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Submitted to the Annals of Statistics

THE BLUE IN CONTINUOUS-TIME REGRESSION
MODELS WITH CORRELATED ERRORS

By Holger Dette∗, Andrey Pepelyshev† and Anatoly

Zhigljavsky†

Ruhr-Universität Bochum∗ and Cardiff University†

In this paper the problem of best linear unbiased estimation is
investigated for continuous-time regression models. We prove several
general statements concerning the explicit form of the best linear un-
biased estimator (BLUE), in particular when the error process is a
smooth process with one or several derivatives of the response pro-
cess available for construction of the estimators. We derive the ex-
plicit form of the BLUE for many specific models including the cases
of continuous autoregressive errors of order two and integrated er-
ror processes (such as integrated Brownian motion). The results are
illustrated on many examples.

1. Introduction. Consider a continuous-time linear regression model of
the form

y(t) = θT f(t) + ǫ(t) , t ∈ T ⊆ [A,B],(1.1)

where θ ∈ R
m is a vector of unknown parameters, f(t) = (f1(t), . . . , fm(t))

T

is a vector of linearly independent functions on T , and ǫ = {ǫ(t)|t ∈ [A,B]}
is a random error process with E[ǫ(t)] = 0 for all t ∈ [A,B] and covariances
E[ǫ(t)ǫ(s)] = K(t, s). We will assume that ǫ has continuous (in the mean-
square sense) derivatives ǫ(i) (i = 0, 1, . . . , q) up to order q, where q is a
non-negative integer. Finally, T is the set where the observations of y(t)
and perhaps derivatives of y(t) are available. This often occurs in practice,
in particular, in the geophysical determination of gravity anomalies and the
satellite gradiometry (Freeden, 1999), computer experiments (Morris et al.,
1993; Stein, 2012) and global optimization (Osborne et al., 2009). For a
detailed discussion on different types of derivatives of random processes we
refer to Yaglom (1987).
The main aim of this paper is studying the best linear unbiased estimator
(BLUE) of the parameters θ in the general setting and in many specific
instances. Understanding of the explicit form of the BLUE has profound
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2 H. DETTE ET AL.

significance on general estimation theory and on asymptotically optimal
design for (at least) three reasons. Firstly, the efficiency of the ordinary
least squares estimator, the discrete BLUE and other unbiased estimators
can be computed exactly. Secondly, as pointed out in a series of papers (Sacks
and Ylvisaker, 1966, 1968, 1970), the explicit form of the BLUE is the key
ingredient for constructing the (asymptotically) optimal exact designs in the
regression model

y(ti) = θT f(ti) + ǫ(ti) , A ≤ t1 < t2 . . . < tN−1 < tN ≤ B ,(1.2)

with E[ǫ(ti)ǫ(tj)] = K(ti, tj). Thirdly, simple and very efficient estimators
for the parameter θ in the regression model (1.2) can be derived from the
continuous BLUE, like the extended signed least squares estimator investi-
gated in Dette et al. (2013, 2016) and the estimators based on approximation
of stochastic integrals proposed in Dette et al. (2017). In contrast to our pre-
vious work, which had its focus on the construction of optimal designs, this
paper concentrates on the specific properties of BLUE in the continuous
time model (1.1); more discussion can be found in Section 2.8.
There are many classical papers dealing with construction of the BLUE,
mainly in the case of a non-differentiable error process; that is, in model
(1.1) with q = 0. In this situation, it is well understood that solving specific
instances of an equation of Wiener-Hopf type

