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ABSTRACT

Supervoxels are perceptually meaningful atomic spatio-
temporal regions in videos, which has great potential to
reduce the computational complexity of downstream video
applications. Many methods have been proposed for gen-
erating supervoxels. To effectively evaluate these methods,
a novel supervoxel library and benchmark called LIBSVX
with seven collected metrics was recently established. In this
paper, we propose a new compactness metric which measures
the shape regularity of supervoxels and is served as a nec-
essary complement to the existing metrics. To demonstrate
its necessity, we first explore the relations between the new
metric and existing ones. Correlation analysis shows that the
new metric has a weak correlation with (i.e., nearly indepen-
dent of) existing metrics, and so reflects a new characteristic
of supervoxel quality. Second, we investigate two real-world
video applications. Experimental results show that the new
metric can effectively predict some important application
performance, while most existing metrics cannot do so.

Index Terms— Supervoxel, compactness, video segmen-
tation, metric evaluation

1. INTRODUCTION

Supervoxels are perceptually meaningful atomic spatio-
temporal regions in videos, which are obtained by group-
ing similar voxels. Here similarity is defined in terms of
coherence in both appearance and motion in a video. In-
stead of voxels, using supervoxels as basic elements has
great potential to reduce the complexity of downstream video
applications, e.g., foreground object segmentation [1] and
spatiotemporal closures in videos [2], etc.

Many methods have been proposed to generate supervox-
els with different characteristics (e.g., [3–10]). To effectively
evaluate these methods, a novel supervoxel library and bench-
mark called LIBSVX was recently established [11]. LIBSVX
includes six video datasets with a variety of content types and
dense human annotations as ground truth. Seven widely used

Y.J. Liu is the corresponding author. This work was supported by the
Natural Science Foundation of China (61661130156, 61725204), BNRist and
the Royal Society-Newton Advanced Fellowship (NA150431).

metrics are also collected in LIBSVX for evaluating the per-
formance of different supervoxels, which are briefly summa-
rized below.

Existing metrics. 3D under-segmentation error (UE3D),
3D segmentation accuracy (SA3D) and boundary recall dis-
tance (BRD) are three standard metrics for measuring su-
pervoxels’ adherence to object boundaries [10–12]. UE3D
and SA3D measure the tightness of supervoxels that over-
lap with ground-truth segmentation. BRD measures how
well the ground-truth boundaries are correctly retrieved by
the supervoxel boundaries. Smaller UE3D and BRD values,
and higher SA3D values indicate better supervoxels. La-
bel consistency (LC) [10] measures how well supervoxels
track parts of objects and can only be evaluated on datasets
with ground-truth optical flow; therefore, we do not compare
LC in this paper. The evaluation of UE3D, SA3D, BRD
and LC relies on dense human annotations in videos. Three
human-independent metrics, including explained variation
(EV) [13], mean size variation (MSV) [10] and temporal ex-
tent (TEX) [6, 14], are also widely used. EV measures the
color variations in supervoxels and a large EV indicates that
the color in each supervoxel is close to homogeneity. MSV
and TEX measure the size variation and average temporal
extent of all supervoxels in a video.

Our contributions. None of the existing metrics consider
the shape regularity of supervoxels. By replacing voxels by
supervoxels, many real-world video applications (e.g., [1, 2])
construct a spatiotemporal supervoxel graph and minimize
some energy functions. The shape regularity of supervoxels
has a direct influence on the complexity of this spatiotempo-
ral supervoxel graph, and therefore, directly affects the per-
formance in these applications. In this paper, we propose
a new compactness metric (CP) with two possible formulas
to measure the goodness of supervoxels. A compact super-
voxel with a high CP value has a regular shape and smooth
boundary. Two contributions are made in this paper. First,
correlation analysis is presented, showing that the CP met-
ric has a weak correlation with (i.e., nearly independent of)
existing metrics, and so reflects a new characteristic of su-
pervoxel quality. Second, two real-world video applications
are selected, and experimental results on them show that the
CP metric can effectively predict some important application
performance, while most existing metrics cannot do so. These
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Fig. 1. Qualitative results of seven representative supervoxels on a video clip from the SegTrack v2 dataset [15]: GB [4],
GBH [5], streamGBH [6], SWA [7], MeanShift [8], NCut [9], and TSP [10]. Supervoxels are illustrated by clipping them on
each frame and a color indicates a supervoxel. The results clearly show that TSP has the best compactness and GB has the
worst compactness. The values of both metrics CP1 and CP2 are also presented, which coincide with the qualitative results.

two contributions reveal that the new proposed CP metric is a
necessary complement to existing metrics.

2. COMPACTNESS METRICS FOR SUPERVOXELS

In this section, we propose two compactness metrics which
measure the shape regularity of supervoxels. The weak cor-
relation between them and existing metrics is verified in Sec-
tion 3. Their ability to predict some important application
performance on two selected video applications is presented
in Section 4.

