentation of deficiencies or excesses in scientific literature. 

 

1.3.3.2. Liver steatosis and cholestatic liver disease 

Liver steatosis is a common complication in LT PN (Nussbaum and Fischer 

1991); it results in elevated liver aminotransferases and enlargement of the 

liver itself. It is usually associated with overfeeding of the glucose component 

of PN. Cyclic PN administration over continuous PN is thought to reduce its 

frequency (Kumpf 2006), as well as reducing glucose quantity in PN to match 

patient requirements. 

 

Cholestatic liver disease is another complication affecting the liver with the 

potential to progress to cirrhosis and liver failure (Guglielmi et al. 2008). 

Patients present with jaundice, hyperbilirubinaemia alongside increases in γ-

glutamyl transferase and alkaline phosphatase. Contributing factors are 

thought to relate to the decrease in the enterohepatic cycle owing to SBS, 

bacterial overgrowth, liver damage from lipid peroxidation products and lack 

of vitamin E as well as both glucose and lipid overfeeding (Sobotka 2000). In 

extreme cases, liver failure associated with PN administration has been 

associated with the need for intestinal and liver transplantation (Pironi et al. 

2015). 
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1.3.3.3. Cholelithiasis and acalculous cholecystitis 

Patients who are exclusively fed parenterally are at a higher risk of developing 

gallbladder stasis, gallstones and gallbladder sludge (Pitt et al. 1983; Sobotka 

and Camilo 2009); loss of the effect of cholecystokinin, a hormone stimulated 

by enteral food consumption is thought to attribute to the onset of this 

complication (Aneta et al. 2014). Efforts to increase enteral consumption of 

food where possible are suggested as a treatment measure. 

 

1.3.3.4. Bone disease 

Patients receiving LT PN experience metabolic bone disease e.g. osteoporosis, 

osteomalacia. It is associated with a loss of calcium from bone, increase in 

serum alkaline phosphatase and hypercalciuria as well as physical symptoms 

of bone pain and fractures (Klein et al. 1980; Seidner 2002; Hamilton and 

Seidner 2008; Pironi and Agostini 2015). It is multifactorial in nature and its 

relation to the provision of LT PN is not completely understood. Efforts to 

prevent or delay its onset focus on optimal provision of calcium, phosphate, 

magnesium and vitamin D in PN alongside moderate exercise (Shike et al. 

1981; Sobotka 2000; Hamilton and Seidner 2008). 

 

A more detailed introduction to bone disease in relation to LT PN is given in 

Chapter 7. 
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1.4. STABILITY OF PN 

PN admixtures/solutions can contain as many as fifty components in a single 

container (Barnett et al. 2009). Each component as well as the sequence in 

which they are added to each other, can influence the overall stability of the 

resultant PN solution. Pertkiewicz et al. (2009) explains that stability testing 

over time ensures there are: 

- No changes to the size and size distribution of lipid particles. 

- No precipitation of insoluble complexes which have the potential to 

arise from reactions between individual components in the PN feed. 

- Certifiable bioavailability of all intended PN components i.e. no 

degradation 

- Absence of chemical reactions between components 

The extemporaneous preparation of PN requires suitable practical skills, 

quality control and aseptic facilities to guarantee the intended composition, 

stability and microbiological integrity of the final PN solution (Barnett et al. 

2009). Clinically relevant and well-known implicating factors contributing to 

PN instability include the stability of the lipid emulsion itself, calcium-

phosphate precipitation, the Maillard reaction as well as reactions involving 

vitamins and TE. Other ‘external’ factors are known to influence PN, these 

include the type of storage material (multi-layered vs. oxygen permeable), 

environmental conditions (oxygen, light, temperature) and the addition of 

drugs (cimetidine, insulin, ranitidine). Over the last forty years a great wealth 

of information has been gleaned regarding the optimal stability and 

therapeutic use of PN and its individual components (Vanek et al. 2012; Berger 

2014). Yet there is still more to consider in terms of bioavailability of 

individual PN components, especially in relation to nutritional abnormalities 

(deficiencies/excesses) in those requiring LT bespoke PN formulations. 
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1.4.1. Contamination of PN 

TE contamination of PN is a known complication which occurs during 

compounding of the feed itself. Essentially, it refers to the inadvertent 

contamination (extra provision) of TE metals to PN solutions during 

manufacture and production (most commonly aluminium, chromium and 

manganese). It is believed to occur from the leaching of metal from materials 

used during manufacture e.g. needles, syringes, containers. Pluhator-Murton 

et al. (1999) reported its unquantified contribution to TE doses in PN to be 

potentially substantial. First acknowledged in the 1970s, TE contamination 

was a more-notable topic of research investigations, however in recent years 

its interest has waned and is demonstrated by notably less research 

publications (Hoffmann and Ashby 1976; Jetton et al. 1976).  
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1.5. INTRODUCTION TO THESIS 

1.5.1. Research outline 

The present PhD project investigates the provision of LT PN to a population of 

patients managed at Cardiff & Vale University Health Board (C&V UHB) in 

South Wales, a service which is commissioned by WHSSC. LT PN patients 

across Wales are managed from this HPN centre alongside a small minority in 

North Wales who are catered for by other HPN centres across the border. As 

such, the patients registered as receiving LT PN from C&V UHB represent the 

majority of patients receiving LT PN in Wales. 

 

There is a great wealth of literature which details derangement of nutritional 

biochemistry in these patients. The literature documents the numerous issues 

to arise from these nutritional abnormalities, which include clinical and 

symptomatic consequences. Some well-known and more documented 

examples include vitamin A deficiency and night-time blindness, vitamin D 

deficiency and metabolic bone disease/increased risk of bone fracture, 

manganese toxicity and associated neurotoxicity/parkinsonian-like effects, 

selenium deficiency and brittle hair/nails, iron deficiency and associated iron-

deficiency anaemia, to name but a few examples. Although PN is a well-

established means of delivering IV nutrition to patients; the documented 

nutritional abnormalities in the literature show that there are issues and/or 

practical difficulties in providing the optimal nutritional requirements for LT 

PN patients (Fuhrman 2006; Buchman et al. 2009; Vanek et al. 2012; Fessler 

2013). 

 

The research in the present PhD project aims to observe the population of 

patients in Wales and discover whether there are similar incidences of 

nutritional derangement occurring in these patients by reference and 

comparison to what is documented in the literature. In this manner, it will be 

possible to observe what is happening ‘in practice’ to patients currently 

maintained on LT PN and it will be possible to explore reasons for the 

occurrence nutritional abnormalities in the patient population; and 

furthermore, assess the impact of these nutritional abnormalities on patient 

health.  
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There may be multiple possible explanations for incidences of nutritional 

abnormalities, for instance: 

- Variation in approach to the practice of PN prescribing by different 

clinicians/prescribers (i.e. no formal guideline for the process of 

manipulation of doses of PN components) 

- The frequency of patient monitoring 

- The formulation or composition of PN additives (i.e. for TE and 

vitamins) 

- Potential under-dosing resulting from unquantified PN instability or 

interactions between components in the PN admixture. 

 

The initial explorative assessment of the patient population will guide further 

studies (i.e. subsequent chapters) throughout the PhD to research each 

individual avenue as a possible explanation for the occurrence of nutritional 

abnormalities. The results will be reviewed and evaluated in relation to the 

wider scope of documented nutritional abnormalities in the literature. The 

research findings from each chapter may suggest areas for improvement of 

current practice and/or help to identify ways to improve PN service provision 

for these patients (e.g. review of frequency of patient biochemical monitoring, 

revision of formulations for PN additives or a standardised approach to 

supplementing PN). Individual chapters will be hone in on particular areas, 

such as the adequacy of dosing of particular nutrients, exploration of factors 

which may contribute to their derangement (e.g. PN stability, dosage in PN 

additives) alongside further assessment (where possible) of clinical effect of 

the nutritional derangement on the patient (e.g. symptoms or other health 

outcome measurement tool). An example being vitamin D deficiency, its 

potential under-dosing in PN and adverse effect on patient bone health, which 

can be assessed by bone DEXA scanning. 

 

Although the individual study designs and research methodologies employed 

throughout this PhD project may have been used before or elsewhere, they 

have not been researched in this level of detail, for as many nutrients, or in 
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such an all-inclusive population of patients maintained in Wales. As such the 

findings from the entire PhD project demonstrate originality and novelty. The 

individual study designs and methods have been used in a large and 

comprehensive group of patients which offer robust data over long periods of 

time. The over-arching research design and methodology of the entire thesis 

has not been employed elsewhere for a single population of patients. It offers 

a greater level of validity to the research as the successive findings from each 

chapter (i.e. each singular study) are from the same patients and give context 

to the greater research journey across each successive chapter (study). The 

inclusion of a respectable number of patients who represent the population of 

LT PN patients maintained in Wales (of which each patient represents a rich 

data source) provides value to findings and recommendations presented 

within this write-up. Particular sections of research (chapters six, seven and 

eight) have not be performed before, or documented in the literature for LT 

PN patients. 

 

In brief, the PhD research journey began with an outline of the research 

permissions and approvals required in order to undertake the various studies 

within the PhD project. The research commenced with a cross-sectional 

description and analysis of population characteristics for the LT PN patients. 

This study set the scene for the PhD, succinctly displaying the population 

findings in terms of their patient characteristics, disease-related factors (e.g. 

disease state, indication for HPN) and factors related to their PN therapy. Then 

followed a comprehensive review of the published literature relating to the 

role of micronutrients in human health and physiology, alongside further 

related literature pertaining to nutritional deficiencies and/or excesses in PN 

populations. This gave an idea of reported problems or themes (of nutritional 

abnormalities) which may be occurring in LT PN patient populations. The 

findings from this literature review permitted familiarisation with the clinical 

field of LT PN/HPN and identified key areas of pressing clinical concern 

(evidenced by a greater emphasis within the literature) regarding the 

provision of micronutrients in LT PN. After this immersion in the literature, it 

was decided for Chapter 5 that an all-inclusive assessment of patients 

nutritional status (from their available blood test data) from the date they 
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were commenced on PN until the point of data collection, would best suit the 

data collection and analysis methodology so that one could ascertain current 

themes and/or trends in nutritional derangement experienced by the 

population of patients at C&V UHB, and whether they were in line with findings 

from the literature. This large study then highlighted key areas to follow-up 

on, namely the inadequate provision of TE (manganese toxicity and selenium 

deficiency) as well as a substantial proportion of patients showing inadequate 

vitamin D status. Attention was focussed towards the latter in Chapter 6 which 

aimed to investigate the stability of vitamin D in micronutrient additives to see 

if this could exclude its instability in PN as a potential source of under-

provision for patients. Similarly, the finding of vitamin D inadequacy from 

Chapter 5 prompted a longitudinal assessment of LT PN patients’ bone health 

while receiving PN (Chapter 7), since vitamin D deficiency is acknowledged to 

contribute to adverse bone health. Whilst the results elucidated in Chapter 5 

for under/over-provision of TE were followed-up in the final study (Chapter 

8) in which a service evaluation was performed to ascertain the optimal doses 

of TE by using a data-pairing model (prescriptions and blood test results). The 

research journey is brought together in the final discussion (Chapter 9) which 

describes, inter-links and appreciates all of the findings from the separate 

chapters as a whole, alongside appreciation of key literature and current 

recommendations. Also, in this chapter, the key findings are acknowledged, 

contrasted and compared against other key studies and publications from the 

greater literature relating to the characteristics of PN populations and the 

provision of micronutrients in LT PN. The thesis then closes with succinct 

recommendations for future work based on the research findings from the 

whole project. 
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1.5.2. Research question 

- What are the characteristics of LT PN patients and how does the 

provision of LT PN affect their nutritional status and clinical health? 

 

1.5.3. Aims 

- To evaluate the demographic characteristics of a population of LT PN 

patients maintained on LT PN with C&V UHB (with reference to their 

patient-related, disease-related and PN-related factors). 

- To ascertain the degree of the occurrence of out-of-range micronutrient 

blood test results in these patients. 

- To establish links between micronutrient derangement (deficiency or 

excess) with clinical-relevant problems experienced by patients. 

- To investigate causes for micronutrient derangement in patients’ blood 

test results (e.g. doses in compound micronutrient preparations, or 

stability within final PN formulation). 

- To evaluate the effectiveness of micronutrient dosing in LT PN patients 

and inform micronutrient dosing recommendations, through the 

correlation of PN micronutrient doses to blood test results. 
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1.5.4. Objectives 

- To perform a review of the literature relating to the dosing and 

provision of micronutrients in LT PN/HPN patients; with particular 

reference to the documentation/publication of micronutrient 

derangement in these patients alongside current dosing 

recommendations and opinion. 

- To use data (medical notes and test results) from LT PN patients in 

Wales to contribute to the research aims of this project. 

- To employ both cross-sectional and retrospective longitudinal study 

designs to contribute to the methodological analysis of patient data. 

- To use micronutrient blood test results (as depicted by the reference 

intervals with C&V UHB) to ascertain if there are recurring trends or 

themes of micronutrient derangement in LT PN patients. 

- To consider (using laboratory techniques) the potential instability of 

micronutrients in compound multi-component PN additives as a source 

of under-provision of micronutrients. 

- To implement a data-pairing model to correlate micronutrient doses 

(from each patient’s PN prescription/regimen) to their recorded 

micronutrient blood test results, in so doing allowing the evaluation of 

the efficiency of micronutrient prescribing (at C&V UHB) and the 

available micronutrient preparations. 

- To review and evaluate observed results and findings from this study 

against the findings of other peer-reviewed publications in this field. 

 

 

  



 46 

 

 

 

Figure 1.2: Flow diagram for PhD thesis.

1. Cross-sectional 
analysis

• Analysis of demographic characteristics of LT PN 
population in Wales, in terms of patient-related, 
disease-related and PN-related factors.

2. Literature 
review

• Review of published literature pertaining to 
micronutrient dosing and evidence of nutritional 
derangement and abnormalities, alongside current 
expert opinion.

3. Retrospective 
longitudinal 

analysis

• Analysis of all micronutient blood test data for all 
patients registered on the IF clinic list during the 
time they received LT PN (date commenced on PN -
August 2015).

4. Identification 
and selection of 

avenues for 
further research. 

• Identification of key micronutrients demonstrated 
from the analysis to be more frequently deranged.

5. Further research into key 
micronutrients, in relation to clinical 

complications

Manganese Selenium Vitamin D

6. Investigation into 
vitamin D stability in PN 

additives

7. Investigation into 
relationship of vitamin 
D deficiency with bone 

disease

8. Correlation and evaluation of micronutrient 
doses in PN regimen with blood test results
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CHAPTER TWO: 

Ethics, research permissions and 

participant recruitment 
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2.1. INTRODUCTION 

This chapter explains the research permissions that were gained in order to 

allow the individual studies and elements of research to be undertaken for 

submission of Ph.D. Specifically, the consented acquisition of patient data from 

a sample of the HPN population in Wales for research use, relevant to the 

project aims. The specifics of sampling and participant recruitment are 

detailed in this chapter. 

 

2.2. RESEARCH APPROVALS AND PERMISSIONS 

2.2.1. NHS research ethics committees (REC) 

Proportionate ethical review was undertaken by the sub-committee of Wales 

Research Ethics Committee 7 (REC 7) on 08 April 2015 (see Appendix I). On 

behalf of the committee, the sub-committee gave a favourable ethical opinion 

of the research based upon the information described in the application, study 

protocol (see Appendix II) and supporting documentation. 

 

2.2.2. National Health Service (NHS) management permission  

NHS management permission, otherwise known as NHS Research and 

Development (R&D) approval, was granted by Cardiff and Vale University 

Health Board (C&V UHB) to allow the research study to be undertaken with 

C&V UHB as a single-site study as of 10 July 2015 (see Appendix III). 

 

2.3. PARTICIPANT RECRUITMENT 

2.3.1. Participant recruitment protocol and consent 

Participants were recruited from the list of patients currently registered as 

routinely attending the outpatient intestinal failure (IF) clinic at C&V UHB.  

 

Potential participants were recruited by a postal invitation to participate in 

the research study and a single follow-up telephone call was permitted for 
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non-responders two to three weeks later. These were the conditions approved 

by the NHS research ethics committee. 

 

The postal invitation contained: 

- An introductory letter of invitation (see Appendix IV) 

- A participant information sheet (PIS) (see Appendix V) 

- Two consent forms (one to keep, one to return) (see Appendix VI) 

- A pre-paid return envelope.  

 

The postal invitation was sent by Susanna Harwood, a specialist PN 

pharmacist independent prescriber at UHW and member of the clinical team.  

 

The introductory letter invited the potential participants to take part in the 

study and also introduced the study and the researcher (Sean Dodington). The 

letter also directed potential participants to read the participant information 

sheet and make an informed decision about whether to participate.  

 

Those who decided to participate returned the signed consent form back to 

the researcher (SRD) in the enclosed envelope. By agreeing to participate, 

participants thereby allowed the use of their hospital medical records to be 

used for the purposes of the study. 

 

The population of patients who consented to participate were then assessed 

to see if they met the inclusion criteria (see below).  

 

To put potential participants at ease regarding the use of their personal 

information, the PIS explained that no patient identifiable information was to 

be transferred for use in the study. Also, that the study was being undertaken 

in cooperation with the consultant practitioners and medical professionals 

responsible for their care. 
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2.3.2. Sampling 

After personal communication with the HPN NST in Cardiff and as previously 

mentioned in Chapter 1, it transpired that there were ninety-eight patients 

registered as receiving HPN services in Wales as of July 2015.  

 

The majority (ninety-three) of these patients were managed with C&V UHB, 

while the other patients were managed by minor HPN centres in Swansea and 

Wrexham; looking after three and two patients respectively. This cohort of 

patients was sampled as a representation of the HPN population in Wales. 

After a lengthy permissions process it became clear that data could only be 

realistically collected from a single HPN centre. This offered advantages in the 

sense that the data was representative of the majority of Wales where the 

standard practices were consistent for all patients in terms of monitoring, 

treatment and changes to PN therapy/regime; rather than differing between 

beacon HPN centres (if were included). There were disadvantages that the 

sample could not be statistically large enough or representative of the entire 

UK population, however the value of the long-term retrospective data from 

each of the participants is still sufficient to observe the main trends and 

patterns of nutritional status in the HPN population. 

 

2.3.2.1. Inclusion criteria 

Patients were included if they satisfied the following inclusion criteria: 

- Attending IF clinic and had been receiving PN for at least six months 

- Able to understand and read English 

- Able to give written informed consent  

- Were of adult age (at least 18 years of age) 

 

2.3.2.2. Exclusion criteria 

Likewise, patients were excluded according to the following exclusion criteria: 

- Not been receiving PN for at least six months 

- Maintained on non-nutritional/calorie-free IV electrolyte infusions (i.e. 
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magnesium sulphate infusions) 

- Children (under the age of 18) 

- Unable to understand and read English 

- Unable to give consent  

By ensuring that the patients who met the inclusion criteria had attended the 

clinic for at least six months, it guaranteed that there was a minimum of six 

months worth of hospital data and information for inclusion in data analysis. 

Also, in similar studies assessing the effect of long-term PN on patients’ health, 

six months was used as an acceptable limit for the inclusion of patients in the 

study and to represent LT use of PN (Pironi 2002; Ladefoged and Jarnum 

1978). Likewise, in the ESPEN guidelines on HPN in adult patients, ‘long-term 

PN’ is categorised as referring to patients who have been receiving PN in 

excess of at least six months (Staun et al. 2009). 

 

Those patients who were receiving other intravenous electrolyte infusions 

instead of PN, most notably IV magnesium infusions were excluded on the 

basis that these infusions do not aim to nutritionally supplement the patients’ 

requirements in the same way as PN. Their composition being that of a single 

salt in dextrose solution. The treatment aim in these patients is to replace the 

single electrolyte, magnesium, rather than nutritionally support patients in 

terms of their calorie, nutritional and fluid requirements. 

 

By comparison to adults, children can have more complex and variable PN 

requirements as they develop. It would have complicated data analysis if this 

patient group was included in the study population. Also, the rationale for 

setting an age limit for participants to be at least 18 years of age was that it 

helped to decide an appropriate cut-off point where for research purposes the 

participants were assumed to have adult physiological body systems; in that 

they responded to the nutrients provided in their PN in a similar way. In this 

way, any conflicting factors associated with childhood or adolescence were 

avoided. 
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2.3.3. Finalised recruitment 

Finalised research approval was granted by C&V UHB in July 2015 and 

participant recruitment promptly began by postal invitation (13 July 2015). 

Soon after, followed return of the participant consent forms to the researcher 

and the follow up phone calls to non-responders were scheduled at least two 

weeks afterwards.  

 

The breakdown of participant recruitment can be seen in Figure 2.1, it shows 

the finalised sample recruitment after application of the inclusion criteria.  
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Figure 2.1: Flow chart to show participant recruitment 

 

 

  

1 patient death before follow-

up telephone calls  

93 patients sent postal 

invitation 

25 patients did not respond to 

postal invitation or follow-up 

telephone call 

67 patients consent to 

participate 

7 patients identified to not be 

on LT HPN (i.e. magnesium 

sulphate infusions) 

60 patients identified as 

being on LT HPN 

Finalised recruitment 

= 60/93 (64.5%) 
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2.4. DATA COLLECTION 

Patient data from the final participant population were eligible for use in the 

aims of this research project and included: 

- PN Prescription records – maintained on the hospital S-drive 

- Blood tests, clinic letters and other medical records – archived on the 

hospital ‘Clinical Portal’ system 

The data represented a highly accurate, reliable and extensive secondary data 

source, abundant for potential research findings. As a secondary source of the 

data, it was already collected by other healthcare professionals involved in the 

care of these patients; not the researcher.  

 

Specific data were collected and analysed in each separate chapter. More detail 

of the exact specifics of data collection is included in each chapter (i.e. methods 

and analysis).  

2.4.1. Anonymisation and data security 

Research permissions permitted the collection of data from the networked 

computer system at St Mary’s Pharmaceutical Unit. It was anonymised and 

coded, then collated into an Excel spreadsheet, and further analysed with 

Microsoft Excel at Cardiff School of Pharmacy and Pharmaceutical Sciences. 

The anonymised data was transferred between sites on a USB device in which 

the files were password protected, and only accessed by members of the 

research team.  

2.5. SERVICE EVALUATION APPROVAL 

In the third year of the PhD project, service evaluation (SE) approval was 

sought from C&V UHB to evaluate the standard of micronutrient prescribing 

for their LT PN patients, specifically in relation to their blood micronutrient 

test results (see Appendix VII). This approval allowed data capture for the 

entire population of HPN patients registered with C&V UHB, rather than a 

subset sample population.  

 

Further detail of the use of the data obtained from the SE and its related 

findings are given in Chapter 8. 
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CHAPTER THREE: 

HPN in Wales: a cross-sectional 

representation of the HPN population 
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3.1. INTRODUCTION 
This chapter details the prevalence of characteristics in the HPN population 

registered with C&V UHB.  

 

In more detail, this chapter: 

 Performed a cross-sectional analysis of the HPN population registered 

with C&V UHB 

 Described and evaluated the characteristics of the cohort population of 

LT HPN patients from a single point in time with particular reference 

to their: 

 Patient-related factors 

 Disease-related factors 

 PN-related factors 

 Co-prescribed medicines 

 Compared findings with results from other HPN population studies 

 

3.1.2. Background and rationale 

As mentioned previously, the point prevalence for HPN patients in the UK was 

most recently documented by BANS as 8.40 per million and the period 

prevalence as 10.02 per million over the year 2011 (Smith et al. 2011). A 

modest incidence by comparison to statistics reported in Europe where point 

prevalence has been reported to range extensively from 3.25-66 per million, 

yet the UK reports a similar point prevalence to the nations of New Zealand 

and Australia (Baxter et al. 2012). In general, countries with higher point 

prevalence (e.g. Denmark, Italy) presumably have greater standards in terms 

of patient referral pathways, access to HPN services, HPN education 

programmes and implementation of PN guidelines. Within the publication by 

Baxter et al. (2012) it was recognised that for countries with lower point 

prevalence (e.g. France, Spain) HPN registries were not fully available or 

implemented resulting in potential HPN under-reporting. It is clear to see that 

developments are necessary in gaining a universal standard for access to 
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equitable care in terms of HPN services across Europe. Interestingly, the 

prevalence of patients receiving HPN in South Wales has grown significantly 

in proportion to the last reported UK statistic and other documented 

demographics (Smith et al. 2011). The South Wales IF centre (managed within 

C&V UHB) reported a growth in service from 7.3 per million of the population 

in Wales (2001) to 35.9 per million as of March 2015 (personal 

communication, Barney Hawthorne & Amelia Juckes 2016). This is an 

impressive feat considering their initial target of 10-15 per million. The 

population supported in Wales by the Cardiff IF team (in terms of number 

patients per million of the population in Wales) therefore overtook the 

reported point prevalence statistic for the whole of the UK in 2011, according 

to the data published by BANS (Smith et al. 2011). However, the subsequent 

BANS report in 2016 noted an increase in new patient registrations for the UK 

to be predominantly attributable to new registrations within England (Smith 

and Naghibi 2016). In general, the statistics from the BANS reports detail a 

significant growth in service provision in UK over the last two decades and an 

increasing number of patients commenced on HPN, suggesting better patient 

access to HPN services. However, the reported statistics from BANS should be 

interpreted cautiously in light of significant under reporting of HPN cases.  

 

In terms of the distribution of HPN patients across Wales, the majority reside 

in South Wales with most patients living close to Cardiff; alongside a smaller 

minority in North Wales. Reasons for this are thought to be that patients in 

North Wales are catered for by the geographically closer HPN centre in Salford, 

Manchester. Anecdotally, it has been known for patients to uproot so that they 

can reside within closer proximity to HPN centres (personal communication, 

Amelia Juckes 2016). 

 

Although the number of patients who require LT HPN actually constitute a 

small proportion of all patients who receive parenteral feeding, the LT nature 

of their nutritional therapy marks these patients as major service users and a 

substantial financial burden on the NHS. This is demonstrated in the recent 

National Confidential Enquiry into Patient Outcome and Death (NCEPOD) in 

which 93% of patients in hospitals throughout the UK received PN for less than 
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30 days. Otherwise showing that the remaining percentage of patients 

constituted LT PN service users with types 2 and 3 IF (Stewart et al. 2010). The 

financial implications in Wales are demonstrated in the criteria for eligibility 

for funding and access to HPN treatment from the policy published by the 

Welsh Health Specialised Services Committee (WHSSC). The policy describes 

that funding for PN services is only permitted for patients who are awaiting 

reconstructive surgery (leading to restoration of gut continuity and function) 

or those with irreversible IF. WHSSC also funds nursing assistance for those 

unable to administer HPN for themselves. This funding is only available for 

patients in Wales via referral from the nutrition teams at either UHW or Hope 

hospital. 

 

Although HPN is a vital and life-sustaining therapy in these patients, its use 

carries risks and complications that influence patient morbidity and 

prevalence statistics. A snapshot of the prevalence data from a single point in 

time will show the patient characteristics and requirements for the HPN 

population. 

 

Few studies of population review have been performed in the field of HPN, 

presumably because they rely on voluntary and time-consuming data capture. 

Also, the logistics of data collection require considerable co-ordination 

between HPN centres within a unified area. However previous epidemiological 

studies have been performed by a harmonised and merged HPN special 

interest group called the Home Artificial Nutrition and Chronic Intestinal 

Failure (HAN & CIF) ESPEN Special Interest Group. This group performed 

multi-centre surveys for the prevalence of patients registered as having 

started HPN in the main HPN centres in Europe (Van Gossum et al. 1996; 

Bakker et al. 1999; Staun et al. 2004; Ugur et al. 2006). It was notable from 

these studies that the prevalence of HPN patients was highest in countries 

having the longest duration of HPN experience (Denmark, France and the UK). 

In the last decade there have been no new studies further investigating 

incidence and prevalence of HPN in Europe apart from Baxter et al. (2012) 

whose survey provided a global figure of HPN use in 9200 patients from 16 

countries, in the year 2010. They also showed a large variation in point 
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prevalence of 3.25-66 patients per million of each population; but could not 

explain the varied result beyond differences in practices, expertise, interest, 

attitudes or economic provision of service. However it was recognised that 

HPN prevalence was under-reported in several countries. 

 

One of the studies performed by the HAN & CIF special interest group, a survey 

performed in 1997, reported on the HPN prevalence, distribution of disease 

and health outcomes from HPN patients in Europe. They found the distribution 

of underlying diseases requiring HPN to be similar within Europe and the USA 

(Bakker et al. 1999; Howard and Ashley 2003). However, it is known that 

within Europe the distribution of underlying disease is more variable by 

comparison to USA. According to data from a survey performed in 1997 

(Bakker et al. 1999), at the time the most common leading diagnosis for HPN 

patients in the UK was Crohn’s disease, which was not in line with data from 

The Netherlands and Italy where cancer was the most common underlying 

disease state (Van Gossum et al. 1996; Smith et al. 2011). The data show 

differing approaches on the continent to sustain patients with PN therapy in 

those suffering from cancer diagnoses, in what is considered a contentious 

topic for clinical debate. Yet still, the UK statistic for new HPN registrations in 

2010 was at 14%, up from 5% in 1997 (BAPEN report unpublished data; 

www.bapen.org.uk). Less than the European figure stated by Howard (2006) 

where as many as 40% of patients on HPN have cancer as a primary diagnosis. 

The variability in numbers of cancer patients treated with PN therapy suggest 

that there is a lack of strong evidence or direct guidance for treating these 

patients. The surveys performed by HAN & CIF ESPEN Special Interest Group 

have also explored PN-related parameters including the number of perfusions 

(feeds) and the types of feeds administered (aqueous/lipid) to the patients.  

 

Previous research relating to the HPN service in Wales focused on its growth 

throughout the early 2000’s and gave a brief overview of patient 

demographics (Jukes et al. 2010; Srinivasaiah et al. 2010). The present study 

aimed to capture information from the HPN population in Wales and 

document the current practices of LT PN provision; including relevant 

demographic, epidemiological and clinical data from the participants, 
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particularly in terms of the patients’ diagnoses, indications and HPN 

requirements. The information from this study has not previously been 

published in such depth; and hence represents the most recent and accurate 

data for the sample population to draw comparisons to the findings of other 

similar studies.  
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3.2. METHODS 

3.2.1. Research permissions 

This study was conducted using the research permissions as described in 

Chapter 2.  

 

Of note, fifty-nine out of the sixty participants that were recruited and 

maintained on LT HPN were eligible for this study. One patient was ineligible 

because at the cross-sectional point in time of data collection, the individual 

was no longer maintained on LT HPN (although had been previously when 

consented to participate). 

 

The criterion for patients to have been maintained on HPN for at least 6 

months was not necessary for this study, as data were to be collected from all 

participants registered as receiving HPN at the designated single point in time 

(cross-sectional analysis). This was in an effort to collect all relevant 

epidemiological data regarding the population characteristics from all 

participants; rather than exclude data from participants on the basis of their 

duration of HPN therapy in relation to their population characteristics.  

 

3.3. Study design  

This study was performed as a cross-sectional analysis, a form of observational 

research to investigate the demographic data for the Welsh HPN population in 

terms of patient characteristics and PN requirements. 

 

Data was collected from a single point in time, this being the HPN records in 

use on the date 01 July 2015. 

 

3.3.1. Data collection and sample population 

Data was collected by the researcher from the medical records of consenting 

participants recruited from the outpatient clinic at C&V UHB. Specifically, 

relevant data were extracted from patients’ medical notes (both the online 



 62 

‘Clinical Portal’ system and written notes e.g. clinic letters, correspondence 

etc) and PN prescriptions. 

 

The researcher performed data transcription checks for 10% of transcribed 

data and no themes/trends in errors were identified throughout data 

collection.  

 

A full breakdown of the data parameters for investigation are given in Tables 

3.1 and 3.2. Please note that Table 3.2 gives a more detailed list of the sub-

categorisations for IF according to the ESPEN IF guidelines (Pironi et al. 2015). 

 

3.3.2. Data handling, storage and analysis 

Relevant data were manually transferred into a Microsoft Access database 

(Microsoft Office 2013 – version 15) for storage and handling, while data 

analysis was undertaken using Microsoft Excel (Microsoft Office 2013 – 

version 15).  

 

Data were analysed using descriptive statistics, count, percentages and mean 

(SD) of the total number of participants. 
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3.3.3. Data parameters 

Below Tables 3.1 and 3.2 describe the data parameters investigated in the study. 

 

Note, the categories for ‘IF – pathophysiological classification (primary 

mechanism)’, ‘underlying disease (that causes the IF)’ and ‘disease state’ were 

categorised and adapted from the same classification system used by ESPEN 

(Pironi et al. 2015). 

 

The classifications which make up the category for ‘Indication for HPN’ were 

adopted from the clinical indications as described in the patients’ medical 

notes at C&V UHB. 

 

Table 3.1. The full list of data parameters for investigation in the study. 

 

Patient-related factors 

 

- Gender (M/F) 

- Age: mean (+-SD) (years)  

- Mean duration requiring HPN (months) 

- Patient weight before starting HPN (kg) 

- Patient weight (July 2015) (kg) 

- Difference between patient weight (July 2015) and at 

HPN initiation (kg) 

IF – pathophysiological 

classification (primary 

mechanism) 

- Short-bowel with jejunostomy (SBS-J) 

- Short-bowel with jejunocolic anastomosis (SBS-JC) 

- Short-bowel with jejunoileal anastomosis with an 

intact colon (SBS-JIC) 

- Fistulas (F) 

- Dysmotility (Mot) 

- Mechanical obstruction (MO) 

 - Mucosal disease (MD) 

Underlying disease 

(that causes the IF) 

(further sub-

categorisation – see 

table 3.2) 

- Short bowel 

- Intestinal fistula 

- Intestinal dysmotility 

- Mechanical obstruction 

 - Extensive small bowel mucosal disease 
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Indication for HPN (as 

clinically noted) 

 

- Short bowel syndrome (SBS) 

- Malabsorption 

- Obstruction 

- Fistula 

- Motility 

- Failed ENT (enteral nutrition) 

- High output (HO) stoma 

Disease state - Benign disease (BD) 

 - Active cancer (AC) 

PN-related factors - Number of days/bags administered per week 

- Number of aqueous bags per week 

- Number of lipid bags per week 

- Calories per aqueous bag (kcal) 

- Calories per lipid bag (kcal) 

- Average calories per week (kcal) 

- Average calories per day (kcal) 

- Average volume of PN per day (mL) 

- Volume of PN per week (mL) 

- Number of micronutrient vials per week (Solivito N®,  

Cernevit®, Vitlipid N Adult®, Additrace®) 

- Weekly provision of calcium from HPN (mmol) 

Co-prescribed 

medicines 

- Total number of prescribed medicines (excluding PN) 

- Extra vitamin supplementation (outside of PN 

regimen) 

- Bone health medicines 

- Calcium 

- Calcium and vitamin D (combined) 

- Vitamin D 

- Vitamin D (ergocalciferol) injection 

- Bisphosphonates 

- Denosumab 

- Teriparatide 
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Table 3.2. Full classification of underlying diseases (that cause IF) according to 

the type of clinical condition, as described in the ESPEN IF guidelines (Pironi 

et al. 2015). 

 

Underlying disease (that causes the IF) 

Condition Specific underlying disease 

Short bowel Extensive surgical resection for: 

• Mesenteric infarction (arterial or venous 

thrombosis) 

• Crohn’s disease 

• Radiation enteritis 

• Surgical complications 

• Intestinal volvulus 

• Familial polyposis 

• Abdominal trauma 

• Intestinal angiomatosis 

• Necrotizing enterocolitis 

• Complicated intussusception 

Congenital: 

• Gastroschisis 

• Intestinal atresia 

• Intestinal malformation 

• Omphalocoele 

Intestinal fistula • Inflammatory (Crohn’s disease, 

diverticular disease, pancreatic disease, 

radiation enteritis) 

• Neoplastic (colon cancer, ovarian cancer, 

small bowel malignancy) 

• Iatrogenic (operation, percutaneous 

drainage) 

• Infectious disease (tuberculosis, 

actinomycosis) 

• Trauma 

• Foreign body 

Intestinal dysmotility • Acute (associated with critical illnesses): 

 Post-operative 

 Systemic inflammatory 

 Neurological reaction 

Chronic intestinal pseudo-obstruction (symptoms 

>6 months): 

• Primary/idiopathic 

 Neuropathic 

 Myopathic 

 Mesenchyopathy 
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• Secondary 

 Collagen vascular diseases 

 Endocrine disorders 

 Neurological disorders 

 Medication associated 

 Paraneoplastic 

 Miscellaneous 

Mechanical obstruction • Obturation 

• Intrinsic bowel lesions 

• Extrinsic lesions 

Extensive small bowel 

mucosal disease 

• Microvillous inclusion disease 

• Tufting enteropathy 

• Tricho-hepato-enteric syndrome 

• Intractable diarrhoea 

• Severe food allergy 

• Autoimmune enteropathy 

• Intestinal lymphangectasia 

• Waldman disease 

• Common variable immunodeficiency 

• Crohn’s disease 

• Celiac disease 

• Radiation enteritis 

• Chemotherapy related enteritis 

• Congenital diseases 
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3.4. RESULTS 

Data was collected over a three-month period from July to September 2015 

and the results are displayed below. 

3.4.1. Patient-related factors 

Table 3.3. Number and percentage of HPN patients in the sample HPN 

population. 

 

Number of patients 

Males 20 (33.9%) 

Females 39 (66.1%) 

M:F 0.512: 1 

M:F (rounded) 0.5: 1 

 

Table 3.4. Analysis of further patient-related factors from the sample HPN 

population. 

 

 Mean (±SD) Range 

Age 58.10 (±13.78) 27-86 

Males 59.90 (±11.89) 35-81 

Females 57.18 (±14.72) 27-86 

Duration requiring HPN (months) 66 (±78) 1-344 

Patient weight at HPN initiation (Kg) 55.39 (±16.30) 27-107 

Patient weight (July 2015) (Kg) 61.22 (±12.56) 40-114 

Difference between patient weight 

(July 2015) and at HPN initiation (Kg) 
5.83 (±9.78) -28-(+37) 
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3.4.2. Disease-related factors 

Table 3.5. Number and percentage of patients according to the ESPEN 

pathophysiological classification for IF. 

 

IF Pathophysiological Classification Number of patients (and %) 

Short-bowel with jejunostomy (SBS-J) 33 (55.9%) 

Short-bowel with jejunocolic anastomosis 

(SBS-JC) 
10 (16.9%) 

Dysmotility (Mot) 8 (13.6%) 

Fistula 4 (6.8%) 

Mucosal disease (MD) 3 (5.1%) 

Short-bowel with jejunoileal anastomosis 

with an intact colon (SBS-JIC) 
1 (1.7 %) 

Mechanical obstruction (MO) 0 

 

Table 3.6. Number and percentage of HPN patients categorised according to 

their underlying disease as the reason to their IF. 

 

Underlying disease (that causes the IF) Number of patients (and %) 

Short bowel - Crohn’s disease 14 (23.7%) 

Short bowel - mesenteric infarction 13 (22.0%) 

Short bowel - surgical complications 

(including cancer resection) 
13 (22.0%) 

Intestinal dysmotility – secondary*  5 (8.5%) 

Intestinal fistula - inflammatory (including 

Crohn’s disease and pancreatic disease) 
3 (5.1%) 

Short bowel - radiation enteritis 2 (3.4%) 

Mechanical obstruction - intrinsic lesion 2 (3.4%) 

Intestinal dysmotility - primary/idiopathic 2 (3.4%) 

Extensive small bowel disease - autoimmune 

enteropathy 
2 (3.4%) 

Intestinal fistula - iatrogenic (operation) 1 (1.7%) 

Mechanical obstruction - extrinsic lesion 1 (1.7%) 

Extensive small bowel disease - congenital 1 (1.7%) 

*Includes 4 patients with ‘miscellaneous’ underlying disease 
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Table 3.7. Number and percentage of patients categorised according to their 

indication for requiring HPN therapy, as clinically referenced by the NST at 

C&V UHB. 

 

Indication for HPN Number of patients (and %) 

Short bowel syndrome (SBS) 43 (72.9%) 

Motility 6 (10.2%) 

High output (HO) stoma 3 (5.1%) 

Malabsorption 2 (3.4%) 

Fistula 2 (3.4%) 

Failed ENT (enteral nutrition) 2 (3.4%) 

Obstruction 1 (1.7%) 

 

Table 3.8. Number and percentage of patients according to their disease state. 

 

Disease state Number of Patients (and %) 

Benign disease 56 (94.9%) 

Active cancer 3 (5.1%) 
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3.4.3. PN-related factors 

Results for PN-related factors of the HPN population have been expressed as a 

mean to show the average value for each parameter, a range to show the 

distribution/scale of the data and as a modal value to show the most 

frequently occurring values for each parameter in the population. 

 

Table 3.9. Analysis of factors relating to PN administered to the sample 

population. 

 

Parameter Mean (SD) Range Mode 

Total number of feeds 

administered per week 
5.06 (1.46) 2-7 5 

Number of aqueous feeds 

per week 
4.27 (1.60) 1-7 5 

Number of lipid feeds per 

week* 
1.45 (0.66) 1-4 1 

Total calories per aqueous 

bag (kcal) 
1507.97 (553.03) 200-2600 1800 

Total calories per lipid bag 

(kcal)* 
1886.28 (349.30) 1350-2500 2000 

Total calories per week from 

HPN (non-nitrogen kcal) 
7953.36 (3255.01) 600-14700 9800 

Average daily calories from 

HPN (kcal) 
1122.13 (461.60) 85.71-2100 1400 

Lipid calories per lipid bag 

(kcal)* 
942.06 (170.62) 700-1400 1000 

Average volume of PN per 

feed (mL) 
2466.83 (672.98) 1297-4400 2000 

Total volume of HPN per 

week (mL) 
12948.90 (6595.50) 5000-30800 6000 

Nitrogen per aqueous feed 

(g) 
9.77 (2.44) 4-15.75 9 

Nitrogen per lipid feed (g)* 10.28 (2.28) 6.5-15.75 11 

Calcium per week from HPN 

(mmol) 
32.45 (22.34) 1-105 35 
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Interestingly, thirty-two of the fifty-nine patients (54.2%) had a lipid bag 

included within their PN regimen. The result reflects the balance clinicians aim 

to achieve in supplying calories as both carbohydrate and lipid. The result 

shows that almost half of the sample population did not receive lipid PN; 

reasons are thought to be related to lipid intolerance, optimised glucose 

control (without lipid calories), absence of necessity, personal preference and 

its association with cholestatic liver disease (Cavicchi et al. 2000; Hartl et al. 

