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Abstract: Reservoir operations significantly alter the hydrological regime of the downstream 

river and river-connected lake, which has far-reaching impacts on the lake ecosystem. To 

facilitate the management of lakes connected to regulated rivers, the following information 

must be provided: (1) the response of lake water levels to reservoir operation schedules in the 

near future and (2) the importance of different rivers in terms of affecting the water levels in 

different lake regions of interest. We develop an integrated modeling and analytical 

methodology for the water level management of such lakes. The data-driven method is used 

to model the lake level as it has the potential of producing quick and accurate predictions. A 

new genetic algorithm-based synchronized search is proposed to optimize input variable time 

lags and data-driven model parameters simultaneously. The methodology also involves the 

orthogonal design and range analysis for extracting the influence of an individual river from 

that of all the rivers. The integrated methodology is applied to the second largest freshwater 

lake in China, the Dongting Lake. The results show that: (1) the antecedent lake levels are of 
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crucial importance for the current lake level prediction; (2) the selected river discharge time 

lags reflect the spatial heterogeneity of the rivers’ impacts on lake level changes; (3) the 

predicted lake levels are in very good agreement with the observed data (RMSE ≤ 0.091 m; 

R
2
 ≥ 0.9986). This study demonstrates the practical potential of the integrated methodology, 

which can provide both the lake level responses to future dam releases and the relative 

contributions of different rivers to lake level changes. 

Keywords: The Dongting Lake; Water level; Support vector regression; Input variable 

selection; Genetic algorithm; Orthogonal design 
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1 Introduction 1 

Most of the major rivers in the world have been substantially changed by dam 2 

construction. The far-reaching impacts of river damming on the environment and ecosystems 3 

make it controversial. Dams can affect areas upstream and downstream of the rivers, on 4 

inundation, flow regulation, habitat fragmentation, etc. (Nilsson and Berggren, 2000; Nilsson 5 

et al., 2005). In particular, they significantly alter hydrological regimes of downstream rivers 6 

and river-connected lakes, for example, in terms of water level fluctuations, flood timing and 7 

duration.  8 

Water level fluctuations play an important role in maintaining the structure, functioning 9 

and integrity of lake ecosystems (Coops et al., 2003; Leira and Cantonati, 2008). In 10 

dam-regulated rivers, relatively small water level fluctuations are often observed in the 11 

downstream areas (Magilligan and Nislow, 2005), which could negatively affect the 12 

ecosystems of river-connected lakes in various ways. For instance, the decreased amplitude of 13 

lake level fluctuations can lead to reductions in species richness and structural diversity of 14 

aquatic macrophytes (Geest et al., 2005; Wilcox and Meeker, 1991). Lake level stabilization 15 

can also dramatically change the spatial distribution and species composition of wetland 16 

vegetation (e.g., the succession of herbaceous to wooden wetlands). Due to lacustrine habitat 17 

deterioration, wetland habitat contraction and loss of wet-dry cycles, species abundance and 18 

richness of a variety of invertebrates, fishes, birds and mammals would as well diminish 19 

(Bunn and Arthington, 2002; Kingsford, 2000; Leira and Cantonati, 2008; Wilcox and 20 

Meeker, 1992). Moreover, water level drawdown in the downstream reaches arising from 21 
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reservoir impoundment would accelerate the drainage of river-connected lakes, leading to 22 

earlier flood recession, extended duration of lake bottom exposure and potential wetland 23 

degradation (Wang et al., 2013; Zhang et al., 2012).  24 

The Dongting Lake in China can be used as an example to illustrate the impacts of 25 

upstream dam regulation on the river-connected lake. The Three Gorges Dam (TGD) on the 26 

upper Yangtze River is one of the largest water resources projects in China and over the world 27 

(Yang et al., 2011). Since its first impoundment in June 2003, the TGD has been believed to 28 

be the main cause of many significant hydrological and ecological alterations, such as algal 29 

blooms in the reservoir tributary embayments (Mao et al., 2015) and changes in 30 

ecohydrological characteristics of mid-lower Yangtze reaches, river-connected lakes and 31 

Yangtze estuary (Chai et al., 2009; Dai et al., 2008; Gong et al., 2006; Yang et al., 2006; 32 

Zhang et al., 2012). The Dongting Lake, the second largest freshwater lake in China, is a 33 

Yangtze River-connected lake located downstream of the TGD. The lake and its surrounding 34 

wetlands are recognized as internationally important Ramsar sites, providing habitat for 35 

approximately 1,428 plant species, 114 fish species and 217 bird species (Xie et al., 2015). In 36 

general, there exists strong hydraulic interaction between the Yangtze River and the Dongting 37 

Lake. The hydrogeomorphic and ecological responses of the Dongting Lake to TGD 38 

operations have been well documented (Guan et al., 2014; Hu et al., 2015a; Hu et al., 2015b; 39 

Wu et al., 2013; Yuan et al., 2015). It is worth mentioning that the TGD, in addition to 40 

climate change and lakeshore development activities, accounts for hydrological regime 41 

alterations and some extreme drought events in this area (Dai et al., 2008). Such alterations 42 

may further result in severe environmental degradation, reduced biodiversity and water crises 43 
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in the Dongting Lake region (Fang et al., 2006), indicating that the optimization of TGD 44 

operations is clearly necessary (Mao et al., 2016). 45 

For the proper management of lakes connected to multiple dam-regulated rivers, the 46 

following questions must be answered: (1) how does the lake level respond to the scheduled 47 

dam releases in the near future? (2) which river plays the most important role in affecting the 48 

water levels in different lake regions of interest?  49 

To deal with the first question calls for a modeling approach that relates remote river 50 

discharges to lake levels. In general, both physically based (e.g., hydrodynamic model) and 51 

data-driven (e.g., support vector regression, SVR) models can be used. The former is based on 52 

physical process descriptions with some simplifying assumptions (Abebe and Price, 2004), 53 

meaning that detailed topographical data are generally required. By contrast, the latter learns 54 

