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Abstract. In this study, an investigation of carbon dioxide sorption induced 

coal swelling and its effects on gas transport in coal is shown. The model pre-

sented is based on an existing coupled thermal, hydraulic, chemical and me-

chanical (THCM) model. A series of numerical simulations dealing with high 

pressure carbon dioxide injection in coal sample is presented. In particular, the 

effect of carbon dioxide sorption induced swelling on permeability evolution 

and gas breakthrough is investigated. Different cases are considered accounting 

for the difference in coal seam properties and its sorption characteristics. Under 

the conditions considered, it is demonstrated that the permeability response of 

coal to gas is affected by the carbon dioxide sorption induced volumetric strain. 

The results suggest that medium and high porous coals that swell gradually over 

the range of pressures considered in this work would lose a smaller portion of 

injectivity during gas injection, compared to low porous coals that swell signifi-

cantly at low pressures, allowing quick breakthrough of gas through the do-

main.   
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1 Introduction 

Sequestration of carbon dioxide in deep, unmineable coal seams is one of the promis-

ing technologies to mitigate the climate change. Storage of carbon dioxide into a coal 

seam can also enhance the recovery of methane from the seam offsetting the costs of 

carbon dioxide capture, transport and injection. Numerous studies have shown that 

coal can hold at least twice the volume of CO2 as CH4 [1, 2]. The depth interval for 

CO2 storage in coal is between 300 and 1500 m of depth where CO2 predominantly 

exists in its supercritical state [2]. It was estimated that the worldwide CO2 storage in 

coal seams is large with a potential of storing up to 964 Gt of CO2 [2, 3]. 

Although coal seams have a great potential to store CO2, the presence of a sorptive 

gas such as CO2 swells the coal matrix leading to porosity and permeability reduction 

under in situ conditions [4]. It has been demonstrated both experimentally and in situ 

that such technical issue represents a major challenge before putting a large-scale CO2 

enhanced coal bed methane (CO2-ECBM) project into practice. Also, coals exhibit 

different porosity and affinity to store gases with respect to rank resulting in limited 
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understanding of coal behaviour under different conditions [5, 6]. Hence, further un-

derstanding of coal response to carbon dioxide injection is required. 

In the present work, a theoretical model considering coal swelling induced by car-

bon dioxide sorption is implemented within the existing thermal, hydraulic, chemical 

and mechanical (THCM) numerical model. By applying the model under in situ con-

ditions, theoretical changes in permeability and gas breakthrough during supercritical 

carbon dioxide injection over time are assessed, taking into account volumetric ex-

pansion of coal induced by gas sorption. The aim of the present research work is to 

investigate the impact of selected major parameters affecting the gas transport in coal. 

Different cases are considered representing variations in coal seam porosity and sorp-

tion properties. 

2 Constitutive model 

A constitutive model employing the laws of mass conservation and stress equilibrium 

is implemented within an existing thermal, hydraulic, chemical and mechanical 

(THCM) numerical model COMPASS developed at the Geoenvironmental Research 

Centre, Cardiff University by Thomas and co-workers [7, 8].  

In the model presented, the continuum is considered to be a two-phase system, 

consisting of a solid skeleton and pore gas. The deformation behaviour is governed by 

a constitutive relationship previously developed using an elastic model for highly 

swelling porous medium. Conditions are considered to be isothermal. Details of the 

developed model are presented elsewhere [9]. The governing equations are expressed 

in terms of two primary variables, i.e. gas chemical concentration and displacement. 

 

2.1 Governing equations 

In a single porosity medium, the conservation equation can be expressed mathe-

matically as [7]: 

 
𝜕(𝜃𝑔𝑐𝑔𝛿𝑉)

𝜕𝑡
= −𝛿𝑉∇𝐽𝑔 − 𝛿𝑉𝑅𝑔 (1) 

where 𝑡 is the time, 𝜃𝑔 is the volumetric gas content, 𝑐𝑔 is the gas concentration, 

𝛿𝑉 is the incremental volume, 𝛻 is the gradient operator, 𝐽𝑔 is the total gas flux and 

𝑅𝑔 represents the sink/source for geochemical reactions. In equation (1), the 

sink/source term is expressed using a retardation factor via solid density and the 

Langmuir equation [10], since it is assumed that the majority of gas is stored as an 

adsorbed gas in the solid phase.  

Langmuir equation, a common approach for calculating the equilibrium adsorbed 

amount 𝑠𝑔, can be expressed as: 

 𝑠𝑔 = 𝑠𝑚𝑎𝑥
𝑢𝑔

𝑃𝐿+𝑢𝑔
 (2) 
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where 𝑠𝑚𝑎𝑥 and 𝑃𝐿  are the Langmuir constants for the maximum sorption capacity 

and pressure at which half of the maximum sorption is achieved, respectively.  