2009; Rye and Nightingale 2015; Staun et al. 2009). 

 

Table 3.10. Number and percentage of participants with each micronutrient 

preparation as a component of their PN regimen. 

 

Micronutrient preparation 

Number (and %) of participants 

receiving micronutrient 

preparation in their PN regimen 

Cernevit® 53 (89.8%) 

Solivito N® 23 (39.0%) 

Vitlipid N Adult® 22 (37.3%) 

Additrace® 12 (20.3%) 
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3.4.4. Co-prescribed medicines 

Table 3.11. Analysis of medicines co-prescribed alongside PN regimen for 

participant population. 

 

Parameter Mean (SD) Range Mode 

Total number of prescribed 

medicines 
7.71 (3.60) 2-17 8 

Total number of bone health 

medicines 
1.67 (0.87) 1-5 1 

 

Table 3.12. Number and percentage of patients reported as receiving 

medicines relating to bone health and/or extra vitamin supplementation 

(outside of PN regimen). 

 

Medication 
Number (and %) of patients 

receiving class of medication 

Vitamin D supplementation (including 

combined preparations, high strength 

preparations and vitamin D injection)**,*** 

39 (66.1%) 

Bisphosphonates 18 (30.5%) 

Calcium supplementation * 15 (25.4%) 

B-group vitamins 12 (20.3%) 

Vitamin A supplementation 3 (5.1%) 

Denosumab 1 (1.7%) 

Teriparatide 1 (1.7%) 

* 10 patients documented as receiving combined formulations for calcium and 

vitamin D. 

** 5 patients documented as receiving regular 3-monthly vitamin D injections. 

*** 13 patients documented as receiving regular high strength vitamin D 

capsules (20,000 IU). 
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3.5. DISCUSSION  

3.5.1. Patient-related factors 

Prominent publications have documented the rise in incidence and prevalence 

of HPN cases in recent years (Van Gossum and Messing 1997; Bakker et al. 

1999; Ugur et al. 2006; Wengler et al. 2006; Jukes et al. 2010). The HPN service 

in Wales is known to have grown considerably in this time, now equating to 

35.9 per million of the population, comparably larger than the last 

documented statistic for the whole of the UK, and demonstrating an 

impressive access to HPN services in Wales. Although as previously 

mentioned, access to HPN services may not be as fair across the individual 

regions in Wales. Previous epidemiologic findings recorded in the 1990s noted 

a sharp increase in HPN use within the decade with causes thought to centre 

around the growing experience of specialised centres, increased survival of 

HPN patients and increased cost-effectiveness in the treatment of patients 

with benign disease; as well as the development of home care service 

provision (Van Gossum and Messing 1997). 

 

Data relating specifically to the demographic characteristics of the sample 

population show that there were approximately twice as many female to male 

HPN patients and a similar age distribution between the sexes. It has 

previously been demonstrated that SBS more commonly arises in women than 

men (67%), reasons are thought to relate to women having shorter original 

bowel lengths than men (Nightingale et al. 1992). There was a large variation 

in the duration requiring HPN for the sample population as demonstrated by 

the wide range and the SD being greater than the mean value. This finding 

helps to support/demonstrate the varied and wide-ranging requirements in 

terms of PN therapy in this patient population, particularly in terms of their 

nutritional needs over time. It was almost an expected finding when 

considering that some LT PN patients may only require PN as an interim 

feeding measure before having restorative or corrective surgery. To give an 

idea of the context of these findings, nine of the patients in the sample had been 

commenced on HPN within the preceding year while the remaining 50 patients 

had been receiving HPN for periods longer than a year. The findings for sex 
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ratio, age distribution and duration requiring HPN are all in agreement with 

studies by Raman et al. (2007), Ugur et al. (2006) and Winkler et al. (2015). 

 

France has recently published some brief yet interesting epidemiological 

findings from their paediatric population of HPN patients. By comparison to 

the findings from the adult cohort in Wales, SBS was again the dominating 

main indication for HPN and nearly all patients were fed tailored feeds via 

central venous catheters. However each centre on average managed less 

patients of which a higher proportion were male (56.9%) (Goulet 2016). 

 

The results draw close comparisons to the sample in a cross-sectional study 

performed by (Raman et al. 2007) specifically in terms of patient-related 

factors. The results from our sample of 59 patients correlated very closely to 

their results for M:F ratio, mean age and duration requiring HPN. Although 

there were differences in that their sample represented only 37.5% of the 

estimated number of HPN patients in Canada at that time; however they did 

have a larger sample size of 150 patients.  

 

As expected, patient weight was found to be higher from a cross-sectional 

moment in time than when the patients were initiated on HPN. Again this was 

similarly observed in the study by Raman et al. (2007) when they showed 

patient BMI increased significantly since the administration of PN. This 

reinforces the observations seen in practice where it is possible to observe the 

malnourished state of HPN patients prior to commencing HPN therapy and 

their improvement with LT parenteral feeding. Optimised PN therapy aims to 

get patients back to their ideal body weight (within realistic expectations) and 

natural gut adaptation (structural and functional) is also known to occur over 

time, helping to gradually reduce PN requirements for patients with retained 

ileum and colon, i.e not those with a jejunostomy (Nightingale 2006). 

 

Very recently, HPN specialists in London conducted a survey to identify the 

prevalence of hospital IF and HPN services over a week-long period in the UK 

(Culkin et al. 2016). Of the thirteen major hospitals that participated, it was 

found that there were 1144 HPN patients requiring LT PN services within that 
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week. This was over a very broad range (5-352), exemplifying the different 

capacities and HPN experience between the hospitals and HPN centres. The 

patient-related and disease-related factors presented in this chapter were 

similar in distribution to the findings of this smaller scale study. The authors 

stressed the current pressures experienced by HPN homecare companies 

relating to capacity issues from the ever-growing demand for PN production 

services in the UK; presumably resultant from the increasing prevalence of 

HPN patients and greater access to clinical services. 

 

3.5.2. Disease-related factors 

As Nightingale (2006) explains there are three types of patients with a short 

bowel; jejunum-colon, jejunum-ileum and jejunostomy. Jejunum-ileum 

patients are uncommon and rarely require nutritional support; whereas 

jejunum-colon and jejunostomy patients are more frequently encountered. 

The results showed that those with a jejunostomy were the largest proportion 

of patients, depicting the group of patients in whom no gut adaptation occurs 

and they are completely dependent on PN for their fixed IV nutritional needs. 

Key findings from results relating to the disease-related factors in the sample 

population are summarised in Tables 3.5, 3.6, 3.7 and 3.8. The ESPEN 

classification for IF gives an insight into the anatomical reasons for bowel 

dysfunction in the patients. Collectively, it can be observed that the over-riding 

‘pathophysiological classification for IF’ observed in the patient cohort was 

SBS in 44 of 56 patients; in particular for the category SBS-J (SBS with a 

jejunostomy). Figure 3.1 shows the graphical distribution of patients 

according to their pathophysiological classification for IF. This was anticipated 

since these patients are collectively more disadvantaged than those who have 

SBS-JC, who in turn are more disadvantaged than those who have SBS-JIC; a 

finding concordant with other studies (Gouttebel et al. 1986; Nightingale et al. 

1992; Simons and Jordan Jr. 1969). It accurately displays the type of patients 

who require LT PN, those who have had substantial yet variable portions of 

their bowel resected and consequently require LT IV feeding to replace the 

fluid and calorie requirements that they cannot achieve themselves. However, 

not all SBS patients are defined by requiring lifelong PN, some are able to re-

sustain themselves on oral nutrition. One of the main findings from an audit 
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by Gundogdu et al. (2016) showed that in the presence of an intact colon 

(regardless of SB remnant length), all patients should be given the chance to 

develop intestinal adaptation with careful nutritional management. Their 

audit into clinical outcomes associated with SBS found that mortality rates 

were greatly increased when smaller proportions of remnant bowel remained, 

particularly if the colon had been removed as well (100% mortality). 

 

It was observed that mesenteric infarction, Crohn’s disease and surgical 

complications (including cancer) were the most implicated diseases when 

patients were categorised in terms of their underlying disease that causes the 

IF according to the ESPEN IF classification; demonstrated by the larger 

number of patients with each disease/condition. These findings correlated 

closely with the disease distribution in 202 patients over a five year period in 

Denmark (Ugur et al. 2006). Interestingly fifteen patients (25.4%) [15/59 (14 

SBS, 1F)] in the cohort were noted as having a confirmed diagnosis of Crohn’s 

disease, comparably more than the 15% of patients diagnosed with Crohn’s 

disease in the European survey by Van Gossum et al. (1996). 

 

The next greatest number of patients fell into the category for ‘intestinal 

dysmotility – secondary’, where the motile function of the intestines do not 

function as expected, secondary to another condition. Patients are often 

diagnosed after exclusion of other disease states, namely obstruction and 

mucosal disease, and cause attributed to either other conditions or undefined 

idiopathic aetiology (Paine et al. 2013). A growing number of patients are 

diagnosed with intestinal dysmotility and require HPN, the percentage of 

patients from this study is appreciably similar to other studies (10-14%) (Lal 

et al. 2006; Mullady and O’Keefe 2006). 

 

Again, SBS was the prevailing manifestation when the participant cohort were 

categorised according to their ‘indication for requiring HPN therapy’, in terms 

of the single most attributable reason for which they required HPN as clinically 

documented in medical notes (see Figure 3.2). The remaining patients were 

evenly spread out across the other indications, with the exception of a small 

minority categorised as needing HPN therapy for problems relating to gut 
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motility.  Conditions observed here included diverticular disease, Erhlers-

Danlos syndrome and chronic pancreatitis, alongside idiopathic causes for GI 

dysmotility. These results support those observed by Raman et al. (2007) and 

Van Gossum et al. (1996) in which the largest amount of patients had SBS as 

the indication for HPN, 60% and 31% respectively. In the UK and USA 

respectively, the BANS group and SUSTAIN registry both report SBS as the 

main indication for HPN (Smith et al. 2011; Winkler et al. 2016). 

 

Over the last two decades, there has appeared a disparity in the diagnoses and 

indications for HPN between the UK and the rest of the Europe. In a European 

survey performed in 1993 from 488 patients, the leading underlying disease 

for HPN was noted to be cancer (42%), of which 67% of patients were from 

Italy and only 9% resided in the UK. This difference in HPN therapy for 

malignant diseases can still be observed with our results and has been 

corroborated by others in the field (Van Gossum and Messing 1997; Van 

Gossum et al. 1996; Pironi et al. 2007). For the findings of the present study, 

nearly all patients were considered to be in a ‘benign disease’ state as opposed 

to being in a state of ‘active cancer’ (in terms of the current status of their 

disease and conditions). This is thought to be a reflection of the funding 

allocation for patients on HPN since the WHSSC do not fund patients with 

active cancer relating to their HPN therapy. Understandably this is with the 

view that these patients do not suitably meet the criteria for LT HPN therapy, 

the guideline only stipulates funding allocation for chronic conditions or as an 

interim measure whilst awaiting reconstructive surgery (WHSSC Complex 

Conditions Management Group 2014). 
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Figure 3.1: Patients categorised according to their pathophysiological 

classification for IF. 

 

 

Figure 3.2: Patients categorised according to their indication to receive PN. 

 

3.5.3. PN-related factors 

The characteristics of the population shown in terms of their HPN therapy are 

as set out in Tables 3.9 and 3.10. Essentially, they depict the variable 

requirements of the population in terms of their fluid and calorie 

requirements. The Scientific Advisory Committee on Nutrition (SACN) 
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approximate that the daily estimated average requirement (EAR) for adults 

aged 55-64 is 2581 kcal for men and 2079 kcal for women (Scientific Advisory 

Committee on Nutrition 2011). One observes that the average calories in the 

aqueous and lipid feeds closely resemble the approximate requirements for 

the general population when allowances/considerations are given for modest 

oral (or enteral) feeding outside of the PN regimen. 

 

On average, patients received more aqueous PN than lipid PN as part of their 

PN regimen over the course of the week. Our findings closely resemble those 

of another survey performed by the HAN & CIF ESPEN group whose patient 

cohort also only included LT PN patients. They found the mean duration of 

HPN was 7 years and the mean weekly number of nutritional bags was 5.6 

including a mean of 1.6 lipid bags per week (Van Gossum et al. 2016). The 

reasoning thought to be that HPN teams are more reserved in the 

administration of lipid emulsions in clinical practice over the concern of the 

development of intestinal failure associated liver disease (IFALD) associated 

with their use (Cavicchi et al. 2000). IFALD is also more commonly termed as 

PN associated liver disease however there exists dispute whether factors 

relating to PN or the IF itself are implicated as the root causative factors for 

the onset of liver disease.  Also, ESPEN HPN guidelines recommend that lipid 

should constitute only 15-30% of the PN regimen for LT patients (Staun et al. 

2009). Dated studies have shown that 3-4.5% of total calories as fat appear to 

prevent essential fatty acid deficiency (EFAD) and that cholestasis is common 

when 500mL of Intralipid is given more than three times a week (Barr et al. 

1981; Cavicchi et al. 2000). As one can observe, there is a fine balance between 

providing sufficient lipid and creating adverse effects from optimal or 

overprovision. On one end of the spectrum minimal fat provision is 

recommended to be no less than 1g/kg of body weight per day (in healthy 

adults) to avoid essential fatty acid deficiency; no standards have been set for 

LT HPN patients but it is expressly considered to be no more than this amount 

over fears for inducing hepatic toxicity (Dupont et al. 2015a). In reality, 

current patients are estimated to receive less than this recommendation for 

lipid requirement (0.3-0.9 g/kg body weight per day) (Chambrier et al. 2004; 

Pironi et al. 2003; Reimund et al. 2000; Reimund et al. 2005; Vahedi et al. 
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2005). Unfortunately, studies are sparse that relate to determining 

appropriate lipid requirements in LT HPN, particularly with reference to the 

different lipid emulsions and their relative efficacy, safety and toxicity profiles. 

Ultimately, decisions regarding the inclusion of lipid in patients’ PN regimens 

result from a risk-benefit analysis between patients acquiring essential fatty 

acid deficiency or developing IFALD. As mentioned previously, the area of lipid 

inclusion in PN provision requires significant research, in terms of both the 

types of lipid included in PN (e.g. LCT, LCT:MCT, olive, soy or structured lipids) 

and lipid dosing requirements for patients (Calder et al. 2010; Dupont et al. 

2015b; Raman et al. 2017). 

 

In the participant population, on average the total calories in the feeds 

containing lipid were higher than in those without (the aqueous feeds). 

Although this is a likely occurrence as in general fat emulsions carry more 

calories per volume than glucose (dependent on formulation and individual 

PN components); reasons are thought to relate to ensuring patients receive 

substantial provision of lipid in the feed because they are less frequently 

administered (on average 1.45 per week). A rather delicate compromise 

between giving sufficient lipid calories to reduce the likelihood of developing 

EFAD and reducing liver complications from overprovision. Another factor 

which contributes to this finding is the overall physical stability of the PN feed. 

Often and in particular for large volume feeds, greater quantities of lipid are 

required in proportion to the aqueous components to ensure the physical 

stability of the resultant emulsion (fat in water).  

 

The amount of calcium in the patients’ weekly PN regimen was included to give 

an insight into the provision of calcium solely from the PN regimen of these 

patients, so that the results could give an indication to whether they are 

receiving adequate dosages. As the results show there is a large variation in 

the amount of calcium patients receive from their HPN regimen. However, 

with hindsight, it is difficult to extrapolate conclusions from this data 

parameter when the amount prescribed in the patients’ regimen are dictated 

by the levels in their blood i.e. whether or not they are within the normal 

reference interval and require more or less calcium supplementation in PN. 
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Also, this result should be interpreted cautiously in relation to calcium 

provision and its effect on bone health because as with other nutrient 

components, it is not known how much calcium these patients consume or 

receive from their oral and/or enteral diet outside of their PN regimen. 

 

Table 3.10 shows that the vast majority of patients received the preparation 

Cernevit® to provide their fat and water-soluble vitamin requirements within 

their PN regimen. As the usual preparations of choice for addition to lipid 

feeds, Vitlipid N Adult® and Solivito N® were used in just over a third of the 

sample populations’ PN regimens; this was reflected by the total number of 

patients in the sample who had lipid feeds within their PN regimen (n=32). 

Interestingly, only 12% (20.3%) of patients within the sample cohort received 

TE from the preparation Additrace® which is marketed for LT use to provide 

a daily dose of the nine essential TE. The direction to include these 

preparations in patients’ PN regimens follows assessment of their nutritional 

status from micronutrient blood tests i.e. patients showing deficiencies of 

micronutrients would benefit from their supplementation and those with 

excesses or toxicities would indicate removal of the compound preparation 

from their PN regimen. This finding suggests that a large proportion of patients 

are not being routinely supplemented with the preparation, are unsuitable for 

TE supplementation or have already had the preparation removed from their 

PN regimen. 

 

3.5.4. Technical aspects 

On average all patients infused PN over 12-14 hours nocturnally and were all 

fitted with a form of central venous catheter to allow administration of the PN 

feed; most frequently a single-lumen broviac tunnelled catheter. 

 

3.5.5. Co-prescribed medicines 

The data show the wide range for the extent of polypharmacy in the sample 

population, particularly in terms of the number of co-prescribed medicines the 

patients administer alongside their HPN therapy. Reasons for this variation 

are thought to relate to the variable medication needs of patients within the 
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average age group of the sample cohort, the burden of co-existing medical 

conditions and GI-related pharmacologic treatment needs (e.g. high dose 

loperamide and codeine to help slow intestinal transit) (Nightingale 2006). 

 

When medication data were subcategorised according to the different classes 

of bone health medicines, it was clear to see that declining bone health is a 

complication in the patient group. Results showed that 66.1% of patients 

required vitamin D supplementation outside of their PN regimen to help 

maintain bone health through its natural role in maintaining calcium and 

phosphorus serum concentrations to promote mineralization of bone (Holick 

1996). Also, 30.5% of patients required bisphosphonate treatment in an effort 

to improve BMD; these patients have a defined diagnosis of osteoporosis to 

necessitate treatment with bisphosphonates. However the possible 

implication of PN therapy warrants further investigation considering the 

multifactorial nature of the onset of osteoporosis (Cohen-Solal et al. 2003). Of 

note, all patients receiving calcium supplements were also maintained on 

vitamin D supplements, whether in combined supplement form (e.g. Adcal 

D3® ), or administered separately.  

 

3.5.6. Other discussion points 

This present study on the HPN population in Wales has been a unique 

opportunity to capture the demographics and characteristics of the population 

as a whole. However, there exist certain limitations to the study, the sample 

cohort only represented approximately 60% of the total population of HPN 

patients in Wales and was a small sample in itself considering an estimated UK 

prevalence of 1600-1700 patients. Although the results from the study give an 

accurate representation of HPN in Wales, they may not be generalizable to the 

whole HPN population in the UK. There are other technical considerations 

between different HPN centres in terms of their routine practices, approach to 

managing patients and their nutritional requirements. On the other hand, the 

advantages of this study over other studies is that all the patients were 

uniformly recruited from a single centre by a single research team, and as such 

there were no inconsistencies in data entry or their interpretation; all tests 

were performed according to local guidelines and protocol (without varying 
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practices between different centres). The accurate nature of the patient 

medical records as a data source strongly supports the validity of the findings. 

Its thoroughness and completeness as data source means that all relevant data 

from all participants was collected to give the most accurate representation of 

the population. The end result of the study being a comprehensive 

presentation of characteristics for the HPN population in Wales with a 

detailed/in-depth analysis. 

 

3.6. CONCLUSIONS 

In summary, this small-scale study has confirmed current findings for disease 

characteristics and shed light on PN requirements in HPN populations. The 

specialised nature of the LT HPN field and its niche attributes have been 

presented with associated research findings to add to the body of HPN work 

and inform those of interest, patients and service providers alike. This chapter 

has highlighted some avenues for follow-up in subsequent chapters, including 

the use of compound TE additives and their suitability for the LT PN 

population (e.g. if micronutrient preparations are marketed for the daily needs 

of all LT PN patients, then why are more patients not receiving them). Another 

notable finding and potential research avenue realised during data collection 

was the number of patients receiving treatment for bone disease, an area of 

pressing clinical concern that warrants further research into PN-related 

parameters which can affect patient bone health. Further studies will 

undoubtedly show that HPN practices will continue to evolve as the HPN 

knowledge-base grows and as clinicians aim to provide optimal HPN therapy 

for LT patients, especially those with IF. By documenting and evaluating HPN 

patients and their associated PN characteristics it helps to better LT PN 

management and clinical monitoring of the effectiveness of PN provision. 
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CHAPTER FOUR: 

Micronutrient abnormalities in LT PN: 

a review of the literature 
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4.1. INTRODUCTION 

This chapter serves as an introduction for information relating to 

micronutrients, their monitoring and dosing in HPN patients while also 

providing a concise review of the relevant literature pertaining to each 

micronutrient in relation to the occurrence of nutritional abnormalities in LT 

PN patients. 

 

4.1.1. Micronutrients - background 

Micronutrients are essential components of nutrition and therefore LT PN. As 

a group they comprise both TE and vitamins. They are vitally important for 

body cellular functions at biological, chemical and molecular levels. Their roles 

include mediation of biochemical reactions (as co-factors for enzymes), acting 

to stabilise or conform protein structures as well as receptor-site interactions 

(Prashanth et al. 2015). These processes require micronutrients and occur in 

the natural body systems including immune, antioxidant, inflammatory and 

metabolic functions. Humans have ongoing constant micronutrient 

requirements to keep body levels ‘within range’ so they are provided in 

patients’ PN regimens to ensure they do not become deficient. Over time, 

micronutrient abnormalities have been shown to occur in LT PN patients 

causing nutritional deficiencies and toxicities (Rudman and Williams 1985; 

Forbes and Forbes 1997; King 2015; Shenkin 2015c); possibly due to 

concurrent medical conditions and/or over or under provision of 

micronutrients in the PN regimen. 

 

4.1.2. Micronutrient status in HPN 

As mentioned previously, there is a variable degree of dependency on HPN; 

some patients rely completely on PN to sustain themselves whereas others can 

have variable or uncertain nutritional intake from GI absorption of what 

limited diet they are able to consume orally. For this same reason there also 

exists variable micronutrient requirements in PN between the individual LT 

PN patients.  
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Patients receiving LT PN fulfil their micronutrient needs (both TE and 

vitamins) from commercial micronutrient preparations supplemented 

directly into the PN feed. The micronutrient preparations available in the UK 

have generally been developed to provide more than basal amounts of all 

micronutrients; the rationale being that catabolic patients would require 

increased micronutrient provision, or others may have increased losses (e.g. 

high-output stoma) or some patients may already present with deficiency 

states (Shenkin 2015b). The daily doses present in the daily unit vials are 

generally more than the oral dietary reference intakes and should be more 

than sufficient to meet patients’ needs, particularly since IV administration 

bypasses GI absorption and its associated essential losses. (Panel of Dietary 

Reference Values 1991). The recommended requirements and doses of 

micronutrients in PN have recently been disputed by Vanek et al. (2012); their 

recommendations will be discussed in relation to the study results later in the 

chapter.  

 

4.1.3. Commercial micronutrient preparations 

Tables 4.1 and 4.2 show the different doses of micronutrients in the currently 

available micronutrient preparations. Worthy of note, these preparations are 

trademarked under different names in Europe e.g. Solivito/Soluvit, Vitlipid N 

Adult/Vitalipid N.  

 

Elsewhere in Europe, the preparation Additrace® has been replaced with a 

newer product called Addeven® containing less zinc, copper and manganese, 

alongside more selenium. Similarly, a longstanding but now discontinued 

preparation called Decan® has been replaced in some countries by Nutryelt®, 

which contains less copper, manganese and fluorine, alongside increased 

provisions of selenium and iodine. Unfortunately these newer preparations 

face opposition against routine inclusion in PN amongst homecare PN 

suppliers in the UK.  
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Table 4.1: Trace element product compositions and international recommendations. 
 

Trace 

element 

(mol) 

RNI 

(mol) 

RDA 

(mol) 

ESPEN 

recommende

d daily doses 

(mol) 

(Pironi et al. 

2016) 

ASPEN 

recommende

d 

requirements 

(mol) 

(Vanek et al. 

2012) 

Additrace® 

mol 

Addeven® 

mol 

Decan® 

mol 

Nutryelt® 

mol 

Tracutil® 

mol 

Chromium 0.5 0.6 0.2-0.3 0.2-0.3 0.2 0.2 0.289 0.19 0.2 

Cobalt NR NR NR NR -- -- 0.025 -- -- 

Copper 19 14 4.7-.9.6 4.7-7.8 20 6.3 7.55 4.7 12 

Fluoride 200 158 NR NR 50 50 79 50 30 

Iodine 1 1.2 0.5-1.2 NR 1 1 0.012  1 1 

Iron 9.5 8 17.9 NR 20 20 17.9 18 35 

Manganese 26 42 1.1-1.8 1 5 1 3.64 1 10 

Molybdenum 0.5-4.0 0.5 NR NR 0.2 0.2 0.261 0.21 0.1 

Selenium 0.75-0.95 0.7 0.2-0.8 0.75-1.25 0.4 1 0.887 0.9  0.3 

Zinc 145 170 38-61 46-77 100 77 153 153  50 

 

Note: RDA, Recommended dietary allowance (USA); RNI, Reference nutrient intake (UK); NR, no recommendation. 
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Table 4.2: Vitamin product composition and international recommendations 
 

Vitamin 

(units) 
RNI DRI 

ASPEN recommended 

requirements 

(Vanek et al. 2012) 

Vitlipid N 

Adult® 
Cernevit® Solivito N® 

Vitamin A (µg) 700 1000 990 990 1050 -- 

Vitamin E (mg) 5 10 10 9.1 10.2 -- 

Vitamin D (µg) -- 5 5 5 5.5 -- 

Vitamin K (µg) 70 80 150 150 -- -- 

Biotin (µg) 100 150 60 -- 69 60 

Folic acid (µg) 200 200 600 -- 414 400 

Niacin (mg) 16 19 40 -- 46 40 

Vitamin B1 (thiamine) (mg) 0.9 15 6 -- 3.51 3.1 

Vitamin B2 (riboflavin) (mg) 1.3 1.7 3.6 -- 4.14 3.6 

Vitamin B6 (pyridoxine) (mg) 1.4 2 6 -- 4.53 4 

Vitamin B12 

(cyanocobalamin) (µg) 
1.5 2 5 -- 6 5 

Vitamin C (mg) 40 60 200 -- 125 100 

 

Note: DRI, Dietary Reference Intake; RNI, Reference Nutrient Intake. 
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4.1.4. Nutritional abnormalities - background 

As previously mentioned, it has long been well-established that LT HPN 

patients are at risk of developing nutritional abnormalities (King 2015; 

Rudman and Williams 1985; Shenkin 2015b; Staun et al. 2009; Van Gossum et 

al. 2009). This is particularly notable for the micronutrient components of PN 

i.e. vitamins and TE, because it can be difficult to gauge the individual 

requirements for the diverse and complicated HPN population (Shenkin 

2015b). In this chapter where the term ‘nutritional abnormality’ has been used 

in this context, it refers to the result of a recorded blood test for a particular 

micronutrient going out of its specified reference range in an individual HPN 

patient, either into deficiency or excess. The effects of having a nutritional 

abnormality can be diverse; in the context of deficiency they are known to 

relate to ineffective function relating to each individual nutrient and their 

associated physiological roles. Toxicity states can act similarly, disrupting 

physiological function but also causing cellular damage and potential 

deposition in tissues. It has long been considered that micronutrient 

abnormalities in PN may be associated with specific symptoms, for example 

selenium deficiency and hair loss, vitamin A deficiency and night-time 

blindness, manganese toxicity and neurological movement disorders or zinc 

deficiency and skin rash; the evidence for each varies considerably (Daniells 

and Hardy 2010; Hardy 2009; Maskarinec and Fowler 2016; Sidana et al. 2015; 

Vanek et al. 2012). 

 

In the late 1990s it was recognised that there was a lack of investigation into 

how nutritional deficiencies occur, their extent and clinical significance (Van 

Gossum and Neve 1998). Much of the research that has been performed over 

subsequent years has been difficult to place in clinical context because it 

mostly relates to individual nutrients and is limited to case reports of nutrient 

deficiencies or toxicities. Of the research performed, nutritional abnormalities 

have been most notably demonstrated for the vitamin, TE and electrolyte 

components of PN; constituting the micronutrient components of PN (Shenkin 

2015b; Sobotka 2011; Staun et al. 2009). They are required in far smaller 

quantities with usual daily requirements of less than 100mg yet are still vital 

nutritional components (Prashanth et al. 2015). The reason for the occurrence 
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of nutritional abnormalities is unclear and difficult to comprehend since HPN 

is tailored to the individual needs of each patient. Although it is thought that 

their smaller dosage requirements and less frequent monitoring, alongside the 

potential for patient requirements to fluctuate may play a role in the 

occurrence of nutritional abnormalities. 

 

Most reports of deficiencies in HPN patients relate to the omission of a 

particular nutrient from the PN admixture, which in turn results in that 

particular deficiency. In previous years shortages of injectable multivitamin 

preparations has been reported to be responsible for nutritional 

abnormalities arising from the rationing of supplies of vitamins in IV 

preparations in patients from the US (Centre for Disease Control and 

Prevention 1989; Centre for Disease Control and Prevention 1997; Hanson et 

al. 2012). It is generally accepted that the longer a patient receives a set 

(defined) PN formula, the higher the risk that the formula will not match the 

nutritional needs of the patient (Fuhrman 2002; National Advisory Group on 

Standards and Practice Guidelines for Parenteral Nutrition 1998).  

 

The stated micronutrient requirements for HPN differ markedly between USA 

and Europe (US Dietary Reference Intakes set by the Food and Nutrition Board 

versus the Panel of Reference Nutrient Intakes set by the Department of 

Health). Vanek et al (2012) published a comprehensive report on TE and 

vitamin requirements in PN. A notable point discussed in this report was the 

difference between the recommended oral and intravenous intakes of 

micronutrients. They explained the efficiency of intestinal absorption and 

homeostatic control/regulation of micronutrient levels from an oral diet; by 

comparison to the provision of IV nutrition to HPN patients which bypasses 

homeostatic control.  The resultant variable IV nutrient requirements for HPN 

patients is additionally confounded by inter-patient variation, conveying the 

difficulty in accurately gauging micronutrient requirements in LT PN patients. 

It is worth noting that guidance for nutritional reference intakes are intended 

for a fit and healthy population rather than those with complex medical needs 

as demonstrated by patients on LT PN, their use as an acceptable and accurate 

comparative standard could be cause for debate. 
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TE supplementation by prescribers is usually directed by serum TE 

concentrations and it has been recognised that interpretation of the results 

from a patient’s TE biochemistry can be complicated. It is thought that there is 

poor correlation of serum TE concentrations with tissue stores of TE (Btaiche 

et al. 2011). This can make it difficult to calculate the exact amount of TE that 

a patient requires, especially if they have other medical problems affecting TE 

clearance from the body e.g. cholestatic liver disease can lead to the 

accumulation of manganese (Hardy 2009). On the other hand, TE levels have 

been known to fall in situations of infection or metabolic stress which may 

complicate analysis by not truly indicating a deficiency state (Meadows 1998). 

The clinical accuracy and reliability of results from tests for blood 

biochemistry are clearly confounding factors in the correct interpretation of 

micronutrient status in LT PN patients. 

 

Some possible explanations which may help to explain how nutritional 

abnormalities come to occur are as follows: 

- Instability or compatibility issues arising during compounding or storage 

of PN may be responsible for reduced nutrient doses being delivered to 

patients (Ferguson et al. 2014). 

- Contamination of materials used during the manufacture of the PN 

admixture could increase the content of certain micronutrient components 

(Bohrer et al. 2001). For instance, individual solutions or aseptic materials 

(e.g. metal needles or tubing) can result in excess provision of aluminium, 

chromium and manganese via contamination (Btaiche et al. 2011; Hardy 

2009; Leung 1995). 

- Errors or mistakes associated with the PN composition and regimen could 

be responsible for nutritional abnormalities. For example, the final PN feed 

not containing the correct composition of nutrients or the inadvertent 

omission of necessary changes to PN formulation during clinical review. 

- Long-term administration of a set PN regimen (of the same composition) 

may result in a patient’s nutrient levels gradually going out of range. For 

instance, even doses that are only slightly high or low could result in 

nutrient levels going out of range when given over a long period of time 

(Fuhrman 2002). 
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- Patient monitoring (tests/clinic visits) not occurring as frequently as 

clinically necessary. Individual patient’s nutritional requirements may 

change over time and the PN formulation may gradually become less 

appropriate for the patient. The PN is not changed in time with the patient’s 

nutritional needs (Shenkin 2008). 

- Patient-specific factors may influence the distribution and utilisation of the 

PN components within the body (Fessler 2013; Shenkin 2008; Staun et al. 

2009). 

 

Some well-known factors that put HPN patients at risk of nutritional deficiency 

include: 

- Deliberate removal of compound micronutrient preparations from a 

patient’s PN regimen. Some micronutrients are only available in specific 

combination products and certain clinical situations may necessitate the 

removal of the product from the regimen altogether. For instance impaired 

liver excretory function can lead to accumulation of manganese and of 

copper, which is of concern in patients on HPN given that standard 

micronutrient preparations may contain too much of several metals for 

long-term intravenous administration (including manganese and copper). 

Removal of the compound preparation from the patient’s PN regimen may 

in turn result in patients becoming unavoidably depleted of other essential 

micronutrients (Fuhrman et al. 2000; Spiegel and Willenbucher 1999; 

Staun et al. 2009). 

- The variation in PN regimen. Some patients may receive PN therapy only 

a few days of the week to supplement their oral intake, by comparison to 

others who require it every day. There must be some residual gut function 

for these patients to absorb macronutrients and micronutrients on the 

days when they do not receive PN. However it depends on the composition 

of food and balance of micronutrients in the patient’s oral diet whether the 

patient can meet their requirements in terms of TE and vitamins (Shenkin 

2015b). Likewise, some patients may not receive lipid emulsion-containing 

PN as frequently as aqueous PN, and consequently there may be limited 

provision of fat-soluble vitamins.  
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- Instability of micronutrients within the PN admixture. The instability 

of micronutrients within PN admixtures has been well-documented and 

can result in less than the intended prescribed nutrient dose being 

administered to patients. Some examples include the oxidation of ascorbic 

acid (vitamin C) when oxygen permeable bags are used or the ability of 

copper to complex with some amino acids, resulting in reduced 

bioavailability (Allwood and Kearney 1998; Dupertuis et al. 2005; Thibault 

2014). Another being the photo-degradation of retinol (vitamin A) by 

ultraviolet light (Allwood and Plane 1984). For these reasons surrounding 

micronutrients and the risk of instability within the PN formulation, it is 

common practice to make additions of micronutrients to PN immediately 

before infusion (Baines et al. 2001). However, this is not always the case 

for HPN patients who often have their formulations compounded remotely 

and delivered at weekly or two weekly intervals to their home residence.  

 

4.1.5. Guidelines and monitoring of micronutrient status  

Guidelines recently published by ESPEN recommend that LT PN patients are 

regularly monitored. This includes anthropometry (body size measurements), 

blood biochemical measurements at each clinic visit, annual bone dual energy 

X-ray absorptiometry (DEXA) scanning and micronutrient testing (for TE and 

vitamins) at least every 6 months (NICE 2006; Staun et al. 2009). Over time, 

the results from these tests have revealed nutrient abnormalities in some 

patients. A nutritional abnormality is considered to be when the result of a 

particular test has gone outside of its normal reference range, resulting in 

deficiency or excess for the specific nutrient. Healthcare professionals 

involved in the care of LT PN patients need to be aware of how to monitor, 

manage and resolve nutrient abnormalities.  

 

ESPEN guidelines recommend that micronutrient assessment should be 

performed for HPN patients at initiation and then at six monthly intervals 

(Staun et al. 2009). Clinical management of the patient’s micronutrient status 

can then be performed. For instance, further supplementing the PN 

formulation to correct any deficiencies or reducing doses in PN to correct any 

nutrient excesses. 
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Forbes and Forbes (1997) have previously shown that micronutrient status 

may not be optimal even with attempts to supplement the micronutrient needs 

of the patient. Nevertheless it has now generally been considered that so long 

as there is regular review of a patient’s regimen to ensure adequate 

micronutrient provision, the event of a patient developing clinically relevant 

levels of deficiency should be rare (Shenkin 2015a). This can appear confusing 

when blood test results indicate values outside the reference range, which in 

turn continues to raise questions around the stability of micronutrients in PN 

and the adequacy of their provision in patient formulations. Shenkin (2015c) 

has also explained how the safety margin between the adequacy of provision 

and toxicity is large, and that it is difficult to over-provide micronutrients to 

patients in their feeds. However this is not the case for copper, manganese and 

vitamin D where there appears to be a fine balance between adequate and 

over/under-provision (see further detail under sections ‘4.2.1.1.’ ‘4.2.1.3.’ and 

‘4.2.2.4’ respectively). 

 

4.1.5.1. Accuracy of micronutrient assessment 

There are difficulties in gauging exact TE requirements for LT PN patients 

based on current assessments for nutritional status. For instance, there exists 

poor correlation of serum TE concentrations with tissue TE stores (Btaiche et 

al. 2011), as well as underlying conditions that can affect TE balance e.g. 

copper accumulation in hepatic cholestasis or selenium/zinc losses via GI 

stomal fluids. 

 

A hot topic within the literature was the lack of confidence in the correlation 

between micronutrient dosing, serum/plasma levels and tissue/body stores, 

particularly in the accuracy of micronutrient biochemical tests to define 

specific nutritional status (Btaiche et al. 2011). In practice, this proves 

troublesome for practitioners who are trying to interpret the values and their 

clinical context for each individual scenario. It also emphasises the need for 

newer and simpler biomarkers for use in the assessment and interpretation of 

micronutrient status in the clinical setting (Daniells and Hardy 2010). 
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There are some difficulties involved in the assessment of micronutrient status 

for HPN patients. For instance, it can prove challenging for clinicians to identify 

micronutrient abnormalities because the signs and symptoms of a deficiency 

or toxicity are neither specific nor sensitive for each micronutrient (Fuhrman 

2002; Fuhrman 2006). Also, the time taken for a deficiency to develop can vary 

widely, ranging from several weeks in the case of iron to months or years for 

copper or selenium; with only extreme deficiencies leading to the 

development of clinical symptoms (Gallitelli 1995). It therefore makes the 

clinical determination of which nutrient needs to be reduced, omitted or 

increased problematic to decipher.  

 

Another issue to consider is the choice of laboratory test for the suspected 

deranged micronutrient. The predicament being which sample to test (e.g. 

blood, serum, tissue, urine, hair) and the individual reliability and 

accurateness of each sample (Gallitelli 1995; Fuhrman 2006). This large 

variation in samples and tests makes it difficult to standardise or interpret 

deficiency or toxicity states. A good example being the novel biomarkers for 

selenium which have now increased the complexity of assessing selenium 

status and requirements (Nève 2000).  

 

Another well-documented factor which affects interpretation of micronutrient 

test results is the acute phase response (APR). It is a plasma protein response 

which is a part of a complex series of physiological, haematological and 

biochemical events that make up the inflammatory response which occurs 

after tissue injury, illness or infection (Nichol et al. 1998). The size and 

duration of the APR are related to the nature and severity of the injury, as well 

as the presence of sepsis (Davies and Hagen 1997). The plasma concentrations 

of micronutrients such as selenium, copper, iron and zinc alter during active 

inflammation, depicted by raised C-reactive protein (CRP) and give an 

inaccurate presentation in biochemistry test results (Fraser et al. 1989). HPN 

prescribers are advised to be aware of the effect of  the APR on assessment of 

micronutrient status in HPN patients, especially when implementing dose 

changes in their PN (Shenkin 2008; Staun et al. 2009). 
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4.1.5.2. Contamination of PN admixtures. 

A relatively recent discovery is that PN admixtures can become contaminated 

from the individual solutions used in the manufacturing process. An 

unintentional occurrence by which TE are present as ubiquitous contaminants 

in various solutions; the degree of PN contamination made worse via its 

manipulation with various equipment during PN manufacture.  A study by 

Pluhator-Murton et al. (1999) demonstrated that there was the potential for 

trace element toxicity from contaminated PN solutions. They identified that 

measured concentrations of TE in combined TE additives were higher than 

stated values and the relative amount of contaminated TE delivered to the 

patient could be substantial (Pluhator-Murton et al. 1999). This stresses the 

need for thorough sampling, handling and measurement techniques in the 

preparation of PN admixtures to ensure avoidance of contamination 

(Buchman et al. 2009). The micronutrients most notably implicated as 

contaminants of PN solutions include aluminium, chromium, iodine and 

manganese; such contamination could contribute or be responsible for TE 

toxicity states (Bohrer et al. 2001; Hak et al. 1998; Hardy 2009; Kruger et al. 

2013; Moukarzel 2009). Where possible, monitoring and assessment of 

nutritional status should factor in the complication of PN contamination. 
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4.2. REVIEW OF RELEVANT LITERATURE 

A review of the relevant literature relating to micronutrient abnormalities 

(deficiency and toxicity of both vitamins and TE) was performed between the 

years 2015 and early 2017. Subscription to online literature publication alerts 

allowed notification for the latest relevant publications during this period. 

 

Rather than use an explicit and detailed search strategy, an unrestricted non-

specific literature search was performed using Google Scholar. This enabled 

full control over all the relevant literature to be included, without 

unintentional omission of pertinent literature via a restrictive and complex 

search strategy. For example, many different scientific and colloquial terms 

exist for subject themes related to the literature review; micronutrients can be 

known under different names and/or abbreviations (e.g. vitamin B12, 

hydroxycobalamin, cobalamin), as different biological forms (e.g. vitamin D, 

vitamin D3, cholecalciferol, colecalciferol, 1,25-dihydroxycholecalciferol, 25-

OH vitamin D, activated 7-dehydrocholesterol), or selectively termed together 

(e.g. B-group vitamins or water-soluble vitamins). Additionally, terminology 

for expressing nutritional abnormalities can differ (e.g. toxicity/excess). A 

restrictive search strategy may have resulted in important literature being 

overlooked. Selective identification of relevant literature was also found via a 

‘snowball’ style technique in which relevant publications were identified (and 

chosen) from the bibliography of another publication. While not the 

conventional choice of evidence-based literature review, the following 

literature appraisal provides an adequate introduction for the topic of 

nutritional abnormalities in LT PN patients. Although it aimed to include all 

relevant publications and scientific text, a degree of selective bias cannot 

however be excluded. 
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4.2.1. Noteworthy micronutrient abnormalities - TE 

There are nine essential TE (chromium, copper, fluoride, iodine, iron, 

manganese, molybdenum, selenium, zinc), five of these (in bold font) are of 

greater clinical interest because there are concerns surrounding their safe 

supplementation in PN and they will each be discussed in greater detail. For 

the same reason they are the only TE routinely monitored by C&V UHB.  