the input-output mapping from the training samples (Maier et al., 2010); therefore, only time 55 

series of the variable being investigated and its contributing factors are needed. Data-driven 56 

models clearly outperform their physically based counterparts in terms of computational 57 

efficiency (Lin et al., 2008). These models can thus be integrated into reservoir optimization 58 

models that minimize the negative impacts of reservoir operations on lake ecosystems. To 59 

model a lake using the data-driven method, the input variables are difficult to determine given 60 

that the response time of the lake level to different rivers can differ. Numerous combinations 61 

of time lagged river discharges that are potentially feasible need to be considered. In addition, 62 

it is necessary to calibrate the model during the evaluation of each candidate combination in 63 

order to avoid masking the candidate’s real skill.  64 

To answer the second question, one has to identify the relative contributions of different 65 
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rivers to lake level variations. Understanding the different rivers’ contributions is useful for 66 

carrying out cost-effective reservoir operations to satisfy the water demand of the lake in key 67 

periods (e.g., during reservoir impoundment). However, the water level at a lake site is 68 

dependent on the discharges of many different rivers. Some specific analytical techniques are 69 

needed to extract the influence of a single factor (i.e., an individual river) from that of a set of 70 

factors (i.e., all the rivers).  71 

This paper aims to develop an integrated modeling and analytical methodology for the 72 

water level management of lakes connected to regulated rivers. First, site-specific prediction 73 

models of lake levels are developed using the data-driven method, which considers the 74 

impacts of remote river discharges and antecedent lake levels. In the model development, a 75 

new search strategy is proposed to obtain the optimal input variable time lags and data-driven 76 

model parameters simultaneously. The developed models can provide the lake level responses 77 

to future reservoir operation schedules. Second, based on the lake level models, the 78 

orthogonal design and range analysis are used to identify the importance of different rivers in 79 

terms of affecting the lake level.  80 

The integrated modeling and analytical methodology is applied to the Dongting Lake in 81 

China. The reasonability of the selected input variable time lags is verified, and the 82 

performance of the lake level models (based on SVR) is fully assessed. The developed models 83 

are then used in a scenario where upstream dam releases in the following 10 days are 84 

scheduled. Next, the relative contributions of the Yangtze River and the Dongting Lake’s 85 

major tributaries to lake level changes are analyzed. Given that rainfall is intentionally not 86 

considered in the lake level modeling, we also discuss the consequences of ignoring rainfall.  87 
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2 Material and methods 88 

2.1 Study area and data collection 89 

The Dongting Lake, located in the Yangtze River Basin, China (Fig. 1a), provides a wide 90 

range of ecosystem services, including drinking water supply, irrigation, fisheries and 91 

biodiversity conservation. The lake is one of the two large lakes that are directly connected to 92 

the Yangtze River (the other is Poyang Lake). Due to extensive reclamation and siltation, the 93 

area of the Dongting Lake had decreased from 4,350 km
2
 in 1949 to 2,623 km

2
 in 1995 (a 94 

39.7% reduction) (Yin et al., 2007). Since the impoundment of the TGD in 2003, sediment 95 

interception by the reservoir has, to a large extent, prevented further reduction in the lake area 96 

(Hu et al., 2015a). The Dongting Lake Basin lies in a subtropical monsoon climate zone with 97 

an annual average temperature of ~18.6°C and an annual precipitation of 1,200-1,400 mm. 98 

The lake has distinct wet and dry seasons. The lake level in the dry season is much lower than 99 

that in the wet season, with a difference of over 10 m at Chenglingji.  100 

The Dongting Lake is connected to the middle Yangtze River at the lake’s northeastern 101 

end (i.e., Chenglingji, Fig. 1c). The connection is also made through some anastomosing 102 

distributary channels at three main avulsion nodes (i.e., Songzi, Taiping and Ouchi). In 103 

general, when the water level of the Yangtze River is lower, water flows from the lake into 104 

the river, and the lake level tends to decrease (i.e., emptying effect). By contrast, mainly 105 

during the wet season (April to October), the high water level in the Yangtze River limits the 106 

drainage of the lake (i.e., blocking effect). The Dongting Lake has four major tributaries, 107 

namely, the Xiang River, Zi River, Yuan River and Li River. The average annual water 108 
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flowing into the Dongting Lake is 3.13 × 10
11

 m
3
, of which the water from the Yangtze River 109 

accounts for 37.7% (Mao et al., 2016).  110 

The hydrological data of the Dongting Lake and the related rivers from 2009 to 2012 111 

were collected. Daily water levels of the lake were measured at lake stations No.1-5 (i.e., 112 

Chenglingji, Lujiao, Yingtian, Xiaohezui and Nanzui). Daily flow rates of the lake’s four 113 

tributaries were obtained at river stations #1-4 (i.e., Xiangtan, Taojiang, Taoyuan and 114 

Shimen). The Qing River that joins the Yangtze River between the Gezhou Dam and Songzi 115 

node has small flow rates. In this study, the daily Yangtze River discharge (at #5) used in 116 

modeling consists of daily outflow discharges of the Gaobazhou Dam on the Qing River and 117 

the Gezhou Dam on the Yangtze River.  118 

Both the Yangtze River and the Dongting Lake’s tributaries are highly regulated by 119 

densely distributed dams (Fig. 1b). Thus, the Dongting Lake water level models to be 120 

developed are for the general and moderate flow and weather conditions, rather than extreme 121 

ones. It is decided that the data collected in 2010 and 2012 with slightly higher flood peaks 122 

are used for model training to obtain a wide validity, while the data in 2009 and 2011 are used 123 

for model testing. Table 1 presents the statistical characteristics of the hydrological data used 124 

in both periods. As can be observed in this table, the Yangtze River has significantly higher 125 

flow rates than the other rivers. The Xiang River and Yuan River contribute the most to the 126 

total tributary inflow to the Dongting Lake. 127 

2.2 Integrated modeling and analytical methodology 128 

This study develops an integrated modeling and analytical methodology to facilitate the 129 