∫

T
K(t, s)ζ(dt) = f(s) , ∀s ∈ T ,(1.3)

for an m-dimensional vector ζ of signed measures implies an explicit con-
struction of the BLUE in the continuous-time model (1.1). This equation
was first considered in a seminal paper of Grenander (1950) for the case of
the location-scale model y(t) = θ + ǫ(t), i.e. m = 1, f1(t) = 1. For a general
regression model with m ≥ 1 regression functions (and q = 0), the BLUE
was extensively discussed in Grenander (1954) and Rosenblatt (1956) who
considered stationary processes in discrete time, where the spectral repre-
sentation of the error process was heavily used for the construction of the
estimators. In this and many other papers including Kholevo (1969) and
Hannan (1975) the subject of the study was concentrated around the spec-
tral representation of the estimators and hence the results in these references
are only applicable to very specific models. A more direct investigation of the
BLUE in the location scale model (with q = 0) can be found in Hájek (1956),
where equation (1.3) for the BLUE was solved for a few simple kernels. The
most influential paper on properties of continuous BLUE and its relation to
the reproducing kernel Hilbert spaces (RKHS) is Parzen (1961). A relation
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 3

between discrete and continuous BLUE has been further addressed in An-
derson (1970). An excellent survey of classical results on the BLUE is given
in the book of Näther (1985), Sect. 2.3 and Chapter 4 (for the location scale
model). Formally, Theorem 2.3 of Näther (1985) includes the case when the
derivatives of the process y(t) are available (q ≥ 0); this is made possible by
the use of generalized functions which may contain derivatives of the Dirac
delta-function. This theorem, however, provides only a sufficient condition
for an estimator to be the BLUE. The examples, where the explicit form of
the BLUE was known before the publication of the monograph by Näther
(1985), are listed in Sect. 2.3 of his book. In most of these examples either a
Markovian structure of the error process is assumed or the one-dimensional
location scale model is studied. Section 2.6 of our paper updates this list
and gives a short outline of previously known cases where the explicit form
of the BLUE was known until now.
There was also an extensive study of the relation between solutions of the
Wiener-Hopf equations and the BLUE through the RKHS theory, see Parzen
(1961); Sacks and Ylvisaker (1966, 1968, 1970) for an early or Ritter (2000)
for a more recent reference. If q = 0 then the main RKHS assumption is
usually formulated as the existence of a solution, say ζ0, of equation (1.3),
where the measure ζ0 is continuous and has no atoms, see Berlinet and
Thomas-Agnan (2011) for the RKHS theory. As shown in the present paper,
this almost never happens for the commonly used covariance kernels and
regression functions (a single general exception from this observation is given
in Proposition 2.3). The case when the covariance kernel K is imprecisely
known is carefully considered in (Näther, 1985, Ch.10); see also Loh et al.
(2000); Anderes (2010); Stein (2012) for some discussions concerning the
problem of estimation of covariance kernels.
Note also that the numerical construction of the continuous BLUE is difficult
even for q = 0 and m = 1, see e.g. Ramm and Charlot (1980) and a remark
on p.80 in Sacks and Ylvisaker (1966). For q > 0, the problem of numerical
construction of the BLUE is severely ill-posed and hence is extremely hard.
The main purpose of this paper is to provide further insights into the
structure of the BLUE (and its covariance matrix) from the observations
{Y (t)|t ∈ T } (and its q derivatives) in continuous-time regression models
of the form (1.1), where the set T ⊆ [A,B] defines the region where the
process is observed. By generalizing the celebrated Gauss-Markov theorem,
we derive new characterizations for the BLUE. Our results require minimal
assumptions regarding the regression function and the error process. Impor-
tant examples, where the BLUE can be determined explicitly, include general
integrated processes (in particular, integrated Brownian motion) and contin-
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4 H. DETTE ET AL.

uous autoregressive processes including the Matérn kernels with parameters
3/2 and 5/2.
The remaining part of this paper is organized as follows. In Section 2 we
develop a consistent general theory of best linear unbiased estimation using
signed matrix measures and derive several important characterizations and
properties of the BLUE. In particular, in Theorem 2.1 we provide necessary
and sufficient conditions for an estimator to be BLUE when q ≥ 0; in The-
orem 2.2 such conditions are derived for q = 0, T ⊂ R