2.1. Metric CP1

Our first compactness metric CP1 makes use of the 3-
dimensional isoperimetric inequality:

Area(Ω) ≥ 3V ol(Ω)
2
3V ol(B1)

1
3 (1)

where Ω ⊂ R3 is a connected region, B1 is a unit ball,
Area(Ω) and V ol(Ω) are bounding surface area and volume
of Ω respectively. In formula (1), the equality holds when Ω
is a ball.

The relation1 between isoperimetric quotient and shape
regularity can be explained by the well known physical phe-
nomenon: When the volume of water in a drop is fixed, the
surface tension will force the drop into a smooth shape (i.e.,
a round sphere which is most regular) by minimizing the sur-
face area of the drop.

Let S = {s1, s2, · · · , sK} be a given set ofK supervoxels
which over-segments a video clip. We define

CP1(S) =
∑
si∈S

|si|
N
Q1(si), (2)

where

Q1(si) =
6
√
πV ol(si)

Area(si)
3
2

, (3)

1For a visual illustration, see http://demonstrations.
wolfram.com/IsoperimetricInequalityForPolygons/.

|si| is the number of voxels in si,N is the number of voxels in
the entire video, and Q1(si) is the isoperimetric quotient for
supervoxel si. The coefficient |si|

N in (2) makes each super-
voxel contribute to the compactness metric adaptively by its
own size. The value of the metricCP1 has a normalized range
[0, 1]. The larger this value is, the more regular the shape of
supervoxels is.

2.2. Metric CP2

Our second compactness metric CP2 is based on the same
observation as used in isoperimetric inequality: Given a fixed
value of bounding surface area, a larger number of voxels in
a supervoxel (equally the larger volume of a supervoxel) in-
dicates a higher compactness value. However, CP2 makes
use of a ratio between the number |B(si)| of boundary voxels
B(si) and the number |si| of total voxels in a supervoxel si,
which is much simpler to evaluate than CP1:

CP2(S) = 1−
∑
si∈S

|si|
N
Q2(si), (4)

where

Q2(si) =
|B(si)|
|si|

(5)

The value of the metric CP2 also has a normalized range
[0, 1], where

• 0 is reached when all voxels in each si are boundary
voxels, meaning that all si have a very curved, narrow-
banded shape, and

• 1 is reached when the volume of regular supervoxel
(such as spherical or cubic shapes) approaches infinity.

Similar toCP1, a higher value ofCP2 means that supervoxels
are more compact.

Both metrics of CP1 and CP2 can effectively distin-
guish the shape regularity of different supervoxels. Figure 1
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Fig. 2. Comparison of the discriminative powers of CP1 and CP2 for seven representative supervoxels on four video datasets:
BuffaloXiph [16], SegTrack v2 [15], BVDS [17, 18] and CamVid [19].

shows an example, in which from qualitative results of seven
representative supervoxels, one can clearly distinguish that
TSP [10] obviously has the best compactness and GB [4] has
the worst compactness. The values of CP1 and CP2 coincide
with this observation.

2.3. Comparison of CP1 and CP2

Although both CP1 and CP2 can indicate the shape regular-
ity of supervoxels, they have different discriminative powers.
As shown in Figure 1, the differences among CP1 values is
significantly larger than those among CP2 values.

We further investigate the discriminative powers of CP1

and CP2 for the seven representative supervoxels (GB [4],
GBH [5], streamGBH [6], SWA [7], MeanShift [8], NCut [9],
and TSP [10]) on four video datasets, i.e., BuffaloXiph [16],
SegTrack v2 [15], BVDS [17, 18] and CamVid [19], which
have human-annotated groundtruth labels. The results are il-
lustrated in Figure 2, which clearly show that CP1 can better
separate the compactness values of different supervoxels than
CP2, and thus, has a better discriminative power. In the re-
mainder of this paper, we only evaluate CP1.

3. CORRELATION WITH EXISTING METRICS

We introduce the compactness metric to emphasize an impor-
tant property of supervoxels — shape regularity, which has
not been systematically evaluated before. But compactness is
not expected to be decisive for a good supervoxel algorithm
by itself. We propose this new metric not to replace the ex-
isting metrics, but as a necessary complement to them. When
two supervoxel algorithms have similar performance on ex-
isting metrics, we prefer the one with better compactness,

Table 1. Correlation analysis for compactnessCP1 and exist-
ing supervoxel metrics on the BuffaloXiph dataset (the num-
ber indicates the correlation coefficient). Similar performance
is observed on the other three datasets SegTrack v2, BVDS
and CamVid.

UE3D SA3D BRD EV MSV TEX
CP1 −0.23 −0.08 0.18 0.14 −0.03 −0.52

because a method with higher compactness values generates
more regularly-shaped supervoxels.