  

9 

 

water level management of lakes connected to multiple regulated rivers (e.g., the Dongting 130 

Lake).  131 

As can be observed in Fig. 2, the data-driven method is used to model the lake water 132 

level, which considers the impacts of remote river discharges and antecedent lake levels. The 133 

data-driven method has an obvious advantage in providing quick predictions and is thus 134 

suitable to be integrated into a reservoir optimization model that attempts to improve the lake 135 

levels. Based on the genetic algorithm (GA), we propose a synchronized search for the 136 

optimal input variable time lags and data-driven model parameters. The synchronized 137 

optimization helps minimize the prediction error arising from model structural and parameter 138 

uncertainties. In the following step, site-specific prediction models of lake levels are trained 139 

using the optimized variable time lags and model parameters.  140 

The developed models are used to provide the lake managers with the lake level 141 

responses to future reservoir operation schedules. Moreover, the relative contributions of 142 

different rivers are analyzed by using the orthogonal design. 143 

2.3 Lake water level modeling 144 

2.3.1 Problem formulation 145 

Assuming that lake level variations are related to the discharges of rivers the lake is 146 

connected to, and the lake level at a time is also related to its states at the previous time steps, 147 

the daily water level at a lake station can be described as: 148 

 
1 1 1 0 0 0

1 1 1

1 1 1( , , , , , , , , , , , , )
N N N

N N N

t t m t m t n t m t m t n t m t m t nL f D D D D D D L L L              (1) 149 

where Lt is the water level at the lake station on day t; D
i 

t-j (i = 1,…,N; j = mi,…,ni) is the flow 150 
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rate gauged at river station #i with a time lag of j days; Lt-j (j = m0,…,n0) is the water level at 151 

the same lake station measured j days before day t. Notice that the minimum and maximum 152 

time lags, mk and nk (k = 0,…,N), could vary across lake stations.  153 

As can be observed in Eq. (1), rainfall is deliberately ignored in the lake level modeling, 154 

since the inclusion of rainfall could cause several problems. First, proper time lags of rainfall 155 

(at many rain gauges surrounding the lake) are very difficult to determine. Second, the 156 

computational time could significantly increase with the increase in the model input 157 

dimension. Moreover, future rainfall conditions have to be assumed before studying the lake 158 

level responses to reservoir operation schedules, which may introduce large prediction 159 

uncertainty. 160 

2.3.2 Support vector regression 161 

The regression function of Eq. (1) is estimated using SVR. SVR has been successfully 162 

applied to the modeling of environmental and water resources variables (Maier et al., 2010). 163 

For example, it has been used to predict lake water levels (e.g., Buyukyildiz et al., 2014; 164 

Çimen and Kisi, 2009), to predict river stages and discharges (e.g., Lin et al., 2006; Liong and 165 

Sivapragasam, 2002) and to estimate the relationship between river stage and discharge (e.g., 166 

Jain, 2012; Sivapragasam and Muttil, 2005).  167 

Based on the statistical learning theory by Vapnik (1998), SVR is developed to solve 168 

non-linear regression estimation problems (Gunn, 1998). This technique employs structural 169 

risk minimization (SRM) rather than empirical risk minimization (ERM), which is often used 170 

in conventional artificial neural networks (ANNs). SRM attempts to minimize model 171 

complexity and empirical risk (i.e., training error) simultaneously and thus provides SVR with 172 
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greater generalization capability (Kecman, 2001). Another advantage of SVR over 173 

conventional ANNs is that SVR has relatively few free parameters, leading to an easier 174 

calibration procedure (Khan and Coulibaly, 2006). However, the training process of SVR may 175 

be time-consuming when SVR is fed with large training dataset (Thissen et al., 2003).  176 

Consider the dataset {(x1,y1),…,(xl,yl)}, where xiR
n
 is the input vector (e.g., remote 177 

river discharges and antecedent lake levels in this study) and yiR
1
 is the target output (e.g., 178 

current lake level). The underlying input-output relationship can be approximated by the 179 

non-linear function: 180 

 ( ) ( )Tf b x x   (2) 181 

where ω is the weight vector, ϕ(x) is the embedding map that projects x into a 182 

high-dimensional feature space where linear regression can be performed, and b is the bias.  183 

For the present application, the input vector must be mapped into the feature space due to 184 

the highly nonlinear relationship between the model inputs and output. The input-output 185 

relationship can be linearly estimated in a higher (possibly infinite) dimensional space. 186 

Based on the linear ε-insensitive loss function (ε > 0 is the error threshold), the regression 187 

function is obtained by minimizing the regularized risk function (Vapnik, 1998): 188 
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where C > 0 is the regularization parameter determining the trade-off between model 190 

complexity 2T   and training error  *

1

l

i ii
 


 , and the slack variables i  and 

*

i  191 

are the lower and upper excess deviations, respectively.  192 
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Due to the possibly high dimensionality of ω, usually the dual problem of Eq. (3) is 193 

solved instead. The dual problem can be derived using the Lagrange multiplier technique:  194 
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  (4) 195 

where 
*

i  and i  are Lagrange multipliers and  , ( ) ( )T

i j i jK  x x x x  is the kernel 196 

function. 197 

 The use of the kernel function avoids the ‘curse of dimensionality’. There is no need to 198 

project the input vector into the high-dimensional feature space since the inner product in the 199 

feature space ( ) ( )T

i j x x  can be calculated directly from the training samples.  200 

By solving Eq. (4), the regression function is  201 

    *

1

( ) , .
l

i i i

i

f K b 


  x x x   (5) 202 

A symmetric, positive definite function that satisfies Mercer’s theorem can be used as a 203 

kernel function (Gunn, 1998). Typical kernel functions include linear, polynomial, sigmoid 204 

and radial basis function (RBF). At present, there is no consensus as to which kernel is better 205 

than others (Buyukyildiz et al., 2014; Han et al., 2007). However, most SVR applications on 206 

hydrological modeling and forecasting have adopted the RBF kernel and obtained favorable 207 

performance (e.g., Çimen and Kisi, 2009; Khan and Coulibaly, 2006; Lin et al., 2006; Liong 208 

and Sivapragasam, 2002; Wei, 2015). In addition, the RBF has only one parameter to adjust, 209 

and it often shows better efficiency and performance than other kernels (Behzad et al., 2010; 210 