 

4.2.1.1. Copper 

Copper is essential for cell metabolism, having high concentrations in the liver 

and brain. It acts as a co-factor for many vital enzymes involved in energy 

metabolism, immune functioning, iron metabolism and wound healing 

(respective examples of enzymes being cytochrome C oxidase, copper-zinc 

superoxide dismutase, caeruloplasmin and lysyl oxidase) (Collins and Klevay 

2011). 

 

Deficiency is a well-known occurrence, particularly in LT PN when the copper 

provision is less than the necessary adult requirements (Fessler 2013). The 

most common risk factors for deficiency include malabsorption following 

surgery, excessive zinc provision, burns injuries and increased GI losses (Shike 

et al. 1981; Berger et al. 1992; Prodan et al. 2009; Shike 2009). It has been 

shown that shortages of micronutrient preparations have been responsible for 

copper deficiency in the past (Pramyothin et al. 2013). Deficiency presents 

itself with neurological abnormalities as well as haematological features such 

as anaemia and neutropenia (Kumar et al. 2004; Juhasz-Pocsine et al. 2007; 

Prodan et al. 2009). Authors have discussed the late presentation of copper 

deficiency since serum copper is initially replenished from hepatic stores, an 

example being up to nine years post-operative (Juhasz-Pocsine et al. 2007). 

 

Copper toxicity is thought to result in oxidative damage to cells (Gaetke et al. 

2014). Gaetke et al. (2014) showed symptoms relating to copper toxicity from 

contaminated water to be abdominal pain, vomiting and diarrhoea. It has been 

known to occur in LT PN through excessive provision in the feeds. Normally 

homeostatic mechanisms prevent copper accumulation in the body, however 
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impaired biliary excretion and cholestatic liver disease are known to 

contribute to copper toxicity (Blaszyk et al. 2005; Howard et al. 2007). Blaszyk 

et al. (2005) showed that elevated hepatic copper levels (>35µg/g) were 

reported in 89% of adults with abnormal liver enzymes levels who were on LT 

PN. It is important to note that in this study the authors believed it was PN-

induced chronic cholestatic liver disease which lead to the increased copper 

levels and that it was unlikely to be a direct overload of copper from the PN 

regimen; thus displaying the multi-factorial nature of nutritional 

abnormalities.  

 

Assessment of copper status and the related interpretation of patient 

requirements are complicated by the fact that the current available 

biomarkers are unreliable; due to insensitivity and the potential for false 

readings of toxicity from confounding factors. A well-known example being the 

effect of the acute phase response (APR), which stimulates hepatic synthesis 

of caeruloplasmin during related inflammation (resulting from conditions 

themselves e.g. Crohn’s disease) which in turn gives an increased serum 

copper concentration, regardless of the true copper status in patients (Collins 

and Klevay 2011). Also for this reason, results that are within range during 

inflammation cannot reliably exclude deficiency. Another reason for poor 

reliability of measurement of serum copper is that it is known to correlate 

inadequately with tissue accumulation i.e. patients with copper toxicity may 

still have results within the reference range (Blaszyk et al. 2005). Therefore it 

is apparent that the full clinical picture should be taken into account, 

particularly if symptoms of deficiency or toxicity are present. 

 

As with other TE, copper is a known contaminant of PN but without intended 

supplementation it is not thought to result in sufficient dosing for LT patients 

due to the numerous case reports of deficiency (Karpel and Peden 1972; 

Dembinski et al. 2012; Pramyothin et al. 2013; Frankel 2016). 

 

Over the last few decades, there has been dispute over the recommended dose 

of copper required by patients on LT PN, resulting in updated dosing guidance 

from ASPEN in 2002 (Mirtallo et al. 2006). The guidance recommends a copper 
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dose of 0.3-0.5 mg/day (4.74-7.90 µmol); approximately two-thirds lower 

than previous recommendations (ASPEN Board of Directors and the 

Guidelines Clinical Task Force 2002). Regrettably, in a review undertaken by 

ASPEN the current multi-component TE preparations in Europe and the USA 

have been shown to provide up to twice the necessary copper requirements in 

LT PN, potentially causing toxicity (Vanek et al. 2012). Overall, it is clearly 

important to note the tendency for both the late presentation of deficiency, its 

reversible nature with corrective supplementation and also the potential for 

toxicity in patients with cholestatic liver disease. 

 

4.2.1.2. Iron 

Iron is a vital TE in humans, it is contained within the biomolecule heme which 

is found in both haemoglobin and myoglobin. Both are complex proteins which 

bind iron and oxygen in blood and muscle, respectively (Lieu et al. 2001). Iron 

is also functionally associated with bodily enzymes such as cytochromes, 

catalases and peroxidases (Prashanth et al. 2015). It is usually only absorbed 

from food when necessary and binds to the transport iron-protein called 

ferritin. Iron absorption and metabolism is unique in that absorption is only 

mediated when body stores are deplete, iron excretion not being regulated 

(Vasudevan et al. 2013). Clinical iron deficiency results in severe disorders, 

one of the most notable being iron-deficiency anaemia (Lieu et al. 2001). 

Diffuse hair loss has been postulated to be associated with iron-deficiency 

anaemia in LT PN however the authors noted the limited evidence and data to 

support the connection (Daniells and Hardy 2010). 

 

Forbes and Forbes (1997) noted that approximately 30% of HPN patients in 

their study developed iron-deficiency anaemia. Suggestions to the reasons for 

its occurrence being that micronutrient preparations and patient formulations 

contain low doses of iron and are limited in the amount that can be 

supplemented in each feed by its physical solubility (Koletzko et al. 2005; 

MacKay et al. 2009). In patients for whom this does occur, iron dextran 

infusions can be given to correct clinical deficiency. Vanek et al. (2012) 

explained that iron deficiency can occur simply due to short bowel, especially 

since iron is absorbed in the duodenum where some patients may have had 
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extensive surgical resections. They also stressed the difficulty in gauging a 

single recommendation for iron requirements in PN because of the variable 

requirements in menstruating women or patients who require frequent blood 

draws which have the potential to induce a negative iron balance (Burns et al. 

1996). Also, it is not routine practice in the US to supplement lipid-emulsion 

containing PN with iron based on the theory that trivalent cations (Fe3+) can 

destabilise the lipid emulsion (Fessler 2008), alongside the potential for IV 

administered iron to cause adverse anaphylactic reactions. By comparison to 

the US, iron deficiency in PN patients in the UK is marginally less of a concern 

since iron is routinely provided in multicomponent TE preparations (20 µmol) 

which are supplemented in PN; however it is rarely achievable to supplement 

much more than this dose in PN admixtures due to solubility limitations. In 

these situations, patients would then require further parenteral iron 

supplementation outside their PN regimen e.g. iron dextran.  

 

4.2.1.3. Manganese 

As an essential micronutrient manganese plays a key role as a component of 

various enzymes needed in the synthesis of glycosaminoglycans and 

glycoproteins, required as components of connective tissue. Manganese is also 

needed for tissue maintenance, wound healing and energy metabolism; also as 

a co-factor for mitochondrial enzymes, especially superoxide dismutase.  

 

The number of patients presenting with manganese toxicity has been a 

troubling concern for many years because of its clinical presentation of 

neurotoxicity and associated parkinsonian-like symptoms resulting from 

deposition in the brain (Bertinet et al. 2000; Fell et al. 1996; Reynolds 1994; 

Reynolds 1998). It is thought to relate to the presence of manganese as a 

ubiquitous contaminant in commercial IV admixtures and from general over 

provision in PN (Reynolds 1994; Bertinet et al. 2000; Hardy 2009; Conway et 

al. 2014). Complications relating to manganese toxicity are more renowned; 

they include cholestatic liver disease and iron deficiency. Around 90% of 

manganese is excreted in bile and as such patients with cholestatic liver 

disease accumulate manganese (from reduced excretion); a clinical situation 

made worse with excessive over provision of manganese (Hambidge et al. 
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1989). Also, iron competes with manganese for absorption and in the event of 

iron deficiency, there is more manganese available for absorption, leading to 

toxicity (Kim and Park 2014). The potential clinical consequences of 

manganese toxicity (hypermanganesaemia) is the development of subclinical 

tissue accumulation (symptoms not always readily observable) which can lead 

to possible irreversible neurotoxicity and parkinsonian-like effects if not dealt 

with promptly (Bertinet et al. 2000; Dickerson 2001; Hardy et al. 2008; Santos 

et al. 2014).  

 

While there have been many reports relating to manganese toxicity; 

manganese deficiency is considered a very rare occurrence. Only one patient 

has been documented as deficient in manganese, presenting with weight loss, 

osteoporosis and abnormal blood clotting (Norose et al. 1992). Hardy et al. 

(2008) and Santos et al. (2014) have further stated the scarcity of manganese 

deficiency and that there is little evidence of its occurrence in human 

populations. 

 

Manganese is a known contaminant of PN, occurring during compounding of 

the PN admixture (Hardy 2009). The study by Pluhator-Murton et al. (1999) 

showed that contamination is increasingly likely to occur with commonplace 

PN solutions of calcium gluconate, magnesium sulphate, sodium chloride and 

potassium chloride but were unable to give reasons for its occurrence. A dated 

view by some experts suggested that owing to the extreme unlikelihood of 

deficiency, manganese requirements were likely to be met by manganese 

contamination alone in the PN admixture (Dickerson 2001). However this 

standpoint has been recently contested. ASPEN currently recommend an adult 

dose for manganese supplementation in PN as 55 µg (1 µmol)/day (Vanek et 

al. 2012). This is considerably less than the current dose in the widely-used 

preparation Additrace, 265 µg (5 µmol)/day. Rationale for the decreased 

recommendation from ASPEN comes from a study in which the reduced dose 

maintained blood manganese results within the reference interval, without 

detectable changes in magnetic resonance imaging (MRI) signal intensity (a 

measurement of toxicity) (Takagi et al. 2002). The evidence base for this 

decision was backed by a recent systemic review by Baker et al (2016); yet in 
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light of their concise review of the evidence, they stated there was limited 

evidence behind the rationale for not supplementing manganese in LT PN 

patients. In recent years, many experts have recommended the intravenous 

provision of manganese in current additives to be reduced in line with 

recommendations from 265g (5µmol) to 55µg (1mol) per day (Shenkin 

2001; Hardy 2009; Vanek et al. 2012). 

 

To clinically manage manganese toxicity, often the multi-TE preparation must 

be removed entirely from the PN regimen and the other TE administered 

separately to the PN feed (where a suitable product exists) or infused 

separately. This practice can incur consequential effects in that patients miss 

out on other TE where there is no alternative preparation for supplementation 

e.g. iodine or chromium. Management of safe and optimal manganese 

provision in LT PN is labour intensive and clearly indicates a need for more 

suitable multi-trace element components.  

 

4.2.1.4. Selenium 

Selenium is a physiological component of selenoproteins in the body (Lu and 

Holmgren 2009). These proteins have roles in antioxidant defence, decreasing 

inflammation, regulation of thyroid hormone metabolism and regeneration of 

reduced vitamin C. Glutathione peroxidases are a well-researched category of 

selenoproteins and an important group of antioxidant enzymes. 

 

Selenium deficiency has been noted as a clinical problem, responsive to 

selenium supplementation (Van Rij et al. 1979; Baker et al. 1983; Levander 

1984; Abrams et al. 1992; Shenkin 2009; Etani et al. 2014; Chen et al. 2016). 

Clinical implications of selenium deficiency result from impaired activity of 

selenoproteins with resultant impairment of antioxidant system and immune 

system. During LT PN, deficiency also clinically presents as cardiomyopathy 

and muscle weakness (Burke and Opeskin 2002; de Berranger et al. 2006). 

Further clinical features of selenium deficiency and toxicity are described in 

Table 4.3; note that states of toxicity are significantly less reported in LT PN 

patients than states of deficiency. 
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Table 4.3: Causes and clinical features of abnormal selenium status. 

 

Causes for 

deficiency 

Clinical features of 

deficiency 

Causes of toxicity Clinical features of 

toxicity 

- Acute illness 

- Burns 

- Decreased dietary 

intake 

- GI losses 

- Insufficient PN 

supplementation 

- Renal 

replacement 

therapy 

- Medications (e.g. 

steroids, sodium 

valproate, 

clozapine) 

- Smoking 

- Anaemia 

- Cardiomyopathy 

- Growth 

retardation 

- Hair loss 

- Macrocytosis 

- Myopathy 

- Muscle weakness 

- Risk of infection 

- White nail beds 

- Excessive 

selenium 

provision and 

intake 

- Excessive 

exposure in salt, 

soil, food or water 

- Over-provision in 

PN 

- Occupational 

exposure (rare) 

e.g. airborne via 

metal industry, 

chemical 

processes or 

painting trades  

- Altered mental 

status 

- Fatigue 

- Garlic breath 

- Hair loss 

- Nausea 

- Vomiting 

- Abdominal pain 

- Diarrhoea 

- Peripheral 

neuropathy 

- Tender and/or 

discolored 

fingernails 

 

After many reports of selenium deficiency there have been concerns over the 

adequacy of its dose in the extensively used preparations Additrace® and 

Decan® (Abrams et al. 1992; Gramm et al. 1995; Burke and Opeskin 2002; 

Chariot and Bignani 2003). For instance Additrace® provides only 

0.4µmol/day and it has been suggested that this is not enough to correct 

depleted status or maintain selenium status in patients with greater needs 

(Malone et al. 1989). Shenkin (2015b) has suggested that intravenous 

requirements in PN should be within the range 0.75-1.25µmol/day. For those 

requiring increased doses in their PN feeds, larger doses of sodium selenite 

can be included to supplement the dose provided by TE preparations. 

 

In practice, measurement of serum selenium is most widely used method for 

assessment of selenium status. Measuring serum selenium during acute illness 

(acute phase response) has the limitation that the result may be up to 30%  

lower than the true value; resulting in unreliable interpretation of selenium 

status in critical illness (Stefanowicz et al. 2014). This response during illness 
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is caused by redistribution of selenium from the bloodstream into tissues to 

support antioxidant defence, protein synthesis and cell proliferation 

(Steinbrenner and Sies 2009). Selenium content in red blood cells has also 

been used for selenium assessment, however as standard assessment 

technique it is not routinely used by UK HPN centres. Yet it has been proposed 

as a more reliable nutritional marker, particularly during critical illness 

(Stefanowicz et al. 2013). 

 

Numerous reports convey selenium deficiency associated with insufficiently 

supplemented PN (Fessler 2013). Interestingly the interval from 

commencement of selenium-free PN to presentation of clinical symptoms 

ranged from three months to two years; however biochemical features of 

deficiency are thought to occur earlier. Symptoms relating to selenium 

deficiency include those indicative of congestive cardiomyopathy related to 

Keshan disease where there is inadequate dietary provision of selenium 

(Burke and Opeskin 2002); see Table 4.3 for further symptoms. 

 

Selenium toxicity associated with PN administration has not been reported 

(Fuhrman 2006). It is thought that the amounts provided in PN admixtures are 

less than the requirements of many patients and certainly less than the 

tolerable upper limit for dosing; alongside the fact that any excesses are 

thought to be excreted in urine (Livingstone 2016). However contamination of 

PN components with selenium has been demonstrated but at amounts that are 

too low to be of concern (Pluhator-Murton et al. 1999). There is the potential 

for selenium toxicity to occur when increased supplemental doses are given 

LT to patients with renal problems, potential symptoms are described in Table 

4.3. 

 

In 2012, ASPEN proposed new recommendations for selenium requirements 

in PN patients (60-100 µg/d, 0.77-1.28 µmol/day), because it was consistently 

shown that previous doses recommended by ESPEN and the Task Force for the 

Revision of Safe Practices for PN did not maintain serum selenium 

concentrations in many patients (Mirtallo et al. 2004; Braga et al. 2009; Vanek 

et al. 2012). Baines and Shenkin (2002) showed that provision of selenium 
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from standard micronutrient preparations in post-operative patients was 

inadequate to restore antioxidant status; implying that further 

supplementation is required in critical illness. This is also the case for patients 

with increased GI losses (e.g. stomal losses), burns or acute kidney injury 

(AKI). It has been postulated that current multi-trace element products do not 

provide enough selenium to meet the needs of LT PN patients; some not 

meeting standard recommendations. These shortcomings can be overcome 

with further selenium supplementation (of sodium selenite injection) in 

addition to the standard multi-component TE products added to the PN 

admixture. 

 

4.2.1.5. Zinc 

Zinc is the most abundant TE in the body playing a vital role in many systems, 

most notably in human growth and the functioning of the immune system. It is 

also required by transcription factors in gene expression and as an essential 

component of many enzymes involved in energy metabolism, protein 

synthesis and free radical clearance. 

 

Zinc requirements in PN are stated to be around 2.5-5mg/day with larger 

requirements in those with significant GI losses (e.g. fistula, stoma or 

diarrhoea) and burns (Mirtallo et al. 2004; Jeejeebhoy 2009). Deficiency 

occurs when requirements are not maintained, when there is insufficient 

absorption and via increased bodily losses. The clinical consequences are 

unsurprising considering zinc’s extensive role in the body. They include poor 

or stunted growth, skin rash, impaired wound healing and susceptibility to 

infection (Golden et al. 1978; Underwood 1977; Yanagisawa 2004). 

 

Assessment of zinc status in PN relies on measurement of serum zinc and NSTs 

need to be aware of the limitations. Serum zinc measurement lacks sensitivity 

in deficiency, exhibits wide biological variation in patients and inaccurate 

results may be obtained from potential contamination during the sampling 

process (in the collection tubes themselves) (Livingstone 2015). Clinical 

assessment must accompany interpretation of serum zinc results given its 

insensitivity in early stage deficiency. Also, the APR has an effect on 
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interpretation of serum measurement of zinc because in acute illness zinc 

redistributes into cells giving false results of deficiency (Braunschweig et al. 

1997). For this reason, reliable interpretation can only be assumed when 

inflammatory markers are low (Duncan et al. 2012). 

 

Zinc deficiency has been shown to be responsive to supplementation in PN 

after clinical symptoms of a rash quickly resolved in a patient previously 

maintained on zinc-free PN (Kay et al. 1976). Likewise, rapid clinical responses 

were observed with zinc replacement therapy in LT PN patients experiencing 

hair loss (Daniells and Hardy 2010). These factors indicate the importance of 

optimal zinc supplementation. Furthermore, experts have stated that up to 12-

17mg of additional zinc may be required per litre of GI fluid losses (Vanek et 

al. 2012), particularly in SBS as most absorption occurs in the upper small 

bowel. This would necessitate further supplementation of the feed or 

additional separate IV infusions. Unfortunately, current multi-component TE 

preparations are uncompromising for zinc dosing in individual LT PN patients 

and it is hoped that future preparations will cater for their needs. 

 

4.2.1.6. Other notable TE abnormalities 

4.2.1.6.1. Aluminium 

As a TE, aluminium is not believed to be an essential nutrient and subsequently 

it is not included as an active component of TE preparations. Yet concerns exist 

relating to its toxic effects as a contaminant of PN admixtures (Bohrer et al. 

2001; Kruger et al. 2013; Lima-Rogel et al. 2014). Its known toxic effects for 

LT PN patients include CNS toxicity and accumulation in bone from being 

taken up during the bone mineralisation process, resulting in osteomalacia. 

These effects were proven in a study by Bishop et al. (1997) in which preterm 

neonates receiving aluminium contaminated PN had significantly lower 

developmental scores than neonates receiving aluminium-free PN.  

 

The concentration of aluminium in PN admixtures has been shown to be 

consistently above the FDA recommended concentration limits and is largely 

the result of three additives, calcium gluconate, inorganic phosphates and 



 108 

cysteine hydrochloride (Aiticho et al. 2011; Hernandez-Sanchez et al. 2013). 

Kruger et al. (2013) demonstrated (P<0.0001) that there was a higher 

aluminium content in the bones of LT adult PN patients versus control 

patients. 

 

These widespread concerns of aluminium contamination in IV parenteral 

formulations prompted a new regulation from the FDA, “Final Rule for Al”, 

mandating a limit on the aluminium content in liquid parenteral products to 

be no more than the safe upper limit of 25 mcg/L (Department of Health and 

Human Services 2003). Labelling requirements were also introduced in the 

U.S. to reflect this rule and inform people of the risk of CNS toxicity and bone 

toxicity associated with aluminium accumulation (Department of Health and 

Human and Services 2000). Ultimately, a systematic review of aluminium in 

PN performed by Hernandez-Sanchez et al. (2013) decided that the absence of 

a universal approach to lower aluminium concentration between 

manufacturers, along with imprecise information on aluminium content and 

high lot-to-lot variation result in poor regulation with aluminium 

concentration limits. 

 

4.2.1.6.2. Chromium 

Stearns (2000) described the debate over the essentiality of chromium as a TE 

since no enzyme or co-factor had been characterised. There are reports of 

chromium toxicity related to deliberate chromium supplementation in PN 

while trying to avoid deficiency states (Malone et al. 1989; Moukarzel et al. 

1992). Contamination of PN with chromium is a known issue; it is especially 

associated with amino acid solutions (Hak et al. 1998). There is no evidence to 

suggest harm associated with excess chromium provision in adults; a ten year 

follow-up study showed no adverse events associated with elevated serum 

metals post metal-on-metal total hip replacement (Grubl et al. 2007). Yet 

others have expressed a need to lower the recommended amount included in 

PN admixtures because it is thought that patients on LT PN receive ample 

chromium from contamination of products used during PN manufacture; not 

from direct supplementation in the formulation (Moukarzel et al. 1992; 

Moukarzel 2009). 
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It is generally accepted that total body chromium concentration controls the 

absorption of chromium in the gut, where it has poor bioavailability and 

absorption. Its main role is in the regulation of insulin action and deficiency 

states induce a syndrome of glucose intolerance similar to that of diabetes, 

corrected with chromium supplementation (Anderson 1998). Chromium 

insufficiency has therefore been hypothesised as a contributing factor in the 

development of type II diabetes (Mertz 1993; Jeejeebhoy 1999).  

 

4.2.1.6.3. Fluoride (fluorine) 

Since fluoride deficiency has not been described in the literature there appears 

no basis for monitoring patient fluoride status (Nielsen 2009), however it is 

still regarded as an essential nutrient giving physiologic resistance to the 

enamel of teeth (Nielsen 2009). Its toxicity has been shown to result in dental 

fluorosis characterised by porous enamel (Whitford 2006). Studies have 

shown that PN provides relative amounts of fluoride by comparison to daily 

oral recommended doses of 1-4mg, since the IV route bypasses intestinal 

absorption by ∽50% (Forbes and Forbes 1997; Bouletreau et al. 2006; Fessler 

2013). Nielsen (2009) explained that when determining fluoride intake, its 

provision from drinking water should also be assessed as it is thought to bring 

fluoride levels into normal range. A theory supported by Bouletreau et al. 

(2006) who expressed concern for the potential for fluoride toxicity from 

amounts given in PN alongside amounts in orally consumed water and tea. 

Although not a pressing concern for micronutrient dosing in HPN patients, 

more research needs to be performed to ascertain the optimal dose of fluoride 

needed by PN patients, considering the additional provision from drinking 

water. 

 

4.2.1.6.4. Iodine 

Iodine deficiency is still a well-documented occurrence in the general 

population, having adverse effects on growth, development and thyroid 

hormone production; deficiency is also notable in LT PN patients receiving 

unsupplemented PN (Zimmerman 2009a; Zimmerman 2009b; Zimmerman 
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2010). A dated study by Moukarzel et al. (1992) found thyroid function 

remained normal even without the provision of iodine in PN and they 

concluded that routine addition of iodine to PN was not necessary; stating that 

sufficient iodine provision was achievable from both potential contamination 

of PN and the use of povidone-iodine as an antimicrobial agent for safe care of 

the central venous catheter site. However, more recently (Guidetti et al. 2014) 

showed that HPN patients generally had a low intake of iodine as displayed 

from urine iodine concentrations. They found evidence of subclinical 

hypothyroidism in approximately a quarter of patients and concluded revision 

of the lower ESPEN reference range limit for iodine may be necessary 

especially in light of the decreased use of iodine containing antiseptics. 

Recently, a recommendation was made at a micronutrition research event, 

experts came to the decision that the addition of 70-150mcg/day of iodine to 

adult formulas is necessary, following the decreased use of cutaneous 

povidone-iodine (Buchman et al. 2009). 

 

More recently in 2014, a notable case of iodine deficiency was reported in a 

PN-dependent adolescent (Mortensen et al. 2014). The authors stated the 

current strategy of limiting lipid dosing to PN patients to prevent PN-

associated liver disease may play a role in the prevalence of iodine deficiency, 

especially since the iodine content of Intralipid (Fresenius Kabi®) has been 

estimated at 15.1mg/L, which may appear minimal but should not be 

considered insignificant (Belfort et al. 2012; Mortensen et al. 2014).  

 

Current evidence suggests iodine supplementation may be beneficial in some 

patients and perhaps review of its requirements in PN is necessary. Mortensen 

et al. (2014) also expressed the need for an individual iodine preparation to 

cater for more variable requirements. Unfortunately, iodine levels are not 

routinely monitored at C&V UHB for their population of HPN patients. 

 

4.2.1.6.5. Molybdenum 

The essentiality of molybdenum supplementation in PN is arguable (Leung 

1995). A single report of deficiency in LT PN exists which was related to 
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intolerance to amino acid solutions, corrected by an infusion of ammonium 

molybdate (Abumrad et al. 1981). High doses of molybdenum (>0.5mg/day) 

are thought to cause significant urinary copper losses, however far lower 

doses exist in current TE preparations (Deosthale and Gopalan 1974). 
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4.2.2. Noteworthy micronutrient abnormalities – vitamins 

Comparable to TE, the dosing and monitoring of some vitamins are of greater 

clinical concern in HPN patients. Below, five key vitamins are discussed in 

greater depth as they are noted as being of current topical interest within the 

HPN community, especially regarding their optimal dosing and associated 

clinical implications. As such, these vitamins are routinely monitored by HPN 

centres and are directly monitored in biochemical blood tests (in relation to 

PN supplementation). Other vitamin abnormalities are discussed in less depth. 

 

4.2.2.1. Vitamin A (retinol) 

Vitamin A belongs to a group of compounds called retinoids that are essential 

for vision, growth, functioning of cellular processes such as development, 

reproduction and the immune system (Olson 1987). It is found naturally in 

dairy, fish, liver and eggs. However in those receiving PN, dietary insufficiency, 

fat malabsorption and zinc deficiency can all predispose patients to vitamin A 

deficiency, resulting in poor outcomes in any of the vitamin A–related 

functions (Vanek et al. 2012). Symptoms of deficiency present themselves as 

night-time blindness, xerophthalmia and changes in T-cell immune function 

(Stephensen 2001). Serum retinol is monitored to assess vitamin A status, 

similarly measurement of retinol-binding protein (RBP) is also used but to a 

lesser extent than serum retinol. As with other micronutrients, during periods 

of infection or stress, measurement of retinol is unreliable; in these situations, 

measurement of RBP would be more desirable (Rosales and Ross 1998).  

 

Regarding nutritional deficiencies of retinol in PN, most data relates to PN 

administration to neonates as they require higher relative doses due to low 

stores and increased needs for growth and development (Greer 2001; Haas et 

al. 2002); further researched because of known stability problems and 

implications of under-dosing retinol in PN delivery systems (Shenai et al. 

1981; Allwood and Plane 1984; Thomas et al. 1991; Allwood and Martin 2000; 

Ord et al. 2016). Hack et al. (1990) found retinol deficiencies in 52% of their 

post-operative neonates requiring PN for longer than two weeks. Besides 

dated publications reporting retinol deficiency in 26-43% of LT PN patients, 
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no recent studies have investigated retinol deficiencies or excesses in adult PN 

patients (Howard et al. 1980; Dempsey et al. 1987; Labadarios et al. 1988). 

However, it is worthy of note that in the aforementioned papers, the vitamin 

preparations were added prior to storage rather than just before infusion, 

allowing more time for potential retinol instability to occur e.g. via photo-

degradation or adsorption. 

 

Vitamin A toxicity has been shown to be less common but sometimes observed  

in those with renal failure or liver dysfunction and those receiving over 

provision in IV nutrition (Gleghorn et al. 1986; Shenkin 2008; Vanek et al. 

2012). Bone abnormalities have been described in relation to toxicity, though 

are thought to result from vitamin A antagonism of vitamin D at receptor level 

(Rohde et al. 1999), which in turn results in net bone resorption (Johansson 

and Melhus 2001).  

 

4.2.2.2. Vitamin B9 (folate/folic acid) 

Folate is a naturally occurring essential micronutrient with bodily functions in 

the synthesis and repair of DNA and RNA. Other roles include production of 

red blood cells, enhancing brain activity; as well as assisting cell division and 

growth (The British Dietetic Association 2016). Folic acid is a closely related 

yet synthetic compound used for vitamin B9 supplementation in both modern 

food sources (e.g. flour, cereals) and PN additives (Jacques et al. 1999). 

 

Therapeutically it has an established role in the treatment of folate deficiency 

anaemia that is characterised by fatigue, irritability and weight loss (NICE 

2015). It is also recommended to be given to women of childbearing age to 

prevent the occurrence of neural tube defects in the foetus (Wilson et al. 2003). 

 

Folic acid has been a traditional component of PN admixtures for many years 

with established stability in a range of formulations. Current multi-component 

additives contain ~400µg to meet daily requirements; outside this, manual 

additions can be made to the PN admixture to treat deficiency states. Dated 

reports of deficiencies exist with folate dose of 100-200µg (Nichoalds et al. 

1977; Anon 1983; Barker et al. 1984). However nutritional abnormalities 
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relating to folate have not been published in recent years, presumably because 

the revised dose in PN additives is sufficient and excesses are readily excreted. 

 

4.2.2.3. Vitamin B12 (cobalamin) 

As a water-soluble vitamin, vitamin B12 is essential for normal blood 

formation and normal neurologic function (Food and Nutrition Board. 

Institute of Medicine 1998). Naturally vitamin B12 is only available from 

animal sources e.g. meat, fish, eggs and dairy, while other fortified food sources 

and cereals exist for those with limited intake e.g. vegans. Vitamin B12 is a co-

factor for two enzymes involved in methyl transfer which contribute towards 

DNA synthesis. Both vitamin B12 and folate are involved in methyl transfer 

and as such vitamin B12 deficiency mirrors folate deficiency in terms of 

haematological effect (Vanek et al. 2012). It presents itself as anaemia, 

neutropenia and thrombocytopenia; deficient individuals show symptoms of 

being pale, tired and short of breath, as well as neurologic symptoms of 

peripheral neuropathy e.g. loss of sensation, numbness and tingling. 

 

In terms of monitoring, serum/plasma vitamin B12 is the most common test 

performed to assess vitamin B12 status (Selhub et al. 2008). Unfortunately 

results indicating deficiency often develop late after blood levels are already 

depleted and similarly, false normal results can result in situations of recent 

vitamin B12 intake (Green 2011). 

 

Multicomponent preparations provide ~5µg of vitamin B12 per daily unit vial, 

as based on oral RDA requirements, yet it is worth noting that only 50% is 

absorbed from oral dosing (Chenarin 1979). Consequently in LT PN patients, 

IV dosing of vitamin B12 is known to result in elevated serum results, 

suggesting that the vitamin B12 doses in multicomponent preparations may 

be excessive. However, experts believe that no dosage adjustment is necessary 

as no evidence for vitamin B12 toxicity syndrome exists and high serum levels 

can reflect recent parenteral infusion from PN rather than levels in tissue 

stores (Vanek et al. 2012). 
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Cobalamin deficiencies while on supplemented PN are unlikely due to wide 

use of supplemented PN but have still been documented in dated studies (Van 

Spreeuwel et al. 1988; Compher et al. 2001; Compher et al. 2002). Lambert et 

al. (1997) investigated vitamin B12 status of twenty patients on LT HPN and 

found four patients (20%) to be deficient, although no patients showed 

metabolic signs of deficiency and patients were supplemented with vitamin 

B12 injections rather than supplemented PN. Even though there is the view 

that excesses of vitamin B12 are not harmful, there are reports suggesting an 

unnecessary over-provision of vitamin B12 in LT PN patients (Elkhatib et al. 

2010). This belief was also recently surmised in a study by Żyła et al. (2015) 

in which the median value for vitamin B12 was consistently higher than the 

upper limit of the reference interval in neonates. The authors stated that the 

multi-component preparations Cernevit® and Solivito® contain too much 

vitamin B12 and attributed the excessive results to these doses.  

 

4.2.2.4. Vitamin D (chole/ergo-calciferol) 

Vitamin D is discussed in greater detail over other micronutrients as it forms 

a key component of PN that is researched within the scope of this PhD project. 

 

4.2.2.4.1. General information and physiological role  

Vitamin D is a seco-steroid compound and its role in relation to bone health is 

particularly well established, particularly, its deficiency along with other 

minerals (calcium, phosphorus) being known to give rise to rickets in children 

and osteomalacia in adults. It is required during the bone mineralisation 

process to create osteoid tissues e.g. bone and teeth (Francis et al. 2013). Its 

physiological role is to regulate calcium and phosphorus levels (as well as 

regulating levels of iron, magnesium and zinc) in the blood by promoting their 

absorption from food in the intestines. It also promotes reabsorption of 

calcium in the kidneys which in turn enables normal mineralisation of bone. It 

has garnered more attention in recent years as its low status in human 

populations has been linked to various diseases and conditions e.g. heart 

disease, high blood pressure, some cancers and diabetes to name but a few 

(Autier et al. 2014). However the evidence surrounding these relationships is 
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often not well-established; uncertainty exists as to whether it is the low 

vitamin D status or the disease itself that is to blame. Lately the role of vitamin 

D has been considered outside of skeletal function and Holick (2007) has even 

explained its emerging potential role in the prevention of cancer, multiple 

sclerosis, type 1 diabetes and Crohn’s disease. 

 

Despite its human essentiality, it is only obtained from few natural dietary 

sources (e.g. oily fish, egg yolk and mushrooms); hence it is supplemented in 

various foods such as cereals, margarine, infant formula and dairy alternatives 

(Pearce and Cheetham 2010). In the UK, the main source of vitamin D is via 

skin exposure to ultra-violet B (UV-B) light within the months of April to 

September, showing our dependency on dietary sources over the winter 

months when the UK has insufficient exposure to UV-B wavelengths required 

for vitamin D synthesis (Pearce and Cheetham 2010).  

 

4.2.2.4.2. Activation, metabolism and monitoring of vitamin D status  

Vitamin D exists in several forms (vitamers) as prohormones which are 

activated in the body when required. Ergocalciferol (vitamin D2) and 

cholecalciferol (vitamin D3) being the two major compounds required by the 

body. They can be ingested from the diet and supplements, as well as being 

synthesised cutaneously from exposure to ultraviolet light. They are very 

chemically similar and prove difficult to resolve from each other in 

chromatographic investigations (The National Institute of Standards and 

Technology 2015). When taken orally, vitamin D is absorbed in lipid micelles 

and incorporated into chylomicrons, dietary fat is therefore needed to absorb 

vitamin D. For this reason supplements are advised to be taken with the largest 

meal of the day. Vitamin D that is ingested and cutaneously produced, 

undergoes a series of conversion steps within the body to its physiologically 

active form. Vitamin D, beginning as either ergocalciferol (D2) or 

cholecalciferol (D3), is first hydroxylated by the liver to calcidiol (25-

hydroxyvitamin D2/D3). Calcidiol is then further hydroxylated by the kidneys 

to its active form calcitriol (1, 25-hydroxyvitamin D2/D3). It is this form of 

vitamin D which circulates as a hormone, regulating the levels of calcium and 

phosphate in the bloodstream, thereby exerting their effect on bone 
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mineralisation and remodelling. In serum, only a fraction of calcidiol is 

converted the active calcitriol metabolite when required. Calcitriol has a short 

half which complicates accurate assessment of vitamin D status (Wootton 

2005). For this reason, measurement of total calcidiol is considered best to 

assess total body stores of vitamin D; although essentially a pro-hormone, it 

gives an approximation of the amount of vitamin D obtained from food, oral 

supplements and that produced in the skin; as well as an indirect 

approximation of the amount of activated vitamin D in the body (Heaney 

2011).  

 

4.2.2.4.3. Vitamin D in relation to bone health  

Optimal provision of vitamin D in HPN patients has been a longstanding and 

troubling issue, particularly with reference to the complication of metabolic 

bone disease (MBD). Many studies note its deficiency in HPN populations and 

its exact cause is still uncertain (Compher et al. 2007; Corey et al. 2009; 

Thomson and Duerksen 2011), although its onset is thought to be a 

combination of both patient-specific factors and PN-related factors (Foldes et 

al. 1990; Klein and Coburn 1991; Verhage et al. 1995). On the other hand, the 

study by Verhage et al. (1995) suggests that overprovision of vitamin D 

alongside suppression of normal parathyroid responses could play a role in 

the development of MBD. However, it is more likely that the inadequate 

vitamin D status has a greater input to the development of MBD in HPN 

populations as conveyed in a paper by ASPEN (Vanek et al. 2012). 

Interestingly, vitamin D deficiency has also been noted as a problem in 

younger PN populations, suggesting that its onset may be a more pronounced 

problem for all patients alongside potential under-provision in PN (Diamanti 

et al. 2014; Wozniak et al. 2015). 

 

4.2.2.4.4. Vitamin D deficiency  

Interestingly, it has been supposed that the general population themselves do 

not achieve adequate vitamin D status, especially during the winter months. 

Estimations of the prevalence of vitamin D deficiency in Europe range from 2-

30% and one wonders how the vitamin D status of the general population 
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would compare to the population of LT HPN patients, within the UK (Spiro and 

Buttriss 2014).  

 

Symptoms and signs associated with vitamin D deficiency are almost non-

existent in mild deficiency; however in severe cases symptoms have been 

reported as muscle aches and cramps, joint pain, tiredness, increased risk of 

infection and bone pain (Soliman et al. 2014; Galesanu and Mocanu 2015), 

clinically evidenced by hypocalcaemia, hypophosphataemia, muscle weakness 

and demineralisation of bone/osteoporosis. The authors of a review article, 

Spiro and Buttriss (2014),  mentioned the difficulty in recommending 

adequate levels of vitamin D intake because of the varied definitions of 

adequate or optimal vitamin D status; stressing the need for more 

standardised definitions to allow a better evidence based approach to 

measuring and assessing vitamin D status. They offered their own 

recommendations around the areas of dietary provision, food fortification, 

vitamin D supplementation and sensible sun exposure; they also explained the 

need to take into account national, cultural and dietary habits relating to 

vitamin D.  

 

4.2.2.4.5. Vitamin D toxicity  

Despite widespread concern of deficiency, vitamin D toxicity is also of clinical 

concern. Excessive intakes that result in toxicity can cause increased intestinal 

absorption of calcium and mobilisation of calcium from bone, leading to 

hypercalcaemia (Vieth 2006; Jones 2008). This in turn results in increased 

calcium deposition in soft tissue, bone demineralisation as well as both renal 

and cardiovascular toxicity. Efforts should be made to reduce vitamin D 

provision if there is evidence of hypercalcaemia (Tebben et al. 2016). 

 

4.2.2.4.6. Vitamin D in PN additives  

There has been dispute over the adequacy of the recommended daily dose of 

vitamin D for HPN patients (Vanek et al. 2012). The current longstanding 

market leading preparations Cernevit® and Vitlipid N Adult® only contain 

~5µg (~200 IU) of vitamin D (cholecalciferol and ergocalciferol, respectively); 
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it is a contentious issue whether this dose is sufficient to meet the needs of LT 

PN patients considering the numerous reports of deficiency and recent 

changes in recommendations for vitamin D dosing (DeLuca 2009; Thomson 

and Duerksen 2011; Vanek et al. 2012).  

 

4.2.2.4.7. Review of vitamin D dosing recommendations  

In the UK, a safe upper limit (SUL) indicates an intake that can be consumed 

daily over one’s lifetime without significant risk to health. There was 

insufficient evidence to establish an SUL for vitamin D, as such, using limited 

data a guidance level (GL) was set of 25µg (1000IU) per day for adults, 

signifying an intake not expected to cause adverse effects (Expert Group on 

Vitamins and Minerals 2003). However in the US, the equivalent parameter, 

the tolerable upper intake level (UL), was set at 100µg (4000IU) daily for 

adults; likewise the European Food Safety Authority (EFSA) recommends the 

same UL (Institute of Medicine 2011; European Food Safety Authority 2012). 

The European guidelines are considered appropriate and help to demonstrate 

the high upper limit for vitamin D dosing as well as the disparity between 

dosing recommendations. Considering the more commonplace occurrence of 

deficiency, patients are unlikely to attain these daily upper limits unless they 

have already demonstrated a justified need for treatment of deficiency.  

 

Public Health England and the Food Standards Agency directed the latest 

National Diet and Nutrition Survey which reported higher than expected levels 

of vitamin D deficiency among the general population (all age and sex groups) 

(Bates et al. 2011). These findings have precipitated the recent review of 

dietary recommendations, both the US Institute of Medicine (IOM) and the UK 

Scientific Advisory Committee on Nutrition (SACN) have increased their RDA 

and DRI recommendations for vitamin D dosing for people of all ages, to 600IU 

(15µg) daily and 400IU (10 µg) respectively; yet PN additives do not mirror 

these revised dosing recommendations for vitamin D in the general 

population, even though HPN patients are conceivably at a greater risk for 

vitamin D deficiency and related bone health problems (Institute of Medicine 

2011; Scientific Advisory Committee on Nutrition 2016). Especially since 

previous RDA values assumed no exogenous sources of vitamin D from 
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sunlight exposure. Datta and Stone (2016) explained that around 80-90% of 

vitamin D is known to be produced cutaneously from exposure to sunlight with 

only 10-20% derived from dietary sources; this fact demonstrates the ease of 

onset of vitamin D deficiency. As such, the recommendations did not consider 

intradermal vitamin D production from sun exposure to skin due to the 

variability and complexity in the number of factors which can affect it. In the 

wider scope, they have finally helped to indicate appropriate baseline dosing 

for the general population which can be generalised for the needs of LT PN 

patients. The revised recommendations show that the current PN vitamin 

additives are not in keeping with recommendations for the general population, 

even though HPN patients are conceivably at a greater risk of vitamin D 

deficiency and related bone health problems. 