d with d ≥ 1 and very
general assumptions about the vector of regression functions f(·) and the
covariance kernel K(·, ·).
Section 3 is devoted to models where the error process has one derivative. In
particular, we derive an explicit form of the BLUE, see Theorems 3.1 and 3.2,
and obtain the BLUE for specific types of smooth kernels. In Section 3.4 we
consider regression models with a continuous-time autoregressive (AR) error
process of order 2 (i.e. CAR(2)) in more detail. Moreover, in practice the
corresponding discrete-time regression model (1.2) is used. Therefore, in an
online supplement [see Dette et al. (2018)] we exemplarily demonstrate that
the covariance matrix of the BLUE in this model can be obtained as a limit
of the covariance matrices of the BLUE in the discrete regression model (1.2)
with observations at equidistant points and a discrete AR(2) error process.
In Section 4 we give some insight into the structure of the BLUE when the
error process is more than once differentiable. Some numerical illustrations
are given in Section 5, while technical proofs can be found in Section 6.

2. General linear estimators and the BLUE.

2.1. Linear estimators and their properties. Consider the regression model
(1.1) with covariance kernel K(t, s) = E[ǫ(t)ǫ(s)]. Suppose that we can ob-
serve the process {y(t)|t ∈ T } and, if q > 0, also its mean square derivatives
{y(i)(t)|t ∈ T } for i = 1, . . . , q. The set T is a Borel subset of some interval
[A,B] with −∞ ≤ A < B ≤ ∞. This is possible when the kernel K(t, s)
is q times continuously differentiable on the square [A,B] × [A,B] and the
vector-function f(t) = (f1(t), . . . , fm(t))

T is q times differentiable on the
interval [A,B] with derivatives f (1), . . . f (q) (f (0) = f). We will also assume
throughout that the functions f1, . . . , fm are linearly independent on T .
Let Y (t) = {(y(0)(t), . . . , y(q)(t))T } be the observation vector containing the
process y(t) = y(0)(t) and its q derivatives. Denote by YT = {Y (t) : t ∈ T }
the set of all available observations. The general linear estimator of the
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 5

parameter θ in the regression model (1.1) can be defined as

θ̂G =

∫

T
G(dt)Y (t) =

q∑

i=0

∫

T
y(i)(t)Gi(dt),(2.1)

where G(dt) = (G0(dt), . . . , Gq(dt)) is a matrix of size m × (q + 1). The
columns of this matrix are signed vector-measuresG0(dt), . . . , Gq(dt) defined
on Borel subsets of T (all vector-measures in this paper are signed and have
length m).
The following lemma shows a simple way of constructing unbiased estima-
tors; this lemma will also be used for deriving the BLUE in many examples.
The proof is given in Section 6.

Lemma 2.1. Let ζ0, . . . , ζq be some signed vector-measures defined on T
such that the m×m matrix

C =

q∑

i=0

∫

T
ζi(dt)

(
f (i)(t)

)T
(2.2)

is non-degenerate. Define G = (G0, . . . , Gq), where Gi are the signed vector-

measures and Gi(dt) = C−1ζi(dt) for i = 0, . . . , q. Then the estimator θ̂G is
unbiased.

Note that the matrix C defined in (2.2) plays the role of an information
matrix; this can also be seen from Corollary 2.1 below.
The covariance matrix of any unbiased estimator θ̂G of the form (2.1) is

Var(θ̂G) =

∫

T

∫

T
G(dt)K(t, s)GT (ds)(2.3)

=

q∑

i=0

q∑

j=0

∫

T

∫

T

∂i+jK(t, s)

∂ti∂sj
Gi(dt)G

T
j (ds) ,

where

K(t, s) =

(
∂i+jK(t, s)

∂ti∂sj

)q

i,j=0

=
(
E[ǫ(i)(t)ǫ(j)(s)]

)q
i,j=0

is the matrix consisting of the derivatives of K.
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6 H. DETTE ET AL.