Dibike et al., 2001).  211 
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The RBF kernel is also used in this study, which takes the following form:  212 

    2, exp || ||i j i jK   x x x x   (6) 213 

where γ > 0 is the kernel parameter that determines the width of the kernel. 214 

The error threshold ε, regularization parameter C and kernel parameter γ are user-defined 215 

SVR parameters. The LIBSVM software package (Chang and Lin, 2001) is used to solve the 216 

SVR function in this study.  217 

2.4 Genetic algorithm-based synchronized search 218 

Input variable selection (IVS) is a critical step in the development of data-driven models. 219 

Input variables should be relevant and non-redundant in order to avoid adding noise to the 220 

models and increasing model complexity. The omission of relevant input variables, on the 221 

other hand, can make the models inaccurate and unable to fully describe the system behavior 222 

(Galelli et al., 2014).  223 

For the water level prediction of a lake connected to different rivers, proper time lags of 224 

discharges of these rivers (as well as the local water level) must be chosen. This can be a 225 

difficult task in view of the potentially long distance from the river stations to the lake stations. 226 

Taking the Dongting Lake as an example, there are five rivers surrounding the lake to be 227 

considered, and the longest distance from a river station to a lake station is ~390 km (Gezhou 228 

Dam to Chenglingji station). The complexity of IVS calls for a heuristic search algorithm 229 

(e.g., GA) to generate candidate input variable time lags, which can approach the optimal 230 

solution within a large search space (May et al., 2011).  231 

Commonly used methods for evaluating candidate input variable time lags can be 232 
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broadly grouped into filter, wrapper and embedded techniques (Guyon and Elisseeff, 2003). 233 

The filter techniques are independent of the designated data-driven method, and they assess 234 

the relevance of a model input based only on the available data (Liu and Motoda, 1998). This 235 

means that the response of model performance to the IVS outcome is completely ignored 236 

(Miller, 2002). In this regard, model-based wrapper and embedded algorithms can be more 237 

reliable. They evaluate the candidate time lags based on the corresponding model 238 

performance, as the data-driven method is integrated into the IVS procedure (Galelli et al., 239 

2014). However, the model-based techniques generally need longer computational time and 240 

tend to mask the real skill of the candidates when the data-driven model is not calibrated for 241 

each of them (Maier et al., 2010). In addition, several relatively indirect ways to construct the 242 

model input can also be found in the literature (e.g., Baydaroğlu and Koçak, 2014; 243 

Baydaroğlu et al., 2017). 244 

In a broad sense, data-driven model parameters can be viewed as a type of model input. 245 

In this spirit, a GA-based synchronized search for the optimal input variable time lags and 246 

data-driven model parameters (e.g., ε, C and γ of SVR in this study) is proposed (Fig. 3). The 247 

synchronized search falls into the category of model-based IVS algorithms due to the 248 

incorporation of the data-driven model into the search process. The search is implemented 249 

following the procedure below:  250 

(1) Starting the search with the initial population (and the collected hydrological data); an 251 

individual in the population containing two floating numbers to indicate the time lags of 252 

each input variable and one floating number for each data-driven model parameter;  253 

(2) Applying genetic operators (i.e., selection, crossover and mutation) to generate the 254 
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offspring population;  255 

(3) Evaluating each individual in the offspring population by 256 

a) Dividing the individual into two parts, one for time lag information and the other for 257 

model parameters;  258 

b) Rounding up the two numbers for each input variable to obtain the variable’s 259 

maximum and minimum time lags and then preparing the training dataset 260 

accordingly;  261 

c) Training the data-driven model with n-fold cross-validation to avoid overfitting;  262 

d) Using cross-validation root mean square error as the individual’s fitness value;  263 

(4) Checking whether the maximum generation has been reached; 264 

(5) Ending the search and returning the optimal input variable time lags and model 265 

parameters if the answer is yes; otherwise, going back to Step (2).  266 

2.5 Experimental setup 267 

We applied the proposed modeling and analytical methodology to the Dongting Lake. As 268 

mentioned earlier, the model training period was 2010 and 2012 while the testing period was 269 

2009 and 2011; the numbers of observations in the two periods were 731 and 720, 270 

respectively. It should be stressed that the synchronized optimization in Section 2.4 only used 271 

observations in the training period.  272 

The synchronized optimization was separately implemented for each of the five lake 273 

stations (No.1-5) shown in Fig. 1c. Five river discharges gauged at river stations #1-5 were 274 

considered in the lake level modeling, i.e., N = 5 in Eq. (1). Three data-driven model 275 
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parameters, i.e., ε, C and γ of SVR, were optimized along with the variable time lags. The 276 

5-fold cross-validation was used to avoid the overfitting problem. In addition, all model 277 

inputs were linearly normalized to [0,1] to make sure they received equal attention in model 278 

training. The GA parameter values used in this study are shown in Table 2. As can be seen, 279 