 

Recently the form of vitamin D given for treatment or supplementation has 

been shown to be an important dosing consideration. Previously, both 

ergocalciferol (D2) and cholecalciferol (D3) were thought to be equivalent and 

interchangeable, yet recently, cholecalciferol has been proven to be more 

potent and to exhibit greater bioefficacy in raising serum 25-OH vitamin D 

levels (Houghton and Vieth 2006; Boullata 2010). One wonders whether the 

differences in biological form of vitamin D (D2/D3) could contribute towards 

reports of deficiency in LT PN patients. 

 

4.2.2.5. Vitamin E (tocopherol) 

Vitamin E exists in eight isomeric forms which all exhibit variable biological 

activity and associated biological effects; α-tocopherol is the naturally 

occurring form with the highest vitamin E activity and is also the isomer 

included in PN additives (National Center for Biotechnology Information 

2016). Vitamin E is a component of all cell membranes and acts as a potent 

peroxyl radical scavenger; to date its primary known role is to protect cell 

membranes from lipid peroxidation and oxidative damage (Rizvi et al. 2014). 

Vitamin E has a strong affinity for free radicals and is able to interrupt the 

chain reaction (via formation of a resonance stabilised tocopherol radical, 

before reconversion back to vitamin E by ascorbic acid) (Biesalski 2009). 
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Research has been undertaken to establish the antioxidant role of vitamin E in 

PN. Both Pironi et al. (1998) and Reimund et al. (2000) noted an increase in 

malondialdehyde (MDA), a lipid peroxidation marker in the presence of 

reduced plasma tocopherol concentration. 

 

In the absence of genetic causes for vitamin E deficiency, it usually results from 

under-provision and fat malabsorption, with early deficiency being 

asymptomatic. Later symptoms of deficiency are neurologic in nature and 

include ataxia and general weakness (Biesalski 2009). There are few critical 

studies published regarding vitamin E deficiency in PN; yet Porter et al. (2005) 

presented a case of clinical vitamin E deficiency in a patient with visual 

symptoms and signs of macular degeneration. The symptoms were completely 

resolved within 3 weeks following vitamin E supplementation (no explanation 

of dose given). 

 

However, it has been stressed that care should be taken not to provide vitamin 

E in excess as Miller et al. (2005) showed that high-dose tocopherol 

supplements (greater than or equal to 360mg/day) may be associated with 

increased all-cause mortality, yet these doses are far greater than the doses in 

PN vitamin preparations (∽5-10mg/dose). This finding is contrary to those of 

(Biesalski 2009), who commented that data regarding toxicity from parenteral 

vitamin E does not exist and that studies of large oral supplemental use had 

shown no consistent adverse effects (references not included). Also it worth 

noting that the study by Miller et al. (2005) stressed that the high-dose vitamin 

E studies were small and often performed in those with chronic diseases. It is 

more likely that reduced supplemental intake below the norm is a more 

probable occurrence over toxicity. 

 

Both Europe and the US recommendations for vitamin E dosing in LT PN are 

set at 10IU (9.1mg) per day (Nutrition Advisory Group 1979; Greene et al. 

1988; ASPEN Board of Directors and the Guidelines Clinical Task Force 2002). 

It is debatable whether this dose is sufficient for LT PN patient needs,  Forbes 

and Forbes (1997) measured vitamin E status in thirty-two LT PN patients and 

found seventeen had deficient vitamin E levels. Another study detected high 
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levels of pentane (an indicator of lipid peroxidation) in the breath of HPN 

patients and found association with low vitamin E status (Lemoyne et al. 

1988).  

 

More recently, some revolutionary findings were published by Ng et al. (2016) 

showing that vitamin E plays an important hepatoprotective role in preventing 

PNALD, presumably against the liver injury-inducing nature of phytosterols 

(from lipid PN components). However these were findings extrapolated from 

pig studies and the authors stated the need for further pre-clinical studies to 

definitively show proof of the liver toxic effects of phytosterols and the 

hepatoprotective effects of vitamin E. 

 

Overall experts have stressed the need to monitor vitamin E levels closely to 

ensure adequate status by its appropriate provision in PN, and supplemental 

dosing where necessary; thereby ensuring patients have sufficient antioxidant 

capacity and free radical protection (Biesalski 2009). 

 

4.2.2.6. Other notable vitamin abnormalities 

4.2.2.6.1. Vitamin B1 (thiamine) 

The biologically active thiamine (as pyrophosphate) acts as a key coenzyme in 

the generation of ATP. As previously mentioned, product shortages have been 

implicated in nutrient deficiencies. In a recent case report, after a rationing of 

a patient’s vitamin supply during a time of nationwide shortage thiamine, a 

PN-dependent patient developed thiamine deficiency; presenting with septic 

shock, metabolic crisis and hyperlactataemia. The patient’s condition rapidly 

resolved following thiamine supplementation (Da Silva et al. 2015). Prior to 

these events, the patient was reduced from daily doses of thiamine to a thrice 

weekly regimen which precipitated the deficiency. The reduced dose was 

notably less than the recommended weekly intake for adults, 18mg/week 

instead of 42mg/week (Vanek et al. 2012). The occurrences from this case 

study are in line with the expected symptoms for thiamine deficiency and 

show the significance of its role as a cofactor in the body (Kreisberg 1980; 

Centre for Disease Control and Prevention 1997). This case showed that 
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thiamine deficiency can be considered a differential diagnosis for PN patients 

presenting with symptoms of acidosis, neuropathy or encephalopathy (Da 

Silva et al. 2015). However, it should be additionally noted to be just a singular 

case report and unusual to only have occurred in a single patient during the 

nationwide shortage; it is more likely that there was significant under-

reporting and/or monitoring of patients. It is more likely that other nutritional 

abnormalities occur in regard to vitamin B1 supplementation, but a lack of 

investigation into its supplementation and monitoring in PN makes the 

interpretation of its adequacy of dosing in PN rather difficult. 

 

4.2.2.6.2. Vitamin B2 (riboflavin)  

The literature review yielded a single report for vitamin B2 deficiency, a 

French case report in a Crohn’s patient on LT PN for approximately 3 months 

(Duhamel et al. 1979). Aside from little concern for vitamin B2 dosing in PN, 

Laborie et al. (1998) has explained its potential paradoxical role with vitamin 

C in the photoinduction of harmful peroxide radicals in PN.  

 

Aside from oral or enteral vitamin B2 provision and any problems associated 

with GI absorption, the instability of vitamin B2 within PN admixtures could 

potentially result in less being delivered to patients. Chen et al. (1983) 

explained that although most B-group vitamins are stable in the presence of 

light in PN, vitamin B2 was shown to be sensitive to both indirect and direct 

sunlight (47% and 100% destruction respectively within eight hours); the 

sensitivity of vitamin B2 to light was further corroborated by Allwood and 

Kearney (1998). 

 

4.2.2.6.3. Vitamin B3 (niacin/nicotinic acid)  

An older study by Howard et al. (1983) showed that vitamin B3 

supplementation twice weekly in PN did not result in micronutrient 

abnormalities. However (Labadarios et al. 1988) reported vitamin B3 

deficiency in 6% of blood tests in those receiving standard vitamin additives 

in LT PN. Likewise, a study assessing water-soluble vitamin status in cancer 

patients noted niacin deficiency to be the most prevalent, present in 40% of 
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patients (Inculet et al. 1987). Of late, there appears less concern for nutritional 

abnormalities associated with vitamin B3 as it is not routinely monitored by 

HPN centres and no recent reports of deficiency or toxicity have been 

documented. 
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4.2.2.6.4. Vitamin B6 (pyridoxine)  

PN supplemented with standard vitamin additives was demonstrated to 

improve vitamin B6 status (Stromberg et al. 1981). Apparent “safe” vitamin B6 

supplementation was further consolidated by Howard et al. (1983) with a 

twice weekly vitamin dosing schedule in PN. A dated finding from a study by 

Dempsey et al. (1987) found high rates of deficiency and excess (18% and 36% 

respectively) but from only a total of twenty-eight vitamin tests. On the other 

hand, little to no reports of toxicity exist, except for an abstract showing that 

chronic renal insufficiency can precipitate pyridoxine toxicity (Craig et al. 

2017). 

 

Again physical instability of pyridoxine within PN admixtures could result in 

potential under-dosing in PN, Chen et al. (1983) found that 86% of vitamin B6 

was destroyed by direct sunlight in standard PN admixtures within eight 

hours. 

 

4.2.2.6.5. Vitamin B7 (biotin)  

Studies have confirmed biotin deficiency in patients with short bowel 

receiving PN without biotin supplementation; patients presented with 

lethargy, dermatitis and hair loss which grew back once adequate 

supplementation was commenced (Innis and Allardyce 1983; Khalidi et al. 

1984; Velazquez et al. 1990). No recent reports of deficiency exist and is 

probably the result of routine supplementation of biotin in PN from multi-

component compound additives e.g. Solivito®. 

 

4.2.2.6.6. Vitamin C (ascorbic acid)  

Like vitamin E, vitamin C is a strong antioxidant and also a co-factor for many 

enzymes, including collagen formation, neurotransmitter synthesis and 

cholesterol metabolism (Berger 2009). Circulating levels drop in surgical 

shock, trauma and sepsis; these patients have larger requirements due to 

oxidative stress and wound healing.  
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LT HPN patients are usually in stable clinical condition with lower vitamin C 

requirements than the critically ill. Yet it has been shown that in prolonged PN, 

plasma concentrations can fall below normal range (Labadarios et al. 1988). 

In relation to nutritional abnormalities in PN, instances of deficiency prevail 

over toxicity giving symptoms of scurvy (tiredness, muscle and join pain) 

(Levavasseur et al. 2015).  

 

Numerous chemical and physical stability issues are known to affect vitamin C 

in PN, including oxygen, temperature, light, pH (<4) and the presence of other 

micronutrients (copper, iron); all of which could result in reduced amounts 

administered to patients (Berger 2009). Berger (2009) explained that 200mg 

daily is considered “quite reasonable” for HPN patients, yet it is twice the dose 

of current preparations available in the UK. In the US, the FDA revised their 

vitamin C dose recommendations from 80-100mg to 200mg daily (FDA 2005) 

and the preparations for PN still do not reflect these recommendations.  

 

There have been no reports of vitamin C toxicity in PN patients; the upper limit 

(UL) is currently set at 2g daily and is unlikely to be achieved from its provision 

in LT PN (Institute of Medicine (US) Panel on Dietary Antioxidants and Related 

Compounds 2000). However caution is expressed in patients receiving high 

doses of vitamin C with co-existing renal failure as there is the potential to 

cause renal stones and nephrolithiasis (Pena de la Vega et al. 2004; Handelman 

2007).  

 

It is generally considered that one dosing recommendation cannot fit all 

patients for vitamin C, dosing should parallel the degree of oxidative stress 

which is variable amongst patients (Berger 2009). Some recent studies have 

tried to quantify the oxidative effect of vitamin C in PN. Kuwabara et al. (2016) 

tested a 500mg daily intervention but found no change in inflammatory 

markers for oxidative stress between the intervention and control group, 

other than restoring vitamin C status back to normal range for those with 

deficiency. Yet in another vitamin C intervention study following GI surgery, it 

was found that vitamin C may decrease post-surgical oxidative stress; 8-
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isoprostane, an oxidative stress marker was significantly lower in the group 

treated with the higher vitamin C dose (Yamazaki et al. 2011). 

4.2.2.6.7. Vitamin K (phyllo/mena-quinones) 

Vitamin K is an essential human co-factor for peptide conversion in specialised 

proteins e.g. Gla-proteins. When body stores are deficient, it is the well-known 

culprit for bleeding syndromes when the body is unable to synthesis active 

coagulation factors II, VII, IV and V; as such, deficiency symptoms include 

active bleeding and bruising (Shearer 2009). Treatment of deficiency relies on 

corrective supplementation with preparations of phylloquinone. Clinically, 

vitamin K is also an established treatment to antagonise the effects of warfarin 

therapy when necessary (e.g. bleeding, bruising, high INR).  

 

Anecdotally, vitamin K deficiency in LT PN appears to be a known clinical 

problem yet is not well substantiated in research publications. Phylloquinone 

is a natural source of vitamin K in the lipid emulsion component of PN feeds; 

it is available in varying amounts depending on the lipid source e.g. soybean, 

safflower etc (Lennon et al. 1993; Shearer 2009; Singh and Duerksen 2003). 

Duerksen and Papineau (2000; 2004) explored the prevalence of coagulation 

abnormalities in PN patients receiving lipid emulsions and found that 

coagulation defects were five times higher in those receiving the lipid 

emulsion containing less phylloquinone; however no significant bleeding 

incidents were reported (Duerksen and Papineau 2000; Duerksen and 

Papineau 2004). Logically it would appear that LT PN who do not receive lipid 

PN or micronutrient preparations containing vitamin K (e.g. Cernevit®) are at 

a definitive risk of vitamin K deficiency. A more substantial publication by 

(Chambrier et al. 1998) investigated the long-term relationship between 

vitamin K intake from lipid emulsions on plasma phylloquinone 

concentrations showed that an average weekly intravenous supply of 255µg 

(36µg/day) was sufficient to maintain phylloquinone concentrations within 

the reference range in HPN patients. Findings that were in keeping with other 

studies that vitamin K content solely from lipid PN is sufficient to meet daily 

requirements i.e. without micronutrient preparations including vitamin K 

(Goulet et al. 1990; Lennon et al. 1993; Drittij-Reijnders et al. 1994). For those 

not receiving sources of vitamin K in their PN, Shenkin (2015b) advises a 
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separate IV vitamin K injection once a week. Chambrier et al. (2004) further 

established that a LCT emulsion is able to maintain plasma vitamin K1 status 

moreover a MCT/LCT combination. Interestingly EFA deficiency does not 

preclude deficiencies of fat-soluble vitamins e.g. vitamin K, in SBS. Edes et al. 

(1991) stated that requirements for lipid and fat-soluble vitamins should be 

determined independently.  

 

There are situations where it is not appropriate for LT PN patients to receive 

vitamin K and in 1979 the Nutritional Advisory Group in the US issued a 

recommendation that patients should not receive vitamin K supplementation 

if they receive anticoagulant therapy (e.g. warfarin for thrombo-prophylaxis) 

(Nutrition Advisory Group 1979). As such, there still exist vitamin 

preparations without vitamin K included (e.g. Cernevit®) and ASPEN 

recommend that preparations with and without vitamin K continue to be 

available for such situations (Vanek et al. 2012). 

 

Vitamin K deficiency also happens to be common in those with cholestatic liver 

disease as bile salts are required for its uptake. This situation is further 

complicated by the cautious attitude of prescribers to give lipid PN to patients 

with liver disease over concerns of its contributory effect to PNALD. 

 

Generally adults require ~100µg daily to maintain hemostasis (Shearer 2009). 

In 2000, the US FDA revised their guidelines and mandated that adult IV 

vitamin preparations should provide 150µg phylloquinone per day 

(previously 100µg). With these revised guidelines it could be possible for some 

patients to have vitamin K daily doses in excess of 300µg from both the lipid 

emulsion and the vitamin preparation (Singh and Duerksen 2003). Overall, the 

revised dosing guideline is generally considered beneficial for most patients; 

however it could be harmful for others, such as patients receiving 

anticoagulants (Helphingstine and Bistrian 2003). Singh and Duerksen (2003) 

stressed that NSTs should be conscious of vitamin K provision from all sources 

in LT PN patients. Unfortunately serum vitamin K tests (as phylloquinone) are 

not performed at C&V UHB, assessment of vitamin K status relies on 
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interpretation of any presenting symptoms (e.g. bruising) and/or associated 

coagulation tests (e.g. prothrombin time, international normalised ratio). 
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4.3. SUMMARY 

In summary, pertinent findings from published data regarding nutritional 

abnormalities for almost all micronutrients have been demonstrated. The non-

specific search strategy yielded a great deal of published studies and case 

reports relating to nutritional abnormalities. However, the publications varied 

greatly in study design, reflecting a hierarchical difference in evidence base for 

the data findings from each publication. The review still elucidated relevant 

up-to-date information to summarise the current body of knowledge 

representing nutritional abnormalities in LT PN. The great variation in study 

design, study setting (e.g. US vs UK) and study dates limit the generalisability 

of known findings from the literature review; with particular reference to the 

different clinical dosing and monitoring practices in different geographical 

settings and points in time.  

 

Specifically, the following notable points were realised from the literature 

review: 

- There were few recent studies incorporating a range of micronutrients 

from a substantial HPN population cohort over longer time periods. 

- Although clinical correlations have been made for LT PN patients e.g. 

increased prevalence of vitamin D deficiency and poor bone 

health/osteomalacia, the long-term clinical implications relating to 

micronutrient abnormalities in PN have still not been fully 

characterised, particularly for dose or length of exposure dependent 

studies. 

- There is scope for optimisation and improvement of micronutrient 

dosing in LT HPN patients. 

 

The review has shown that research is in favour of the aforementioned points 

and these will form the basis of the current PhD study schedule; to evaluate 

the extent of nutritional abnormalities in LT HPN patients, explore their 

relation to the prevalence of clinical issues experienced by patients and finally 

to provide research based recommendations to optimise provision of 

micronutrients in patients’ HPN. 
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CHAPTER FIVE: 

Assessment of micronutrient 

abnormalities in LT HPN patients 

(vitamins and trace elements) 
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5.1. INTRODUCTION 

This chapter concerns the retrospective assessment of nutritional 

abnormalities (both deficiency and excess) in a cohort of HPN patients in 

Wales. The chapter ends with a critical analysis of the foremost findings from 

the study in relation to current expert opinion and previous studies. 

 

5.1.1. Chapter aims 

This research chapter aimed to: 

- To investigate the extent of nutritional deficiency and accumulation 

experienced by the population of LT HPN patients at C&V UHB 

- To identify the nutrients which are most commonly implicated as being 

deranged in this population of patients 

- To identify any patterns or trends in nutritional abnormalities 

experienced by patients with similar diagnoses or underlying 

conditions 

- To identify potential factors which could be implicated in or contribute 

to micronutrient derangement 

 

5.1.2. Rationale 

A review of the literature has demonstrated the numerous types of nutritional 

abnormalities that can occur during LT PN; the extent to which they occur is 

made more complex by the many components that comprise PN. Particularly 

since there is still more to learn regarding the stability of individual 

components, their effects upon each other (especially at different 

concentrations and/or temperatures) and the overall physical stability of the 

PN feed. The review of the literature has given rationale for the present study 

performed in this chapter.  

 

There is more to find out about how nutritional abnormalities come to occur, 

the extent to which they occur and for what reasons. By researching these 

considerations in greater depth it is hoped that further recommendations will 
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be made and best practices implemented to help reduce the potential for their 

occurrence. 

 

Although ESPEN and ASPEN publish guidelines on patient PN requirements, 

nutritional assessment and monitoring, each HPN centre have their own 

experiences and practices. Murphy and Lewis (2016b) supported this theory 

when they said that the recommended published guidelines that dictate 

patient requirements and intervals for biochemical monitoring are moreover 

said to be based on experience rather than evidence-based literature. Perhaps 

in undertaking new research examining trends in nutritional abnormalities 

experienced by C&V UHB, it will help to bring to light new information that will 

benefit the body of HPN knowledge as a whole. 

 

Biochemical blood test records represent a wealth of concise and accurate data 

sources. Their use in this study may help to bring to light new findings which 

may help to reduce the burden of these nutritional complications on secondary 

care; perhaps even reducing associated mortality rates, costs and clinic 

waiting times. It was already demonstrated at Hope hospital in Manchester 

that two-thirds of all readmissions for HPN patients were for complications of 

HPN rather than the underlying condition or surgery (Jones 2003). 

 

By reviewing the biochemical data from the HPN patients maintained at C&V 

UHB in the manner of this preliminary study, it will allow future studies such 

as audit and service evaluation to be undertaken by developing standards of 

practice; ultimately helping to provide methods of overcoming micronutrient 

dosing problems that contribute to occurrence of nutritional abnormalities 

 

This study represents a large-scale cohort study of several micronutrients. One 

of the first of its kind that attempts to quantify the extent of out of range (either 

deficient or excessive) nutritional states experienced by LT PN patients. 
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5.1.3. Reference range definition 

The reference range (or more accurately defined reference interval) is applied 

to continuous data and is used to describe the limits (or reference interval) for 

blood test results (Lab Tests Online 2009). By explaining its definition, one is 

able to understand the context of the results in relation to the reference 

interval and their interpretation. Essentially, when a biochemical investigation 

is performed, the result is assessed against a reference point, usually what is 

expected in a healthy individual and the range of values seen in healthy 

individuals is termed the ‘normal range’ (as depicted by the normal 

distribution observed with continuous data). In some situations, it might be 

more appropriate for the comparable reference point to be the values 

expected in a symptomatic individual. The analyte reference intervals (normal 

range) are traditionally defined on the basis of measurement of the analyte in 

a sufficiently large sample of individuals from an appropriate healthy 

population (age, sex, ethnicity). For data having a Gaussian (normal) 

distribution, the results are normalized so that the sum over all values gives a 

probability of one. This then gives the definition for the normal range as the 

range of values lying between the limits specified by two standard deviations 

below the mean and two standard deviations above, encompassing 

approximately 95% of the values found in a sample (Marshall 2008). This gives 

the implication that the great majority of healthy people will have a value for 

the analyte within this ‘normal’ range (95%); leaving the 2.5% of values either 

side of this range to represent states of deficiency and toxicity. 

 

It can appear misleading to apply the normal range to a sample population of 

patients who are considered by some to be “abnormal” or “not normal”, 

interpretatively meant as in that they have chronic health problems and 

require LT IV feeding. However the ultimate aim is to achieve the same 

nutritional status as a ‘healthy’ individual (without GI issues or requiring PN) 

and hence the reference interval from a ‘healthy’ reference population is used 

as a reference guide.  
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5.2. METHODS 

5.2.1. Research permissions 

This study was conducted using the research permissions as described in 

Chapter 2. All sixty participants recruited and maintained on LT HPN were 

eligible for this section of research. 

 

5.2.2. Study design 

This study was performed as a retrospective longitudinal database analysis to 

investigate the incidence of micronutrient abnormalities experienced in a 

cohort of participants maintained on LT HPN at C&V UHB. Specifically, 

whether the results were deficient, in range or in excess (toxic) as depicted by 

the local C&V UHB reference limits. 

 

5.2.2.1. Data collection and sample population 

Data were collected from the medical records of consenting participants 

recruited from the outpatient clinic at C&V UHB. Specifically, this was achieved 

via manual data transcription of the blood test results from the online ‘Clinical 

Portal’ system which stores records of the patients’ micronutrient blood tests 

results. 

 

Data were collected from the date which patients were initiated on HPN up to 

and including August 2015. Data collection was limited to the medical records 

available online for the participants. For instance, some longstanding patients 

preceded the online storage of medical blood test results pre-2007/2008.  

 

As already stated, micronutrient assessment in this population of patients is 

recommended at least six monthly. By collecting these data, there were at least 

two sets of blood test results per participant for each year they were 

maintained on HPN. Sensitive or more closely monitored patients may have 

required more frequent testing, particularly if repeat tests were required to 

confirm absence of deficiency or toxicity after changes to PN formulation were 

implemented e.g. removal of compound micronutrient preparations. A full 
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breakdown of the data parameters investigated are given in Tables 5.1. and 

5.2. 

 

Where older blood test results for serum 25-hydoxyvitamin D (pre-2012) 

were collected but stated in ng/mL on the hospital computer system, these 

were converted to nmol/L using the calculation stated in ‘Section 5.2.2.3.1.’. 

 

5.2.2.2. Data handling, storage and analysis 

The relevant data were manually transferred into a Microsoft Access database 

for storage and handling, while data analysis was undertaken using Microsoft 

Excel. Participants were anonymised and coded to maintain their 

confidentiality throughout. 

 

The results from the patients’ blood tests were categorised as deficient, in 

range or in excess according to the hospital reference interval limits in use on 

the local C&V UHB intranet ‘Clinical Portal’ system. Table 5.1 describes the 

local reference ranges implemented by C&V UHB for the chosen data 

parameters. Please note the separate classification and interpretation of 

results for vitamin D (see Section 5.2.2.3.1. and Table 5.4).  

 

5.2.2.3. Data parameters 

In terms of individual data parameters (Table 5.1), data collection was limited 

to the blood tests that are routinely performed at C&V UHB and the 

micronutrients that can be directly assayed from blood samples i.e. correlating 

directly with the provision of micronutrients from the PN feed. 

 

Electrolytes (e.g. sodium, potassium, calcium, chloride, phosphorous and 

magnesium) are measured at each clinic visit for HPN patients, however they 

do not constitute micronutrients and are more accurately referred to as 

principle elements or macro elements (Prashanth et al. 2015). Their daily 

requirements in adults are above 100mg/day and deficiency usually results in 

fatal consequences. Equilibrium of serum electrolytes does have the potential 

to fluctuate especially between body cell stores and blood volume, but true 
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deficiency is unlikely and doesn’t warrant investigation, hence their exclusion 

from this study. 

 

On the other hand, ferritin was included in data collection to give an indication 

of iron provision from PN; although technically a biological molecule and not 

directly assayed in biochemical blood tests. Its biological structure 

incorporates an iron core that may contain as many as 4000-4500 iron atoms 

and its concentration in plasma is positively correlated with the size of total 

body iron stores (in absence of inflammation). Therefore, it can be assumed 

that blood plasma levels of ferritin directly correlate with dietary iron 

provision (WHO 2011). However, it is worthy of note that a low serum ferritin 

value reflects depleted iron stores, but not necessarily the severity of the 

depletion as it progresses. 

 

Table 5.1: Local micronutrient reference intervals implemented by C&V UHB. 

 

Micronutrient Reference Interval (and units) 

Copper (Cu) 11.0 - 22.0 µmol/L 

Manganese (Mn) 70 - 210 nmol/L 

Selenium (Se) 0.80 - 1.40 µmol/L 

Zinc (Zn) 8.0 - 17.0 µmol/L 

Ferritin  15 - 300 µg/L 

Folate  3.1 - 20.0 µg/L 

Vitamin A 1.10 - 2.60 µmol/L 

Vitamin B12 130 - 900 ng/L 

Vitamin D (25-OH-vitamin D) As per BMJ classification, section 5.2.2.3.1. 

Vitamin E 11.00 - 47.00 µmol/L 

 

The reference intervals for vitamin D are discussed in ‘Section 5.2.2.3.1.’ 

because classification of vitamin D status required further categorisation than 

the intervals stated by C&V UHB, to allow an evidence-based interpretation for 

vitamin D deficiency. 
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Table 5.2: Categories for further sub-classification of micronutrient blood test 

results according to: A. IF pathophysiological classification, B. Underlying 

disease (that causes IF), and C. Indication for HPN (as clinically noted). 

 

A. IF – pathophysiological classification (primary mechanism) 

- Short-bowel with jejunostomy (SBS-J) 

- Short-bowel with jejunocolic anastomosis (SBS-JC) 

- Short-bowel with jejunoileal anastomosis with an intact colon (SBS-JIC) 

- Fistula (F) 

- Dysmotility (Mot) 

- Mechanical obstruction (MO) 

- Mucosal disease (MD) 

B. Underlying disease (that causes the IF) (main 5 categories) 

- Short bowel 

- Intestinal fistula 

- Intestinal dysmotility 

- Mechanical obstruction 

- Extensive small bowel mucosal disease 

C. Indication for HPN (as clinically noted) 

- Short bowel syndrome (SBS) 

- Malabsorption 

- Obstruction 

- Fistula 

- Motility 

- Failed ENT (enteral nutrition) 

- High output (HO) stoma 

 

Micronutrient blood test results were sub-categorised according to the same 

classification used in Chapter 3 for pathophysiological IF classification, 

underlying disease and indication for HPN, the same classification systems 

implemented by ESPEN (Pironi et al. 2015). 
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5.2.2.3.1. Classification for vitamin D status  

The reference interval/classification described by C&V UHB for results of 

vitamin D (serum 25-hydroxyvitamin D) was not deemed to be sufficiently 

explicit enough for interpretation of deficiency. It merely stated “levels less 

than 50 nmol/L are indicative of deficiency”. As Marshall (2008) has explained 

when reference ranges give no direct cut off for data values in this manner, the 

term ‘reference/normal range’ is misleading and it is more appropriate to 

define target values, depending on the overall classification of risk of vitamin 

D deficiency. Consequently, a more precise and descriptive classification was 

sought for results of the blood test for serum 25-hydroxyvitamin D. 

 

As corroborated in the review by Mithal et al. (2009), the definition and 

classification of vitamin D deficiency and insufficiency vary considerably 

between studies. A resultant effect is observed in which it becomes difficult to 

interpret the results of vitamin D blood test results, particularly between 

different studies, countries and/or institutions, and the different units being 

used. Table 5.3 gives an overview of key recommendations for vitamin D 

classification from distinguished organisations; note the variation in vitamin 

D classification. 

 

The blood test result values for serum 25-hydroxyvitamin D are sometimes 

stated in both ng/mL and nmol/L. Results for tests at C&V UHB are stated in 

nmol/L and for consistency these units have been used throughout this 

chapter. To convert between the units the following calculation is used: 

nmol/L = 2.5 x ng/mL (Holick et al. 2011; U.S. Centre for Disease Control and 

Prevention 2012; Vitamin D Council 2016a). 
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Table 5.3: Studies showing the variable classifications for vitamin D 

deficiency and insufficiency by different institutions. 

 

Reference Institution/ 

Organisation 

Vitamin D 

classification limits 

Author remarks and 

recommendations 

(Dawson-

Hughes et al. 

2010) 

International 

Osteoporosis 

Foundation 

(IOF) 

Deficiency: <25nmol/L 

Insufficiency: either <75 

or <50 nmol/L 

Optimal target: 

≥75nmol/L 

Suggest 20-25µg (800-

1000IU) per day in older 

adults. Efficacy of doses not 

yet evaluated in RCT, 

premature to recommend 

such doses. 

 

 

The Endocrine 

Society (a 

Clinical Practice 

Guideline) 

Deficiency: < 50nmol/L 

Insufficiency: 52.5-

72.5nmol/L 

To raise above 75nmol/L, 

may require 25 µg (1000IU) 

per day. 

(Drezner 2015) UpToDate® 

(evidence-

based clinical 

decision 

resource) 

Deficiency: <50nmol/L 

Insufficiency: 50-

75nmol/L 

‘normal’ (optimal): > 

75nmol/L 

Unanimous agreement that 

≤30nmol/L defines 

deficiency in US. 

(WHO Scientific 

Group on the 

Prevention and 

Management of 

Osteoporosis 

2003) 

World Health 

Organisation 

(WHO) 

Insufficiency: 

<50nmol/L 

Daily intake of 10-20µg 

(400-800IU) is a 

straightforward, safe and 

inexpensive means of 

prevention (of deficiency). 

 

(Vitamin D 

Council 2016a; 

Vitamin D 

Council 2016b) 

Vitamin D 

Council (US 

non-profit 

organisation) 

Deficient: 0-100nmol/L 

Sufficient: 100-

200nmol/L 

High Normal: 200-

250nmol/L 

Undesirable: > 

250nmol/L 

Toxic: > 375nmol/L 

Suggests that patients 

should aim for an ideal level 

of 50ng/mL (125nmol/L). 

(Pearce and 

Cheetham 

2010) 

British Medical 

Journal (BMJ) 

Deficiency: <25nmol/L 

Insufficiency: 25-

50nmol/L 

Adequate: 50-75nmol/L 

Optimal: > 75nmol/L 

10mcg (400IU) daily dose 

only provides sufficient 

vitamin D as a prevention of 

osteomalacia. Inadequate to 

attain optimal status without 

skin synthesis as well. High 

dose calciferol treatment 

necessary <25nmol/L. 
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The classification system for vitamin D status based on serum 25-OH vitamin 

D as recommended by the BMJ was the chosen and preferred classification 

system for use in the study (see Table 5.4) (Pearce and Cheetham 2010). 

Rationale was based on the following reasons: 

- The BMJ considered multiple sources of evidence from the literature 

which were of higher grade of evidence. 

- The BMJ classification system had similar cut-off points to the other 

well-recognised classification recommendations e.g. International 

Osteoporosis Foundation. 

- It depicts the same cut off limits between insufficient and adequate 

levels as C&V UHB. 

- It reflects the most stringent criteria for classification of vitamin D 

status and as such the results reflect the best-case scenario for vitamin 

D deficiency and insufficiency. 

 

Table 5.4: BMJ classification of vitamin D status (Pearce and Cheetham 2010). 

 

Vitamin D status 
Serum 25-hydroxyvitamin D 

concentration (nmol/L) 

Deficient < 25 

Insufficient 25 - 50 

Adequate 50 - 75 

Optimal > 75 

 

One may notice that reference values for toxicity have not been given, this has 

been previously explained in section ‘4.2.2.4. Vitamin D’. 
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5.2.2.4. Methods of analysis 

The data was analysed using descriptive statistics as follows: 

- To show the total number (and percentage) of recorded micronutrient 

blood tests that were deficient, in range and in excess for the entire 

cohort of patient participants. In so doing, identify trends or themes in 

micronutrient abnormalities occurring in the patient population. 

- To perform comparative analyses by classifying the blood test results 

according to the patient’s pathophysiological classification for IF, 

underlying disease (causing the IF) and indication for HPN. Results 

were shown as total number blood tests that were deficient, in range or 

in excess per patient group within each category to see if there were 

any particular nutritional abnormalities associated with individual 

diagnoses or indications.  

 

Data transcription checks were performed for 10% of transcribed data to 

ensure no errors were made during the process of data transcription and 

collection. In result, no patterns or trends in error were identified throughout 

data collection.  
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5.3. RESULTS 

5.3.1. Total results for participant cohort.  

5.3.1.1. Trace elements and ferritin 

Table 5.5: Number (and percentage) of TE blood test results that were 

deficient, in range or in excess. 

 

 Copper  

(Cu) 

Ferritin 
as an indication 

of iron (Fe) 

stores 

Manganese 

(Mn) 

Selenium  

(Se) 

Zinc  

(Zn) 

Deficient 
69 

(12.4) 

34 

(7.4) 

0 

(0) 

187 

(32.8) 

32 

(5.8) 

In range 
446 

(79.9) 

332 

(72.5) 

262 

(49.4) 

350 

(61.4) 

456 

(82.6) 

In excess 
43 

(7.7) 

92 

(20.1) 

268 

(50.6) 

33 

(5.8) 

64 

(11.6) 

Total 558 458 530 570 552 

 

5.3.1.2. Vitamins 

Table 5.6: Number (and percentage) of vitamin blood test results that were 

deficient, in range or in excess. 

 

Blood test 

Classification 

Vitamin A Vitamin B9 

(folate) 

Vitamin B12 Vitamin E 

Deficient 
77 

(21.8) 

4  

(0.7) 

0 

(0) 

28 

(7.9) 

In range 
214 

(60.4) 

429 

(79.3) 

343 

(64.5) 

315 

(89.3) 

In excess 
63 

(17.8) 

108  

(20) 

189 

(35.5) 

10 

(2.8) 

Total 354 541 532 353 
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5.3.1.2.1. Vitamin D 

Table 5.7: Number (and percentage) of serum 25-hidroxyvitamin D blood test 

results that were classed as deficient, insufficient, adequate or optimal. 

 

 Deficient Insufficient Adequate Optimal Total 

Number of tests 

(and %) for 

vitamin D (serum 

25-hydroxyvitamin D) 

28 (5.9) 114 (24.2) 152 (32.3) 177 (37.6) 471 

 

5.3.1.3. Mean (±SD) and range for all micronutrient blood test data 

Table 5.8: Mean (±SD) and range of micronutrient blood test results that were 

deficient, in range or in excess. 

  

 Mean ±SD Min Max 
Reference 

range 

Copper (µmol) 15.36 4.68 0.78 29.7 11.0-22.0 

Manganese (nmol) 227.82 108.07 77 780 70-210 

Selenium (µmol) 0.92 0.31 0.1 1.89 0.80-1.40 

Zinc (µmol) 12.45 4.13 3.3 26.7 8.0-17.0 

Ferritin (µg/L) 217.18 245.57 4 1517 15-300 

Folate (µg/L) 11.75 6.41 1.4 25.6 3.1-20.0 

Vitamin A (µmol) 1.79 0.86 0.1 5.26 1.10-2.60 

Vitamin B12 (ng/L) 864.02 446.32 174 2000 130-900 

Vitamin D (nmol/L) 69.14 34.97 10 211 BMJ class. 

Vitamin E (µmol) 23.84 11.16 5.40 81.85 11.00-47.00 
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5.3.2. Comparative group analyses 

5.3.2.1. IF pathophysiological classification 

Table 5.9: Number (and %) of micronutrient blood test results subcategorised 

according to the patient’s IF pathophysiological classification. 
 

  IF pathophysiological classification [Num. of tests (and %)] 

Micronut. 
Test 

classif. 
SBS-J SBS-JC SBS-JIC F Mot MD 

Copper 

Deficient 7 (3.2) 35 (17.8) 13 (29.5) 0 (0) 11 (17.2) 3 (20.0) 

In range 182 (84.3) 155 (78.6) 29 (65.9) 21 (95.5) 47 (73.4) 12 (80.0) 

In excess 27 (12.5) 7 (3.6) 2 (4.6) 1 (4.5) 6 (9.4) 0 (0) 

Manganese 

Deficient 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

In range 101 (48.6) 83 (44.6) 32 (74.4) 9 (42.9) 36 (60.0) 1 (8.3) 

In excess 107 (51.4) 103 (55.4) 11 (25.6) 12 (57.1) 24 (40.0) 11 (91.7) 

Selenium 

Deficient 43 (19.1) 77 (39.1) 22 (47.8) 2 (8.7) 34 (54.0) 9 (56.3) 

In range 159 (70.7) 117 (59.4) 23 (50.0) 17 (73.9) 27 (42.9) 7 (43.7) 

In excess 23 (10.2) 3 (1.5) 1 (2.2) 4 (17.4) 2 (3.1) 0 (0) 

Zinc 

Deficient 4 (1.9) 9 (4.7) 1 (2.2) 1 (4.5) 9 (14.5) 8 (53.3) 

In range 168 (78.1) 175 (90.6) 43 (95.6) 19 (86.4) 44 (71.0) 7 (46.7) 

In excess 43 (20) 9 (4.7) 1 (2.2) 2 (9.1) 9 (14.5) 0 (0) 

Ferritin 

Deficient 14 (5.7) 4 (3.8) 3 (13.6) 0 (0) 8 (20.5) 5 (23.8) 

In range 165 (67.4) 87 (82.1) 14 (63.6) 23 (92.0) 27 (69.2) 16 (76.2) 

In excess 66 (26.9) 15 (14.1) 5 (22.8) 2 (8.0) 4 (10.3) 0 (0) 

Folate 

Deficient 1 (0.4) 0 (0) 0 (0) 0 (0) 1 (1.8) 2 (10.0) 

In range 202 (87.1) 124 (74.3) 19 (48.7) 27 (100.0) 41 (73.2) 16 (80.0) 

In excess 29 (12.5) 43 (25.7) 20 (51.3) 0 (0) 14 (25.0) 2 (10.0) 

Vitamin A 

Deficient 17 (12.7) 32 (25.4) 1 (3.4) 0 (0) 21 (58.3) 6 (33.3) 

In range 82 (61.2) 93 (73.8) 7 (24.1) 9 (81.8) 12 (33.3) 11 (61.1) 

In excess 35 (26.1) 1 (0.8) 21 (72.4) 2 (18.2) 3 (8.4) 1 (5.6) 

Vitamin 

B12 

Deficient 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

In range 143 (63.0) 131 (78.4) 3 (7.7) 20 (74.1) 29 (53.7) 17 (94.4) 

In excess 84 (37.0) 36 (21.6) 36 (92.3) 7 (25.9) 25 (46.3) 1 (5.6) 

Vitamin D 

Deficient  10 (4.9) 9 (5.7) 3 (10.7) 0 (0) 5 (9.8) 1 (7.7) 

Insufficient 43 (21.2) 45 (28.7) 3 (10.7) 8 (42.1) 12 (23.5) 3 (23.1) 

Adequate 60 (29.6) 55 (35.0) 2 (7.1) 6 (31.6) 23 (45.1) 6 (46.1) 

Optimal 90 (44.3) 48 (30.6) 20 (71.5) 5 (26.3) 11 (21.6) 3 (23.1) 

Vitamin E 

Deficient 1 (0.7) 12 (9.6) 0 (0) 0 (0) 5 (13.9) 10 (55.6) 

In range 128 (95.5) 113 (90.4) 26 (89.7) 10 (90.9) 30 (83.3) 8 (44.4) 

In excess 5 (3.7) 0 (0) 3 (10.3) 1 (9.1) 1 (2.8) 0 (0) 
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5.3.2.2. Underlying disease (that causes IF) 

Table 5.10: Micronutrient blood test results subcategorised according to the 

patient’s underlying disease that causes IF. 
 