Following that the net stress is defined as the difference between the total stress 

and gas pressure, as well as that the equilibrium is achieved when the resultant of the 

forces in any direction is zero, stress equilibrium can be expressed as [7]: 

 𝐏𝑑𝜎′′ + 𝐏𝐦𝑑𝑢𝑔 + 𝑑𝐛 = 0 (3) 

where 𝐛 is the vector of body forces, 𝜎′′ is the net stress, 𝑢𝑔 is the gas pressure and 𝐏 

is the strain matrix. 

In this work, the assumption is made that coal can be considered as an elastic po-

rous material, which during the increment of stress produces only recoverable strains. 

Hence, the elastic stress-strain relationship is expressed through a generalized 

Hooke’s law [7]. The elastic component of strain due to sorption induced swelling is 

expressed through Langmuir equation: 

 𝜀𝑠𝑤 = 𝜀𝑚𝑎𝑥
𝑢𝑔

𝑃𝐿+𝑢𝑔
 (4) 

where 𝜀𝑚𝑎𝑥 is the Langmuir constant for the maximum volumetric strain. 

Chemical equilibrium is assumed to exist between the solid phase and the porous 

system meaning that any amount of sorption induced swelling is based on the gas 

concentration within the pores. 

In this work, appropriate relationships are employed to consider key gas transport 

properties, i.e. real gas compressibility, viscosity and diffusivity following the models 

developed by Peng and Robinson [11], Chung et al. [12] and Reid et al. [13], respec-

tively. 

The relationship between the porosity and permeability is expressed using a widely 

used approach as [14]: 

 
𝐾

𝐾0
= (

𝑛

𝑛0
)
3

 (5) 

The expanded governing equations for gas transport and stress equilibrium can be 

expressed in the following general form: 

 𝐶𝑐𝑔𝑐𝑔
𝜕𝑐𝑔

𝜕𝑡
+ 𝐶𝑐𝑔𝐮

𝜕𝐮

𝜕𝑡
= ∇ [𝐾𝑐𝑔𝑐𝑔∇𝑐𝑔] + 𝐽𝑐𝑔 (6) 

 𝐶𝐮𝑐𝑔𝑑𝑐𝑔 + 𝐶𝐮𝐮𝑑𝐮 + 𝑑𝐛 = 0 (7) 

where 𝐶 and 𝐾 matrices are the storage and flux terms, respectively. Binary subscripts 

are assigned to illustrate how each primary variable may be influenced in the coupled 

system. The term 𝐽 represents the flux and 𝐮 is the vector of displacement.  

 

2.2 Numerical solution 

The finite element method (FEM) is employed to spatially discretise the system of 

equations, whereas the finite difference method (FDM) is applied to achieve temporal 
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discretisation. Such method has been previously shown to be suitable for coupled 

flow and deformation equations [15, 16]. Through application of the Galerkin spatial 

discretisation approach, the system of differential equations is expressed in matrix 

form as: 

 𝐀∅ + 𝐁
𝜕∅

𝜕𝑡
+ 𝐂 = {0} (8) 

where 𝐀, 𝐁 and 𝐂 are the matrices of coefficients and ∅ is the vector of variables.   

Many of the fundamental aspects of these equations have been described in detail 

elsewhere [7, 17, 18]. 

3 Numerical simulations 

Simulations of supercritical carbon dioxide injection in a large coal sample are per-

formed in this section. The outcome of these simulations is to better understand the 

major mechanisms which control the reactive transport of CO2 in coal. A sensitivity 

analysis is conducted to evaluate the potential impact of coal porosity and Langmuir 

pressure on the permeability evolution and gas breakthrough. For each parameter, a 

“base case” value is selected, along with reasonable lower and upper limits. Using 

such approach, consideration was given to represent the potential variability among 

coals of different ranks. 

 

3.1 Computational domain and material parameters 

The system considered is a 1 m long domain with a 0.5 m height, discretised into 

100 equally sized 4-noded quadrilateral elements. A variable time step is used which 

allows the size of the time step to vary depending on the state of convergence.  

The domain is initially saturated with CO2 at atmospheric conditions. In each simu-

lation, a fixed atmospheric pressure is applied at the outlet boundary, while at the inlet 

boundary a time-dependent gas concentration is imposed. In particular, gas pressure 

increases monotonously from atmospheric conditions up to 7.5 MPa over the duration 

of 3600 seconds and then remains constant until the end of the simulations. The dura-

tion of each simulation is six hours.  

All boundaries of the column are restrained for deforming vertically to simulate 

uniaxial conditions, as expected in situ. Also, the outlet boundary of the sample is 

fully restrained from deforming horizontally. Conditions are isothermal, with a fixed 

temperature of 308 K. Selected temperature and injection pressure conditions repre-

sent approximate conditions at 750 m below the ground level [19]. 

A summary of the material parameters, equal in each simulation, is provided in 

Table 1. Also, cases considered in the sensitivity analysis are shown. Base case values 

of the porosity and Langmuir pressure are 2% and 2.5 MPa, respectively. The low and 

high Langmuir pressure cases consider Langmuir pressure values of 0.5 MPa and 5 

MPa, respectively, while having the value of porosity equal to the base case, i.e. 2%. 