300 candidate combinations of variable time lags and model parameters evolved for 300 280 

generations before returning the final optimization result. The GA search boundaries are also 281 

listed in Table 2.  282 

The performance of the developed lake level models was assessed against multiple 283 

metrics, including root mean square error (RMSE) and coefficient of determination (R
2
). The 284 

two metrics represent ‘squared errors’, which are apt to be dominated by large errors (Maier 285 

et al., 2010). Therefore, mean absolute error (MAE) and mean relative error (MRE) were also 286 

calculated to provide additional error information. The above four performance metrics are 287 

summarized in Table 3.  288 

3 Results 289 

3.1 Input variable time lags and SVR parameters 290 

The synchronized search for the optimal input variable time lags and SVR parameters 291 

was separately applied to stations No.1-5 in the Dongting Lake (Fig. 1c). The optimization 292 

results are shown in Fig. 4 and Table 4, respectively.  293 

According to Fig. 4, the strongest factor affecting the current lake level is the local lake 294 

levels at the previous time steps, ranging from three (at Lujiao, No.2) to eight days (at Nanzui, 295 
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No.5). This is supported by the high correlation between the current lake level and its 296 

previous states (see Fig. 5). Fig. 5 also shows that the correlation exhibits a decreasing trend 297 

with time, which agrees with that the lake level on day t is most strongly affected by the lake 298 

level on day t-1 (Fig. 4).  299 

Fig. 4 demonstrates that different rivers contribute differently to water level variations at 300 

a lake station. In addition, the time lags of a river are significantly different across the lake 301 

stations. These results reflect the spatial heterogeneity of the rivers’ impacts on lake level 302 

changes.  303 

The length of river discharge time lags ranges from the shortest one day (e.g., the Li 304 

River flow, D
4
, to Yingtian, No.3) to the longest nine days (e.g., the Yangtze River flow, D

5
, 305 

to Chenglingji, No.1). The time lag length is positively associated with the distance from the 306 

river station to the lake station and the amplitude of river discharge fluctuations. Therefore, 307 

the discharge of the Yangtze River, D
5
, with the longest flow path and significant changes in 308 

flow magnitude, has the longest time lag length among the five river discharges.  309 

As shown in Fig. 4, it takes approximately one to three days for the Xiang River flow, D
1
, 310 

to reach lake stations Lujiao and Yingtian (No.2 and 3). The needed time to reach station 311 

Chenglingji (No.1) is often longer because of the increase in travel distance. A similar trend 312 

for the Zi River flow, D
2
, can also be observed in this figure. It is interesting to note that the 313 

effects of the Xiang River and Zi River are identified by the GA in predicting the water levels 314 

at Xiaohezui and Nanzui (No.4 and 5), even though the confluence of each of the two rivers 315 

and the Dongting Lake lies downstream of the two stations. A possible explanation for this 316 

result is that the inflows from the two rivers can alter the downstream lake levels and, in turn, 317 
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influence the upstream lake levels. Compared with the Xiang River flow, the water levels at 318 

stations No.4 and 5 are more responsive to the Zi River flow, which could be attributed to the 319 

relatively short distances from the Zi River’s confluence to the two lake sites (Fig. 1c).  320 

It is found that one day is generally insufficient for the Yuan River flow D
3
 to reach 321 

Chenglingji (No.1), and the corresponding time lags are between two to nine days. For 322 

stations Yingtian, Xiaohezui and Nanzui (No.3-5), the time lags of D
3
 lie between one day 323 

and six days. However, the water transport delay to reach station Lujiao (No.2) is shown to be 324 

much shorter (one or two days). One potential explanation for this significant difference is 325 

that Lujiao is located in a long and narrow channel (see Fig. 1c) with relatively high flow 326 

velocities; lake level changes at this site are sensitive to large inflows that require short travel 327 

time. Compared with station Nanzui (No.5), the water level at Xiaohezui (No.4) is relatively 328 

insensitive to the Li River flow D
4
, which most likely results from the longer distance from 329 

the Li River’s confluence to Xiaohezui (No.4). The Li River flow D
4
 plays a limited role in 330 

affecting the water levels at stations Chenglingji, Lujiao and Yingtian (No.1-3) due to its 331 

small magnitude (see Table 1).  332 

3.2 Lake level model performance 333 

Fig. 6 compares the observed and predicted Dongting Lake water levels in the training 334 

and testing periods. A very good agreement between model predictions and observations can 335 

be found in both periods at each lake station. The lake level predictions are accurate even for 336 

the peak levels in the testing period. The consistent model performance arises from the fact 337 

that these lake level models are allowed to experience more severe floods in the training 338 



  

19 

 

period. However, the predicted lake levels occasionally deviate from the observed data, and 339 

the model for station Yingtian (No.3) yields the largest proportion of these deviations. Fig. 7 340 

presents the boxplots of lake level prediction errors (i.e., predictions minus observations) in 341 

the testing period. A majority of the errors (92.3%) vary between -0.10 m and 0.10 m. The 342 

models for stations Xiaohezui and Nanzui (No.4 and 5) produce the smallest errors, followed 343 

by those for Chenglingji and Lujiao (No.1 and 2).  344 

The RMSE, R
2
, MAE and MRE of the five lake level models are summarized in Table 5. 345 

These models can provide accurate predictions of daily Dongting Lake water level, with the 346 

maximum RMSE of 0.091 m and the minimum R
2
 of 0.9986 in the testing period. The model 347 

for station Xiaohezui (No.4) has the best accuracy (RMSE = 0.037 m, MAE = 0.028 m and 348 

MRE = 0.0009), followed by, in sequence, the models for Nanzui (No.5), Chenglingji (No.1) 349 

and Lujiao (No.2). Although the model for Yingtian (No.3) presents relatively low 350 

performance, its prediction errors are still acceptable (RMSE = 0.091 m, MAE = 0.061 m and 351 

MRE = 0.0024). Such a model performance ranking is in common with the result obtained by 352 

merely considering the distribution of the prediction errors (Fig. 7). Interestingly, the five 353 

models have a very different order of performance when assessed against R
2
, namely, the 354 

models for Chenglingji (No.1), Lujiao (No.2), Yingtian (No.3), Xiaohezui (No.4) and Nanzui 355 

(No.5) in descending order. Such discrepancies most likely result from the limited amplitude 356 

of water level variations at Xiaohezui and Nanzui (No.4 and 5), according to the definition of 357 

R
2
. Table 5 also suggests that no manifest differences exist between training and testing 358 