To explore the relation between compactness CP1 and
existing metrics, we conduct a correlation analysis between
them (see Table 1). The results indicate weak correlation
between CP1 and UE3D, SA3D, BRD, EV and MSV. The
medium negative correlation between CP1 and TEX is be-
cause the temporal extent of supervoxels affects their shape to
some extent. Compactness is nearly independent from other
metrics, which indicates its ability to reflect a new aspect of
supervoxel quality.

4. APPLICATION PERFORMANCE PREDICATION

In many real-world video applications, the solution relies on
minimizing an energy function defined on a spatiotemporal
supervoxel graph in a video clip. The shape regularity of
supervoxels has a direct influence on the complexity of this
spatiotemporal supervoxel graph, and thus, affects the appli-
cation performance. Dependent on different energy forms,
the application performance affected by supervoxels’ com-
pactness can be either the running time (Section 4.1) or the
accuracy (Section 4.2).



Table 2. Performance of foreground propagation task on
two supervoxels GBH and TSP, averaged on Youtube-Objects
Dataset [20] (Best results are shown in bold).

Method Running time Accuracy
Time (sec) CP1 UE3D SA3D BRD F1

GBH 126.62 0.0439 3.5781 0.8929 1.8567 0.7409
TSP 99.28 0.1795 1.7952 0.8705 3.7914 0.7232

4.1. Foreground propagation

Given the first frame with an annotated foreground object,
Jain and Grauman [1] propose a novel method to propagate
the foreground region through time, by using supervoxels
to obtain long-term coherent estimates. A spatio-temporal
graph was constructed based on supervoxels and optical flow,
in which a Markov random field is developed with a well-
defined energy function consisting of unary, pairwise and
higher order potentials. The energy is then minimized by
α-expansion and iteratively updating the likelihood functions
using label estimates.

The accuracy of this energy minimization solution (evalu-
ated by the F-measure F1) depends on the over-segmentation
accuracy of supervoxels, which can be indicated by the met-
rics UE3D, SA3D and BRD in a comprehensive way. On the
other hand, supervoxels’ compactness affects the time com-
plexity of this solution. More compact supervoxels tend to
construct a simpler spatio-temporal graph owing to simpler
neighborhood relationships. The reduction of combinatorial
complexity of the graph leads to the reduction of the com-
putational cost of the energy function and processing time of
energy minimization.

We verify this relation between compactness and process-
ing time by experiments (see Table 2, tested on a PC with
Intel Core E5-2683V3 and 256GB RAM). Given the same
number of supervoxels, GBH result with non-compact super-
voxels takes more time to minimize the energy function than
compact TSP.

4.2. Optimal video closure

Levinshtein et al. [2] propose a novel spatiotemporal closure
detection method to separate an object from background in a
video clip. Based on the same spatio-temporal graph as sum-
marized in Section 4.1, spatiotemporal closure detection is
formulated as finding a subset of supervoxels that minimizes
a spatiotemporal closure cost over the graph.

Minimizing this normalized cut exactly is NP-complete
[22]. An approximation solution using parametric maxflow is
applied in [2]. The accuracy of this approximation solution
depends on the compactness of supervoxels: More compact
supervoxels tend to have more compact subsets and hereby
better results.

We verify this observation by experiments. For seven pre-
sentative supervoxels, their metric values of CP1, UE3D and
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Fig. 3. The measures of CP1, UE3D and BRD for seven rep-
resentative supervoxels, and their performance (evaluated by
F-measure F1) in the video closure application [2], averaged
over Stein et al.’ dataset [21].

Table 3. Correlation analysis between F measure F1 of video
closure and supervoxel metrics.

UE3D BRD SA3D CP1

F1 −0.8061 0.2896 −0.0468 0.5385

BRD, averaged on Stein et al.’ dataset [21], are illustated in
Figure 3, in which their performance in video closure (evalu-
ated by F-measure F1) is also presented. The results clearly
show that TSP achieves the best performance simultaneously
on average F-measure F1 and compactness CP1. Further ex-
periments for investigating relations between F1 and super-
voxel metrics are conducted; see Table 3 for correlation co-
efficients. The results show that both UE3D and CP1 have
strong correlation with F1. When supervoxels have similar
performance on UE3D (e.g., GBH and NCut), the difference
on CP1 metric can further justify the goodness of different
supervoxels (e.g. NCut with larger CP1 also has higher F1).

5. CONCLUSION

In this paper, we propose a new metric of two possible forms
CP1 and CP2 to measure the shape regularity of supervoxels.
Their discriminative power is analyzed by comparing seven
representative supervoxels on various datasets. We also inves-
tigate the relation between CP1 and existing metrics, reveal-
ing that CP1 reflects a new aspect of supervoxel quality. We
further demonstrate the effect of compactness measure with
two video applications, showing thatCP1 is a necessary com-
plement to existing metrics.
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