  Underlying disease (that causes IF) [Num. of tests][%] 

Micronut. Test 

Classif. Short 

bowel 

Intestinal 

fistula 

Intestinal 

dysmotility 

Mechanical 

obstruction 

Extensive small 

bowel mucosal 

disease 

Num % Num % Num % Num % Num % 

Copper Deficient 55 12.6 0 0 11 18.3 0 0 3 20.0 

In range 348 79.8 21 95.5 46 76.7 19 76.0 12 80.0 

In excess 33 7.6 1 4.5 3 5.0 6 24.0 0 0 

Manganese Deficient 0 0 0 0 0 0 0 0 0 0 

In range 211 50.8 9 42.9 33 58.9 8 30.8 1 8.3 

In excess 204 49.2 12 57.1 23 41.1 18 69.2 11 91.7 

Selenium Deficient 140 31.3 2 8.7 33 55.9 3 12.0 9 56.3 

In range 281 62.9 17 73.9 25 42.4 20 80.0 7 43.7 

In excess 26 5.8 4 17.4 1 1.7 2 8.0 0 0 

Zinc Deficient 14 3.2 1 4.6 9 15.5 0 0 8 53.3 

In range 367 85.0 18 81.8 42 72.4 22 88.0 7 46.7 

In excess 51 11.8 3 13.6 7 12.1 3 12.0 0 0 

Ferritin Deficient 19 5.4 1 3.8 7 20.0 2 8.3 5 23.8 

In range 254 72.2 24 92.4 24 68.6 14 58.4 16 76.2 

In excess 79 22.4 1 3.8 4 11.4 8 33.3 0 0 

Folate Deficient 1 0.2 0 0 1 2.0 0 0 2 10.0 

In range 327 77.9 28 100.0 36 70.6 22 100.0 16 80.0 

In excess 92 21.9 0 0 14 27.4 0 0 2 10.0 

Vitamin A Deficient 45 16.4 1 8.3 20 60.6 5 29.4 6 33.3 

In range 173 63.2 9 75.0 11 33.3 10 58.8 11 61.1 

In excess 56 20.4 2 16.7 2 6.1 2 11.8 1 5.6 

Vitamin 

B12 

Deficient 0 0 0 0 0 0 0 0 0 0 

In range 264 63.5 21 75.0 27 55.1 14 66.7 17 94.4 

In excess 152 36.5 7 25.0 22 44.9 7 33.3 1 5.6 

Vitamin D Deficient  22 6.0 0 0 5 10.4 0 0 1 7.7 

Insufficient 86 23.4 8 40.0 12 25.0 5 22.7 3 23.1 

Adequate 108 29.3 7 35.0 20 41.7 11 50.00 6 46.1 

Optimal 152 41.3 5 25.0 11 22.9 6 27.3 3 23.1 

Vitamin E Deficient 13 4.8 0 0 5 15.1 0 0 10 55.6 

In range 252 92.3 11 91.7 28 84.9 16 94.1 8 44.4 

In excess 8 2.9 1 8.3 0 0 1 5.9 0 0 
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5.3.2.3. Indication for HPN (as clinically noted) 

Table 5.11: Micronutrient blood test results subcategorised according to the 

patient’s indication for HPN. 
 

  Indication for HPN (as clinically noted) [Num. of tests] [%] 

Micronut. 
Test 

classif. 
SBS Mal-abs. Obst. Fistula Motility 

Failed 

ENT 
HO stoma 

  N % N % N % N % N % N % N % 

Copper 

Deficient 55 12.9 1 8.3 0 0 0 0 11 21.1 0 0 2 18.2 

In range 370 87.1 11 91.7 1 25.0 5 100.0 38 73.1 13 100.0 8 72.7 

In excess 0 0 0 0 3 75.0 0 0 3 5.8 0 0 1 9.1 

Manganese 

Deficient 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

In range 218 49.4 0 0 3 75.0 2 40.0 30 62.5 6 46.1 3 30.0 

In excess 223 50.6 9 100.0 1 25.0 3 60.0 18 37.5 7 53.9 7 70.0 

Selenium 

Deficient 140 29.6 8 61.5 1 25.0 2 40.0 32 62.7 2 15.4 1 9.1 

In range 304 64.3 5 38.5 2 50.0 2 40.0 18 35.3 11 84.6 9 81.8 

In excess 29 6.1 0 0 1 25.0 1 20.0 1 2.0 0 0 1 9.1 

Zinc 

Deficient 14 3.1 8 66.7 0 0 0 0 9 18.0 0 0 1 9.1 

In range 389 85.1 4 33.3 2 50.0 5 100.0 36 72.0 11 84.6 9 81.8 

In excess 54 11.8 0 0 2 50.0 0 0 5 10.0 2 15.4 1 9.1 

Ferritin 

Deficient 21 5.5 5 29.4 1 25.0 0 0 3 10.3 4 40.0 0 0 

In range 277 72.3 12 70.6 3 75.0 2 50.0 22 75.9 6 60.0 10 90.9 

In excess 85 22.2 0 0 0 0 2 50.0 4 13.8 0 0 1 9.1 

Folate 

Deficient 1 0.2 2 11.8 0 0 0 0.0 1 2.3 0 0 0 0 

In range 357 79.5 13 76.4 5 100.0 4 100.0 31 70.4 9 75.0 19 86.4 

In excess 91 20.3 2 11.8 0 0 0 0 12 27.3 3 25.0 3 13.6 

Vitamin A 

Deficient 48 16.9 6 40.0 1 33.3 0 0 20 66.7 1 12.5 1 11.1 

In range 179 63.0 8 53.3 1 33.3 4 80.0 10 33.3 5 62.5 7 77.8 

In excess 57 20.1 1 6.7 1 33.3 1 20.0 0 0 2 25.0 1 11.1 

Vitamin 

B12 

Deficient 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

In range 282 63.4 15 93.7 2 40.0 4 100.0 21 50.0 10 90.9 9 100.0 

In excess 163 36.6 1 6.3 3 60.0 0 0 21 50.0 1 9.1 0 0 

Vitamin D 

Deficient  22 5.6 1 10.0 0 0 0 0 5 12.2 0 0 0 0 

Insuff. 93 23.8 3 30.0 0 0 3 60.0 10 24.4 2 18.2 3 30.0 

Adeq. 119 30.4 3 30.0 3 100.0 1 20.0 16 39.0 4 36.4 6 60.0 

Optimal 157 40.2 3 30.0 0 0 1 20.0 10 24.4 5 45.4 1 10.0 

Vitamin E 

Deficient 13 4.6 10 66.7 0 0 0 0 5 16.7 0 0 0 0 

In range 263 92.9 5 33.3 2 66.7 4 80.0 25 83.3 8 100.0 8 88.9 

In excess 7 2.5 0 0 1 33.3 1 20.0 0 0 0 0 1 11.1 
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5.4. DISCUSSION 

5.4.1. General discussion and main findings 

The present study has displayed the relative trends in nutritional 

abnormalities that affect LT HPN patients. Most notably, deficiencies of 

selenium and vitamin D as well as excesses of manganese and B-group 

vitamins. The study consolidates and confirms the occurrence of nutritional 

abnormalities long suspected by HPN clinicians and experts; previous 

evidence in the literature has been limited to individual case reports rather 

than larger scale retrospective population studies (Vanek et al. 2012). Patients 

are regularly monitored at routine intervals (at least six monthly) and their PN 

therapy is tailored to their needs, so the prevalence and degree/extent of out-

of-range blood tests was somewhat unanticipated. 

 

Respectable and satisfactory participant recruitment (64.5%) was observed in 

this study considering that LT PN populations are inherently small in size, last 

officially documented as 10 per million in the UK (Smith et al. 2011). 

Fortunately for the type of study performed, the relatively small sample size 

was characterised by offering a rich data set for analysis, resulting in a large 

amount of blood test result values for inclusion in the study.  

 

In terms of research findings for nutritional abnormalities, a similar project 

was recently undertaken at an NHS trust in Plymouth reviewing micronutrient 

status in HPN patients (Murphy and Lewis 2016b). Their key findings were the 

persistent deficiencies of selenium and vitamin D, concordant with the 

findings of this study as well. Interestingly, they reported a large percentage of 

patients (84%) remaining deficient in vitamin D since commencing HPN, 

although it was noted that there were limited number of patients included in 

their audit (n=22). Additionally, another project was performed by Conway et 

al. (2014) and noted similar findings in terms of vitamin D deficiency (56% of 

patients deficient) and manganese excess (65%), in 63 of 89 patients on HPN. 

Interestingly they excluded patients showing signs of systemic inflammatory 

response (as per different white cell count, CRP and albumin), an approach 

which could be implemented in future studies to exclude the effect of the APR 

on micronutrient biochemical tests. Besides the above mentioned studies, this 
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appears to be the one of the first studies of its kind to retrospectively 

investigate a broad range of ten micronutrients from a sizeable and specific 

population of HPN patients and document the frequency of their derangement. 

Since the Cardiff IF clinic caters for the HPN needs of almost all patients in 

Wales, the findings also accurately characterise the nutritional abnormalities 

for Wales as a country. As of July 2015, Cardiff IF clinic catered for 93 out of a 

total of 98 patients in Wales (94.9%), and this number has since grown 

dramatically again (Hawthorne and Juckes, personal communication, Dec 

2016). 

 

The main findings for each group of micronutrients are discussed and 

reviewed in turn. 

 

5.4.1.1 Trace elements and ferritin 

The most remarkable observation was that approximately half of the blood 

test results for manganese were in excess (50.6%), alongside complete 

absence of deficiency. As previously mentioned, unmanaged manganese 

toxicity has the potential to cause irreversible neurological side-effects and 

parkinsonian-like symptoms. The most accepted dose for manganese 

supplementation was first stated by Takagi et al. (2002) as 1µmol per day, still 

supported by ASPEN recommendations (Vanek et al. 2012), and still less than 

the dose included in Additrace (5µmol) (Fresenius Kabi 2016). The studies by 

Howard et al. (2007) and Dickerson (2001) suggest that manganese PN 

requirements are likely to be met by contamination alone and should 

“possibly” not be intentionally supplemented in PN formulations. Yet, a recent 

systematic review by Baker et al. (2016) graded evidence on manganese 

supplementation and surmised that there was limited evidence to support not 

supplementing manganese in LT HPN. Further intervention studies being 

necessary, such as an on/off exposure study design over a period of at least six 

months as proposed by Takagi et al. (2002). A prevailing explanation for the 

large number of toxic manganese blood test results is that they result from 

overprovision of manganese in the TE preparation Additrace®, an opinion 

shared with Conway et al. (2014) after 64% of their patients (n=89) had 

elevated manganese levels while receiving Additrace® or Decan®. In our study, 
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it transpired during data collection that over the course of the time period for 

participants’ duration requiring HPN, a large proportion of patients 

necessitated removal of the preparation from their PN regimen (data not 

collected), presumably due to the toxic manganese results. This finding is in 

keeping with views from others that the dose of manganese in TE preparations 

is excessive, especially alongside unquantified amounts as a ubiquitous 

contaminant (Hardy 2009; Abdalian et al. 2012; Abdalian et al. 2013). Overall, 

our findings for the high proportion of manganese blood test results being in 

excess suggest that dosing in HPN, whether intentional (as within Additrace) 

or unintentional (as a contaminant) requires further research into quantifying 

sources of manganese contamination, since evidence-based safe 

recommendations for its dosing and supplementation in LT PN have now been 

established. Ultimately evidence from the literature suggests that the PN 

industry should strongly consider producing manganese-free TE preparations 

for those with sensitive requirements e.g. those with cholestatic liver disease. 

The newer TE preparation Nutryelt contains less manganese in line with 

recommendations by Vanek et al. (2012) yet faces delays in its use for bespoke 

PN until it has demonstrated physical stability across a range of formulations.  

 

A key finding from the analysis of trace elements was the large number of tests 

that were deficient for the TE selenium (32.8%), suggesting the presence of 

deficiency states and unsatisfactory selenium dosing in a large proportion of 

patients. Selenium appears to be one of the most manipulated components of 

the patients’ PN regimens with 400mmol being provided in each daily vial of 

Additrace®; alongside any extra selenium to be dosed to patients when 

deficiency is observed and physical stability permits its inclusion in the PN 

formulation. However a factor which complicates interpretation of this finding 

is that selenium is a reverse APR reactant, its representation as deficiency can 

in some cases be due to the APR where a patient has or recently had illness, 

inflammation or infection; as is common with GI diagnoses and biochemically 

shown by a high CRP value (Ringstad et al. 1993; Stefanowicz et al. 2014). 

There is the general consensus that PN additives should provide more 

selenium (Vanek et al. 2012), this has in part been accomplished with the 

composition of the new TE preparation ‘Nutryelt’. In light of the large SD value 
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for selenium, one also recommends that future research should establish 

which HPN patient groups require more selenium in their PN. Hopefully in 

time the PN industry will be able to market more PN TE additives to suit 

variable selenium patient requirements. 

 

Serving as a loose indicator of iron provision, a relative finding was that 

ferritin showed 7.4% of deficient blood test results; a value that adds to the 

growing knowledge that iron deficiency anaemia is a common clinical problem 

in LT HPN patients. A recent study by Hwa et al. (2016) noted iron deficiency 

in 60 patients (32.4%) while maintained on HPN, as demonstrated by ferritin 

levels below the lower limit of the reference interval, necessitating 

replacement therapy with iron dextran, iron sucrose and ferrous gluconate. It 

is acknowledged that a great proportion of HPN patients at C&V UHB required 

further iron supplementation (usually as separate iron infusions as physical 

stability of the PN limits extra provision of iron in formulation), however there 

was poor documentation of patient records for iron administration. Clearly, 

there were a high proportion of results in excess of the upper limit for the 

reference range (20.1%). It is more likely that this result was a complication 

of concurrent inflammation or illness rather than excess iron provision as 

serum ferritin rises non-specifically as an inflammatory marker during illness 

and infection (Koperdanova and Cullis 2015); however it is not known how 

many patients may have received iron infusions within the time period of 

which data was collected. Measurement of serum iron as a blood test would 

have shown a more accurate representation of iron status in the patients but 

this is not routinely measured by C&V UHB. 

 

Copper and zinc showed more consistent results with that of the general 

population, each displaying a more symmetrical distribution across the 

reference interval with less blood test results classified as deficient or in 

excess. However, the results do suggest that copper deficiency could be a 

potential problem in this population of patients (12.4%) with deficiency  states 

previously clinically reported (Karpel and Peden 1972; Dembinski et al. 2012; 

Pramyothin et al. 2013; Frankel 2016), still its role as an acute phase reactant 

should be noted (Shenkin 2008; King 2015). Conversely, Vanek et al. (2012) 
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have recommended reduction of parenteral copper doses in PN additives over 

concerns for toxicity states; hence the results show the difficulty in gauging the 

optimal dose of copper for HPN patients. Additionally, the results suggest that 

a possible synergistic relationship may exist between copper and zinc, as 

excess provision of zinc has been demonstrated to be risk factor for copper 

deficiency (King 2015). Contrasting with the literature where most concern 

remains over the potential for zinc deficiency, it displayed a trend for more 

results in excess, a bizarre finding considering that dosing revisions have 

recommended increased provisions in PN are necessary (Vanek et al. 2012). 

Again, the potential for zinc as a reverse acute phase reactant should be noted 

in its ability to give a false indication of deficiency during the APR (Shenkin 

2008). 

 

Regarding the suitability of Additrace® for the population of LT PN patients, in 

‘Chapter 3’ it transpired that only 12 out of 59 participants (20.3%) received 

Additrace® within their weekly PN regimen. A result which demonstrates its 

unsuitability for the needs of LT PN patients in terms of total TE dosing, since 

one would have expected more patients to receive the preparation within their 

PN regimen as it caters for the daily basal requirements of PN patients. 

Throughout the process of data collection, it became apparent that excess 

blood test results for manganese (and more infrequently copper and zinc) 

necessitated the removal of the multi-TE product Additrace® (the only way to 

limit manganese exposure to patients is to remove the compound preparation) 

(Buchman et al. 2009; Hardy et al. 2008; Shenkin 2015; Vanek et al. 2012). This 

incurs several effects, all the other TE then require manual addition to the PN 

feed (where singular TE preparations exist, limited availability), a somewhat 

labour intensive process which has the advantage of giving more precise 

individualised TE dosing for patients (for Cu, Mn, Se and Zn). An additional 

complication of this process is that patients then miss out on the other five 

essential TE included in Additrace® alongside copper, manganese, selenium 

and zinc. As the UK market leading preparation for TE in PN, it seems long 

overdue review of its composition in light of key research findings and expert 

opinion (Vanek et al. 2012). However the financial implications for its 

reformulation by its distributor ‘Fresenius Kabi’ may not be in their primary 
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interests while it is still relied upon as the only TE preparation available for 

consumer use in the UK. Meanwhile in 2015, Baxter and Laboratoire Aguettant 

announced the release of a new TE preparation named ‘Nutryelt®’ (Baxter 

2015), its composition including doses in line with current recommendations 

from both ESPEN and ASPEN (see ‘Chapter 4, Section 4.1.3.’ for ‘Table 4.1.’) 

(Staun et al. 2009; Vanek et al. 2012). The main noteworthy changes in its 

composition by comparison to Additrace® include less manganese, more 

selenium, less copper and more zinc. The findings from the present study for 

excessive results for manganese and deficiencies of selenium corroborate the 

composition of Nutryelt®. Unfortunately, this new product faces opposition for 

its inclusion in LT PN as homecare companies are reluctant to incorporate it in 

PN production until it has satisfied physical stability tests across a range of 

formulations (as one would expect to find in LT PN patients requiring bespoke 

PN). 

 

5.4.1.2. Vitamins 

The results for folate and vitamin B12 show little (0.7%) to no (0%) deficient 

test results respectively. A positive finding showing that patients are 

adequately dosed for these water-soluble vitamins, as provided by either 

Cernevit® or Solivito N Adult®; in some cases patients may have received 

intramuscular three monthly injections for diagnosed B12 deficiency anaemia. 

Although the findings appear alarming for the high number of test results in 

excess, it is generally considered that excesses of water-soluble vitamins are 

free from toxic effects because they are readily excreted from the body 

(Shenkin 2008). The large SD value and high mean for vitamin B12 showed 

that the data were spread across a wide range of values, again demonstrating 

ample yet considerably variable vitamin B12 provision in the cohort of 

patients. Again, similarly, data was not collected on how many patients 

received vitamin B12 injections during the time-period of which data was 

collected, which could have skewed the result to greater values for toxicity 

states. Generally, these results show that the preparations provided more than 

the necessary amounts for these vitamins, with general agreement for lack of 

concern when in excess. 
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Showing less definitive findings, vitamin A demonstrated both large amounts 

of blood tests as deficient (21.8%) and in excess (17.8%); rather than showing 

a trend in one particular direction, there was a narrower window for keeping 

patients in range. It has already been established that vitamin A is subject to 

photodegradation without light protection, especially in the absence of lipid 

inclusion in the PN feed (Haas et al. 2002; Ferguson 2014). This process could 

account for the observed deficiencies in this study considering that PN is batch 

delivered for patients either weekly or fortnightly. On the other hand, Shenkin 

(2015b) states that ultraviolet radiation of retinol is unlikely with normal 

room lighting. Nethertheless the deficiencies were still in keeping with a 

similar study by Labadarios et al. (1988), although it was noted to be a dated 

study with a limited sample size (43% deficient, n=22). Generally said, further 

research regarding the optimal dose of vitamin A is necessary especially under 

specific storage conditions; one would suggest intervention studies such as 

lipid vs. no lipid, light vs. no light or high vs. low dose vitamin A. 

  

The results for vitamin E showed a tendency for deficiency over toxicity; 

however generally vitamin E proved itself as the most controlled and well 

supplemented micronutrient in the study with 89% of results in range. Its 

findings in this study are in keeping with its review from the literature which 

found little published evidence of nutritional abnormalities aside from 

incidences of inadequate vitamin E supplementation (Thurlow and Grant 

1982; Porter et al. 2005; Biesalski 2009). 

 

Patients showed inadequate vitamin D status in 30.1% of blood tests, this 

being the collective result for both states of deficiency (5.9%) and insufficiency 

(24.2%). The unquantified effect of this profound ‘inadequate’ vitamin D status 

is well known to adversely affect patient bone health (DeLuca 2009; Fessler 

2009). A number of factors could contribute to approximately a third of the 

patient sample having inadequate vitamin D status and include: 

- Reduced amounts of sunlight exposure and intradermal vitamin D 

synthesis by comparison to the general population e.g. more home-

bound patients, confined to their residence by long infusion hours. 

- Omission of vitamin D from PN regimen (from PN additives Vitlipid N 
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Adult® or Cernevit®) as some clinical situations necessitate their 

removal, for more detail see ‘Chapter 4, Section 4.1.4.’. 

- Inadequacy of vitamin D dose within PN additives (Vitlipid N Adult® or 

Cernevit®) 

- Inadequate further vitamin D supplementation. Most patients require 

additional vitamin D supplementation outside their PN regimen. The 

adequacy and degree of this extra supplementation (oral/IV) may play 

a role in the reported deficiencies; many oral supplements exist with 

large variation in doses and frequencies from 200IU daily to 50,000IU 

weekly, depending on whether treatment aims are for deficiency or 

maintenance. An ergocalciferol intramuscular injection exists 

providing 300,000 units, usually given once or twice annually 

depending on serum 25-OH vitamin D levels. 

- The possibility that vitamin D instability may play a role in reduced 

doses being delivered to patients from their PN regimen. 

An intrinsic limitation associated with the reporting of vitamin D ‘inadequacy’ 

(<50nmol/L) as based on measurement of 25-hydroxyvitamin D is that it does 

detect the activated forms of vitamin D (alfacalcidol or calcitriol). Some 

patients with known renal issues could potentially have been receiving 

preparations containing these forms of activated vitamin D, resulting in 

potential overestimation of the degree of vitamin D deficiency experienced by 

the HPN population. 

 

The amount of vitamin D synthesised via sunlight exposure should be 

considered independent of both vitamin D provision from PN and diet as a 

stable and consistent factor, an approach also taken by the SACN (Scientific 

Advisory Committee on Nutrition 2016). This sensible method then excludes 

the variable and often limited vitamin D provision from other sources. It is 

clear that this avenue requires further research not only in establishing the 

true stability of vitamin D in PN but also in establishing the optimal dose for 

PN patients. In agreement with Fessler (2009), standard PN additives contain 

significantly reduced doses by comparison to the recommended requirements 

of adults in the general population; actual maintenance requirements gauged 
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to be as much as 800IU per day with treatment doses said to be much higher 

(Holick 2007; Cannell et al. 2008; Holick et al. 2011). In a view to reflect the 

latest opinion for higher requirements and as previously mentioned, in July 

2016 the UK SACN reviewed their daily recommended dose to 10mcg (400IU), 

previously 5mcg (200IU), as a baseline dose for all adults regardless of age or 

estimated UV synthesis. Perhaps it is time for PN additives to also reflect the 

more recent recommendations for daily vitamin D provision. Optimal vitamin 

D supplementation outside of the dose provided in PN additives is also a key 

consideration. A recent audit performed by Murphy and Lewis (2016a) from 

South-west UK based HPN centre found interesting and positive findings from 

their established vitamin D treatment guideline. They investigated vitamin D 

status in HPN patients in relation to a treatment intervention with vitamin D, 

either oral high dose treatment (9600IU/day) where GI absorption was 

possible or IM injection (300,000IU) for those with inadequate absorptive 

capacity. They observed vitamin D levels to be significantly improved post-

intervention, according to the same vitamin D classification system 

implemented in the present study. Again however their study was limited by 

a small sample size (n=13), yet was able to establish a sound and effective 

protocol for the treatment of vitamin D deficiency in HPN patients.  
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5.4.1.3. Comparative group analyses 

No substantial findings were elucidated from the comparative analyses when 

the micronutrient blood test results were subcategorised according to ‘IF 

pathophysiological classification’, ‘underlying disease’ and ‘indication for 

HPN’. Once the blood test results had been subcategorised amongst the 

different groups, there were variable and often insufficient numbers of tests to 

be able to draw conclusions or findings. Also, no patients were classified as 

having mechanical obstruction as a pathophysiological cause for their IF and 

as such no micronutrient blood tests could be categorised. 

 

However this analysis did allow context of the blood test results for short 

bowel syndrome as a both an underlying disease and in terms of its 

pathophysiological classification, as this was the category with the largest data 

set post sub-categorisation. Since most nutrient absorption occurs in the small 

intestine, it is entirely conceivable that patients with SBS are at risk of 

nutritional deficiencies. One study has stated that even with as little as a third 

of remaining small bowel length, the body is still able to maintain adequate 

vitamin and mineral stores, provided there is a well-balanced diet 

(Westergaard and Spady 1993). Yet in patients requiring LT PN, it can already 

be assumed that a regular oral diet is insufficient for their needs. 

 

The small intestine is the predominant site for absorption for nearly all 

vitamins, minerals, proteins and fats (Bryant and Hampton 1992). The location 

of their absorption give an idea of the anatomical influence upon their 

implication in nutritional abnormalities. Iron and zinc are known to be 

absorbed along its length, folate in the upper third; selenium, vitamins A, D and 

E in the ileum along with vitamin B12 absorption just before the small 

intestine joins the large intestine (Gmoshinskii and Mazo 2006; Lambert 

2008). As such deficiencies are apparent and can be observed in Tables 5.9-

5.11 for selenium, zinc, vitamins A, D and E; greater quantities of deranged 

blood test results being demonstrated with the greater degree of bowel loss 

and HPN dependency.  
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Some other notable features of the comparative analysis for ‘IF 

pathophysiological classification’ are as follows: 

- High excesses of manganese across all subcategories. However notably 

less within SBS-JIC, those requiring less intensive HPN therapy than 

SBS-JC and SBS-J. Leading to a theory that those requiring more HPN 

(by volume or frequency) potentially receive greater doses of 

manganese as a contaminant (Hardy 2009). 

- More deficiency states for selenium in those with motility disorders, 

deficiencies have previously been shown to be related to poor 

absorption of selenium from the GI tract (Rannem et al. 1998). 

- More deficiencies of zinc in mucosal disease. Increased prevalence of 

zinc deficiency (19%) has been observed in other mucosal diseases 

(Bao et al. 2016).  

- Similarly, more deficiencies were observed for vitamin E in those with 

mucosal disease. The only comparable evidence being that in vitamin E 

deficient rat models, gastric mucosal injury was greater (Naito et al. 

1999). 

- Higher degree of derangement of micronutrient results was observed 

in patients with a greater degree of bowel loss/HPN dependency (SBS J 

> SBS-JC > SBS-JIC). For instance one expects considerable stomal 

losses of selenium, zinc and copper in SBS-J patients (see Table 5.9) 

(Nightingale 2006; King 2015). Yet the results cannot clarify whether 

the degree of derangement in results is potentially due to the 

complication of inflammatory disease states on the accuracy of 

reported BT results; or whether it is simply harder to gauge accurate 

micronutrient requirements in those with extensive bowel 

loss/resection. 

- More vitamin A deficiencies in motility disorders, concordant with 

studies implicating the role of vitamin A in the normal functioning of 

the enteric nervous system (ENS) which governs the function of the 

gastrointestinal system (Sato and Heuckeroth 2008; Wright-Jin et al. 

2013). 

- Highest incidences of iron deficiency (as indicated by deficient ferritin) 
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were in the subcategories for SBS and dysmotility, as paralleled with 

findings by Hwa et al. (2016). 

 

5.4.2. Limitations 

The findings of this all-encompassing study have been positive in confirming 

current issues reported in LT PN patients, yet there are limitations associated 

with this study. For instance, although excellent participant recruitment rates 

were achieved for this study, it still amounted to a small number of patients 

from a single HPN centre. Inclusion of more participants from more HPN 

centres would have made the findings of nutritional abnormalities more 

generalisable to the wider population and also in terms of the differing HPN 

practices between centres across the UK.  

 

For one of the key results, the true degree of overprovision of manganese is 

complicated by the unquantifiable degree of contamination from an array of 

potential sources.  These include the use of contaminated sterile solutions 

and/or needle manipulation during PN production, as well as possible 

contamination from needles when blood samples are taken from patients, 

since manganese is known to leach from metal needles (Cornelis et al. 1996; 

Yang and Lewandrowski 2002; Hardy 2009).  

 

A more unavoidable limitation was the degree of variation existing between 

participants and the data extracted from each participant. For example, some 

patients may have started PN at an earlier date in time or be maintained on 

more (or fewer) PN feeds per week, i.e. some patients are entirely dependent 

on their PN. However, for the research purposes of this study, the degree of 

interpatient variation cannot be controlled. Prescribers monitor patients’ 

nutritional status as recommended and the biochemical monitoring is still 

indicative of their nutritional status and our ability to meet their needs via 

manipulation of their PN regimen, regardless of how many nights per week 

they feed. Likewise, there were variable durations of time that each participant 

had spent receiving PN by the point in time of data collection. However the 

retrospective clinical nature of the study should be noted in that the clinical 
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treatment decisions were made over the course of each patients history of PN 

therapy to correct deranged blood test results i.e. patients being given reduced 

or further supplementation, and not left running LT deficiencies or toxicities.  

 

Although C&V UHB aim to follow ESPEN recommended guidelines for at least 

six monthly biochemical monitoring, in practice this is not always possible as 

sometimes it may be a slightly longer interval between monitoring depending 

on clinic/patient availability or whether patients require more frequent 

review after deranged test results. In some instances, biochemistry test results 

are not available for a number of reasons, these include laboratory error, 

inadvertent omission of blood test request (i.e. forgotten), incorrect sample 

collection (e.g. wrong sample container) or expired blood samples. Overall the 

results from this study still display the clinical picture for the degree of 

deranged results from the population, and should be considered in line with 

the view of Fragkos et al. (2016) who showed that over the time course of HPN 

administration that micronutrient deficiencies were maintained regardless of 

underlying IF aetiology and/or presence of fistula or stoma, considering the 

limited micronutrient PN preparations available. Both Fragkos et al. (2016) 

and Forbes and Forbes (1997) were able to show that HPN service 

management by a specialised IF/HPN NST in an ad hoc fashion was effective 

and able to cover patients’ LT PN  requirements, as paralleled by the HPN 

monitoring performed at C&V UHB. Yet aside from this consideration, it should 

be noted that the present study did not separate blood tests that could have 

been associated with potential deficiency states prior to patients starting HPN, 

as noted in a similar study by Murphy and Lewis (2016b). 

 

Another unavoidable and inherent limitation associated with blood 

biochemistry is the actual degree of accuracy, reliability and precision of the 

reported results themselves (see Chapter 4, Section 4.1.5.1). Since these 

biochemical parameters are used clinically to monitor and guide treatment 

decision process in practice, they are therefore still the best data parameters 

to have included in the study. Yet it has been mentioned by some that more 

accurate biochemical indicators of nutrition states exist which may play roles 

in future research studies (Daniells and Hardy 2010; Hambidge 2003; He 
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2011; Hotz et al. 2003; Nève 2000). Likewise, a similar limitation exists for 

folate and vitamin B12 in that the biochemical tests used to assess their status 

have biphasic and inverse characteristics, suggesting that the cut-off points for 

their reference interval are somewhat unreliable and inaccurate. Selhub et al. 

(2008) suggested a method to establish better cut-off points for assessing 

nutritional status for these vitamins, by using dose-concentration graphical 

intersections to guide the assessment of adequacy of vitamin provision. 

 

The effect of the APR on the accuracy of the reported biochemistry results 

should also be considered as a possible limitation, as concomitant infection 

decreases intestinal absorption of nutrients and can cause direct loss of 

micronutrients from the body (see Chapter 4, Section 4.1.5.1.). Traditional 

biochemical indicators for micronutrients (e.g. iron, zinc, selenium, copper) 

are altered during the APR, giving inaccurate estimation of nutritional status 

(Bresnahan and Tanumihardjo 2014). The ‘accuracy’ of blood test results are 

clinically interpreted on an individual case basis in the day-to-day practice 

setting during review of patients’ biochemistry and PN regimen, in which case 

prescribers make an informed decision whether to alter patients’ PN 

prescription based on the reliability of the blood test results. For research 

purposes, all test data was included regardless of how accurately or reliably it 

was interpreted at the time. The APR is estimated to account for an 

overestimation of 16% of diagnoses of vitamin A deficiency and 

underestimations of 15% for the prevalence of iron-deficiency anaemia 

(Wieringa et al. 2002). The concise review article by Bresnahan and 

Tanumihardjo (2014) reports that the effect of the APR on micronutrient 

status during infection is most notable for retinol, iron, ferritin and zinc (by 

degrees of up to 25% reduction, 20-50% reduction, 30-1400% increase and 

12% reduction, respectively). The underestimation of selenium during the 

APR has also been well-documented (Maehira et al. 2002). Meanwhile a more 

concise investigation into the effect of the APR on micronutrient status found 

that the magnitude of the effect was greatest for selenium and vitamins A, B6, 

C, and D, for which the median plasma concentrations decreased by more than 

40%, although it was noted that there was marked interpatient variation for 

the effect of the APR on each micronutrient (Duncan et al. 2012). Altogether, 
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this limitation complicates accurate and reliable interpretation of meaningful 

blood biochemistry, particularly in situations like the present study. It has 

been proposed that blood concentrations of acute phase proteins (e.g. CRP, 

cytokines) can be measured to assess the time scale and severity of infection, 

allowing corrective interpretation of blood tests for the APR during illness; 

however there would need to be standardised cut-off points for each 

nutritional application which do not yet exist (Abraham et al. 2003; Bresnahan 

et al. 2014). Future studies should aim to incorporate these corrective 

measures to give more accurate context for findings of the specific nutrients 

affected by the APR. 

 

5.4.3. Future work 

The findings from this chapter have revealed some notable more critical areas 

requiring further research within the scope of this PhD project, they include 

the following: 

- Researching the extent of the issue surrounding inadequate vitamin D 

provision in HPN patients and whether there is a detrimental effect on 

patient bone health 

- Investigating the stability of vitamin D in the multi-component 

additives used to formulate HPN, to exclude any unknown potential 

stability problems which may limit the true dose of vitamin D being 

delivered to patients. 

- Performing a ‘gap-analysis’ for selenium prescribing in PN, to 

investigate whether patients are adequately prescribed sufficient doses 

of selenium in their PN (from both multi-component and singular 

additives) in line with their blood test results, and whether physical 

stability regulations (per volume of PN feed) limit the dose some 

patients require. Initial data collection and project familiarisation 

showed selenium to be a well-manipulated micronutrient in PN. 

Livingstone (2016) has explained the difficulty in getting a 

micronutrient preparation to suit all HPN patient needs; varied patient 

diagnoses may necessitate different micronutrient dosing 

requirements e.g. from the degree of remaining bowel or remaining 
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oral/enteral consumption. In the case of selenium, its absorption 

occurs in the upper small intestine without homeostatic control where 

more than 90% of dietary selenium is absorbed. This demonstrates the 

importance for its correct provision to patients with variable lengths of 

small intestine and the accurate determination of their requirements, 

also in patients without SBS requiring HPN for non-SBS diagnoses and 

indications (Livingstone 2016).  

 

Other recommendations for future work relating to this chapter but not to be 

covered within the scope of this PhD project include:  

- Prescribers should strive to treat out of range biochemistry results 

wherever possible using up-to-date evidence-based guidelines e.g. 

correct vitamin D supplementation e.g. make sure clinicians follow the 

vitamin D deficiency guideline. 

- Undertake larger scale studies incorporating patients from more HPN 

centres to create more generalisable results of a higher grade of 

research value with the ability to produce well-informed findings. Also, 

to incorporate more patients from each of the subcategories for ‘IF 

pathophysiological classification’, ‘underlying disease’ and ‘indication 

for HPN’.  

- Perform intervention studies to establish the most appropriate doses 

of micronutrients for inclusion in PN. These would ideally be 

implemented from standardised protocol driven treatment guidelines 

e.g. specific high dose vitamin D treatment for all patients found to have 

25-hydroxyvitamin D levels below 50nmol/L, or a study comparing the 

incidence of nutritional abnormalities with Additrace® vs. Nutryelt®. 

Other ideas for intervention studies would be to further investigate 

micronutrient stability in PN that is subjected to prolonged storage 

conditions, as it has been proven that some vitamins degrade over time 

once formulated in PN (Ferguson 2014). 

- Perform a comparison study for nutritional abnormalities in HPN 

patients by contrast to the general population. To address the question: 

‘Do nutritional biochemistry test results actually result in the expected 
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rates of deficiency and toxicity in the general population?’ Or could 

there be unrecognised nutritional abnormalities in the general 

population as well. For instance, it has been suggested that much of the 

UK and Scandinavia is deficient in vitamin D in the winter months due 

to lack of sunlight exposure (Pearce and Cheetham 2010). 

- In light of the gross number of manganese test results in excess; further 

studies investigating the actual amount of manganese present as 

contaminants in standard solutions, preparation materials and 

prepared products would help to reveal more appropriate doses for 

patients, a recommendation shared with Hardy (2009). 

- Incorporate the use of more accurate biochemical monitoring 

techniques for assessment of nutritional status. For example, a variety 

of different samples can be used to assess selenium status (hair, nail, 

selenoproteins, etc); at present serum selenium is still the favoured 

measure but it is not known whether it is the most accurate or reliable 

(Nève 2000; Thomson 2004). Also, it has recently been shown that 

protein expression of copper enzymes (caeruloplasmin and superoxide 

dismutase) are more sensitive than current standard indicators for the 

evaluation of copper status (Harvey and McArdle 2008; Olivares et al. 

2008). 

- Propose revision of TE dosing guidelines and current TE formulations 

so that: 

- Separate products are available each of the individual TE, to 

allow easier manipulation of individual patient requirements. 

- A variety of fixed dose micronutrient products are available for 

use, as HPN population has considerably variable requirements. 

Particularly for selenium and manganese components.  

- PN products are labelled with maximum allowable contaminant 

levels for TE known for contaminant issues i.e. aluminium, 

chromium and manganese. 

- In the absence of new TE formulations, it would be useful to compare 

the incidence of nutritional abnormalities in those given solely a fixed 

dose TE preparation versus those who have already necessitated 
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removal of the fixed dose compound preparation and require manual 

manipulation of their TE dosing in PN i.e. demonstrate the clinical 

impact of the problem with accurate TE dosing. 

- Monitoring of nutritional status should encompass up-to-date and best 

practice biochemical nutritional detection techniques. Buchman et al. 

(2009) eluded to this topic in relation to vitamins D and K at their 

workshop. It is well accepted that HPN patient review should consider 

the full clinical picture, not just review of the reported test results i.e. 

whether there are concomitant symptoms; especially during situations 

where the accuracy and reliability of blood test biochemistry may be 

affected. 

 

5.5. CONCLUSION 

The current preparation Additrace® does not meet the day-to-day TE 

requirements for LT use in PN patients; the preparations for vitamins, 

Cernevit® and Solivito® have also shown themselves as unable to meet the 

general requirements for these patients. The findings from this study are in 

line with views held by other researchers in that the composition of the 

products is responsible; suggesting review of their dosing is necessary 

(Buchman et al. 2009; Btaiche et al. 2011; Vanek et al. 2012; Núñez-Ramos et 

al. 2015; Żyła et al. 2015). Adjustments to micronutrient doses in PN should be 

guided by regular monitoring of micronutrient status. Yet while efforts should 

be made to keep micronutrient dosing in HPN patients as individualised as 

possible, the limited existence of compound preparations frustrates this 

clinical practice. NST and clinicians need to be aware of the findings of this 

study and its implications for their LT PN patients; particularly the accurate 

and reliable assessment of micronutrient status and subsequent dosing in PN. 

For example, PN components should be monitored both on an individual basis 

as well as for their effect upon each other, especially copper and zinc. In 

conclusion, the study has helped to verify and validate suspected issues 

associated with micronutrient dosing in LT HPN patients and outlined areas 

requiring further research. 
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CHAPTER SIX: 

Laboratory investigations into the stability 

of vitamin D in multi-component 

additives using High Performance Liquid 

Chromatography (HPLC) 
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6.1. INTRODUCTION 

This chapter details investigations into the stability of vitamin D in multi-

component PN additives. The rationale being that problems associated with 

vitamin D stability within the PN admixture could interfere with provision of 

the desired dose to patients (potential sub-optimal dosing). Results in Chapter 

4 revealed vitamin D as nutrient of notable clinical interest since many 

patients’ blood tests showed deficient and insufficient vitamin D status.  

 

This section of the thesis aimed to: 

- Perform a critical analysis of the literature pertaining to vitamin D 

stability in PN 

- Develop a stability-indicating assay using High Performance Liquid 

Chromatography (HPLC) to determine vitamin D stability in 

multicomponent additives and ‘standard’ HPN formations 

- Propose evidence-based recommendations for future directions to 

investigate vitamin D stability in PN 
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6.2. BACKGROUND AND RATIONALE 

In recent years there has been growing interest in vitamin D and its relation to 

bone health, especially with the re-emergence of rickets in some urban areas. 

This is transferable to the HPN population where MBD is well documented and 

the numerous contributing factors are still poorly understood (Shike et al. 

1981; Pironi 2002; Derepas et al. 2013). It is feasible that the dose and stability 

of vitamin D included within patients’ PN regimens could be a contributory 

factor. As previously mentioned in Chapter 4, the SACN have recently 

increased the RNI for vitamin D to 10µg/day and it is possible the PN dose 

recommendations are lagging behind, with consequential health problems for 

LT PN patients. 

 

6.2.1. General vitamin D stability 

All vitamins are diverse compounds varying in their stability and susceptibility 

to degradation by chemical or physical factors (Combs 2012). e.g. temperature, 

light, storage. Assessment of stability and degradation usually involves 

quantification of pure vitamin detection from formulation samples at various 

time points. Stability testing aims to ensure and provide a guideline for 

reassured product stability, bioavailability for the individual components and 

final total formulation within a given time interval (Bakshi and Singh 2002).  

 

Vitamin D has been reported to be slightly sensitive to temperature, humidity, 

light and acidic conditions as well as being very sensitive to oxygen and stable 

to alkaline conditions (Shurson et al. 1996). The degree of sensitivity depends 

on the final product form, conditions of manufacturing and storage (Frye 

1994). Findings have been corroborated by Mahmoodani et al. (2017) in which 

degradation studies were performed using HPLC methods. Overall, vitamin D 

is stated to be less susceptible to oxidative losses than vitamin A, carotenoids 

and vitamin E (Eitenmiller and Landen 2008). From a stability standpoint in 

food/nutrition, vitamin D has been shown to be stable in fortified milk with 

only slight losses when subject to light exposure, a loose indicator of stability 

in PN admixtures (Renken and Warthensen 1993). With regards to 

bioavailability, in a regular GI diet, absorbed vitamin D is incorporated into 
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chylomicrons following enterocyte uptake and transported by the lymphatic 

system (Van den Berg 1997). It is assumed that during IV provision of vitamin 

D in PN, it is also incorporated into chylomicrons and delivered to fatty tissues 

for storage. Less is known about the extent of bioavailability from individual 

food sources other than greater uptake and efficacy of increasing serum 

vitamin D levels is observed with the activated form of vitamin D over the 

prohormone vitamin D (Van den Berg 1993). Perhaps PN patients’ vitamin D 

status would respond better to PN supplemented with additives containing 

activated vitamin D rather than the current prohormone forms of vitamin D. 