RMSEs, meaning that the 5-fold cross-validation and SRM principle of SVR avoid overfitting 359 

effectively. 360 
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3.3 Lake level responses to future dam releases 361 

The prediction of the Dongting Lake water level on day t relies on the availability of 362 

different river discharges and local water level on day t-1 (Fig. 4). The lake level on day t+1 363 

can be predicted when the relevant measurements on day t are acquired on a real-time basis 364 

(i.e., real-time updating). However, to obtain the lake level responses to upstream reservoir 365 

operation schedules in the near future, the newly predicted lake levels need to be used instead 366 

of lake level observations as model inputs whenever possible (i.e., ‘indirect’ multi-step 367 

prediction).  368 

The Dongting Lake water level variations over the course of a year could be 369 

characterized as four periods, namely the dry period (last Dec. to Mar.), water-level rise 370 

period (Apr. to May), wet period (Jun. to Jul.) and drawdown period (Aug. to Nov.). Taking 371 

station Chenglingji (No.1) as an example, we selected a ‘time window’ of 10 days for each 372 

period in 2009 to present the lake level responses. The observed flow rates of the Yangtze 373 

River and lake tributaries in each time window were considered the scheduled dam releases.  374 

Fig. 8 compares the observed lake levels with the lake levels obtained from real-time 375 

updating and indirect multi-step prediction. The lake levels from real-time updating are closer 376 

to the observed data than the multi-step predictions. However, the accuracy of the multi-step 377 

prediction is still acceptable especially when the lake level remains low, rises or declines. Fig. 378 

8 also reveals that, for the indirect multi-step prediction in each time window, the absolute 379 

prediction error does not necessarily enlarge with time.  380 

3.4 Contributions of different rivers to lake level changes 381 



  

21 

 

The final step of the integrated methodology is to use the orthogonal design (Taguchi, 382 

1987) and range analysis to identify the relative contributions of different rivers to lake level 383 

changes. The orthogonal design has been widely used in the field of design of experiments 384 

(e.g., Ghani et al., 2004; Kwak and Choi, 2002) due to its quick result and statistical rigor. 385 

This method can substantially reduce the number of needed experiments but still provide 386 

sufficient information. An orthogonal array of five factors at four levels (L16(4
5
)) was 387 

designed in Table 6. Each of the 16 model runs corresponded to a combination of river 388 

discharge variations. Based on the training data, a river discharge was altered by -15%, -5%, 5% 389 

and 15% under the levels of 1-4, respectively. Lake level variations were the differences in 390 

model-predicted lake levels corresponding to the changed and unchanged model inputs.  391 

Fig. 9 shows the main effects of the five rivers obtained with the range analysis. Stations 392 

Chenglingji, Lujiao and Yingtian (No.1-3) see greater water level changes than the other two 393 

stations. This is in common with the characteristics of water level fluctuations at the five 394 

stations (Table 1). Fig. 9 also shows that the Yangtze River clearly plays a dominant role in 395 

affecting the lake levels at stations No.1-3. In addition, it seems reasonable that the lake levels 396 

at the three sites increase with the increase in lake tributary inflows. Note that the negligible 397 

effect of the Li River agrees with its small flow magnitude.  398 

According to Fig. 9, lake level variations at stations Xiaohezui and Nanzui (No.4 and 5) 399 

are governed by both the Yangtze River and the Yuan River. Relative to stations No.1-3, the 400 

effect of the Yangtze River becomes less strong at the two sites. The reason is presumably 401 

that the lake levels at stations No.4 and 5 are about five meters higher than those at stations 402 

No.1-3 (Table 1). The Yuan River overtakes the other lake tributaries in terms of affecting the 403 
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water levels at No.4 and 5, as its relatively large discharge flows past the two stations (Fig. 404 

1c).  405 

The above findings agree well with the relative magnitudes of correlation coefficients 406 

between the lake levels and river discharges (Table 7). For the lake levels at No.1-3, the 407 

correlation with the Yangtze River discharge (D
5
) is obviously the greatest among the five 408 

river discharges. In the case of stations No.4 and 5, the correlation with the Yuan River 409 

discharge (D
3
) turns noticeable.  410 

4 Discussion 411 

In the present work, the integrated modeling and analytical methodology was applied to 412 

the Dongting Lake in China, which is connected to multiple regulated rivers. In the 413 

development of the Dongting Lake water level models, we did not take into account the effect 414 

of rainfall. Even though the reasons for this have been given in Section 2.3.1, it is still 415 

interesting to investigate the consequences of ignoring rainfall in the lake level modeling.  416 

Fig. 7 suggests that the developed lake level models produce large errors occasionally. 417 

Both the greatest overestimate (0.43 m) and the greatest underestimate (-0.64 m) occur at 418 

station Yingtian (No.3). The serious underestimates can probably be attributed to ignoring 419 

rainfall, which is not reflected by the river discharges, in the lake level modeling. Taking 420 

Yingtian (No.3) as an example, we further collected daily rainfall at weather stations P1 and 421 

P2 (Fig. 1c) to verify this assumption. Obviously, the runoff associated with rainfall at P1 and 422 

P2 has not been reflected by the river flow at station Xiangtan (#1). Fig. 10 shows the average 423 

daily rainfall at P1 and P2 and the serious underestimates of the observed lake levels (< -0.10 424 
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m) at Yingtian (No.3). It can be observed that a majority of the underestimates are closely 425 

related to the preceding rainfall, meaning that the model fails to capture the effect of rainfall 426 

over the areas downstream of the river stations.  427 

However, the GA can find a trade-off solution when used to calibrate the lake level 428 

models without rainfall. Fig. 11 is the schematic diagram illustrating the trade-off solution: (1) 429 

initially in Phase 1, there is no rainfall in the river-lake system; a powerful model can 430 