In a similar manner, low and high porosity cases consider porosity values of 1.5% and 

2.5%, respectively, while using the base case Langmuir pressure value of 2.5 MPa. 
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Table 1. Material parameters 

Material Parameters Value Reference 

Initial permeability, K0 (m2) 1.0×10-15 [2] 

Elastic modulus, E (GPa) 2.0 [6] 

Poisson’s ratio, υ (-) 0.35 [6] 

Coal density, ρ (kg m-3) 1380 [21] 

Langmuir capacity, smax (mol kg-1) 2.0 [6] 

Langmuir vol. strain, εmax (%) 2.0 [6] 

Sensitivity analysis parameters 

 

 

Low 

Langmuir 

Pressure 

Case 

High 

Langmuir 

Pressure 

Case 

Base 

Case 

Low 

Porosity 

Case 

High 

Porosity 

Case 

Initial porosity, n0 (%) 2.0  2.0  2.0  1.5 2.5 

Langmuir pressure, PL (MPa) 0.5 5.0 2.5 2.5 2.5 

 

3.2 Results of the sensitivity analysis 

Figure 1 shows the temporal evolution of permeability throughout the duration of 

each simulation. Permeability evolution is assessed at an arbitrary chosen point close 

to the inlet boundary, i.e. 0.1 m away from the injection point. The results revel that 

using the base case values for porosity and Langmuir pressure, permeability continu-

ously decreases during the first hour of the simulation and then reaches a value of 

5×10-17 m2.  

The same final permeability value is predicted for the low Langmuir pressure 

case, however, with a different shape of the curve during the first hour of simulation. 

In particular, the reduction in permeability occurred quicker achieving the final value 

of permeability after half an hour into the simulation.  

Between the high Langmuir pressure and high porosity cases, a small difference 

between the slopes of the curves and final permeability values is predicted. In such 

cases, permeability values are reduced to 1.1×10-16 m2 and 1.4×10-16 m2 after one hour 

into the simulations, respectively.  

For the low porosity case, it is predicted that the permeability continuously drops 

throughout the duration of the simulation resulting in maximum reduction in the per-

meability value of 1.5×10-17 m2 at the end of the simulation.  

Based on such observations, the Langmuir pressure parameter has a greater effect 

on the shape of the curve than on the final reduction value. This is related to the fact 

that for coals with low value of 𝑃𝐿 , half of the sorption induced swelling occurs at low 

pressures reducing the permeability significantly at early stages of injection. Hence, at 

high pressures when the sorption induced swelling is almost complete, difference in 

absolute permeability values between low 𝑃𝐿  and high 𝑃𝐿  cases would be negligible.  

Opposite to the Langmuir pressure parameter, the initial porosity has a greater ef-

fect on the final reduction value than on the slope of the curve. In other words, for the 

same amount of the sorption induced swelling to be accommodated, smaller pore 

volumes are more affected than larger pore volumes.  
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Fig. 1. Predicted permeability evolution for five different combinations of initial porosity and 

Langmuir pressure, evaluated 0.1 m from the injection point.  

 

Fig. 2. Profiles of CO2 in the domain at the end of simulations for five different combinations 

of initial porosity and Langmuir pressure. 
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In order to investigate the effect of permeability reduction on gas breakthrough, 

pressure profiles across the domain at the end of the simulations for each case consid-

ered are assessed and presented in Figure 2. The results show that all cases, except the 

low porosity case, exhibit non-linear profiles, typical for highly compressible gases, 

with more than 4.7 MPa of gas pressure at the middle of the domain. This suggests a 

near-complete breakthrough of CO2, i.e. steady-state, throughout the domain at the 

end of simulation time. The significant reduction in permeability for the low porosity 

case resulted in limited gas flow through the sample where the gas pressure of 1.67 

MPa was observed half way between the injection and the abstraction points.  

4 Conclusions 

A sensitivity analysis was conducted to investigate the response of coal subject to 

supercritical carbon dioxide injection through a series of numerical simulations. The 

base case as well as lower and upper values of the coal porosity and Langmuir pres-

sure were selected to examine the influence of such parameters on the permeability 

evolution and gas breakthrough in coal. The numerical modelling results suggest that 

coals with low Langmuir pressure experience strong reduction in permeability in the 

early stages of gas injection. Also, the results demonstrate that low porosity is a pa-

rameter having the strongest influence on the final permeability and having the largest 

impact on the gas flow throughout coal. Hence, based on the results of this study, 

coals with high value of the Langmuir pressure and large volume of pores available 

for flow are expected to be the least affected by the coal swelling and would offer a 

stable injection of CO2.  

This study offers useful information on the importance of various factors on coal 

response to CO2 injection providing an enhanced understanding of the coupled pro-

cesses during carbon sequestration. These factors strongly vary among coals of differ-

ent ranks, hence, it is recognised that reliable parameter measurement and determina-

tion is crucial for assessing their impact. Continued research is required to incorporate 

additional controlling factors that affect coal behaviour and obtain an optimum com-

bination of such factors which would result in the greatest carbon storage potential. 
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