2.2. The BLUE. The (continuous) BLUE is defined as follows. If there
exists a set of signed vector-measures, say G = (G0, . . . , Gq), such that the

estimator θ̂G =
∫
T G(dt)Y (t) is unbiased and Var(θ̂H) ≥ Var(θ̂G) in the

sense of Loewner ordering, where θ̂H =
∫
T H(dt)Y (t) is any other linear

unbiased estimator which uses the observations YT , then θ̂G is called the
best linear unbiased estimator (BLUE) for the regression model (1.1) using
the set of observations YT . The BLUE depends on the kernel K, the vector-
function f , the set T and the number q of available derivatives of the process
{y(t)|t ∈ T }. The notation “continuous BLUE” highlights that estimation
is performed for continuous observations.
The following theorem is a generalization of the celebrated Gauss-Markov
theorem (which is usually formulated for the case when q = 0 and T is
finite) and gives a necessary and sufficient condition for an estimator to be
the BLUE. In this theorem and below we denote the partial derivatives of
the kernel K(t, s) with respect to the first component by

K(i)(t, s) =
∂iK(t, s)

∂ti
.

The proof of the theorem can be found in Section 6.

Theorem 2.1. Consider the regression model (1.1), where the error process
{ǫ(t)|t ∈ [A,B]} has a covariance kernel K(·, ·) ∈ Cq([A,B] × [A,B]) for
some q ≥ 0. Suppose that the process {y(t)|t ∈ [A,B]} along with its q
derivatives can be observed at all t ∈ T ⊆ [A,B]. Assume also that all
components of f(·) are q times differentiable.
An unbiased estimator θ̂G =

∫
T G(dt)Y (t) is BLUE if and only if the equality

q∑

i=0

∫

T
K(i)(t, s)Gi(dt) = Df(s),(2.4)

is fulfilled for all s ∈ T , where D is some m × m matrix. In this case,
D = Var(θ̂G) with Var(θ̂G) defined in (2.3).

Corollary 2.1 is weaker than Theorem 2.1, where the covariance matrix of
the BLUE is not assumed to be non-degenerate, but will be very useful in
further considerations.

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied and let
ζ0, . . . , ζq be signed vector-measures defined on T such that the matrix C
defined in (2.2) is non-degenerate. Define G = (G0, . . . , Gq), Gi(dt) =
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 7

C−1ζi(dt) for i = 0, . . . , q. The estimator θ̂G =
∫
T G(dt)Y (t) is the BLUE

if and only if

q∑

i=0

∫

T
K(i)(t, s)ζi(dt) = f(s)(2.5)

for all s ∈ T . In this case, the covariance matrix of θ̂G is Var(θ̂G) = C−1.

In the following sections we derive sufficient conditions for (2.4) and (2.5);
see, for example, Sections 3.1, 3.3 and 4.2.

2.3. Grenander’s theorem and its generalizations.
When T = [A,B], q = 0, m = 1 and the regression model (1.1) is the
location-scale model y(t) = α+ ε(t), Theorem 2.1 is known as Grenander’s
theorem [see Grenander (1950) and Section 4.3 in Näther (1985)]. In this
special case Grenander’s theorem has been generalised by Näther (1985) to
the case when T ⊂ R

d [see Theorem 4.3 in this reference]. For the case
of one-dimensional processes, Theorem 2.1 generalizes Grenander’s theorem
to arbitrary m-parameter regression models of the form (1.1) and the case
of arbitrary q ≥ 0. Another generalization of Grenander’s theorem is given
below; it deals with a general m-parameter regression model (1.1) with a
continuous error process (i.e. q = 0) and a d-dimensional set T ⊂ R

d; that
is, the case where y(t) is a random field.

Theorem 2.2. Consider the regression model y(t) = θT f(t) + ǫ(t), where
t ∈ T ⊂ R

d, the error process ǫ(t) has covariance kernel K(·, ·) and f : T →R
m

is a vector of bounded integrable and linearly independent functions. Suppose
that the process y(t) can be observed at all t ∈ T and let G be a signed vector-
measure on T , such that the estimator θ̂G =

∫
T G(dt)Y (t) is unbiased. θ̂G

is a BLUE if and only if the equality

∫

T
K(t, s)G(dt) = Df(s)

holds for all s ∈ T for some m ×m matrix D. In this case, D = Var(θ̂G),
where Var(θ̂G) is the covariance matrix of the estimator θ̂G defined by (2.3).