‘perfectly’ predict the lake levels using remote river discharges and antecedent lake levels; (2) 431 

in Phase 2, after a rainfall event is imposed, the model with its original parameter setting still 432 

can precisely predict the lake levels that are unaffected by the rainfall, but inevitably 433 

underestimates the raised water levels arising from runoff generation; (3) due to parameter 434 

optimization seeking to minimize the RMSE, the updated model in Phase 3 increases the 435 

predicted lake levels to reduce the underestimation. As stated earlier, the RMSE is dominated 436 

by large errors; the increase in model predictions thus caters for serious underestimates 437 

related to extreme rainfall, which eventually results in occasional large underestimates and 438 

overall slight overestimates. Fig. 12 shows the proportions of overestimated and 439 

underestimated lake levels. In accordance with the above speculation, the proportion of 440 

overestimates exceeds 50% at all lake stations. On average, 57.9% of the lake levels are 441 

overestimated and 42.1% are underestimated; the corresponding cumulative errors are 86.64 442 

m and -61.22 m, respectively.  443 

The performance-oriented parameter optimization ensures the high accuracy of the 444 

developed lake level models. Particularly for the lake level management, the simplified yet 445 

pragmatic models can better serve the purpose of providing the Dongting Lake water level 446 
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responses to the upstream dam releases.  447 

5 Conclusions 448 

This study develops an integrated modeling and analytical methodology for the water 449 

level management of lakes connected to dam-regulated rivers, and applies the methodology to 450 

the Dongting Lake in China. The following conclusions can be drawn: 451 

(1) The antecedent lake levels are the most important factor for the prediction of the current 452 

lake level; 453 

(2) The river discharge time lags selected by the GA well describe the spatial heterogeneity 454 

of the rivers’ impacts on lake level changes; 455 

(3) The synchronized optimization is able to fulfill the potential of SVR, leading to highly 456 

accurate prediction of lake levels; 457 

(4) The integrated methodology can provide the lake level responses to future dam releases 458 

and the relative importance of different rivers in terms of affecting the lake level. 459 
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Fig. 12. Proportions of overestimated and underestimated lake levels in the testing period. 
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Fig. 1.  Map of the study area. (a) Locations of the Yangtze River and the Dongting Lake Basin in the 

Yangtze River Basin, China; (b) river system and dam distribution in the Dongting Lake Basin; (c) the 

Yangtze River-Dongting Lake system, including distributary channels connecting the Dongting Lake to the 

Yangtze River at three main avulsion nodes (i.e., Songzi, Taiping and Ouchi) and the lake’s four major 

tributaries (i.e., the Xiang River, Zi River, Yuan River and Li River). 
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Fig. 2.  Integrated modeling and analytical methodology for water level management of lakes connected to 

regulated rivers. 
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Fig. 3.  Diagram of the GA-based synchronized search for the optimal input variable time lags and 

data-driven model parameters. In the Fitness function, D
1
, D

2
, D

3
,…, D

N
 are discharges of N rivers; L is the 

local water level; gray blocks indicate the selected time lags.  
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Fig. 4.  The selected input variable time lags (in days) for the Dongting Lake level prediction. D
1
, D

2
, D

3
, 

D
4
, D

5
 and L represent, respectively, the discharges of the Xiang, Zi, Yuan, Li and Yangtze River, and the 

local water level. Sensitivity analysis was conducted for the selected time lags. The model input 

corresponding to each time lag in the training period was altered by ±10%. The median value of the absolute 

differences in model-predicted lake levels was used to indicate the time lag’s effect on lake level variations. 

All the time lags’ effects were then ranked together. The darker the block is, the stronger its effect is. 

 

t-1

t-2

t-3

t-4

t-5

t-6

t-7

t-8

t-9

t-10

t-11

D
1

D
2

D
3

D
4

D
5

L D
1

D
2

D
3

D
4

D
5

L D
1

D
2

D
3

D
4

D
5

L D
1

D
2

D
3

D
4

D
5

L D
1

D
2

D
3

D
4

D
5

L

Chenglingji

No.1

Lujiao

No.2

Yingtian

No.3

Xiaohezui

No.4

Nanzui

No.5



  

37 

 

 

Fig. 5.  Correlation between the current lake level and its states at the previous time steps.  
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Fig. 6.  Comparisons between the observed and predicted lake levels.  
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Fig. 7.  Boxplots of the lake level prediction errors in the testing period.  
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Fig. 8.  Comparisons between the observed and predicted lake levels at Chenglingji in (a) dry period, (b) 

water-level rise period, (c) wet period and (d) drawdown period. 
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Fig. 9.  Main effects of different rivers on the Dongting Lake level variations at (a) Chenglingji, (b) Lujiao, 

(c) Yingtian, (d) Xiaohezui and (e) Nanzui. The horizontal axis is the change in river discharge. 
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Fig. 10.  Plots of average daily rainfall at stations P1 and P2 (top) and serious underestimates of the 

observed lake levels (< -0.10 m) at Yingtian (bottom). Gray columns indicate periods when the 

underestimates are closely related to the preceding rainfall.  
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Fig. 11.  Schematic diagram illustrating the changes in model behavior due to model parameter 

optimization. In Phase 1, the observed lake levels overlap the original model predictions. 
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Fig. 12.  Proportions of overestimated and underestimated lake levels in the testing period.  
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Table 1.  Statistical characteristics of the hydrological data.  