 

6.2.2. Vitamin D stability in PN 

Few studies have investigated the stability of vitamin D in PN admixtures; of 

those that have, none are recent. Allwood and Kearney (1998) acknowledged 

the sparsity of knowledge surrounding the stability of vitamin D in PN 

admixtures during storage. A study by Gillis et al. (1983) documented a 32% 

loss of vitamin D following a 24-hour infusion of PN. Comparison of sample 

concentrations at various sites within the infusion set-up suggested that 

vitamin D may bind to plastic found in bags and administration sets. However, 

another study by Koo et al. (1986) reported no significant differences among 

PN samples obtained immediately on preparation, before, and after the use of 

an in-line filter at the end of a 24 hour infusion period. This finding goes 

against those of Gillis et al. (1983); suggested reasons for the opposing results 

are thought to relate to differences between detection of vitamin D via a 

radiolabelled trace and standard vitamin D recovery methods, as well as 

variable amounts of PN solution in contact with plastic tubing according to 

variable infusion rates. Additionally, glass bottles were used for PN storage in 

the study by Koo et al. (1986), whereas Gillis et al. (1983) used polyvinyl 

chloride bags which may have had greater adsorptive potential for vitamin D 

on their surface. Similarly to the findings of Koo et al. (1986), Dahl et al. (1986) 

reported no bioavailable losses during simulated delivery within a fat 

emulsion in an ethylene vinyl acetate (EVA) bag. A more recent study which 

can help demonstrate the degradative effect of light and oxygen on vitamin D 

storage in soybean oil (a component of fat emulsions) found that vitamin D 

losses were 68% and 44% in light and semi-dark conditions respectively. This 
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study by Hemery et al. (2015) also suggested that the natural antioxidant effect 

of vitamin E influenced the stability of the reported stability findings for 

vitamin D.  

 

A study by Blanco et al. (1994) determined an assay investigating vitamin D 

amongst other fat-soluble vitamins in paediatric PN solutions. They 

successfully separated all vitamins on a C18 bonded phase column using 

methanol as an eluent and UV detection at 265nm. The use of a narrow bore 

column alongside a lower solvent flow rate (0.2mL/min) achieved lower 

detection limits than ordinary HPLC columns. However, the publication did 

note the requirement of a pre-concentration step to determine vitamin D with 

average recoveries stated as 91-110%, as well as the implementation of a 

complex sample clean-up process involving centrifugation with hexane, 

organic extraction, filtration and evaporation. Ultimately their study found the 

degradation of vitamin D during light exposure to decrease from 90.2% to 

64.7% between 10 and 24 hours post-preparation. This demonstrates the 

fundamental sensitivity of vitamin D to light and other potential factors e.g. 

other PN components, composition of admixtures, container and 

administration materials. 

 

The inconclusive findings from these limited studies and paucity of research 

findings do not exclude stability issues and/or degradation issues relating to 

vitamin D as a potential occurrence in compounded PN admixtures.  
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6.3. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 

INVESTIGATIONS INTO VITAMIN D STABILITY 

6.3.1. HPLC system 

HPLC is a powerful separation method used to separate compounds in 

solution. Compounds from an analytical sample partition between mobile and 

stationary phase at different rates, eluting at different time points. Each 

resolved compound is subsequently detected by a variety of detectors (Snyder 

et al. 1997); both the area and height of the signal being proportional to the 

quantity of analyte for detection (Meyer 2010). 

 

Reverse phase HPLC (RP-HPLC) is a specific form of HPLC in which a polar 

aqueous phase is passed through a packed bed of hydrophobic stationary 

phase (i.e. a column) under pressure (Snyder et al. 1997). The more 

hydrophobic compounds adsorb to the stationary phase and are eluted slower 

than hydrophilic compounds (Ettre 1993). 

 

6.3.1.1. Stability indicating HPLC 

HPLC is used to indicate stability of compounds over various time points by 

detecting deterioration in peak size and/or identification of degradation 

compounds and impurities (Shah et al. 2012). RP-HPLC with UV detection is 

routinely used as the analytical method of choice for stability assessment for 

specific analytes and drug compounds (Qiu and Norwood 2007).  

 

Drug regulatory and approval processes require full validation of stability 

indicating methods to ensure reproducible monitoring of degradation 

products (Smela 2005; Maggio et al. 2013). Broadly speaking, it encompasses 

the following steps: i. sample generation, ii. method development & 

optimisation, and iii. method validation (Blessy et al. 2014):  

 

RP-HPLC determines the detection of fat-soluble vitamins by employing 

organic mobile phase compositions to ensure they are solvent throughout 

analysis. Organic solvents are often used in combination, their differing 
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strengths of polarity optimise selectivity and control the separation of fat-

soluble compounds (Dionex 2010). 

 

HPLC methods employing UV detection are common and particularly useful 

for analytes containing unsaturated bonds or aromatic groups such as with 

structurally complex fat-soluble vitamins (Nollet 2000; Dionex 2010; Cosmosil 

2017).  

 

Charged aerosol detection (CAD), is a relatively recent approach as a method 

of HPLC analyte detection. It has established itself for the detection of fat-

soluble vitamins, lipids and lipid peroxidation products which lack a specific 

chromophore and responsivity to UV absorption (Cascone et al. 2006; Moreau 

2006; Plante et al. 2011; Acworth and Kopaciewicz 2017). CAD detection 

functions via nebulisation of non-volatile compounds and application of 

charge to the analyte. An electrometer then generates a signal correlating to 

the concentration of analyte present (Almeling et al. 2012).  

  

CAD is known for its highly sensitive quantitative detection of compounds over 

a broad dynamic range, covering at least four orders of magnitude with lower 

limits of detection down to pA (pico-ampere) and fA (femto-ampere) (Plante 

et al. 2011). CAD detection has proven itself as a reliable alternative to UV 

detection for weakly UV active compounds (e.g. vitamin D). Its advantages 

include the universal detection of non-volatile analytes, responses 

independent of chemical properties, alongside simple and reliable means of 

use (Gamache et al. 2005; Vehovec and Obreza 2010).  

 

6.3.1.2. HPLC detection of vitamin D 

Many HPLC assays are capable of detecting and assessing vitamin D in non-

complex samples (Kumar et al. 2015; Sigma Aldrich 2016). Its detection in 

serum plasma was commonplace with UV detection as the gold standard of 

choice for activated vitamin D detection in adults for assessment of vitamin D 

status (Jones 1978; Hollis and Frank 1985). Nowadays it is considered a 

cumbersome assay and recent advances in liquid chromatography mass 

spectrometry (LC-MS) has facilitated easier and less time-consuming 
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detection of vitamin D without detection of complicating metabolites (Holick 

2005; Guo et al. 2006). 

 

HPLC methods have also been used to detect vitamin D from complex multi-

component sample mixtures, usually samples of fat and water-soluble 

vitamins, down to sample concentrations of 0.25µg/mL (Dionex 2010; 

Cosmosil 2017; Kucukkolbasi et al. 2013; Xinlei et al. 2015).  

 

Fewer assays have been published which accurately and consistently 

document the detection of vitamin D from samples of PN admixtures (Allwood 

and Martin 2000; Skouroliakou et al. 2008; Ferguson 2014). Specific 

difficulties include the development of a balanced assay that sufficiently 

detects vitamin D amongst other nutritional components or that are capable 

to detect vitamin D at its low RDA/RNI dose.  

 

The literature has shown UV detection to be the most frequently employed 

detection method to resolve vitamin D with the UV range 250-280nm, 

alongside variable polar solvent aqueous mobile phase compositions. HPLC 

LC-MS was also demonstrated as a frequent method of detection but was 

outside the scope of available equipment in our laboratory (Szczesniewski and 

George 2009; Duan et al. 2010; Aurand and Cramer 2017).  

 

HPLC has been used to detect vitamin D with CAD detection (Plante et al. 

2010). It is primarily marketed for the analysis of lipids and lipid components 

(fatty acids, glycerides etc) but has also been shown to detect vitamin D from 

complex nutrition lipid admixtures, yet not strictly PN (Plante et al. 2009). As 

such CAD detection of vitamin D from PN admixtures has yet to be fully 

established.  
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6.3.1.3. In-house HPLC systems 

Laboratory investigations involving UV detection were carried out using a 

Spectra System® from Thermo Finnigan (Thermo Scientific, West Palm Beach, 

United States). The system included an SCM1000 vacuum membrane degasser, 

P2000 gradient pump, AS3000 autosampler and UV1000 UV detector. 

 

Subsequent laboratory investigation involving CAD detection were carried out 

on an Ultimate 3000 RS system with Corona® Veo RS CAD detector (Thermo 

Scientific, West Palm Beach, United States).  

 

6.3.1.4. Multi-component vitamin preparations  

Each vial of Cernevit® contains an orange-yellow caked powder for 

reconstitution to 5mL with water for injection (WFI). It contains 

cholecalciferol 5.5mcg (220IU) along with other water and fat-soluble 

vitamins. Whereas each vial of Vitlipid N Adult® holds 10mL of a milky 

emulsion containing just fat-soluble vitamins, of interest, ergocalciferol 5mcg 

(200IU). See Appendix VIII for the full formulations for each preparation.  

 

These multi-component vitamin preparations are intended for daily dose 

administration directly into the PN formulation to meet the basal daily 

requirements of LT PN patients. 

 

6.3.1.5. Reference standards 

Analytical grade standards of vitamin D were sourced from Sigma-Aldrich Co 

Ltd (Heatherhouse Industrial Estate, Irvine, UK, KA12 8NB). 

- Cholecalciferol 

- Powder (≥98% HPLC grade) 

- Solution 1mg/mL (HPLC grade, in ethanol) 

- Ergocalciferol 

o Powder (>98% HPLC grade) 
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6.4. Methods 

6.4.1. Development of HPLC assay using UV detection to detect vitamin D 

in multicomponent preparations 

To begin with, HPLC with UV detection was chosen to build upon existing 

methods to develop an assay for the detection of vitamin D in the 

multicomponent preparations Vitlipid N Adult® and Cernevit®.  

 

It is worth noting that HPLC assay methods usually specify the form of vitamin 

D for investigation (either ergocalciferol or cholecalciferol). However, experts 

have noted the difficulty in separating retention peaks for the two forms of 

vitamin D because the compounds are so structurally similar, as shown in 

Figure 6.1 (Henderson and Berry 2009; Plante et al. 2009). However, this was 

not an issue in these investigations as each multi-component preparation only 

contained a single form of vitamin D respectively; cholecalciferol (vitamin D3) 

1µg/mL in Vitlipid N Adult® and ergocalciferol (vitamin D2) 1.1µg/mL in 

Cernevit®.  

 

Figure 6.1: Chemical structures for Vitamin D2 and D3. 

 

Various assay methods were initially trialled to optimise vitamin D selectivity 

and replicate the degree of detection stated (Dionex 2010; Xinlei et al. 2015; 

Sigma Aldrich 2016; Cosmosil 2017). Finally, the isocratic elution method used 

in two application notes by Phenomenex was chosen for assay development to 

identify vitamin D from the samples Cernevit® and Vitlipid N Adult® as they 
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displayed the greatest detection of vitamin D from the sample solutions 

(Phenomenex 2016a; Phenomenex 2016b).  

 

Initial assay conditions were as follows: 

 

Column: Chrompack OmniSphere 5 C18 150x3mm, 5µm particle size (Varian, 

Palo Alto, USA).  

Mobile phase composition: 

A: Acetonitrile 75% 

B: Methanol 25% 

Flow Rate:1.3 mL/min 

Column temperature: ambient room temperature 

UV detection: 280 nm  

Run-time: 15 minutes 

Injection volume: 10µL 

 

The method was adapted as follows: 

- Establishing a run-time of 20 minutes to ensure all compounds eluted 

from column. 

- Increasing the injection volume to 20µL and relative column load of 

vitamin D (0.02µg Cernevit®, 0.011µg Vitlipid N Adult®).   
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6.4.2. Development of HPLC assay using charged aerosol detection (CAD) 

to detect vitamin D in multicomponent preparations 

The introduction of the novel, more sensitive method of CAD detection within 

the laboratory permitted a different avenue to assay and detect vitamin D in 

PN additives.   

 

The method by Plante et al. (2009) was chosen for assay development to 

undertake analysis of vitamin D in Cernevit® and Vitlipid N Adult®. Their 

method demonstrated good resolution of vitamin D at concentrations of 

30ppm in ethanol/BHA (butylated hydroxyanisole) for a mixed fat-soluble 

vitamin standard solution.  

 

Initial assay development commenced under the following parameter 

conditions: 

 

CAD Corona® parameters: 

Gas: 35 psi via nitrogen generator 

Filter: Corona  

Range: 500 pA  

Nebulizer heater: 30 °C 

 

HPLC Parameters  

Mobile phase composition: 

A: Methanol/water/acetic acid (750:250:4)  

B: Acetonitrile/methanol/tetrahydrofuran/acetic acid (500:375:125:4) 

Gradient: 0–70% B to 46 min; 70–90% B to 60 min; 90% B to 65 min; 0% B 

from 65.1 to 72 min 

Flow rate: 0.8 mL/min 

Run time: 72 min 

HPLC Column: Chrompack OmniSphere 5 C18 150x3mm, 5µm particle size 

(Varian, Palo Alto, USA)  

Column Temperature: 40 °C  

Sample Temperature: 10 °C  

Injection Volume: 10 µL 

The assay method was adapted as follows: 
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- Injection volume was increased to 40 µL to increase the relative column 

load of vitamin D (4.4ng Vitlipid N Adult, 8ng Cernevit). 

- Sample temperature was increased to room temperature to avoid 

potential precipitation, sedimentation or dissolution of sample 

components within the formulation. 

- Gradient: 0–70% B to 20 min; 70–100% B to 65 min; 100% B 65-70 

min; down to 0% B from 70.1-75 min. Gradient changes shown in Table 

6.1. 

- Decreasing the time to get to 70% B, thereby increasing the gradient at 

the start of the run so that the more soluble components of the sample 

eluted quicker, minimising their co-elution on top of vitamin D.  

- Reducing the gradient and increasing the time to get from 70% B to 

100% B, to space out all the resolved peaks within the area/region 

where vitamin D was known to resolve. 

- Adding final ‘wash’ stages with 100% A and B to ensure all components 

of the sample mixture had eluted from the column, particularly the lipid 

components as these have been demonstrated to contaminate the 

column and exhaust its analytical integrity (Majors 2003).  

 

Table 6.1: The developed gradient elution method to resolve vitamin D using 

CAD. 

 

Time (minutes) A (%) B (%) 

0 100 0 

20 30 70 

65 0 100 

70 0 100 

70.1 100 0 

75 100 0 
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6.4.3. Preparation of multi-component preparations 

Each day, a new vial of Cernevit® was reconstituted with 5mL WFI. Vitlipid N 

Adult® is a ready-made oil-in-water emulsion of 10mL in volume. 

 

HPLC samples were prepared by filling light-protective amber HPLC vials with 

samples of Cernevit® or Vitlipid N Adult®. The samples were kept away from 

sunlight to prevent the potential effect of photo-degradation of the vitamins. 
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6.5. RESULTS  

6.5.1. UV detection - Cernevit® and Vitlipid N Adult® 

Despite various efforts for method optimisation and successful identification 

of vitamin D as a pharmaceutical standard, vitamin D could not be identified 

from the compound preparations Cernevit® and Vitlipid N Adult® using UV 

detection. Figure 6.2 gives an example, showing the total absence of a 

detectable vitamin D peak by comparison to a spiked sample. 

 

The main limitation associated with UV detection of vitamin D from the 

samples was the co-elution of other components in the sample. Efforts to 

spread out their elution times and reduce their subsequent effects on the 

assumed vitamin D peak were unsuccessful. These efforts included reducing 

the flow rate, increasing the run time and addition of a phosphate buffer to 

help reduce tailing of the peak. Also, the isocratic mobile phase composition 

was manipulated across various degrees of polarity with methanol, 

tetrahydrofuran and acetonitrile.  

 

Approximation of the point for vitamin D elution was performed by using 

varying concentrations of vitamin D standards that were stronger than the 

sample concentrations. However, the peak could not be consistently identified 

and appeared to ‘move’ between subsequent runs which should not have been 

affected by the concentration, suggesting other factors interfered with 

consistency of vitamin D elution during repeat and successive runs. It was 

ultimately concluded that the concentrations of vitamin D in the samples of 

Cernevit® and Vitlipid N Adult® (5-5.5mcg/mL) were not strong enough to be 

reproducibly detected by the UV detector, especially amongst other 

components of the PN additives.  
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Figure 6.2: A chromatogram of a pure sample of Cernevit® (black line) 

overlaid with a chromatogram of Cernevit® spiked with extra vitamin D (red 

line). The figure displays the absence of a detectable peak for vitamin D from 

the pure Cernevit® sample using UV detection (no corresponding black 

vitamin D peak beneath the large red spiked vitamin D peak). 

 

6.5.2. CAD detection - Cernevit® 

Disappointingly, the adapted method described by Plante et al. (2009) could 

not detect vitamin D from reconstituted samples of Cernevit®. 

 

The peak corresponding to vitamin D could not be identified from the 

chromatogram despite spiking samples of Cernevit® with up to ten times the 

quantity of vitamin D contained in the multicomponent preparations. It was 

thought to be due to vitamin D coming out of solution or partitioning into 

ethanol. The potential resultant effect being that vitamin D could have been 

missed when the injection volume was taken from the sample vial. Further 

attempts to spike Cernevit® with vitamin D without using an ethanol-based 

vitamin D standard were unsuccessful and resulted in immediate precipitation 

of vitamin D. This identified a need for further sample preparation for 

Cernevit® before any further investigative HPLC work and attention was 

turned towards Vitlipid N Adult® instead. 
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6.5.3. CAD detection - Vitlipid N Adult® 

6.5.3.1. Identification of vitamin D within assay 

Vitamin D was successfully identified from samples of Vitlipid N Adult®, see 

below Figure 6.3.  

 

 

 

Figure 6.3: Two chromatograms displayed on top of each other, the top and 

bottom chromatograms represent the unspiked and spiked samples of Vitlipid 

respectively. The zoom frame shows the chromatograms overlaid upon each 

other. 

 

6.5.3.2. Quantification of vitamin D 

The limit of detection (LOD) and limit of quantification (LOQ) have been 

defined by Snyder et al. (1997) as: 

- LOD: Signal to noise (S/N) ratio of 3:1 or 2:1, being the smallest level of 

analyte to give a measurable response (i.e. the lowest amount of analyte 

in a sample that can be detected but not necessarily quantitated as an 

exact value). 

- LOQ: A S/N ratio of 10:1, being the smallest concentration of analyte 

that gives a response that can be accurately quantified. 

Repeat HPLC runs gave reproducible peaks for vitamin D from Vitlipid N 

Adult® with detection signals of 15pA and baseline noise ∽1-1.5pA.  
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The assay demonstrated that vitamin D could be repeatedly detected from the 

multi-component preparation Vitlipid N Adult® but that it was already at its 

LOQ; the concentration at which vitamin D could be accurately quantified from 

the sample. An obvious issue since any further degradation studies would not 

be accurately quantifiable beyond this limit. Furthermore, these results are 

from concentrated samples of Vitlipid N Adult®, prior to its dilution in large 

volume PN feeds. Increased dilution to clinically relevant levels would make it 

impossible to detect vitamin D. 
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6.6. DISCUSSION 

6.6.1. General discussion 

Vitamin D was only able to be identified and quantified from Cernevit® when 

using CAD detection, a method renowned for its sensitive detection 

capabilities. This demonstrates the difficulty in detecting vitamin D across 

both additives, especially as they have practically the same dose (5-

5.5µg/vial). The fact that the LOQ is equal to the undiluted clinical dose shows 

that quantification in PN will not be possible with this assay and detection 

systems described. Further modification of mobile phase composition, column 

type or other minor method specifics are unlikely to result in improved 

detection of vitamin D for this application. The study shows that present 

methods have exhausted UV and CAD detection with the two most commonly 

used compound PN vitamin preparations. CAD was supposed to have been a 

more promising avenue due to its increased sensitivity, but was still unable to 

achieve suitable detection. 

 

Where the PN additives are complex mixtures of fat and water-soluble 

vitamins, each compound exhibits different physicochemical characteristics 

and retention times. Developing an assay to detect a single component 

amongst other compounds is a challenging process, particularly in the present 

instance where the low concentration of vitamin D amongst the other 

components complicates its detection. Similarly, the low concentration of 

vitamin D in the samples of Cernevit® and Vitlipid N Adult® required larger 

than usual injection volumes to be put on the column in attempts to increase 

its relative detection. However this has the result effect of increasing the 

relative loads of other components in the preparation samples. The elution of 

large compounds or compounds present at a higher concentration is known to 

damage column integrity, potentially detrimental for repeat stability 

assessments and the data repeatability (Sigma Aldrich 1999).  
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6.6.2. Limitations and future recommendations 

Previous studies assessing vitamin stability in PN have often excluded vitamin 

D from their analysis, presumably due to its low concentration and poor 

applicability to methods with reduced sensitivity, especially if its 

concentration and detection is expected to decrease in stability assessment 

studies (Henton and Merritt 1990; Billion-Rey et al. 1993; Blanco et al. 1994). 

The rational next steps for this area of research include the use of sample 

clean-up methods, such as solid phase extraction to reduce interference from 

other components in the additives e.g. from fatty acids resulting from the lipid 

emulsion, or other water/fat soluble vitamins; or so that samples spiked with 

solvents do not have immiscibility problems. Another advantage of using solid 

phase extraction is that it creates a more concentrated sample for analysis 

once calculation of percentage analyte recovery has been performed. 

 

Although CAD is considered a sensitive detection method, other detection 

methods such as diode array or mass-spectroscopy are more sensitive because 

they incorporate spectral information in peak identification (Vervoort et al. 

2008; Vehovec and Obreza 2010). Similarly, fluorescence detection is also able 

to detect analytes with high sensitivity and a broad dynamic range, up to 100 

times more than UV detection (Swartz 2010). While CAD and MS detection are 

known to be more sensitive than UV, they depend highly on the nature of the 

analyte in question. These avenues should be considered for future studies 

alongside other recommendations to produce a more concentrated initial 

sample of the additive or PN containing vitamin D. They may be more likely to 

result in successful degradation studies. 

 

However, one wonders whether these proposed additional methods would 

have a realistic positive benefit towards the research aims. The more 

concentrated samples from the PN additives may result in a more identifiable 

peak for quantifiable stability studies, but still may not result in sufficient 

detection if the methods are used with realistic samples of large volume PN 

admixtures containing the PN additives, particularly in the face of dilution 

factors ranging from 200-600 fold (e.g. 1-3L PN volumes). 
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Still in light of the scarcity of research in this area, this project has confirmed 

the difficulty in ‘finding’ the low dose of vitamin D in compound IV injectables, 

even when using a newer and more sensitive detection method (CAD). 

 

6.7. CONCLUSION 

In response to few research findings relating to vitamin D stability in PN, the 

present study design proved itself as a pertinent area for investigation. 

However little has been elucidated other than further establishing the 

difficulty in detecting vitamin D within compound PN additives using HPLC 

methods coupled with UV and CAD detection. As such, vitamin D stability 

studies under the stated methods cannot be performed on the preparations 

Cernevit® and Vitlipid N Adult®. 

 

Further studies investigating this area of research need to consider alternative 

means of sample clean-up/preparation including purification, solid phase 

extraction alongside more accurate and sensitive means of HPLC detection e.g. 

LCMS or diode array HPLC. 
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CHAPTER SEVEN: 

Bone health and metabolic bone 

disease (MBD) in LT HPN patients 
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7.1. INTRODUCTION 

The extent of vitamin D deficiency and insufficiency was demonstrated in 

Chapter 5 and subsequently this chapter concerns the assessment of metabolic 

bone disease (MBD) in patients receiving LT PN. This will allow appreciation 

and evaluation of the effect of inadequate vitamin D status on LT PN patients’ 

bone health.  

 

7.1.1. Chapter aims 

The specific aims relating to this chapter are as follows: 

- To discover the number of patients from a HPN cohort categorised as 

having ‘normal’, ‘osteopenic’ and ‘osteoporotic’ bone status, thereby 

estimating the prevalence of bone disease in HPN patients 

- To investigate whether there is correlation between worsening of bone 

health and duration of time receiving HPN 

- To explore whether there are any trends relating to the different 

subtypes of patients’ IF classification and their potential effect on the 

degree of bone disease classification in LT PN patients 
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7.1.2. Background 

7.1.2.1. Metabolic bone disease (MBD) 

Patients with intestinal diseases are at risk of developing biochemical 

disturbance and osteoporosis due to GI malabsorption and malnutrition 

(Nygaard et al. 2016). Added to this, patients with severe intestinal failure 

often require PN and there is believed to be a correlation between patients 

who receive PN and worsening of their bone health (Shike et al. 1980). This is 

based on the documentation of increased risk of developing MBD in 

populations of IF patients receiving HPN; secondary osteoporosis being 

frequently reported (Seidner and Licata 2000; Pironi 2002; Haderslev et al. 

2004).  

 

Osteoporosis has been succinctly described by the WHO as “a systemic skeletal 

disease characterized by low bone mass and micro-architectural deterioration 

of bone tissue, with a consequent increase in bone fragility and susceptibility 

to fractures” (WHO 1994, p. 3), while MBD is defined as a series of bone 

disorders that can present as osteomalacia, osteopenia, or osteoporosis. 

Osteomalacia is characterised by softening of bones from defective 

mineralisation of calcium and phosphorus. Osteopenia and osteoporosis are 

characterised by a porous trabecular bone network resulting in a reduction in 

bone density and strength along with an increased risk of fracture (Seidner 

2002; Pironi and Agostini 2015a). Osteoporosis is characterised by a greater 

loss of bone mineral density (BMD) than osteopenia, as reflected in bone 

density measurements. 

 

7.1.2.1.1. Pathogenesis of MBD in LT HPN patients  

Epidemiological studies have shown that the pathogenesis for MBD in HPN 

patients is multifactorial, a combination of both patient specific factors (e.g. 

age or post-menopausal status, underlying illness) and factors relating to HPN 

therapy (Pironi and Agostini 2015a). A patient-specific example may be the 

patient’s underlying disease state of SBS resulting in poor absorption of fat 

soluble vitamins (in particular vitamin D), or a PN-related factor could be an 
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under-effective PN regimen not providing enough calcium, phosphate or 

vitamin D (Raman et al. 2006; Hamilton and Seidner 2008).  

 

The underlying disease state has been shown to be the predominant 

pathogenic role contributing to MBD and factors relating to HPN therapy have 

been associated with both deterioration and improvement in bone health 

(Foldes et al. 1990; Klein and Coburn 1991; Saitta et al. 1993; Cohen-Solal et 

al. 2003; Haderslev et al. 2004; Pironi et al. 2004). The results from these 

longitudinal studies suggest that the variations in MBD of patients on LT HPN 

are associated with the patient’s sex and age at starting HPN or at developing 

IF. Other factors associated with PN provision are known to influence the 

development of MBD; they include deficiencies of calcium, vitamin D and 

phosphate as well as aluminium toxicity, acidosis, excess vitamin D and amino 

acid solutions (Raman et al. 2006). The multifactorial nature of MBD in LT PN 

patients is acknowledged, yet accelerated bone loss has been reported during 

HPN and raises concerns about the specific PN-related factors which may 

contribute to the disease (Foldes et al. 1990; Klein and Coburn 1991; Verhage 

et al. 1995). 

 

In regard to the association between aluminium toxicity and MBD, Kruger et 

al. (2013) demonstrated that there was higher aluminium content in the bones 

of LT adult PN patients versus control patients (P<0.0001). It was suggested 

that aluminium acts against bone formation by interfering with osteoblast 

activity and reduces PTH secretion; thereby increasing the patients’ risk for 

bone disorders such as osteomalacia, osteoporosis and fractures (Dunstan et 

al. 1984). Aluminium contamination of PN has been noted as a concern 

(Hernandez-Sanchez et al. 2013), yet cannot be investigated in this project as 

aluminium levels are not recorded at C&V UHB nor are contaminant levels 

recorded in PN components or admixtures in the UK, a hotly disputed topic of 

late (Gura 2010). 
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7.1.2.1.2. Diagnosis and monitoring of MBD 

Monitoring of MBD relies on assessment of bone mineral density (BMD) using 

Dual Energy X-ray Absorptiometry (DEXA) scanning. This technology 

ascertains the degree of bone demineralisation when patients start HPN and 

its progression over the course of HPN therapy. It is regarded as the gold-

standard for diagnosis of osteoporosis, and over the years this technique has 

been paid the most attention in terms of technical development and biological 

validation (Kanis and Gluer 2000). DEXA scanning also demonstrates good 

long-term precision from stable calibration and manufacturer set quality 

control procedures (Blake and Fogelman 2007). 

 

In general, diagnosis and monitoring of MBD in HPN patients relies upon: 

- Assessment of BMD performed at various bone sites in the body 

(primarily the lumbar spine and/or femoral neck). It is usually 

expressed in three ways: 

- Bone density (g/cm2) 

- T-score (the number of standard deviations above or below the 

mean BMD value for a healthy 30-year-old adult of the same sex 

and ethnicity as the patient) 

- Z-score (the number of standard deviations above or below the 

mean BMD value for the patient's age, sex and ethnicity) 

- Measurement and interpretation of: 

- blood serum concentrations and urinary excretion of minerals  

- blood serum concentrations of vitamin D and parathyroid 

hormone 

- biochemical markers of bone turnover 

 

The results generated from DEXA scanning are presented in the format of T 

and Z-scores because the normal values of adult BMD are higher in men than 

in women and because BMD decreases with age. Various studies have shown 

that the risk of patients developing fractures increases with reduced BMD 

(Marshall et al. 1996). 

 

Classification of BMD was first based upon a report published by the WHO 

which classified the severity of MBD based on the T-score value at the spine, 
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hip or fore-arm, see Table 7.1 (WHO 1994). Application of operational ranges 

(categorised intervals) were proposed by WHO to categorise the degree of loss 

of bone density because BMD values are seen as a continuous risk factor where 

no fracture threshold exists. 

 

Table 7.1: The WHO classification system for diagnosing osteoporosis using 

bone density measurements (WHO 1994). 

 

Classification T-Score * 

Normal -1.0 or greater 

Low bone mass (osteopenia) Between -1.0 and -2.5 

Osteoporosis -2.5 or less 

Severe osteoporosis (established 

osteoporosis) 

-2.5 or less, and a fragility fracture 

 

[* Units are standard deviations above (positive) or below (negative) the young adult mean value] 

 

Although the WHO classification was originally only intended for use in white 

(caucasian) post-menopausal women; since its introduction, its use has been 

universally extended to all individuals in general practice for assessment of 

fracture risk, diagnostic classification, and initiation of treatment. Over the 

years, this has been regarded as an unsubstantiated leap in its application. 

Recently, Leslie et al. (2006) discussed the limitations for reporting BMD in 

groups other than white post-menopausal females and proposed 

recommendations to further validate BMD reporting in these groups i.e. the 

use of population-specific adjustments where differences in fracture risk are 

not explained by the risk prediction model developed for white post-

menopausal female populations. An example being the use of the Z-score 

rather than the T-score for BMD reporting in females prior to the menopause 

and in males younger than fifty. In the context of clinical practice, the 1994 

WHO diagnostic criteria is still routinely used for BMD reporting in all 

individuals despite only being intended for post-menopausal women. 

 

In terms of sites at which diagnosis of osteoporosis should be made using 

DEXA, Kanis (2002, p. 1931) stated that “measurement at the hip is the gold 

standard in terms of site, since it has the highest predictive value for hip 
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fracture”. Hip fracture is the most severe complication of osteoporosis and its 

interpretation using DEXA scanning helps to predict the risk of all fractures 

just as well as other techniques e.g. fracture risk assessment tool (FRAX). Kanis 

et al. (1997) explained that DEXA accuracy at the hip exceeds 90%, with 

residual errors arising for a variety of reasons such as overlying metal objects, 

obesity, previous fracture, concurrent osteomalacia or osteoarthritis. Blake 

and Fogelman (2007) also agree that measurement at the hip is the most 

reliable site for predicting hip fracture risk. More attention is given to hip 

fractures over other fractures because they incur the greatest morbidity and 

associated medical costs for health services (Dolan and Torgerson 1998). Both 

the review by Blake and Fogelman (2007) and a recent American position 

statement by Siris et al. (2014) have utilised the same classification criterion 

as the WHO for diagnosing osteoporosis using T-score of -2.5 or less from 

DEXA scanning technology; they explained that measurement can be taken at 

any of the following three sites, lumbar spine, femoral neck or total hip (Kanis 

and Gluer 2000). Additionally, a concise publication by Maghraoui (2012) 

which explains how to clinically interpret a DEXA scan, suggests that the femur 

(neck or total hip) is the optimum site for predicting risk of fracture, while the 

spine is best reserved for instances when assessing response to treatment. 

After review of these sources, it is considered most appropriate to use the 

DEXA scan results at the body sites of the hip (both femoral neck and total hip) 

for our interpretation of research findings in this study in relation to 

prevalence of MBD and the potential longitudinal effect of PN on MBD. Data 

from other body sites will also be analysed and discussed where appropriate. 

For instance, Blake and Fogelman (2007) explained how the spine is 

considered the optimum site for follow up assessment because the treatment 

changes are usually largest and the precision error is as good or better than 

that at most other sites (Blake et al. 1996; Faulkner 1998). 

 

7.1.2.1.3. Guidelines for measurement of bone disease  

The majority of patients who are deemed to be at risk of MBD are 

recommended in the ESPEN guidelines to have their BMD measured at annual 

intervals (Staun et al. 2009). In some instances, the small proportion of 

patients who present with low BMD when starting HPN may require more 
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frequent monitoring of their BMD (six monthly intervals). This frequent need 

for monitoring in the early stages of HPN therapy is demonstrated in a 

questionnaire-based study by Wengler et al. (2006) where 64% of European 

HPN centres measured BMD for all patients at least once or twice a year, they 

concurred with Haderslev et al. (2004) that BMD monitoring should occur at 

yearly intervals. Aside from the annual BMD monitoring recommendation to 

use DEXA scanning for the assessment of the risk of fracture, diagnosis of MBD 

and determination of treatment necessity, formal guidelines are lacking for 

how to interpret change in BMD from DEXA scans over time, particularly with 

reference to therapeutic treatments for bone disease.  

 

7.1.2.1.4. Treatment of bone disease  

Treatments aim to improve BMD and reduce the risk of fracture through 

lifestyle and dietary modifications, treatment of underlying disease and 

optimisation of patient’s vitamin D status (in both medication and PN therapy). 

It is also important to ensure patients receive adequate calcium in their diet or 

via supplementation. Sunyecz (2008) explained how the maintenance of 

correct balance of calcium and vitamin D is the basis upon which other 

osteoporosis treatments are commenced. With regards to PN, formulations 

should at least maintain a positive calcium balance in the patient to slow any 

further bone loss (Hamilton and Seidner 2008). 

 

Medications used to treat MBD include (Pironi and Agostini 2015b; Compston 

et al. 2017): 

- Oral calcium supplementation (carbonate/citrate), e.g. 500-1000mg 

twice daily (e.g. Adcal, Calcichew) 

- Oral vitamin D supplementation, either as combination with calcium 

(e.g. Adcal D3) or alone (e.g. Fultium D3) 

- Anti-resorptive medications: 

- Bisphosphonates, either IV (e.g. yearly zoledronate or 3-6 

monthly pamidronate) or oral (e.g. weekly alendronate or 

monthly ibandronate). 
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- Selective oestrogen receptor modulators e.g. raloxifene, which 

activate estrogenic receptors in bone, mimicking their bone 

protective effects. 

- Hormone replacement therapy e.g. oestrogen with/without 

progestogens. 

- Calcitonin, which inhibits osteoclast function thereby slowing 

bone resorption. 

- Parathyroid hormone (PTH) analogues (e.g. teriparatide), which act as 

anabolic agents on bone, indicated for post-menopausal women at high 

risk of fracture. 

 

When absorption of oral vitamin D from the GI tract is insufficient as with SBS 

patients, an intramuscular (IM) vitamin D injection (ergocalciferol) can be 

given to maintain normal serum 25-hydroxyvitamin D concentrations (up to 

every three months). Likewise, if a patient’s blood biochemistry reveals a 

deficiency in calcium despite having maximal calcium allowance in their PN 

regimen (4.5-11 mmol), a calcium infusion can be arranged. 
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7.1.2.2. Vitamin D and calcium 

Vitamin D is first introduced and discussed within ‘Chapter 4, Section 4.2.2.4’. 

This includes its physiological role, optimal dosing as well as current opinion 

and recommendations, especially in relation to bone health.  

 

Ensuring adequate provision of calcium and vitamin D is of paramount 

importance to ensure optimal patient nutritional status, reduce bone loss and 

decrease the risk of bone fracture (Rosen 2017a), see below Table 7.2 for dose 

guidelines for prevention of osteoporosis. 

 

Table 7.2: Recommended doses of calcium and vitamin D for the prevention 

of osteoporosis (NIH Consensus Development Panel on Optimal Calcium 

Intake 1994; Rosen 2017a) 

 

 
Recommended dose of calcium and vitamin D per adult 

category in the prevention of osteoporosis 

Calcium 
Men and pre-menopausal women 1000mg/day 

Post-menopausal women 1200mg/day 

Vitamin D 

Men < 70 years of age and pre-

menopausal women 
20µg (800IU)/day 

Men > 70 years of age and post-

menopausal women 
15µg (600IU)/day 

 

Dosing recommendations for treatment of osteoporosis differ to that of 

prevention; although calcium recommendations remain the same, the vitamin 

D recommendations depend on the classification of vitamin D status. See Table 

7.3 for example treatment recommendations proposed by UHW. Differences 

in treatment recommendations can depend on local reference intervals and 

opinion for vitamin D status as well as local formulation considerations. 
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Table 7.3: Vitamin D dosing recommendations for the treatment of 

osteoporosis as per C&V UHB (Datta and Stone 2016). 

 

Vitamin D status Initial treatment dose Maintenance dose 

Deficiency  

(<30 nmol/L) 

50,000 units once weekly 

for six weeks. 

OR 

4,000 units daily for ten 

weeks. 

OR 

300,000 units 

intramuscularly, single 

dose. 

25,000 units every month 

 

OR 

1,000 units daily. 

 

OR 

300,000 units 

intramuscularly once or 

twice per year. 

Insufficiency  

(30-50 nmol/L) 

Once deficiency state 

corrected, patients start 

from maintenance doses. 

25,000 units every month 

long-term. 

OR 

1,000 units daily long 

term. 

OR 

300,000 units 

intramuscularly once or 

twice per year. 

 

7.1.3. Rationale 

The prevalence of bone disease in patients receiving LT PN is an evident 

problem. More information can be elucidated to the contribution of optimal 

care for these patients by investigating the prevalence and degree to which 

HPN populations are affected by MBD, particularly with reference to the 

duration of time patients receive PN. For instance, there may be critical time 

points for which patients require therapeutic intervention. 
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7.2. METHODS 

7.2.1. Research permissions 

This study was conducted using the research permissions as described in 

Chapter 2. All sixty participants recruited and maintained on LT HPN were 

eligible for this section of research. 

7.2.2. Study design 

This study was performed as a retrospective cross-sectional database analysis 

of data from patients’ most recent bone DEXA scans, and also employed 

retrospective longitudinal methods for those patients with data from more 

than one point in time.  

7.2.3. Data collection and sample population 

Data were collected from the medical records of consenting participants 

recruited from the outpatient clinic at C&V UHB. Specifically, this was achieved 

via manual data transcription of the results from bone DEXA scans from the 

online ‘Clinical Portal’ system which stores patients’ medical records. 

 

Data for each investigation parameter were collected as follows: 

- Prevalence of patient bone classification status: data were collected 

from each participants’ most recent bone DEXA scan as of 01 

September 2016. 

- Longitudinal assessment of patients’ bone status: data were collected 

from the date each participant was commenced on HPN up until 01 

September 2016. 

 

Data collection was limited to the available medical records for the 

participants. As an extra precaution to ensure all data was transcribed, data 

collection required close collaboration with the Medical Physics department 

at C&V UHB who held additional records of patients’ DEXA scan results, 

unavailable through the online Clinical Portal system.  
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As already mentioned, assessment of bone health using DEXA scans is 

recommended at annual intervals for HPN patients, however in practice it can 

be more irregular, often performed every couple of years (Staun et al. 2009). 

However, bone health review still occurs at relatively regular clinical intervals, 

justifying its use as a parameter for investigation. Also, Blake and Fogelman 

(2007) explained that clinical monitoring should not be more frequent than 1-

2 years due to the limited repeat sensitivity of DEXA scanning, unnecessary 

radiation exposure and to allow sufficient time between scans for their 

accurate clinical interpretation. 

 

7.2.4. Data handling, storage and analysis 

Relevant data were manually transferred into a Microsoft Access database for 

storage and handling, while data analysis was undertaken using Microsoft 

Excel. Participants were anonymised and coded to maintain their 

confidentiality throughout. 

 

The results from the patients’ DEXA scans were categorised as ‘normal’, 

‘osteopenic’ or ‘osteoporotic’ according to the 1994 WHO classification for 

BMD (WHO 1994) 

 

7.2.4.1. Data parameters 

Results from DEXA scans at C&V UHB give three results (BMD value, T score, 

Z-score) for each body site scanned (AP spine, femoral neck, total hip). While 

results from this study show the DEXA scores across all three body sites, the 

results from the femoral neck and total hip have been chosen to indicate 

overall opinion for prevalence of MBD, bone health findings and bone status. 

Rationale being that results from the hip are considered optimal for predicting 

risk of fracture. Results from the AP spine (anterior-posterior spine) are also 

shown for interpretation of bone health in relation to patients’ duration of 

receiving PN. 

 

Since DEXA T-scores are the results used for diagnosis of MBD, they were 

chosen in this study to demonstrate the prevalence of bone disease in the PN 
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cohort according to their most recent DEXA scan. Whereas, the DEXA Z-score 

results were used for data analysis involving longitudinal assessment of bone 

disease over time because it is relative to the individual patients’ sex, age and 

ethnicity. Also clinical interpretation of Z-scores are often used for identifying 

secondary causes of osteoporosis i.e. secondary to LT PN provision 

(Swaminathan et al. 2009; Sheu and Diamond 2016). Similarly, other 

longitudinal bone health studies have chosen the Z-score over the T-score, the 

rationale being that it acts as a relative indicator of the score in relation to the 

individual over time, irrespective of the score for a healthy young adult 

(Cohen-Solal et al. 2003; Wren et al. 2014; Poinsot et al. 2017). 