The proof of this theorem is a simple extension of the proof of Theorem 2.1
with q = 0 to a general set T ⊂ R

d and left to the reader.
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8 H. DETTE ET AL.

2.4. Properties of the BLUE.

(P1) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (1.1) and the
same q but for two different design sets T1 and T2 such that T1 ⊆ T2.
Then Var(θ̂G1) ≥ Var(θ̂G2).

(P2) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (1.1) and
the same design set T but for two different values of q, say, q1 and q2,
where 0 ≤ q1 ≤ q2. Then Var(θ̂G1) ≥ Var(θ̂G2).

(P3) Let θ̂G with G = (G0, . . . , Gq) be a BLUE for the regression model
(1.1), design space T and given q ≥ 0. Define g(t) = Lf(t), where
L is a non-degenerate m × m matrix, and a signed vector-measure
H = (H0, . . . , Hq) with Hi(dt) = L−1Gi(dt) for i = 0, . . . , q. Then θ̂H
is a BLUE for the regression model y(t) = βT g(t)+ε(t) with the same

y(t), ε(t), T and q. The covariance matrix of θ̂H is L−1Var(θ̂G)L
−1T .

(P4) If T = [A,B] and a BLUE θ̂G is defined by the matrix-measure G
that has smooth enough continuous parts, then we can choose another
representation θ̂H of the same BLUE, which is defined by the matrix-
measure H = (H0, H1, . . . , Hq) with vector-measures H1, . . . , Hq hav-
ing no continuous parts.

(P5) Let ζ0, . . . , ζq satisfy the equation (2.5) for all s ∈ T , for some vector-
function f(·), design set T and given q ≥ 0. Define C = Cf by (2.2). Let
g(·) be some other q times differentiable vector-function on the interval
[A,B]. Assume that the signed vector-measures η0, . . . , ηq satisfy the
equation

q∑

i=0

∫

T
K(i)(t, s)ηi(dt) = g(s) , ∀s ∈ T ;(2.6)

that is, the equation (2.5) for the vector-function g(·), the same design
set T and the same q. Define Cg =

∑q
i=0

∫
T g

(i)(t)ηTi (dt), which is the
matrix (2.2) with ηi substituted for ζi and g(·) substituted for f(·).
If the matrix C = Cf + Cg is non-degenerate, then we define the set
of signed vector-measures G = (G0, . . . , Gq) by Gi = C−1(ζi + ηi),

i = 0, . . . , q, yielding the estimator θ̂G. This estimator is a BLUE for
the regression model y(t) = θT [f(t) + g(t)] + ε(t), t ∈ T .

Properties (P1)–(P3) are obvious. The property (P4) is a particular case of
the discussion of Case (5) in Section 2.5. To prove (P5) we simply add the
equations (2.5) and (2.6) and then use Corollary 2.1.
We believe that the properties (P4) and (P5) have never been noticed before
and both these properties are very important for understanding best linear
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 9

unbiased estimators in the continuous-time regression model (1.1) and espe-
cially for constructing a BLUE for new models from the cases when a BLUE
is known for simpler models.
As an example, set g(t) = c, where c is a constant vector of size m and let f
be arbitrary for which we know the BLUE with C = Cf . Assume that we also
know the BLUE for the location-scale model which gives us the associated
matrix C = Cg of rank 1 for the model θT g(t). Then, assuming that the
matrix Cf + Cg is non-degenerate we can use property (P5) to construct
BLUE for θT (f(t) + c). In particular, if all functions in the vector f are
not constant and Cf is non-degenerate then Cf + Cg is non-degenerate.
This observation constitutes an important part in the proof of Theorem 3.2,
which allows obtaining the explicit form of the BLUE for integrated error
processes from the explicit form of the BLUE for the corresponding non-
integrated errors (which is an easier problem). In this particular application
of property (P5), the vector-function g is used to correct the constant terms
in functions f1, . . . , fm as the latter ones are integrals

∫ t
a
ψi(s)ds of some

other functions ψi and hence contain undesirable constant terms.