 

 

Station Location Data type Dataset
a 

Minimum 

value 

Maximum 

value 

Mean 

value 

Standard 

deviation 

Chenglingji Dongting  Water level Training 20.21  33.40  25.66  3.95  

No.1  (m) Testing 20.43  30.86  24.13  2.94  

Lujiao Dongting   Training 20.90  33.51  26.31  3.67  

No.2   Testing 21.01  30.98  24.68  2.75  

Yingtian Dongting   Training 21.21  33.67  26.69  3.66  

No.3   Testing 21.32  31.15  25.05  2.75  

Xiaohezui Dongting   Training 27.89  34.93  29.99  1.68  

No.4   Testing 27.91  31.91  29.27  1.02  

Nanzui Dongting   Training 27.78  35.14  30.08  1.80  

No.5   Testing 27.85  32.36  29.36  1.20  

Xiangtan Xiang R. Flow rate Training 504.0  18400.0  2365.7  2421.3  

#1  (m
3
/s) Testing 421.0  9090.0  1414.3  1186.9  

Taojiang Zi R.  Training 103.0  4450.0  729.1  645.4  

#2   Testing 108.0  3090.0  549.2  449.1  

Taoyuan Yuan R.  Training 104.0  18600.0  2150.5  2167.3  

#3   Testing 206.0  9390.0  1475.0  1355.4  

Shimen Li R.  Training 16.5  7330.0  485.3  521.5  

#4   Testing 26.2  3850.0  347.6  359.9  

Gezhou Dam Yangtze R.  Training 5172.5  46975.0  13517.9  10126.3 

#5   Testing 5097.5  40041.7  11498.0  7368.9  

Gaobazhou Dam Qing R.  Training 4.0  938.0  335.9  243.0  

#5   Testing 7.9  960.0  327.5  240.6  

a Training period: 2010 and 2012; testing period: 2009 and 2011 
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Table 2.  GA parameter setting and search boundaries.  

Item Parameter Value 

GA Maximum generation 300 

 Population size 300 

Search boundary Lower boundary of the time lag -0.5 

 Upper boundary of the time lag 11 

 Lower boundary of ε, C and γ 1×10
-6
 

 Upper boundary of ε, C and γ 1×10
6
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Table 3.  Summary of the performance metrics used in this study.  

Name Formula
a 

Root mean square error, RMSE 
2

1

1
ˆRMSE ( )

n

i i

i

y y
n 

    

Coefficient of determination, R
2
 

2 2 2

1 1

ˆ1 ( ) ( )
n n

i i i

i i

R y y y y
 

       

Mean absolute error, MAE 
1

1
ˆMAE

n

i i

i

y y
n 

    

Mean relative error, MRE 
1

ˆ1
MRE

n
i i

i i

y y

n y


    

a iy , observed; ˆ
iy , predicted; y , mean of observations; n, number of observations 
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 Table 4.  Optimized SVR parameters.  

Parameter Chenglingji 

No.1 

Lujiao 

No.2 

Yingtian 

No.3 

Xiaohezui 

No.4 

Nanzui 

No.5 

ε 0.0294 0.0616 0.0328 0.0317 0.0160 

C 76023.7342 156077.1426 83939.2136 99908.1305 805.7511 

γ 0.0008 0.0072 0.0024 0.0012 0.0528 

 

 



  

50 

 

Table 5.  Summary of the site-specific lake level model performance. 

Station Training  Testing 

 RMSE (m)
 

 RMSE (m) R
2 MAE (m) MRE 

Chenglingji (No.1) 0.052  0.057 0.9996 0.041 0.0017 

Lujiao (No.2) 0.069  0.061 0.9995 0.045 0.0018 

Yingtian (No.3) 0.097  0.091 0.9989 0.061 0.0024 

Xiaohezui (No.4) 0.041  0.037 0.9987 0.028 0.0009 

Nanzui (No.5) 0.036  0.044 0.9986 0.032 0.0011 
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Table 6.  Orthogonal array design and model simulation results.  

Run River discharge variation
a, b 

 Median value of lake level variations (10
-2

 m) 

 D
1 

D
2
 D

3 
D

4
 D

5
  No.1 No.2 No.3 No.4 No.5 

1 1 2 3 3 2  -1.2 -1.9 -1.3 0.0 0.1 

2 4 1 2 4 2  -0.6 -0.8 -1.0 -0.5 -0.7 

3 2 2 4 4 1  -1.7 -2.8 -1.3 0.1 0.6 

4 3 3 4 1 2  -0.5 -0.4 0.1 0.3 0.2 

5 3 1 1 3 1  -3.0 -4.5 -3.6 -1.5 -3.2 

6 3 2 2 2 4  1.9 3.0 1.3 0.2 0.3 

7 2 3 2 3 3  0.7 1.0 0.6 0.1 0.4 

8 4 3 3 2 1  -1.6 -2.1 -0.8 -0.2 -0.6 

9 4 2 1 1 3  0.3 0.7 0.0 -0.5 -1.4 

10 4 4 4 3 4  3.9 6.2 4.8 1.6 4.0 

11 3 4 3 4 3  1.9 3.0 2.4 0.7 2.2 

12 1 4 2 1 1  -3.2 -4.6 -2.6 -0.7 -2.4 

13 1 3 1 4 4  1.8 2.3 1.2 0.1 0.8 

14 2 4 1 2 2  -1.2 -1.8 -1.0 -0.9 -1.9 

15 2 1 3 1 4  1.5 1.9 0.6 0.6 0.6 

16 1 1 4 2 3  0.5 0.2 0.0 0.7 1.4 

a D1, D2, D3, D4 and D5 are as in Fig. 4 

b Levels of 1, 2, 3 and 4 represent 15% decrease, 5% decrease, 5% increase and 15% increase, respectively 
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Table 7.  The maximum correlation coefficients between the lake levels and river discharges at various 

time lags.   

Station D
1
 D

2
 D

3
 D

4
 D

5
 

Chenglingji (No.1) 0.42 0.47 0.58 0.49 0.88 

Lujiao (No.2) 0.44 0.50 0.59 0.50 0.85 

Yingtian (No.3) 0.48 0.53 0.61 0.51 0.81 

Xiaohezui (No.4) 0.51 0.56 0.74 0.61 0.77 

Nanzui (No.5) 0.45 0.51 0.66 0.57 0.84 
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 An integrated methodology is developed for lake water level management. 

 Input variables and parameters of lake level models are optimized simultaneously. 

 The antecedent lake levels are crucial to the prediction of the current lake level. 

 The predicted lake levels agree very well with the observed data (R
2
 ≥ 0.9986). 

 The relative contributions of different rivers to lake level changes are analyzed. 

 