 

Data was included for analysis in longitudinal assessment if patients had been 

receiving PN for at least three months, a reasonable clinical interval in LT PN 

(Parrish 2014). This ensured a time interval beyond which PN could be 

considered to contribute to the state of patients BMD and bone health, 

amongst the other factors which are known to affect bone health e.g. age and 

sex.  
 

7.2.4.2. Data analysis 

Descriptive statistics were used to analyse the data: 

- Prevalence of patient bone status: 

o Number and percentage of patients with applicable data, 

categorised according to most recent T-score WHO 

classification. 

- Longitudinal assessment of bone status: 

o Number and percentage of patients with applicable data from 

multiple points in time, categorised according to Z-score WHO 

classification. 

 

Prevalence data were also cross-classified with individual patient data relating 

to their pathophysiological classification for IF according to the ESPEN 

classification system (Pironi et al. 2015). Findings are presented as the 

number of patients with applicable data, categorised according to most recent 

T-score WHO classification.  
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7.3. RESULTS 

Of the sixty participants eligible for inclusion within this section of research, 

fifty-three patients had recorded DEXA scans performed by C&V UHB.  

 

7.3.1. Prevalence of bone disease 

The following results in Figure 7.1 present the bone status of all patients with 

applicable data on LT PN according to their most recent DEXA scan.  

 

 

 

Figure 7.1: A clustered column chart to show the number (and %) of patients’ 

most recent DEXA scan results (T-score) at three sites (AP spine, femoral neck 

and total hip), as classified by the WHO definition for osteopenia and 

osteoporosis. 
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7.3.2. Longitudinal progression of bone disease 

Below are the results to show the progression of patients’ bone health as 

displayed by their DEXA scan results at three different sites (AP spine, femoral 

neck, total hip).  

 

The net difference between first and second DEXA scans (where data exists 

per patient, since starting HPN) is shown in Table 7.4. Then for those patients 

with additional applicable data, the net difference between the second and 

third DEXA scans are shown in Table 7.5. 

 

Loss of BMD is indicated in DEXA scan results by a reduction in the BMD value 

between successive DEXA scans. Correspondingly T and Z-scores will also 

reduce, or get more negative between DEXA scans when there is loss of BMD. 

T and Z-scores span both positive and negative decimal numbers, usually 

between the range +3 to -3. When the net difference between successive DEXA 

scans is calculated, a net negative value indicates an improvement in BMD and 

a net positive indicates a worsening of BMD. As such, the range shows the 

extremes observed between improvement (a negative value) and worsening 

(a positive value) of BMD and Z-scores. 

 

Standard deviation values have not been included because technically the 

scores produced from BMD DEXA scan results are standard deviation values 

themselves. 

 

Table 7.4: Net difference between DEXA 1 and DEXA 2 (since starting HPN), 

(n=30). 

 

 

 

 

Net difference between 1st and 2nd DEXA scores 

AP spine Femoral neck Total hip 

BMD Z score BMD Z score BMD Z score 

Range 
-0.136 – 

0.121 
-1.3 – 1 

-0.112 – 

0.171 
-1 – 1.5 

-0.170 – 

0.163 
-1.2 – 1.4 

Mean -0.0072 -0.133 0.0168 0.0367 0.0205 0.0733 

Median 0.0015 -0.1 0.007 0 0.0195 0 
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Table 7.5: Net difference between DEXA 2 and DEXA 3 (since starting HPN), 

(n=14). 

 

 

 

 

Net difference between 2nd and 3rd DEXA scores 

AP spine Femoral neck Total hip 

BMD Z score BMD Z score BMD Z score 

Range 
-0.076 – 

0.109 
-1.5 – 0.8 

-0.041 – 

0.135 
-0.4 – 1 

-0.056 – 

0.163 

-0.5 – 

1.2 

Mean -0.00086 -0.157 0.0265 0.157 0.0249 0.15 

Median -0.0085 -0.15 0.016 0.05 0.0085 0 

 

The net difference between first and last recorded DEXA scan results (where 

data exists per patient, since starting HPN) are presented to show longitudinal 

progression of bone disease from a different standpoint, see Table 7.6 below. 

 

Table 7.6: Net difference between the first DEXA (since starting HPN) and 

latest recorded DEXA (at point of data collection), (n=30). 

 

 

 

Net difference 1st DEXA scan (since starting HPN) and latest 

recorded DEXA scan (at point of data collection) 

AP spine Femoral neck Total hip 

BMD Z score BMD Z score BMD Z score 

Range 
-0.207 – 

0.121 
-2 – 1 

-0.115 – 

0.232 
-1 – 1.8 

-0.181 – 

0.274 
-1.3 – 2 

Mean -0.0102 -0.297 0.0308 0.06 0.0367 0.123 

Median 0.003 -0.3 0.023 -0.05 0.022 0 
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7.3.3. Bone status classification according to IF disease classification 

Table 7.7: Number of patients classified according to bone status (T-score) at 

each bone site (AP spine, femoral neck, total hip) and further sub-categorised 

to IF pathophysiological classification. 

 

IF 

pathophysiological 

classification 

Num. of 

patients  

WHO bone 

health 

classification 

Bone site (T-score) 

AP  

spine 

(n=51) 

Fem. 

neck 

(n=50) 

Total 

hip 

(n=51) 

Extensive small 

bowel disease 
3 

Normal 1 1 1 

Osteopenic 0 1 1 

Osteoporotic 2 1 1 

Intestinal fistula 4 

Normal 1 1 4 

Osteopenic 2 2 0 

Osteoporotic 1 1 0 

Intestinal 

dysmotility 
6 

Normal 2 0 0 

Osteopenic 4 6 6 

Osteoporotic 0 0 0 

Mechanical 

obstruction 
3 

Normal 1 1 1 

Osteopenic 2 0 1 

Osteoporotic 0 2 1 

Short bowel  35 

Normal 12 4 5 

Osteopenic 17 20 22 

Osteoporotic 6 10 8 
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7.4. DISCUSSION 

7.4.1. General discussion 

Figure 7.1 shows that 58% and 60.78% of patients have osteopenia 

characterised by the onset of bone disease at the sites of the femoral neck and 

total hip, respectively; alongside the presentation of osteoporosis in 28% and 

19.61% of patients at the same respective sites. Thus constituting a concrete 

finding that patients with IF receiving PN have bone health co-morbidities. 

These findings are in keeping with the study performed by Pironi (2002) 

which demonstrated similar distributions of MBD from T-scores in a large 

cohort of 284 participants; 43% of osteopenia and 41% of osteoporosis.  

However, these results were interpreted from an osteopenic or osteoporotic 

result at any of three sites (femoral neck, lumbar spine and total body); 

fortunately the results can still be paralleled to our findings as the authors 

stated that the T-score values did not differ between sites of DEXA 

measurement. 

 

However the extent to which duration of time receiving PN contributes to 

adverse bone health is demonstrated separately. In Table 7.4, the Z-scores 

show an initial average loss of 0.0367 (femoral neck) and 0.0733 (total hip) 

between the first and second DEXA scans since starting PN (n=30) i.e. a 

worsening of bone health. For those patients with applicable data for a third 

DEXA scan, this value then increases between the subsequent DEXA scans 

(0.157, 0.15, femoral neck and total hip, respectively), demonstrating a 

marginally greater reduction in bone score and loss of BMD. 

 

Table 7.6 shows the longitudinal effect of PN administration on bone health 

from a different perspective, the net difference between first and last DEXA 

scans (n=30). One would have expected to observe a greater loss in net Z-score 

here, yet unexpectedly the losses are less than those seen in Tables 7.4 and 7.5. 

A potential reason for this finding is that although the intention of this table 

was to show greater bone loss over longer periods of time, the actual data set 

still included data from those with a limited number of DEXA scan results over 

smaller time periods i.e. some patients still only had a couple of applicable 

DEXA scan results. Interestingly, whereas the net difference in Z-scores across 
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Tables 7.4-7.6 at sites corresponding to the hip (femoral neck, total hip) 

demonstrate worsening of BMD, the data demonstrates an improvement in 

BMD at the site of the spine, the site considered optimal for follow-up 

assessment of bone health in relation to treatment (Faulkner 1998). 

 

A demonstrable finding across Tables 7.4-7.6 is the wide range between the 

minimum and maximum values for net difference between DEXA scans, 

showing that there were both dramatic improvements and deteriorations in 

bone health between successive scans in some patients. Perhaps a reflection 

of opposing core factors, the successful pharmacologic treatment of 

osteoporosis with both medicines such as bisphosphonates or the provision of 

optimal supplementation with calcium and vitamin D; while an opposing 

factor would be the potential harmful effect of IF and LT PN on bone health. 

Another observation from these tables is the variable differences between 

mean and median values for the net differences in DEXA Z-scores; 

demonstrating an asymmetrical data set where large differences exist in the 

longitudinal degree of loss of bone density i.e. the middle data value is at times 

further away from the mean value. 

 

Generally our findings from the longitudinal analyses are in agreement with 

Raman et al. (2006) who noted a negative association between BMD and 

duration of HPN. However other longitudinal studies have showed that this is 

not always the case (Foldes et al. 1990; Klein and Coburn 1991; Saitta et al. 

1993; Cohen-Solal et al. 2003; Haderslev et al. 2004; Pironi et al. 2004); 

providing further support to the variable nature of contributing factors to 

MBD (e.g. age and sex at starting HPN) and the small extent/degree of net 

change in bone scores observed in our results. The median values of zero for 

femoral neck and total hip in Table 7.4 also demonstrate the mid-range 

‘averaged’ nature of the results. It is possible that bone loss may not be as 

pronounced as once thought for patients on LT nutritive support, Seidner 

(2002) suggested that the underlying illness itself may be the main driving 

factor contributing to MBD. In any case, the onset and progression of MBD in 

LT PN patients should still be considered multi-factorial, not limited to the 

impact of LT PN administration. The results from Tables 7.4 and 7.5 also 
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suggest that there was negligible difference between successive DEXA scans 

(and hence longer time periods receiving PN) as demonstrated by similar 

mean values for net difference in Z-scores at the hip i.e. bone health 

consistently worsened over time without dramatic differences in loss of BMD 

between scans. 

 

The results are not profound and reflect the multitude of factors involved in 

the homeostasis of bone health in LT PN patients. For example, the efforts to 

pharmacologically improve bone health, supplement patients with 

calcium/vitamin D (oral/PN), negative implications of PN on bone health as 

well as established patient factors known to result in bone loss such as 

advanced age, sex and menopausal status. For example, Chapter 2 presented 

the average age of HPN patients to be 58.10 (±13.78) which is the likely age for 

onset of bone health problems, along with an average age of 57.18 (±14.72) in 

women alone during which time the likelihood of being peri or post-

menopausal is known to affect their BMD. Therefore our findings are 

conflicted in the same way as Haderslev et al. (2003) in that the true extent of 

MBD during HPN is unknown because it can present or develop before patients 

commence HPN. 

 

Regarding the DEXA scan results once they had been further sub-categorised 

according to the participants’ underlying pathophysiological classification for 

IF; it was difficult to gauge meaningful findings from the results displayed in 

Table 7.7. A greater quantity of data would be required to assemble 

conclusions from all the sub-categories. However, the sub-category ‘short 

bowel’ included data from 35 cases and one observes that a greater degree of 

scan results were osteopenic and osteoporotic at the hip (femoral neck/total 

hip) by comparison to the AP spine which showed a greater proportion of 

‘normal’ bone density scan results. This finding may add to the theory that loss 

of bowel length results in loss of absorption and physiological function of the 

gut, especially in its regulation of factors relating to bone homeostasis e.g. 

calcium and vitamin D absorption. The pathogenesis is thought to relate to a 

chronic inflammatory condition characterised by increasing concentrations of 

pro-inflammatory cytokines (e.g. TNF-α, IL-6), which stimulate osteoclast 
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activity to contribute to low BMD (Hise et al. 2008). Similarly n-6 fatty acids 

within lipid emulsions could initiate the inflammatory response. 

 

The effectiveness of bisphosphonate treatment on improving bone health is 

well established for the secondary prevention of osteoporotic fractures and 

the improvement of BMD (NICE 2012; SIGN 2015). Successful treatment 

response is signified by a BMD value that is stable or improves (Rosen 2017b). 

Deemed a positive health outcome measure for patient bone health, but a  

complication for research investigating the adverse effect of LT PN on bone 

health when nearly all patients receive treatments to improve their bone 

health/BMD. 

 

A relatively recent clinical consideration has been the continuous 

overtreatment with bisphosphonates in general practice (Adler et al. 2016). It 

is now recommended that those receiving alendronate or risedronate for five 

years, or zoledronate (once yearly IV) for three years, with ‘stable’ BMD and 

no previous vertebral fractures or low risk of future fractures, should 

discontinue bisphosphonate therapy (Rosen 2017b); otherwise known as a 

‘bisphosphonate holiday’. Rationale being that residual benefit is observed 

beyond these time scales and patients are subjected to more risk than benefit. 

Perhaps this should be a consideration for longstanding LT PN patients on 

bisphosphonate therapy who display worsening of bone DEXA scores. It has 

been noted however that there are few data to guide decisions regarding 

bisphosphonate treatment duration and the subsequent bisphosphonate 

holiday, basis is deemed to rely on clinical interpretation of BMD results and 

individual risk factors. Two years is usually seen as sufficient for the break 

period when patients demonstrate ∽5% bone loss over this time (Watts and 

Diab 2010). 

 

An easily overlooked yet potential contributory factor to worsening of bone 

density scores is the intense drive to supplement patients with high doses of 

vitamin D, which may have resulted in the net resorption of bone if patients 

showed biochemical signs of hypercalcaemia (Jones 2008; Tebben et al. 2016).  
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7.4.2. Limitations 

There were some elementary limitations associated with this study. For 

example, the limited quantity of data from the C&V UHB cohort meant that it 

was difficult to design a study which incorporated all of the desired data 

parameters e.g. the effect of vitamin D on DEXA results, or a year on year 

observation of effect of LT PN on bone health. These factors would have 

required consistent and regular intervals for patients to have started PN, had 

each of their DEXA scans performed and vitamin D status measured; hence the 

methods employed in this chapter involved calculation of the net difference 

from preceding DEXA scans for each patient regardless of year or point in time. 

Similarly, more participants were expected to have had DEXA scans 

performed, showing a potential decline from clinical practice 

recommendations as some had no BMD results. Other than unintentional 

omission, reasons for their oversight could relate to the unnecessary clinical 

need for some patients to have scans performed e.g. young age, absence of risk 

factors or a projected limited duration of time on PN (post-surgery, bowel 

recovery period). 

 

 

With hindsight, this was a difficult study to pursue with such a limited 

population and quantity of data from variable dates in time. Hence the decision 

to undertake the longitudinal analyses in the manner observed with relative 

difference from the first DEXA score. For instance, initially a five-year time 

interval was proposed but only a limited number of patients’ bone scores fitted 

the five-year criterion. Another consideration is that DEXA scans performed 

shortly after the 3-month window of patients being on PN may not show as 

great a reflection for the contribution of the effect of PN administration on 

bone health by comparison to longer time scales since commencement of PN. 

 

Although DEXA scanning is well-established in the diagnosis and treatment of 

osteoporosis, Blake and Fogelman (2007) have explained that its use in 

monitoring BMD over time is more controversial due to its limited repeat 

sensitivity, a consideration to bear in mind with the findings from our 

longitudinal analyses. The DEXA technique itself has its own limitations 
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associated with its measurement of BMD. The scores produced do not give an 

absolute risk of fracture, but a relative risk of fracture; providing information 

only on the quantity of bone, not its quality (Maghraoui 2012). Other 

limitations in its measurement include the sensitivity to error with variable 

soft tissue composition (e.g. fat vs. lean tissue) and inherent limitations in 

longitudinal reassessment of bone density (Wells 2009). However, DEXA 

scanning is still considered the current best indicative method for 

measurement of bone density and diagnosis of osteoporosis. Lu et al. (2001) 

performed a study examining differing criteria for osteoporosis and 

application the WHO criteria. They found that only 25% of patients were 

consistently diagnosed across all the BMD variables and recommended the 

inclusion of risk based information in diagnostic criteria because its inclusion 

resulted in consistent diagnoses in 68% of cases. The present study has shown 

that interpretation of DEXA scans themselves can be somewhat inconsistent 

with potential under or over diagnosis; future studies should attempt to 

include further risk assessments across multiple body sites to give more 

accurate diagnoses of MBD. 

 

Another complication owing to data collection was that some patients had 

their DEXA scans performed with different health boards and the results not 

recorded on the C&V UHB system. Although attempts were made to collect all 

data from known sites, some may have evaded collection. 

 

7.4.3. Recommendations and future work 

Future studies should include a design format that will allow clear 

interpretation of the contribution of LT PN to the adverse onset and 

development of MBD. For instance, studies incorporating greater numbers of 

patients from more HPN centres would contribute more data for analysis with 

more generalisable findings. Particularly alongside more control over data 

parameters such as DEXA scan time points in relation to the year performed 

or the date of PN commencement. Or further still, controlled intervention or 

comparison studies involving segregation or sub-classification of patients 

according to their sex, age and pharmacological interventions e.g. long-term 

bisphosphonate or steroid treatments which are known to contribute to 
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adverse bone health. However, a foreseeable complication is the vastly 

differential practices in relation to treatment and management of patients 

with MBD, as evidenced by a questionnaire based study across multiple HPN 

centres (Pironi et al. 2017). 

 

Further studies in this area may benefit from the implementation of fracture 

risk assessment tools to help diagnosis of osteoporosis, identify risk of 

fracture, treat secondary prevention of bone fractures and aid treatment 

decisions, validated measures include FRAX or QFracture® (NICE 2012; SIGN 

2015). 

 

It would be of benefit in future studies to incorporate evidence of vitamin D 

deficiency in relation to DEXA results, the exact design of this sort of study 

would be complicated, relying on DEXA scans being taken within timely 

relation to tests for vitamin D status. Perhaps a more beneficial study would 

be the comparison of those patients with longstanding inadequate vitamin D 

status (despite efforts to optimise their status) against those patients with 

adequate vitamin D status. Furthermore, inclusion of other factors known to 

play a role in skeletal remodelling e.g. PTH, magnesium, phosphorus, may be 

of similar research benefit. A study performed by Wozniak et al. (2015) 

implemented a design to correlate vitamin D status and bone health in patients 

on PN for longer than six months and a vitamin D level performed with this 

time. They noted a trend for greater risk of osteopenia in children with sub-

optimal vitamin D status; similar studies of this design may be of value in 

future research. 

 

A study that would be of considerable interest would be a direct PN 

intervention study involving comparison of vitamin D and bone health DEXA 

data from patients receiving LT PN, against those in the general population 

(not receiving PN). Full appreciation for the effect of LT PN could then be 

gleaned against the multitude of factors which contribute to the development 

of MBD affecting both populations. 
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7.5. CONCLUSION 

MBD is an apparent and challenging complication observed in LT PN patients. 

Our study has further demonstrated the prevalence of MBD and loss of bone 

density in HPN patients from both a cross-sectional and longitudinal 

perspective. Nevertheless, there is still great scope for further research to 

clearly clarify the factors which contribute to its onset and development in LT 

PN patients, particularly in the context of its pathogenesis over time and the 

effects of successful treatment on BMD. Future studies should incorporate 

case-control and intervention style study design to establish and quantify the 

contribution of factors known to influence MBD e.g. age, sex, menopausal 

status, micronutrient status and any concomitant treatment e.g. 

bisphosphonates, corticosteroids, diuretics, anticoagulants as well as initial 

diagnoses/conditions/treatment factors (such as bone status prior to 

initiation of HPN). 
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CHAPTER EIGHT: 

Evaluation of trace element (TE) 

provision from Additrace® in LT PN 



 214 

8.1. INTRODUCTION 

This chapter follows on from Chapter 5 after the extent of abnormal blood test 

results were demonstrated for TE in LT HPN patients, in particular, excesses 

of manganese and deficiencies of selenium. This section of research 

investigates the suitability of the compound TE preparation Additrace® for LT 

HPN patients and attempts to ascertain further reasons for the occurrence of 

out-of-range blood tests. Additionally, this section also intends to identify 

situations where the stability of the PN formulation may limit the provision of 

TE to patients, so as to be able to investigate whether stability dosing limits 

could potentially result in nutritional deficiency states. The chapter aims to 

explore optimal dosing requirements for micronutrients in LT PN, using 

correlation of previous micronutrient doses in PN with subsequent 

biochemistry blood test results. 

 

8.1.1. Chapter objectives 

- To determine and assess the suitability of Additrace® for the population 

of patients maintained on LT HPN 

- To correlate/consider patients PN prescription data with their 

subsequent blood test results 

- To quantify the extent of supplemental TE dosing in LT HPN patients 

- To suggest/consider the implication of PN physical stability dosing 

limitations as a contributing factor to the occurrence of deficient blood 

test results 

- To perform comparative analyses (in terms of TE dosing and blood test 

results) on the basis of whether patients had been receiving Additrace® 

and/or extra TE supplementation 
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8.1.2. Rationale 

The findings of the study performed in Chapter 5 showed a notable skew of TE 

blood test results away from the ‘normal’ reference range values, particularly 

for deficiencies of selenium and excesses of manganese. 

 

The following study was proposed as a way of evaluating the suitability of the 

compound preparation Additrace® in meeting PN patients’ TE requirements 

whilst also evaluating the service provided by C&V UHB in terms of meeting 

patients TE dosing needs, by reference to patients’ health outcomes in terms 

of nutritional status (See Chapter 4, section 4.1. for Additrace composition).  

 

During instances when Additrace® is judged to not be clinically suitable, or if 

patients require additional TE supplementation, there exists individual TE 

preparations to aseptic manipulation in PN for copper, selenium, iron and zinc. 

Iron is not monitored directly from blood serum samples at C&V UHB because 

assessment of iron status relies upon the more complex interpretation of 

haemoglobin and blood/cell stores alongside the presence of any symptoms 

relating to iron deficiency or toxicity. As such, the present study can only 

evaluate doses of copper, manganese, selenium and zinc in relation to blood 

test results, since the other TE in Additrace® (chromium, fluoride, iodine, 

molybdenum) are not assayed in blood tests by C&V UHB, nor do separate 

individualised preparations exist. Patients’ blood tests are also monitored for 

manganese status, but no separate preparation exists for supplementation. 

 

Similarly, vitamins were not chosen for evaluation in this chapter because 

their findings in Chapter 5 did not display trends in nutritional abnormalities, 

also no separate products exist for their individualised supplementation 

outside of the compound preparations Cernevit® or Vitlipid N Adult®, (aside 

from folic acid injection). Another factor worth noting is that some vitamins 

e.g. vitamins A, D (oral/IM) and E are extensively supplemented outside of PN 

in an effort to further supplement patients presenting with nutritional 

deficiencies who are already receiving the compound vitamin preparations in 

their PN. 
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As one may observe, the well-documented PN prescription data best serves 

itself towards evaluation of the TEs copper, selenium and zinc (via Additrace® 

and/or extra supplemental) which is not feasible nor reliable for the other 

vitamin components of PN. These also happen to be the more clinically 

relevant TE for consideration when monitoring patients in clinic. 
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8.2 METHODS 

8.2.1. Research ethics, permissions and approvals 

For this final research chapter, ethical approval was sought and granted by 

Cardiff School of Pharmacy and Pharmaceutical Sciences. NHS Research and 

Development (R&D) permission was granted by C&V UHB as a service 

evaluation as of 18/10/2016 (see appendix VII for signed approval of SE 

application). 

8.2.2. Study design 

8.2.2.1. Data collection and study population 

The study was performed as a retrospective longitudinal database analysis to 

investigate the occurrence of micronutrient abnormalities experienced by the 

population of patients maintained on LT HPN (in relation to their PN 

prescription) from data held with C&V UHB between May 2014 and May 2017. 

Specifically, in relation to the doses of TE in patients’ PN prescriptions leading 

up to the blood test events, and whether the results were classified as deficient, 

in range or in excess (toxic) as depicted by the local C&V UHB reference limits.  

8.2.2.2. Data handling, storage and analysis 

Data security and patient confidentiality was maintained using the same 

processes of anonymization and data handling as outlined in Chapter 2 

(Section 2.4.).  

 

During data collection, the anonymised and coded data were transferred into 

an excel database. 

 

8.2.2.2.1. Data parameters 

Data was collected on the following: 

- PN prescription records in use as of 01 May 2014, through to the end of 

May 2017. The data included the prescription dates, volume of feeds, 

inclusion of Additrace® (Y/N) and TE doses (Cu, Se, Zn). 

- Micronutrient blood test results recorded between May 2014 and May 

2017 
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The doses of micronutrients included in patients PN were correlated with the 

resultant micronutrient biochemistry blood tests (which give an indication of 

patient micronutrient status). Prescription data was matched with blood test 

data providing that patients had been receiving the PN prescription for at least 

three months. This time interval was chosen to allow sufficient time for the 

dose of micronutrient in patients PN to accurately correspond to total body 

stores and representation of nutritional status, in light of any recent 

micronutrient or dose-volume adjustments. The three-month window is 

standardly used as a suitable monitoring time window to check patients 

response to TE dosing revisions, particularly after dose increases in light of 

deficient test results (Parrish 2014).  

 

8.2.2.2.2. Method of analysis  

Successfully matched data were separated into four categories as shown in 

Table 8.1. The categories were based upon whether the micronutrient 

preparation Additrace was included and/or extra selenium was supplemented 

into the PN. 

 

Table 8.1: Categories 1-4 to which the matched paired data were assigned. 

 

Category Additrace Extra TE 

C1 Yes Yes 

C2 Yes No 

C3 No Yes 

C4 No No 

 

The blood tests results arising from the data pairing in each of the four 

categories were analysed using descriptive statistics as follows: 

- To show the total number (and percentage) of recorded micronutrient 

blood tests that were deficient, in range and in excess. In so doing, 

identify trends or themes in micronutrient abnormalities and dosing 

correlations occurring for each category. 

- The average dose for TE provided in PN per data category (C1-C4) 
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- The dose of TE included within the PN admixture as a percentage of the 

maximum permitted for the volume of the feed. To allow interpretation 

of whether volume of the PN feed limits the dose of selenium given to 

patients. 

 

The collected data was used to calculate the extra doses of TE given outside of 

Additrace®, where applicable; and also to calculate the maximum dose of TE 

per volume of feed, allowing the actual total TE dose as a percentage of the 

maximum allowance. The maximum dose of micronutrients permitted per 

volume of PN feed are given in Table 8.2. Where a patients PN regimen 

instructed a combination of both aqueous and lipid feeds or a combination of 

two different feeds (e.g. of different volumes or containing different TE doses), 

the TE doses and % of maximum permitted doses across the feeds were 

averaged according to the ratios of different feeds. For instance, 3 aqueous and 

2 lipid feeds per week >>> [dose A x (3/5) + dose B x (2/5)]/5. 

 

Table 8.2: Maximum dose of micronutrients (Cu/Se/Zn) permitted per litre 

volume of PN feed. 

 

TE Max. dose of TE per vol. of PN 

Copper 20µmol/L 

Selenium 1200nmol/L 

Zinc 200µmol/L 

 

The accuracy of data transcription was verified by manually checking 5% of all 

prescriptions and 5% of all micronutrient blood test results. No trends in error 

for data transcription were identified. 
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8.3. RESULTS 

One hundred and fifty-eight (158) patients were registered on the IF clinic list 

between the dates of 01/05/2014 - 01/05/17 as of May 2017. Of these 

patients, one hundred and sixteen (116) had recorded prescriptions to show 

they were receiving PN during this time period; forty-two (42) patients were 

excluded on the basis of receiving other long-term IV infusions e.g. magnesium. 

Finally, of these 116 patients, ninety-eight (98) patients had data to meet the 

inclusion criteria and allow pairing of their PN prescription data to blood test 

results owing to the three-month rule. 

 

8.3.1. Evaluation of micronutrient provision in PN (from paired data) 

On the next page, Table 8.3 displays the results for the micronutrient blood 

tests (copper, selenium and zinc) which were matched with patient 

prescription data (categories 1-4 depending on micronutrient inclusion and 

formulation in PN), providing patients had been receiving PN from the 

prescription for at least three months. There were no results for manganese as 

it cannot be manually manipulated/supplemented in PN other than being 

given as part of the preparation Additrace®.  

 

Table 8.4 shows the average doses for TE for all paired data that resulted in 

blood tests results that were ‘in range’, thereby giving an indication of optimal 

dose requirements for the LT PN population. 
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Table 8.3: Results from categories 1-4 of paired prescription and blood test 

data for each of copper, selenium and zinc. 

 

 Number (and percentage) of blood tests (paired with 

prescription data) per micronutrient (Cu/Se/Zn) 

  Copper Selenium Zinc 

Num. % Num. % Num. % 

Category 1. 

Additrace® 

(Yes), extra 

micronut (Yes) 

Deficient 0 0 13 35.14 1 4.55 

In range 7 100 23 62.16 21 95.45 

In excess 0 0 1 2.70 0 0 

Total 7 100 37 100 22 100 

Category 2. 

Additrace® 

(Yes), extra 

micronut (No) 

Deficient 9 11.84 16 40.00 0 0 

In range 59 77.63 24 60.00 56 94.92 

In excess 8 10.53 0 0 3 5.08 

Total 76 100 40 100 59 100 

Category 3. 

Additrace® 

(No), extra 

micronut (Yes) 

Deficient 12 4.98 26  10.00 15 6.22 

In range 205 85.06 216  83.08 200 82.99 

In excess 24 9.96 18 6.92 26 10.79 

Total 241 100 260 100 241 100 

Category 4. 

Additrace® 

(No), extra 

micronut (No) 

Deficient 1 6.25 0 0 0 0 

In range 14 87.5 0 0 10 100 

In excess 1 6.25 0 0 0 0 

Total 16 100 0 0 10 100 

 

Table 8.4: Average doses of TE (Cu, Se, Zn) required by PN patients which 

resulted in ‘in range’ blood test results, from all paired data (C1-C4). 

 

 
Average dose of TE resulting in ‘in range’ blood 

test results from all paired data (C1-C4) 

 
Number of 

paired data 
Average dose Dose range (±SD) 

Copper (µmol) 285 10.94 0-25 (±6.52) 

Selenium (nmol) 266 829.20 400-1550 (±276.08) 

Zinc (µmol) 290 110.70 0-200 (±43.74) 
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8.3.2. Average micronutrient doses and stability considerations 

The average doses of TE given per data category (inclusive and exclusive of Additrace) 

as well as the percentage of maximum TE provision per volume of PN are given in 

Table 8.5.  

 

Table 8.5: Results for average TE doses and stability considerations for each matched 

data category.  

 

  TE dose considerations per data category 

 

 

C1. 

Additrace® 

(Yes), extra 

TE (Yes) 

C2. 

Additrace® 

(Yes), extra 

TE (No) 

C3. 

Additrace® 

(No), extra TE 

(Yes) 

C4. 

Additrace® 

(No), extra TE 

(No) 

Average (range 

±SD) of the 

total micronut. 

provision from 

PN, inclusive of 

Additrace® 

Cu 

(µmol) 

19.70  

(10.63-24.17) 

(±6.21) 

20.00 

8.73  

(1.43-25.00) 

(±4.41) 

NA 

Se 

(nmol) 

1057.54 

(400.00-

2200.00) 

(±452.66) 

400.00 

862.81  

(400.00-

1550.00) 

(±260.12) 

NA 

Zn 

(µmol) 

159.00  

(100.00-

200.00) 

(±27.94) 

100.00 

115.64  

(1.00-200.00) 

(±42.02) 

NA 

Average (range 

±SD) of the 

total micronut. 

provision from 

PN, exclusive of  

Additrace® 

(nmol) 

Se 

(nmol) 

657.54  

(0.00-

1800.00) 

(±452.66) 

NA 

862.81  

(400.00-

1550.00) 

(±260.12) 

NA 

Cu 

(µmol) 

5.06  

(3.13-10.63) 

(±2.70) 

NA 

8.73  

(1.43-25.00) 

(±4.41) 

NA 

Zn 

(µmol) 

73.15  

(0.00-112.50) 

(±32.76) 

NA 

115.64  

(1.00-200.00) 

(±42.02) 

NA 

Average (range 

±SD) of the 

percentage of 

max. micronut. 

provision per 

volume of PN 

(per patient) 

Se 

(nmol) 

37.11  

(10.78-66.77) 

(±16.70) 

14.75  

(6.79-22.22) 

(±3.49) 

32.47  

(8.33-106.94) 

(±16.50) 

NA 

Cu 

(µmol) 

73.05  

(26.56-96.15) 

(±31.85) 

41.60  

(30.39-66.67) 

(±9.73) 

18.96  

(1.79-83.33) 

(±11.63) 

NA 

Zn 

(µmol) 

35.82  

(18.68-64.10) 

(±16.31) 

21.82  

(10.19-33.33) 

(±4.75) 

25.76  

(2.22-66.67) 

(±13.22) 

NA 
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8.3.3. Manganese (Additrace® vs. no Additrace®) 

Since manganese cannot be (intentionally) supplemented in PN outside of the 

compound preparation Additrace®, comparisons were made from the findings 

of blood test data (from paired PN prescription data) on the basis of whether 

Additrace® was incorporated in the PN. Results are shown below in Table 8.6. 

 

Table 8.6: Results for all manganese blood tests from paired prescription and 

blood test data based on inclusion on Additrace®. 

 

 Number (and percentage) of manganese blood test results 

(paired with prescription data) 

 Additrace® (Yes) Additrace® (No) 

 Number % Number % 

Deficient 0 0 2 0.80 

In range 26 31.71 137 54.80 

In excess 56 68.29 113 45.20 

Total 82 100 250 100 
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8.4. DISCUSSION 

8.4.1. General discussion and main findings 

The findings from this chapter have followed on from the findings of Chapter 

4 in a concise and satisfactory manner. Following successful approval for the 

study as a service evaluation, more patients were eligible for inclusion in the 

study by comparison to Chapter 5 offering a greater representation of the LT 

PN population and more valid context for data findings. The study successfully 

incorporated the use of a data pairing model to correlate PN prescription TE 

dose data with blood test results from PN patients. As before, blood tests and 

prescription records constitute a secondary data source, they offer an 

accurate, reliable and plentiful/rich data source from which to derive new 

knowledge. 

 

In general, the results show that categories 1 (C1) and 4 (C4) had the smallest 

number of applicable paired data results, presumably because of the 

inadequacy of Additrace® (C1) and the unlikelihood of providing PN without 

any micronutrient supplementation to patients (C4).  

 

As expected, categories 2 (C2) and 3 (C3) contained more data fitting their 

criteria, since they depicted manipulation of micronutrient dosing in PN 

whether inclusive (C2) or exclusive (C3) of Additrace®, befitting the sensitive 

and bespoke micronutrient needs of LT PN patients. 

 

As a whole, clinician-directed TE dose manipulation in PN was associated with 

more blood test results in range than when PN was supplemented with 

Additrace® alone, as evidenced by results for C1 and C3. Although it can be 

considered a more time-consuming exercise it is associated with better health 

outcomes. One wonders whether all TE should be manually supplemented in 

this manner, or whether the use of a compound preparation with a better 

pharmacological dose profile would suffice. 
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8.4.1.1. Copper 

Results from C1 suggest that the dose of copper provided by Additrace® is 

sufficient for LT patient needs since 100% of results (n=7) were in range. 

However, the limited number of inclusive data should be noted, especially in 

light of recent dosing revisions to other micronutrient formulations in which 

the copper content has been reduced i.e. 20µmol in Additrace®, down to 

4.7µmol in Nutryelt® and 6.3µmol in Addeven® (for further reference, see 

Chapter 4, Table 4.1. Trace element product compositions). Similarly, 77.63% 

of blood test results were within range for C2 with modest excesses, indicating 

suitable/appropriate copper provision from just the inclusion of Additrace®. 

Yet a greater percentage of blood test results were in range (85.06%, n=241) 

when the copper dose was directly manipulated by prescribers without the 

addition of Additrace® (C3), in which case the average dose of copper given in 

this category was 8.73µmol, considerably lower than the Additrace® dose 

(20µmol) and close to the doses of Addeven® and Nutryelt®. 

Disputedly/confoundingly, the results from C4 (n=16) show that 87.5% of 

results were within reference range for PN prescriptions without any copper 

provision at all. This finding should be take into account the small number of 

paired data and the more probable reflection of the increased copper status of 

those with impaired liver excretory function (Staun et al. 2009). 

 

8.4.1.2. Selenium 

Results from C1 and C2 both indicate similar degrees of deficiency (C1, 35.14% 

vs. C2, 40%). One would expect a greater degree of in range BT results in C1 

after allowing for more dose manipulation. A possible explanation could be the 

selenium doses already being at the maximum limits per volume of PN for 

some patients (C1, 37.11% vs. C2, 14.75%), meaning that it was not possible 

to supplement greater doses for some patients without compromising the 

physical stability of PN. C3 results showed more promising findings in that 

83.08% (n=260) were in range when practitioners directly manipulated 

selenium doses themselves; greater control over selenium dosing resulting in 

more selenium blood test results within range (see Figure 8.1). No results were 

applicable for C4, in part demonstrating the essential nature of selenium as a 
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micronutrient for PN patients. In following on from the findings of Chapter 4, 

selenium deficiency still presents itself as an issue and yet the tendency for 

selenium to act as a reverse acute phase reactant should still be taken into 

account, potentially presenting greater levels of deficiency.  

 

 

 

Figure 8.1: A clustered column chart to show the percentage of selenium 

blood test results (deficient/in range/in excess) per data category type. 

 

8.4.1.3. Zinc 

Findings from C1 and C2 were comparable, both giving ∽95% of BT results in 

range, demonstrating the ability of Additrace® to provide the zinc 

requirements for LT PN patients (alone or with extra supplementation). An 

interesting/intriguing finding was that less blood test results were within 

reference limits for C3 where zinc dosing relied exclusively on direct 

clinician/prescriber supplementation (82.99%, n=241). The average dose 

given for this category was 115.64µmol, more than the dose in Additrace® 

(100µmol), yet less than the doses in Addeven® and Nutryelt® (153µmol). 
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8.4.1.4. Average micronutrient doses and stability considerations 

8.4.1.4.1. Copper 

Distinctly far-ranging average doses of 19.70µmol and 8.73µmol gave rise to 

high proportions of ‘in range’ copper results. Given the greater number of 

included data for C3, the average dose of 8.73µmol is more likely to be 

representative of LT PN patient copper requirements; a dose closer to that of 

the newer preparations. In terms of stability restrictions, the results show that 

copper had the highest/greatest limitations in terms of maximum permitted 

dose of copper per volume (C1, 73.05%), yet in reality was less of an issue as 

all tests for this category were in range. 

 

8.4.1.4.2. Selenium 

In C1 and C3 when extra selenium supplementation was given, average total 

selenium doses of 1057.54nmol and 862.81nmol are noted, respectively. 

These doses are more than double the dose in Additrace® (400nmol), a finding 

which exemplifies the difficulty in getting/giving Additrace® to suit patients’ 

selenium needs. It is comforting that this finding is in keeping with the 

revisions of the formulations of the preparations Addeven® and Nutryelt® 

(887nmol and 900 nmol respectively). One may notice the large range 

demonstrated for selenium doses across categories C1 and C3 (400-

2200nmol), typically demonstrating the very variable requirements of 

selenium for the complex LT PN cohort, this however does not undermine the 

greater adequacy of doses greater than 800nmol resulting in ‘in range’ blood 

test results. Prior to data collection it was anticipated that stability dosing 

restrictions for selenium (based on volume of PN) may have prevented 

patients from receiving their optimal dose of selenium. However the low 

percentages for ‘average percentage of maximum selenium provision per 

volume of PN’ show that this is not the case and suggests that there is ample 

room/scope for extra supplementation; however it is more likely just to be an 

issue for the small number of fluid sensitive or restricted patients, or those 

who are critically ill, those with ongoing diarrhoea or increased fistula/stoma 

outputs (higher selenium requirements). 
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8.4.1.4.3. Zinc 

Average doses for zinc (C1, 159µmol; C2, 115.64µmol) were slightly greater 

than the dose included in Additrace® (100µmol). A reassuring finding in line 

with the increased dosing provisions in newer preparations. The low 

percentage values for the maximum provision of zinc per volume of PN shows 

the stability restrictions not to be a limiting factor towards achieving adequate 

zinc status for LT PN patients. 

 

8.4.1.5. Manganese (Additrace® vs. no Additrace®) 

Results from Table 8.6 show that there was less applicable data for 

prescriptions including Additrace® than those without (n=82 cf. n=250); in 

part, this demonstrates its unsuitability for the general needs of patients as 

much of data did not include the preparation. As expected, more manganese 

blood test results were in range when the preparation was not included in 

patients’ PN (54.80% cf. 31.71%). Yet intriguingly in a converse outlook, 

45.20% of blood tests were still in excess when no Additrace® (and therefore 

no manganese) was supplemented in patients’ PN (vs 68.29%, see Figure 8.2). 

This finding supports the views by Howard et al. (2007) and Dickerson (2001) 

that patients are likely to meet their manganese requirements by its presence 

in PN as a ubiquitous contaminant alone, since it is known to leach from metal 

needles used in the aseptic production of PN (Cornelis et al. 1996; Yang and 

Lewandrowski 2002; Hardy 2009). Overall, the implication of the excessive 

manganese dose and its problematic complications has been demonstrated; 

most notably in necessitating removal of the compound preparation from PN 

and as such patients either miss out on the other key TEs or require separate 

TE additions to PN (where alternative preparations exist). 
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Figure 8.2: A clustered column chart to show the percentage of manganese 

blood test results (deficient/in range/in excess) according to Additrace 

inclusion in PN. 

 

8.4.2. Limitations 

This chapter followed on from Chapter 5 with core objectives and has shed 

light on further accurate knowledge of TE requirements in LT PN, yet the 

following limitations of the study should be taken into account: 

- The same general limitations apply to this study as seen in Chapter 4 

due to the nature and style of the study design. For example, the fact 

that data was included from a single HPN centre means that the results 

are less generalisable to the HPN network than if more HPN centres 

were included. Similarly, inherent limitations associated with the 

precision, accuracy and bias of the reporting of blood tests are still 

applicable to this chapter. Also, the effect of the APR could still have 

influenced blood test results to the same unquantifiable degree as in 

Chapter 4. For consideration of the blood test outcomes in the context 

of this study, the results are explicitly interpreted as they are reported 

(deficient/in range/in excess). The consideration of the APR is better 

used in a clinical decision-making scenario when taking into account all 

clinical factors which contribute to a patients’ clinical scenario. If 

studies were to take into account the effect of the APR when reporting 
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of blood test outcomes, the research is best suited to quantifying its 

effect on the validity of blood test results as a primary aim, rather than 

over complicating data analysis as in this study where a general 

awareness and appreciation for its effect is more suitable.  