2.5. Existence and uniqueness of the BLUE.
Let us classify different situations.
(1) If functions f1, . . . , fm are linearly dependent on T then the BLUE does
not exist as the unbiasedness condition cannot be satisfied. This is the reason
why we assume that f1, . . . , fm are linearly independent on T .
(2) If T is a discrete set T = {t1, . . . , tN} and the kernel K is strictly
positive definite then the BLUE exists for any q ≥ 0. It is uniquely defined
for q = 0 as the matrix (K(ti, tj))

N
i,j=1 is always non-degenerate. However,

for q > 0 the BLUE may not be uniquely defined as the matrix of covariances
and cross-covariances between observations and derivatives may not be non-
degenerate; this is similar to the continuous case considered below in case (5).
(3) If all functions f1, . . . , fm belong to the RKHS associated with K and
additionally satisfy some extra smoothness conditions then the BLUE ex-
its and can be found using results of Parzen (1961). A serious difficulty
with this approach is the fact that for the majority of kernels there is no
known expression for the scalar products in the RKHS. Also, the RKHS-
based approach is not applicable when the covariance matrix of the BLUE
is degenerate. There are many examples when the BLUE exists and can be
found using Theorem 2.1 with functions f1, . . . , fm which may not belong to
the RKHS. As a simple example, set T = [0, 1], q = m = 1, f(t) = t− t2/2,
K(t, s) = min(t, s)2(3max(t, s) −min(t, s))/6, see (3.5). Define G0(dt) = 0
and G1(dt) = δ0(dt), where δa(dt) is the Dirac delta-measure concentrated
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10 H. DETTE ET AL.

at the point a. Then equation (2.4) is satisfied with D = 0, and as the
estimator θ̂G is obviously unbiased G = (G0, G1) defines the BLUE .
(4) If T = [A,B] and the derivatives y(j)(t) are available for j = 0, . . . , p < q
then the BLUE exists only for very specific functions f . Assume, for exam-
ple, that p = 0 so that only values of y(t) are available. Then the class of
respective functions is g(t) = f̃(t) +

∑
i ciK(ai, t), where ai ∈ [A,B], ci ∈ R

and f̃ is defined by (2.8). It seems to be in contradiction with the fact that
discrete BLUE estimators always exist even when p = 0. This can be ex-
plained by the behaviour of these discrete BLUEs when the uniform N -point
grid approximating a continuous T = [A,B] gets finer and finer: the discrete
BLUE weights at the points close to A and B are trying to create approx-
imations for all q derivatives of y at A and B and hence have the order of
N q (in absolute values). Therefore, (a) the sequence of discrete measures di-
verge, and (b) the covariance matrices of the discrete BLUEs converge very
slowly; they do converge to the covariance matrix of the continuous BLUE
which would use all q derivatives of y(t). To increase efficiency of discrete
BLUEs we would advice to always place q − 1 distinct design points very
close to A and B, in addition to A and B themselves.
(5) Assume T = [A,B], q > 0 and the values of derivatives y(j)(t) for
j = 0, . . . , q are available. In this case, if f is smooth enough then the BLUE
is not uniquely defined. More generally, we will show that if T = [A,B] then,
under additional smoothness conditions of f , for a given set of signed vector-
measures G = (G0, G1, . . . , Gq) on T we can find another set of measures
H = (H0, H1, . . . , Hq) such that the signed vector-measures H1, . . . , Hq have
no continuous parts but the expectations and covariance matrices of the
estimators θ̂G and θ̂H coincide.
For this purpose, let G0, . . . , Gq be some signed vector-measures and as-
sume that for some i ∈ {1, . . . ,m}, the signed measure Gi(dt) has the form
Gi(dt) = Qi(dt) + ϕi(t)dt, where Qi(dt) is a signed vector-measure and
ϕi ∈ Ci([A,B]). Define the matrix H = (H0, . . . , Hq), where the columns of
H are the following signed vector-measures:

H0(dt) = G0(dt) + (−1)i
[
ϕi

(i)(t)dt− ϕ
(i−1)
i (A)δA(dt) + ϕ

(i−1)
i (B)δB(dt)

]
,

Hj(dt) = Gj(dt) + (−1)i−j−1
[
ϕ
(i−j−1)
i (A)δA(dt)− ϕ

(i−j−1)
i (B)δB(dt)

]

for j = 1, . . . , i − 1; Hi(dt) = Qi(dt), Hj(dt) = Gj(dt), for j = i + 1, . . . , q.
The proof of the following result is given in Section 6.

Lemma 2.2. In the notation above, the expectations and covariance matri-
ces of the estimators θ̂G =

∫
G(dt)Y (t) and θ̂H =

∫
H(dt)Y (t) coincide.
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 11

Lemma 2.2 shows that the sets of measures G = (G0, . . . , Gq) and H =

(H0, . . . , Hq) produce estimators θ̂G and θ̂H of the form (2.1) with the same
covariance matrix. Therefore, we can restrict the search of linear unbiased
estimators to estimators θ̂G such that the components G1, . . . , Gq of G have
no continuous parts. To achieve this, by a repeated use of Lemma 2.2 we
negate the absolutely continuous parts of measures Gi one-by-one, for i =
q, q−1, . . . , 1. A family of different BLUE-measures is shown in Example 3.1.

2.6. Examples of the BLUE for non-differentiable error processes. For the
sake of completeness we first consider the case when the errors in model (1.1)
follow a Markov process, which is a very common class of correlation kernels
and includes as a particular case the kernels of continuous autoregressive
errors of order 1. In presenting these results we follow Näther (1985) and
Dette et al. (2016).

Proposition 2.1. Consider the regression model (1.1) with f twice differ-
entiable and covariance kernel K(t, s) = u(t)v(s) for t ≤ s and K(t, s) =
v(t)u(s) for t > s; here u(·) and v(·) are twice differentiable positive func-
tions such that q(t) = u(t)/v(t) is monotonically increasing. Define the
signed vector-measure ζ(dt) = zAδA(dt) + zBδB(dt) + z(t)dt with

zA =
1

v2(A)q′(A)

[f(A)u′(A)
u(A)

− f ′(A)
]
,

z(t) = − 1

v(t)

[h′(t)
q′(t)

]′
, zB =

h′(B)

v(B)q′(B)
,

where ψ′ denotes a derivative of a function ψ, the vector-function h(·) is
defined by h(t) = f(t)/v(t). Assume that the matrix C =

∫
T f(t)ζ

T (dt) is

non-degenerate. Then the estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE
with covariance matrix C−1.

In the following statement we provide an explicit expression for the BLUE
for one special case of non-Markovian covariance kernel. The proof is given
in Section 6.

Proposition 2.2. Consider the regression model (1.1) on the interval T =
[A,B] with errors having the covariance function K(t, s) = 1 + λ1t − λ2s,
where t ≤ s, λ1 ≥ λ2 > 0 and λ2(B − A) ≤ 1. Define the signed vector-
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12 H. DETTE ET AL.

measure ζ(dt) = zAδA(dt) + zBδB(dt) + z(t)dt by

z(t) = − f (2)(t)

λ1 + λ2
, zA =

(
− f (1)(A) +

λ21f(A) + λ1λ2f(B)

λ1 + λ2 + λ21A− λ22B)

)
/(λ1 + λ2),

zB =
(
f (1)(B) +

λ1λ2f(A) + λ22f(B)

λ1 + λ2 + λ21A− λ22B)

)
/(λ1 + λ2)

and suppose that the matrix C=
∫
T f(t)ζ

T (dt) is non-degenerate. Then the

estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE with covariance matrix C−1.

If λ1 = λ2 and [A,B] = [0, 1] in Proposition 2.2 then we obtain the case

K(t, s) = max(1− λ|t− s|, 0) .(2.7)

Optimal designs for this covariance kernel (with λ = 1) have been considered
in [Sect. 6.5 in Näther (1985)], Müller and Pázman (2003) and Fedorov and
Müller (2007).