- The disparate number of paired data between the four paired data 

categories; some categories have a smaller number of applicable data 

and hence their representative findings are weaker. However, this can 

be considered a finding within itself since less data matched some 

category criteria and showed the extent of general Additrace usage in 

PN e.g. C1-2 vs. C3-4. During the set dates of data inclusion (01/05/14-

01/05/17), it would transpire that it had already become routine 

practice to remove Additrace from PN or withhold it if patients already 

demonstrated high levels in their blood tests. 

- The basis for the rationale of this study hinges on the 

theory/assumption that PN TE dosing directly and exclusively 

correlates to micronutrient status in blood, the present study does not 

account for differences in oral TE consumption, EN nutrition, TE 

contaminants or the variability/differences in number of days 

administered, which could have influenced the blood test results. 

- Similarly, the findings were based on the assumption that all PN was 

administered to patients and as such did not take in account missed 

days, illness, holiday prescriptions, poor compliance or any potential 

delays between effective prescription date and PN delivery. 

- Some academics have expressed views that dose-concentration 

relationships are not accurate pharmacokinetic models to predict 

serum TE concentrations in relation to TE doses (Harraki et al. 1995; 

Hambidge 2003; Hotz et al. 2003). Additionally, since serum TE 

concentrations do not determine the chemical form of a particular 

element, biologic activity, or availability in the body as a whole and may 

not represent actual body stores. 

- The decision to allow three months between the date of the signed PN 

prescription and the TE blood test results could be seen as too long a 

time period, resulting in the omitted inclusion of potentially applicable 



 231 

data had a shorter time window been implemented (a lot of collected 

data was not applicable for inclusion in data analysis). Especially since 

sometimes in clinical practice 4-6 weeks is used as a clinical judgement 

point to spot trends from clinical PN prescription/regimen 

amendments. However, the three-month time window can equally be 

viewed as a way of completely ensuring that blood test results were 

indicative of TE doses in PN.  

- Similarly, some data from sensitive LT PN patients may not have made 

the three-month data window if they required more frequently changes 

to their PN regimen and PN prescription, affecting the representation 

of data findings to reflect LT PN patients. Yet conversely, this could be 

interpreted as a positive remark in that the data findings reflect TE 

requirements in more stable LT patients. 

- This chapter did not consider the clinical documentation of signs or 

symptoms of TE abnormalities (deficiencies/toxicities) and so cannot 

be linked to the clinical severity of the consequences of TE 

abnormalities. 

- Within the data time window (2014-2017), there was a small team of 

pharmacists in control of micronutrient dosing decisions; this can be 

seen in a positive light that there was less scope for random variability 

in action and more familiarity with prescription handling based upon 

evidence based best practice. Yet the findings from this service 

evaluation can also be seen as informative of the actions of a small 

number of people in which actions relating to implicit bias could have 

resulted e.g. unfounded beliefs about PN dosing without conscious 

realisation. Still, the reporting of this service evaluation ultimately acts 

to ensure improvements in service provision. 

- A dated study by Pluhator-Murton et al. (1999) stated that the effects 

of storing PN at increased temperatures can significantly decrease zinc, 

copper, and manganese availability in home PN solutions that are 

typically compounded and delivered in batches of 7–10 days for home 

supply, similar to the PN produced for C&V UHB patients by the 

homecare company, Calea. This finding could potentially have 
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influenced the results from this study but also could be considered as a 

constant and unavoidable factor. HPN is always aimed to be kept cold 

chain during delivery but slight fluctuations in temperature can occur.  

 

8.4.3. Future work and recommendations 

The undertaking of this service evaluation has helped to elucidate and identify 

areas requiring further investigation relating to TE dosing, compound 

micronutrient preparations and correlation with blood test biochemistry. It 

would be useful for future studies in this area to incorporate the following: 

 

- Efforts should be made to ensure homecare services provide the newer 

TE preparations Addeven® and Nutryelt® across a range of bespoke PN 

formulations; there still appears to be resistance against their use 

despite their existence and evidence of revised dosing adjustments. 

Better still, provide a range of TE preparations to cater for the variable 

needs of the LT population e.g. a preparation with reduced copper and 

manganese would be useful for patients with evidence of cholestatic 

liver disease. Similarly, for instances when compound preparations are 

still unsuitable, the availability of more individual/singular TE 

preparations (not just copper, iron, selenium and zinc) would be useful 

to offer individualised TE supplementation in PN; especially since our 

results showed that clinician directed TE dose manipulation in PN was 

associated with more in range blood test results. 

- Findings from the current chapter alongside further studies 

incorporating more HPN centres could inform the composition of a 

‘better’ ideal TE preparation to suit the basal requirements of LT PN 

patients’ needs i.e. the inclusion of more data from more HPN centres 

would generate more credible and generalisable findings. Especially if 

other HPN centres are using different compound TE preparations 

and/or dosing and monitoring practices. 

- The current study investigated paired data separated into four 

categories depending on whether Additrace® and/or extra TE 
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supplementation was given. A further double cohort comparison study 

in which patients who had received Additrace® then required its 

removal from PN (after blood test review), or those who were not 

receiving Additrace® and then had it added to their PN, would be useful 

to quantify the relative effect of Additrace upon blood test results for 

each participant.  

- Further studies should attempt to incorporate the reporting of 

symptoms associated with TE nutritional abnormalities to correlate the 

clinical significance with the extremes of out of range blood test results. 

- It would be worthwhile investigating the lesser known TE and their 

clinical significance e.g. iodine, cobalt, chromium etc. As yet not much is 

known of the clinical impact for their derangement, nor their optimal 

dosage. 

From the outcomes of PN prescription doses that were associated with in 

range blood test results. Based on data shown in Table 8.4, the findings from 

this study would suggest/recommend the optimal doses of TE for the 

basal/general needs of LT PN patients as 10µmol copper, 800nmol selenium 

and 100µmol zinc. The suggested dose for selenium accurately reflects the 

revised dose in newer preparations, however the doses for copper and zinc are 

more mid placed between the doses of older and newer preparations 

(Additrace® and Decan® vs. Addeven® and Nutryelt®). In this light, further 

studies of the similar design in this chapter which incorporate the newer 

preparations would shed more accurate findings of TE dosing and suggestions 

towards optimal TE requirements in LT PN patients. 
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8.5. CONCLUSION 

This chapter has successfully evaluated the use of Additrace® in terms of 

resultant biochemical test outcomes. Above all, the findings have 

demonstrated clinician-directed manipulation of TE in PN to be optimal in 

resulting in a greater proportion of TE blood test results within range; in so 

doing has allowed successful estimation of optimal doses for copper, selenium 

and zinc. The problem of manganese overprovision in PN from the compound 

preparation Additrace® has also been further quantified. Its lack of inclusion 

in PN should in itself serve a persuasive motion to urge homecare companies 

to consider stocking, trialling and implementing the use of the newer 

compound TE preparations across a range of LT PN formulations. For the 

majority of patients, stability dosage restrictions have been discounted as a 

factor resulting in deficient blood test results, except for the smaller sub-

population of patients with extreme volume restrictions for their PN. Overall, 

this chapter has further demonstrated the pressing clinical need of TE 

preparations to cater for the general needs of LT PN patients, or for those with 

more individualised needs. Alongside an actual need for homecare companies 

and PN production units to implement the use of the newer TE preparations 

in routine practice and establish their intended use for LT PN patients; further 

studies will then be able to assess their clinical suitability against the outcomes 

observed in this study investigating Additrace®.
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CHAPTER NINE 

General discussion 
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9.1. GENERAL DISCUSSION 

The field of PN covers a vast body of knowledge in terms of meeting patient 

requirements, PN stability and manipulation to optimise nutritive support; as 

well as more clinical research parameters such as management of 

complications and multidisciplinary team review. This research project has 

covered extensive and variable grounds in terms of research findings relating 

to the provision of LT PN. 

 

While the knowledge-base surrounding PN is well-established, there is still 

plenty more to clarify and consolidate; the broad-ranging title of ‘nutritional 

deficiencies/abnormalities in LT PN’ allowed initial research findings to guide 

and develop further research avenues. The PhD project commenced with a 

characteristic survey of the C&V UHB HPN population followed by an in-depth 

literature review of documented micronutrient deficiencies and excesses; and 

an assessment of the extent of nutritional abnormalities demonstrated in 

patients’ blood test monitoring. Findings from this assessment directed 

subsequent stages of research navigation; in particular, the high proportion of 

patients with inadequate vitamin D status focused research laboratory efforts 

towards determining/confirming the stability of vitamin D in PN formulations 

as well as investigating the extent of MBD and bone health problems 

experienced by HPN patients. Similarly, TE findings for evident deficiencies of 

selenium and excesses of manganese in LT PN patients prompted an 

evaluation of the provision of TE from the first-line preparation Additrace® 

through comparison to patients’ nutritional status as evidenced by routine 

biochemistry monitoring. 

 

Overall, each chapter of this research project has been able to shed new light 

on research findings and contribute to different areas within the field of PN 

(e.g. PN population characteristics, micronutrient status, bone health/MBD 

and the adequacy of PN preparation formulations). 
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9.1.1. Overview and impression of research journey 

The focus of the PhD was to explore the extent of nutritional abnormalities 

(deficiencies/excesses) experienced by LT PN patients and their resultant 

biochemical effects (e.g. vitamin D deficiency leading to bone health 

problems). This aim has been methodically achieved for the micronutrient 

components of PN and the results presented throughout; one would argue that 

it is harder to gauge optimal patient requirements for micronutrients as they 

are needed in far less quantities than macro-components (e.g. lipid, glucose, 

amino acids) which are easily correlated and manipulated in relation to 

patient weight. 

 

Key research findings have already been discussed within each chapter. A 

recurring theme documented throughout the literature review and from the 

results/findings of this project is the issue of pronounced vitamin D deficiency 

in LT PN populations. The critical extent and effect of this deficiency is not just 

limited to bone health complications, as vitamin D is continually being shown 

to be a critical health factor in many diseases (e.g. autoimmune diseases, 

cancer, cardiovascular disease, metabolic diseases). However some 

correlations are considered more tenuous opinions rather than evidence 

based (Theodoratou et al. 2014). Our finding that 30.1% of blood test results 

were inadequate (states of deficiency and insufficiency) for vitamin D (Chapter 

5) is paralleled by findings of similar studies (Thomson and Duerksen 2011; 

Kumar et al. 2012; Ellegerd et al. 2013; Murphy and Lewis 2016a; Nygaard et 

al. 2016); yet further studies would benefit from a comparator cohort such as 

the general population with similar baseline characteristics (age, sex etc) and 

absence of IF/disease. Nevertheless, the importance of the results 

demonstrated in this thesis in relation to vitamin D deficiency and the 

prevalence of MBD from a single cohort of patients speak volumes for long 

suspected issues observed in the PN field, now officially documented for a 

population of PN patients, rather than on a case by case basis. 

 

Where such pronounced widespread deficiency is observed in the PN 

population for vitamin D, there needs to be greater research efforts to confirm 

its stability in PN additives. This is in addition to the fact that a more sensible 
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and optimal dose needs to be included in PN additives, particularly since PN is 

the primary point for nutritional supplementation in this population. And 

especially still considering the current dose in PN additives is less than half the 

recommended daily dose for all adults in the general population (Scientific 

Advisory Committee on Nutrition 2016). 

 

It was a disappointment that research efforts to establish the stability of 

vitamin D in PN additives and PN formulations were unsuccessful. If stability 

could have been proven, one could have excluded instability of vitamin D 

within PN admixtures as a contributory factor towards the development of 

MBD in PN populations. However the likelihood is that patients receive 

suboptimal dosing from PN additives, and/or concomitant oral vitamin D 

supplementation is ineffective with patients’ reduced bowel length for 

absorption (Buchman et al. 2009; Vanek et al. 2012; Massironi et al. 2013). 

From a side-line view, it has been discovered that the two forms of vitamin D 

used for supplementation in PN have differing efficacy in raising 25-OH 

vitamin D levels and should not be regarded as equipotent or interchangeable. 

Ergocalciferol (D2) being significantly less efficacious than cholecalciferol (D3) 

(Houghton and Vieth 2006; Tripkovic et al. 2012). Perhaps the routine 

supplementation of Vitlipid N Adult® in lipid (3-in-1) bags is less effective in 

augmenting vitamin D levels than the use of Cernevit® in aqueous (2-in-1) 

bags. 

 

Research findings for TE have been particularly insightful throughout the 

project. More information has been elucidated for TE that are required in 

greater quantities (e.g. selenium) or in lesser quantities (e.g. manganese); 

whilst similarly demonstrating the inadequacy of the first-line UK licensed TE 

additive Additrace® for LT PN needs. These beliefs have been suggested in 

other publications (Van Rij et al. 1979; Abrams et al. 1992; Hardy et al. 2008; 

Hardy 2009; Shenkin 2009); now that the present study has demonstrated 

these findings in a HPN cohort, the findings are finally substantiated. Certain 

obstacles prevent optimal TE dose manipulation in PN. For instance, the 

refusal of homecare PN companies to start using newer or reformulated TE 
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additives (e.g. Nutryelt®, Addeven®), or the fact that manganese-free TE 

additives do not exist. 

 

A notable matter presented and discussed throughout the thesis is the variable 

nature of the HPN population, especially in terms of their patient and PN 

related factors. The inherent variability of numerous factors has presented 

itself as a finding in itself. For example, the variety and distribution of 

underlying disease leading to commencement of PN therapy, the variable 

lengths of remaining short bowel for SBS patients, their variable PN 

requirements (fluid, calories, electrolytes and micronutrients), variable 

degree of external oral nutritional consumption or the variable susceptibility 

and extent of nutritional abnormalities. However these considerations 

complicated research efforts for the smaller subset of a sample HPN 

population in this research. Future studies would benefit from greater patient 

numbers to allow sub-categorisation within each of these considerations and 

in turn produce specific findings related to patient sub-classes e.g. 

micronutrient dosing in patients with certain stoma types, PN requirements in 

patients with gastroparesis, or prevalence of vitamin D deficiency and/or bone 

disease in patients with GI obstruction. Recruitment would have to take place 

from multiple HPN centres in a UK-wide study to achieve greater participant 

numbers, in which case the study protocol and accompanying documentation 

would need to satisfy each individual NHS R&D department involved. While 

this study design would capture more meaningful data from many patients in 

terms of their disease classification, indication for HPN and the specifics of 

their PN formulation (e.g. the use of different PN additives); the practices 

relating to PN prescribing, monitoring and review may differ between the 

centres. 

 

9.1.2. Study design 

The study designs and methodological rationale chosen throughout the thesis 

befit the research aims; yet as with most projects, they would have benefited 

from a larger cohort of participants (and more data) for inclusion. The 

approach taken for the types of study designs in this thesis took into account 

all the factors mentioned in the following limitations section and represent the 
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best possible way of utilising, analysing and presenting the data (and data 

findings) to best effect for the aims of the PhD project. 

 

For future studies assessing micronutrient status with the intention of 

correlating patient disease states and micronutrient doses to states of 

deficiency or excess, a different statistical approach may be sought. By using 

greater participant numbers and HPN centres, patients might fit into better 

categorical time points (in relation to time point starting PN and duration 

receiving PN) and methods employing a greater statistical emphasis may be 

used. For instance, the use of Wilcoxon’s test to compare blood test results pre- 

and post-treatment intervention (e.g. vitamin D or bisphosphonate); or 

Pearson’s correlation between blood test results (e.g. calcium, phosphate, 

vitamin D), bone scores (BMD, T, Z) and/or PN parameters (doses of calcium, 

phosphate, vitamin D). 

 

9.1.3. Study implications 

Overall, our research findings have generalisable benefits and implications for 

the field of PN going forward in light of the developments made from this 

project. The extent to which micronutrient abnormalities occur in LT PN 

patients is now known, and practical implications as to how to manage them 

have been documented, with suggestions to future research and PN additive 

compositions. 

 

The evaluation of the suitability of Additrace® and its correlation to patient 

micronutrient status showed that prescriber directed manipulation of 

micronutrient dosing in PN was the most effective, resulting in micronutrient 

tests within the reference range. Now, with the confirmed awareness of 

specific themes for nutritional abnormalities, other centres can adopt similar 

prescribing approaches to those of C&V UHB if they notice similar nutritional 

abnormalities occurring during routine monitoring. 

 

Early research steps have been undertaken regarding assessment of vitamin D 

stability in PN additives, its extent for deficiency and associated documented 

MBD in HPN populations. Yet there is still scope for substantial further 



 241 

research efforts in these areas, particularly in correlating patient vitamin D 

status with MBD. Focus can be aimed at ensuring manufacturing companies 

and home PN companies license and provide PN additives of more rational and 

sensible composition. 

 

While the various studies in this project have contributed to the body of 

knowledge surrounding PN, they have also highlighted areas for further 

research and improvements. 

 

9.1.4. Critical appraisal of research findings 

The successive research findings from the present PhD project took a natural 

flow in terms of research journey. The potential inadequacy of compound 

micronutrient preparations for patients’ LT PN requirements was first realised 

during the cross-sectional study in Chapter 3 when it discovered that only 

20.3% of patients received the TE preparation Additrace® in their PN 

regimens; similarly the other preparations were used in PN to a less than 

expected degree (89.8%, Cernevit®; 39.0%, Solivito N®; 37.3%, Vitlipid N 

Adult®). These simple yet notable research findings set the scene for 

subsequent studies investigating micronutrient provision in LT PN. The 

literature further revealed both expert opinion and documented evidence of 

concern regarding the under-provision (selenium, vitamin D) and over-

provision (manganese) of micronutrients, alongside publication of nutritional 

derangement for other micronutrients. Research aims for the PhD were set to 

explore the adequacy of provision of micronutrients in LT PN. 

 

A key publication by Vanek et al. (2012) accurately describes the current 

issues and considered opinion amongst PN clinicians regarding with 

micronutrient provision in LT PN. It describes micronutrient requirements 

according to recommendations and describes how some requirements were 

based on oral requirements without consideration for the differences specific 

to the intended population (LT PN patients) e.g. increased micronutrient 

requirements in critical or chronic illness. Ultimately, recommendations are 

given for pressing areas of further research and reformulation of PN 

micronutrient additives. The present PhD project has been able to further 
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substantiate links between nutritional abnormalities and clinical 

complications as well as document the degree of inadequacy of the 

micronutrient preparation Additrace®. 

 

9.1.4.1. Manganese 

A preliminary finding from earlier stages in the PhD was that Additrace® was 

only included in 20.3% of patients’ PN regimens, suggesting that there were 

problems with its suitability for the LT PN patient cohort to require its 

exclusion from PN. Chapter 5 revealed that 50.6% of patients’ blood test 

results were in excess (i.e. states of toxicity); presumably the primary reason 

for the preparation’s removal from patients’ PN regimens since long-standing 

manganese excesses are associated with potentially irreversible 

parkinsonian-like effects, confusion, seizures and deposition in brain and 

neural tissues (Dickerson 2001). This avenue was then further followed up in 

Chapter 8 which assessed the adequacy of micronutrient provision from 

Additrace® via correlation with patients’ blood test data (according to the 

prescription and blood test data pairing model). Firstly, less data was 

applicable to “C1: Additrace® (Yes) Extra TE (No)’ according to the data model; 

again due to the known unsuitability of Additrace® for LT PN requirements. 

Secondly and as expected, the data-pairing model was able to show that more 

manganese blood test results were in range without the inclusion of 

Additrace® (or any supplemental manganese, since no singular preparation 

exists) in patients’ PN (54.8% cf. 31.71%). Although a successful research 

finding which affirms that the excessive manganese dose in Additrace®, there 

is still scope to ascertain the optimal requirements for both LT PN patients and 

the general population. It is troubling that 45.2% of blood test results should 

still be in excess without any known supplementation of manganese in 

patients’ PN, suggesting TE contamination of PN may still be responsible, a 

research area which has waned in recent years (Pluhator-Murton et al. 1999; 

Hardy et al. 2008)  
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9.1.4.2. Copper, zinc and selenium 

Again, starting with the initial finding that Additrace® was only included in 

20.3% of patients’ PN regimens, the preparation was perceived as unsuitable 

for LT PN patients’ needs. The assessment of micronutrient status in Chapter 

5 then demonstrated a greater number of deficient blood test results for 

selenium (32.8%); alongside more modest derangement of results for copper 

and zinc, although still somewhat unexpectedly out of range [copper (def, 

12.4%; in excess 7.7%), zinc (def, 5.8%; in excess, 11.6)]. These findings were 

then followed up in the penultimate chapter which correlated the doses of TE 

in patients’ PN regimens (from both Additrace® and/or additional 

supplementation) with their corresponding micronutrient status. It was 

further corroborated that TE preparations do not satisfy patients’ selenium 

requirements after it was found that 40.0% of patients’ blood test results were 

deficient just from the provision of Additrace® (without supplemental 

additions of selenium) in their PN. However, the difficulty in meeting patient 

requirements was also demonstrated, since 35.14% of blood test results were 

deficient even when there was direct manipulation of the selenium doses in 

patients’ PN regimens. Selenium deficiency is well-referenced in the literature 

(Levander 1984; Abrams et al. 1992; Shenkin 2009; Etani et al. 2014; Chen et 

al. 2016). Other studies have noted deficiency using Additrace® with/without 

supplemental dosing (Fuhrman 2006; Btaiche et al. 2011; Parrish 2014; 

Murphy and Lewis 2016b), yet the findings from the present study are the first 

to implement productive analysis using a data-correlation model based on the 

presence on the PN additive Additrace® (with or without extra TE provision). 

The data-correlation model was able to accurately define the general selenium 

requirements of the LT PN population at C&V UHB as 800µmol/day. 

 

Regarding copper, Chapter 5 showed that 12.4% and 7.7% of results were 

deficient and in excess, respectively. While less tangibly in extreme states of 

derangement (by comparison to selenium and manganese), further analyses 

in Chapter 8 demonstrated that Additrace® catered well for patients’ copper 

requirements (deficient, 11.8%; in range, 77.6%; in excess, 10.5%) with 

similar incidences for states of deficiency and excess. It is difficult to gauge 

explanations for these findings, yet it is reassuring that a large proportion of 
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data were in range. Further still, a greater proportion of paired data were in 

range when TE in patients’ PN were manually manipulated by clinicians, 

rather than sole use of a compound TE preparation (Chapter 8: C1, 100%; C3, 

85.1%). Despite our findings, evidence from the literature suggests that 

copper toxicity is still the prevailing problem, since the copper dose in both 

Nutryelt® (4.7µmol) and Addeven® (6.3µmol) has been decreased from the 

20µmol in Additrace® (ASPEN Board of Directors and the Guidelines Clinical 

Task Force 2002; Blaszyk et al. 2005; Howard et al. 2007; Shike 2009; Vanek 

et al. 2012; Gaetke et al. 2014). It is difficult to interpret the context of findings 

for results relating to copper provision since it is a known TE contaminant of 

PN, increased serum representation during the APR and late presentation in 

clinical deficiency. 

 

Similar to copper, Chapter 5 showed no substantial findings to be elucidated 

for the TE zinc (deficient, 5.8%; in range, 82.6%; in excess, 11.6%), a slight 

trend for toxicity being observed. The analyses in Chapter 8 then showed that 

Additrace® alone catered well for the general needs of the LT PN population 

(C2, 94.9%). When Additrace® was given with extra supplemental zinc for a 

smaller number of data (n=22 pairs), 95.5% of zinc blood tests were in range. 

Again, showing that clinician-directed TE manipulation in PN was associated 

with more blood tests within reference range. These findings probably explain 

why the zinc doses in Nutryelt® and Addeven® were increased to 153µmol (cf. 

100 µmol in Additrace®), in line with documentation in the literature of zinc 

deficiency in PN patients (Yanagisawa 2004; Daniells and Hardy 2010; Duncan 

et al. 2012; Vanek et al. 2012). 

 

Through the correlation of patients’ PN prescription TE doses and blood test 

results, it was possible to recommend optimal TE doses for copper, selenium 

and zinc to maintain TE status within range, based on the general 

requirements of the population of LT PN patients at C&V UHB (10µmol copper, 

800nmol selenium, 100µmol zinc;/day).  
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9.1.4.3. Vitamin D 

A notable theme in the literature is the concern regarding vitamin D deficiency 

in the PN population and its association with adverse bone health (Raman et 

al. 2006; Hamilton and Seidner 2008; DeLuca 2009; Nygaard et al. 2016). The 

key finding from Chapter 5 found that for the patients registered with C&V 

UHB, 30.1% of their blood tests demonstrated inadequate vitamin D status 

(states of both deficiency and insufficiency). This finding links in with findings 

of later sections where it was shown that increasing duration of time requiring 

LT PN was associated with worsening bone health (Chapter 7). The theoretical 

link being that longstanding inadequate vitamin D status contributed to the 

worsening of patients’ bone health. The main finding to demonstrate this link 

was the longitudinal net loss in patients’ Z-scores between their 1st and 2nd 

DEXA scans since receiving LT PN (0.0367, femoral neck; 0.0733, total hip). 

Similarly, another key finding from Chapter 7 was the cross-sectional 

presentation of 58% and 60.78% of patients having osteopenia at sites of the 

femoral neck and total hip, alongside osteoporosis in 28% and 19.61% at the 

same respective sites; thus demonstrating the prevalence of bone disease in 

the consenting sample of C&V UHB patients receiving LT PN. These findings 

are supported by Raman et al. (2006) in which 33% had MBD at the spine and 

hip, and 50% at the femoral neck. Similarly, they noted a negative correlation 

between the duration of HPN and BMD results (r= -0.40), in that bone health 

deteriorated with increasing time receiving PN. However, it should be noted 

that these findings were from less patients (n=25) and collective states of 

osteopenia and osteoporosis; nether the less, they are in agreement with the 

findings from this PhD.  

 

Factors contributing to patients’ sub-optimal vitamin D status (30.1% of blood 

tests, Chapter 5) were further explored in Chapter 6, in which the stability of 

vitamin D was investigated within compound PN preparations which are used 

in the formulation of patients’ PN admixtures. This chapter yielded 

disappointing results by reference to the proposed chapter aims. There were 

limitations with the laboratory equipment and methods to feasibly detect 

vitamin D, and unfortunately no time-duration stability tests (e.g. 24/48 hours, 

7 days) were able to be performed. Despite this, vitamin D was still 
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successfully identified from samples of Vitlipid N Adult®. However, this was at 

its full concentration (5µg/10mL) prior to dilution in large volume PN 

admixtures and it could only be reproduced at its LOQ, meaning that no further 

stability studies were possible. This finding can still be interpreted to show the 

difficulty in even assessing the presence (let alone stability) of vitamin D in PN 

additives. Significant further research is required to ascertain whether 

patients are receiving the full intended dose of vitamin D from these additives 

i.e. ruling out whether vitamin D could degrade over within the admixture, or 

upon exposure to external factors such as heat or light, or whether vitamin D 

interacts with other components in the PN admixture (e.g. a chemical reaction 

or cohesion to other components).  

 

Although it is hard to quantify the amount of vitamin D patients receive outside 

their PN regimens (e.g.  it is also synthesised cutaneously from light exposure) 

and the absorption of vitamin D on an individual patient basis cannot not be 

determined, the cross-sectional survey in Chapter 3 noted 61% of patients 

received concurrent vitamin D supplementation outside of their PN within the 

preceding year. It can be thought that the low dose of vitamin D in PN additives 

(by comparison to updated guidance on dietary reference intakes) alongside 

its unproven stability in PN and the inherent nature of on-going LT PN therapy, 

exposes/ or is associated with risk for the development of bone disease in 

these patients (e.g. MBD) (Scientific Advisory Committee on Nutrition 2016). 
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9.2. LIMITATIONS AND CHALLENGES 

A particular challenge in the earlier stages of the PhD was applying for access 

to NHS patient data with the intention of undertaking research. Ideally more 

HPN centres would have been recruited and included in data analysis but the 

application process for even a single centre was laborious in terms of 

satisfying both NHS ethics and R&D approval requirements, especially as a 

research student from outside the NHS organisation. Eventually permissions 

were approved and satisfied amongst all parties, allowing the research project 

to proceed and resulting in a remarkably successful recruitment rate of 64.5%. 

Fortunately, in the later stages of the PhD, R&D permitted the service 

evaluation approval for a final study section for the PhD, this allowed inclusion 

of all patients registered on the IF clinic list register receiving LT PN, rather 

than a consenting sub sample of the patient cohort; ultimately permitting total 

data capture within the time period for the study in Chapter 8.  

 

It became apparent during data collection that prescription changes and 

monitoring decisions resulted from the intervention of a small number of staff 

members. There is the chance that the findings from this PhD are 

representative of the actions of a few professionals. On the other hand, this 

could be considered a positive finding in that the extracted data was not 

affected by variable healthcare practices. 

 

Another challenge presented itself in being able to satisfy study designs to 

feasibly achieve the research aims in light of the numerous confounding 

factors inherent to the PN population. Examples of these variable factors 

include: disease state, indication for PN, co-morbidities, PN requirements, oral 

intake outside of the PN regimen, duration receiving PN, blood test monitoring 

intervals and time points for PN prescription changes and review. 

 

In addition, there was the realisation during planning of the studies of the 

difficulty in attributing and correlating patients test results for micronutrient 

status to their micronutrient provision in PN. For instance, the fact that 

vitamin D is also synthesised from UV exposure, or that patients may get 

variable intake of micronutrients from their oral diet, or that patient review 
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and monitoring occurs are irregular time points, that patients were initiated, 

maintained and weaned off PN across different time point, or that their PN 

regimen may have undergone manipulation during this time (calorie, fluid, 

micronutrient dose changes). 

 

The micronutrient data capture from this PhD relates solely to the use of 

Additrace® and/or manual supplementation using singular TE preparations 

(where preparations exist and are permitted by PN stability); a considered 

limitation since newer preparations do exist. However there appears to be a 

barrier in the form of getting homecare PN companies to incorporate these 

preparations in their manufacture of PN. For the companies to permit their 

addition to PN, they have to assess and determine the stability of overall PN 

formulation across a range of different PN formulations (as observed with HPN 

patients). There is also the business angle, in that homecare companies would 

rather use a product they own/market/distribute themselves over a 

competing product from a different supplier. One wonders whether nutrition 

teams should lobby for the implementation of these newer preparations. 
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9.3. FUTURE WORK AND RECOMMENDATIONS 

While the present project has delivered respectable research findings, there 

exist opportunities for improvement in further studies in applicable areas of 

PN research. 

 

A well mentioned limitation throughout the thesis is the desire to have had 

greater participant numbers in order to produce more generalisable findings. 

Yet, in actuality, the recruitment rate for the HPN population in this project 

should still be considered respectable since C&V UHB caters for the LT PN 

needs of almost all patients in Wales, in what is otherwise a naturally small 

population of affected patients in the UK. Also, characteristically the data 

gleaned from each participant can be considered ‘data-rich’ as it included all 

relevant data over the time they received PN. Hopefully future studies will be 

able to recruit more patients across a selection of HPN centres. 

 

Successful research findings were discovered in Chapter 8 when correlating 

micronutrient dosing to blood test results. Future use of this comparative 

cross-sectional methodology in PN studies would be beneficial to contrast and 

compare the nutritional effectiveness of different PN additives, or to explore 

the effectiveness of different interventions in optimising patient micronutrient 

status (e.g. two vitamin D preparations/doses). 

 

The incorporation of secondary health-related outcome measures (e.g. QOL 

questionnaires) would prove useful for assessing patient response to PN 

therapy. Particularly if patients had demonstrated nutritional deficiencies or 

excesses (perhaps symptomatic) over time and the QOL instruments could 

detect sensitivity/responsiveness to change. 

 

There should be greater effort to optimise the nutritional benefit of PN 

wherever possible, rather than incurring successive costs for other IV 

infusions (e.g. vitamin D, iron). Or similarly with heavy duty medication needs 

such as high dose oral vitamin D, where the aim is to get as great a dose as 

possible absorbed in patients with a short bowel. By supplementing PN in the 

more rational first instance it would ensure that a known fixed dose of 
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micronutrient bypasses absorption straight into the bloodstream, without 

incurring secondary administration costs or medicines wastage. However this 

recommendation relies entirely on developing and proving stability PN 

formulations with the presence of extra and/or greater quantities of 

micronutrients. 

 

While the nutritional benefit of PN should be optimised in the first instance for 

all patients, alternative strategies to optimise patient micronutrient status 

should be considered. For example, should vitamin D supplementation in PN 

continue to be a problem, perhaps delivery methods other than IV/oral should 

be considered. An example being an intranasal salmon calcitonin spray 

(delivering 200IU vitamin D) being associated with a significant reduction in 

the risk of new vertebral fractures in postmenopausal women with 

osteoporosis (Chesnut et al. 2000). 

 

9.3.1. Key recommendations 

In light of the research findings elucidated from the outcomes of this PhD 

project and in order to improve/progress within the field of micronutrient 

dosing in LT PN, the following key recommendations are proposed: 

- The newer TE preparations must be used in clinical practice (e.g. 

Addeven® and Nutryelt®). Their composition has been based on expert 

feedback and evidence from the literature. It is only through their 

clinical use in LT PN that evidence of their clinical effectiveness can be 

proven. 

- Pharmaceutical companies must reformulate their compound TE 

preparations so that they are more suitable for the general needs of the 

population. Where possible and feasible, this includes: 

o Ideally, a range of PN preparations to cater for the variable 

needs of the LT PN population need to be available, i.e. for 

patients with greater/reduced TE requirements. Or, for patients 

with particular clinical co-morbidities e.g. impaired liver 

excretory function/cholestasis, in which case preparations with 

less copper and manganese would be beneficial (Staun et al. 
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2009) 

o Similarly, singular TE products should be available for all the 

essential TE (not just copper, iron, selenium and zinc) to permit 

more precise TE manipulation for more sensitive 

patients/patient requirements or when requirements are 

beyond the remit of compound TE preparations. 

o Preferably, when new micronutrient preparations are 

introduced to the market, they should already satisfy a range of 

physical PN stability limits. As one would expect for the variable 

PN requirements in LT PN patients (i.e. extremes of calorie and 

fluid requirements per PN formulation, which can significantly 

impact the stability/expiry of the PN formulation). Current 

‘newer’ preparations have faced opposition to routine inclusion 

in LT PN because they do not have supportive data for the 

extremes of bespoke PN. 

- The area of TE contamination requires significant further research; of 

late, research has dwindled or is lacking. Dated research states that 

aluminium, chromium, copper and manganese are particularly 

problematic contaminants of PN (during its aseptic manufacture) 

(Hardy 2009; Moukarzel 2009; Lima-Rogel et al. 2014); yet since 

publication, little has been researched or implemented as corrective 

actions or as recommendations. Future research should: 

o Accurately define the TE which are problematic contaminants of 

PN admixtures. 

o Quantify the extent of possible contamination. Would be useful 

to gauge extent of possible contamination beyond intentional 

supplementation e.g. for copper and iron. 

o Suggest recommendations to avoid possible contamination. 

o Define cut-off limits for the presence of ubiquitous TE 

contaminants in PN e.g. concentration of x per mL of PN. 

o HPN councils/groups should state guidance for how to manage 

possible PN contamination e.g. ESPEN, ASPEN. 
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- HPN centres should monitor (or find a way to monitor) other important 

micronutrients provided during LT PN. For instance, iron and vitamin 

K are not monitored by C&V UHB yet evidence in the literature suggests 

that there are current issues associated with their optimal provision 

during LT PN (iron-deficiency anaemia and bleeding syndromes, 

respectively). Particularly for vitamin K which is only provided in one 

vitamin preparation (Vitlipid N Adult®) and naturally present in lipid 

emulsions. 

 

Further studies investigating micronutrient dosing (with both vitamin and TE 

compound PN additives) and nutritional status in LT PN should include: 

- Investigation into the provision of LT PN being performed on a larger-

scale basis with the inclusion of greater participant numbers from 

multiple HPN centres; thereby consolidating stronger research findings 

resulting from variable PN practices. 

o Greater participant numbers would ensure that research 

findings for the assessment of micronutrient status across 

different diagnoses, indications (for HPN) and disease states 

would incur greater validity and context. 

- Future work investigating micronutrient status in PN should quantify 

the degree of the effect of the APR on the accuracy of reported 

micronutrient blood test results. 

- Studies investigating the degree of TE contamination during PN 

compounding (aluminium, chromium and manganese). 

- Comparison studies: 

o Comparison study of incidence of nutrition abnormalities in 

those given solely a fixed dose compound micronutrient 

preparation versus those who had necessitated removal of the 

preparation and subsequently require manual micronutrient 

manipulation in their PN (after evidence of nutritional 

derangement e.g. manganese) 

o Comparison between patients’ micronutrient status between 
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the use of different TE PN preparations in their PN regimens. 

 

9.3.1.1. Vitamin D 

In relation to vitamin D, the following recommendations are proposed for 

future research: 

- Future work that correlates patient vitamin D status with bone health 

measurements. The findings observed in Chapter 7 of the present PhD 

project confirmed patient bone health deteriorated with increasing 

duration of time receiving LT PN. 

- The implementation of cohort intervention studies to investigate the 

effectiveness of treatment/supplementation strategies in LT PN 

patients to aim to increase vitamin D status. For example, the use of 

particular strength vitamin D preparations in SBS patients requiring LT 

PN e.g. 4000IU daily for ten weeks for patients with x length of bowel 

remaining. 

- The use of cohort comparison studies to compare vitamin D status in 

LT PN patients against the general population. Or between different 

groups of LT PN patients. For instance, by underlying disease 

classification or indication for PN, or by grouped age categories e.g. pre 

and post-menopausal. Or further still, by patients grouped according to 

the concurrent treatments they receive, e.g. steroids or 

bisphosphonates. The rationale being that medication and patient age 

have effects on bone health, and research aims would aim to establish 

the effect of LT PN on bone health. 

- The use of further laboratory techniques to establish the stability of 

vitamin D in PN (e.g. MS-HPLC) by excluding its instability within the 

PN admixture as a potential reason for inadequate vitamin D status in 

patients. This avenue would include contacting the authors of 

published assays to clarify their methods for the detection of vitamin D, 

since repeated methods during this project were unsuccessful. Nether 

the less, the low dose of vitamin D in large volume PN admixtures may 

require future work to include sample clean-up preparation such as 
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solid phase extraction and calculation of percentage recovery. 

 

9.4. CONCLUSION 

PN acts as a vital therapy for patients with long-standing and life-threatening 

conditions; as its continued use and reliance continues to gather pace in the 

progressive modern healthcare setting (e.g. in conditions such as cancer or in 

areas where there is now greater access to PN services). In its entirety, this 

PhD project has covered considerable ground within the area of LT PN and 

meeting patients’ LT nutritional requirements. Further research should follow 

up the research findings and recommendations that have been proposed in 

each study subsection. In doing so, ensuring that the provision of PN keeps up 

with standards of quality practice and improvement, ultimately helping to 

make sure the nutritional benefit of PN is continually optimised for all patients.  

 

Key findings relate to the characteristic description of HPN patients from a 

cross-sectional perspective, the clarification of long suspected and now 

confirmed micronutrient dosing issues for LT PN patients. In particular, the 

inadequacy of PN additives to provide optimal doses of vitamin D, selenium 

and manganese. Within each chapter, pertinent issues have been discussed in 

great depth alongside evidence from published literature. While substantial 

leaps in research findings have been made, there is still great scope for further 

research in each of the areas studied within this project; especially for efforts 

to establish stability of vitamin D in PN and to cross-correlate patient vitamin 

D status to the development of MBD while receiving LT PN. 
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APPENDIX VIII – PREPARATION FORMULATIONS 

1. Cernevit® 

The active ingredients include: retinol (as palmitate) 3500 IU, cholecalciferol 

5.5mcg (220IU), dl-alpha-tocopherol 10.2mg 11.2IU, ascorbic acid 125mg, co-

carboxylase tetrahydrate 5.8mg (thiamine 3.51mg), riboflavin dehydrated 

sodium phosphate 5.67mg (riboflavin 4.14mg), pyridoxine hydrochloride 

5.5mg (pyridoxine 4.53mg), cyanocobalamin 0.006mg, folic acid 0.414mg, 

dexpanthenol 16.15mg (pantothenic acid 17.25mg), d-biotin 0.069mg and 

nicotinamide 46mg. The other inactive ingredients are glycine 250mg, 

glycocholic acid 140mg, soybean phosphatides 112.5mg, sodium hydroxide 

and hydrochloric acid q.s. 

 

2. Vitlipid N Adult® 

The active ingredients are retinol (as palmitate) 990 mcg, ergocalciferol 5mcg 

(200IU), dl-alpha-tocopherol 9.1mg and phytomenadione (vitamin K1) 

150mcg. The inactive ingredients are fractionated soybean oil 1g, fractionated 

egg phospholipids 120mg, glycerol 225mg, sodium hydroxide q.s. and WFI to 

10mL. 

 

3. Additrace® 

Each 1mL of Additrace® contains the active ingredients: ferric chloride 

540mcg, zinc chloride 1.36mg, manganese chloride 99mcg, copper chloride 

340mcg, chromic chloride 5.33mcg, sodium selenite 10.5mcg, sodium 

molybdate 4.85mcg, sodium fluoride 210 mcg and potassium iodide 16.6mcg. 

Other excipients include xylitol, hydrochloric acid (for pH adjustment) and 

water for injections to 10mL. 
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3. Conferences and meetings 

3.1. Poster presentations 

April 2015:  

Cardiff School of Pharmacy and Pharmaceutical Sciences Postgraduate 

Research Day, Cardiff, UK. 

 

September 2016:  

Royal Pharmaceutical Society Annual Conference, Birmingham, UK. 

3.2. Oral communications 

April 2016:  

Cardiff School of Pharmacy and Pharmaceutical Sciences Postgraduate 

Research Day, Cardiff, UK. 
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Research & Development Conference, International Clinical Trials Day, 

University Hospital of Wales, Cardiff, UK. 

June 2016:  

The Allied Healthcare Professional (AHP) Conference, University of Wales, 

Cardiff, UK

 