Example 2.1. Consider the regression model (1.1) on the interval T =
[0, 1] with errors having the covariance kernel (2.7) with λ ≤ 1. Define the
signed vector-measure

ζ(dt) =
[
− f (1)(0)

2λ + fλ
]
δ0(dt) +

[f (1)(1)
2λ + fλ

]
δ1(dt)−

[f (2)(t)
2λ

]
dt ,

where fλ = (f(0)+f(1))/(4−2λ). Assume that the matrix C =
∫
T f(t)ζ

T (dt)

is non-degenerate. Then the estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE;
the covariance matrix of this estimator is given by C−1.

Next we consider the case when the regression functions are linear combina-
tions of eigenfunctions from Mercer’s theorem. Note that a similar approach
was used in Dette et al. (2013) for the construction of optimal designs for
the signed least squares estimators. Let T = [A,B]; consider the integral op-

erator TK(h)(·) =
∫ B
A
K(t, ·)h(t)dt on L2([A,B]), which defines a symmet-

ric, compact self-adjoint operator. In this case Mercer’s Theorem [see e.g.
Kanwal (1997)] shows that there exist a countable number of orthonormal
eigenfunctions φ1, φ2, . . . with positive eigenvalues λ1, λ2, . . . of the integral
operator TK . The next statement follows directly from Corollary 2.1.

Proposition 2.3. Let φ1, φ2, . . . be the eigenfunctions of the integral op-
erator TK(·) and f(t) =

∑∞
ℓ=1 qℓφℓ(t) for some sequence {qℓ}ℓ∈N in R

m.
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 13

Assume that the matrix C =
∑∞

ℓ=1 λ
−1
ℓ qℓq

T
ℓ is non-degenerate and the vec-

tor sum
∑∞

ℓ=1 λ
−1
ℓ qℓφℓ(t) converges for all t. Then the estimator θ̂G with

G(dt) = C−1
∞∑

ℓ=1

λ−1
ℓ qℓφℓ(t)dt

is a BLUE with covariance matrix C−1.

Proposition 2.3 provides a way of constructing covariance kernels for which
the measure defining the BLUE does not have any atoms. An example of
such kernels is the following.

Example 2.2. Consider the regression model (1.1) with m = 1, f(t) ≡ 1,
t ∈ T = [−1, 1], and the covariance kernel K(t, s) = 1 + κpα,β(t)pα,β(s),

where κ > 0, α, β > −1 are some constants and pα,β(t) =
α−β
2 + (1 + α+β

2 )t

is the Jacobi polynomial of degree 1. Then the estimator θ̂G with G(dt) =
const · (1− t)α(1 + t)βdt is a BLUE.

2.7. BLUE for functions from the class SY(K). Equation (1.3) is related
to the work of Sacks and Ylvisaker (1966, 1968, 1970), who used a RKHS
approach to construct asymptotically optimal designs for linear regression
models with correlated observations. To be precise denote by H(K) the
RKHS of functions on T associated with the kernel K and by SY(K) the
class of functions h ∈ H(K) of the form h(·) =

∫
T K(s, ·)φ(s)ds for some

continuous function φ on T . The functions from SY(K) are often referred to
as the functions satisfying the Sacks-Ylvisaker conditions, see Ritter et al.
(1995); Ritter (2000).
Assume that all components fi of f belong to SY(K) so that fi(·) =∫
T K(s, ·)φi(s)ds for some continuous functions φi(·). Set φ = (φ1, . . . , φm)

T .
Corollary 2.1 then implies that if the matrix C =

∫
T φ(t)f

T (t)dt is non-

degenerate then the estimator θ̂G =
∫
T G(dt)Y (t) is the BLUE; here G =

(G0, . . . , Gq) with G0(dt) = C−1φ(t)dt and Gi = 0, for i = 1, . . . , q. This
implies that if all components fi of f belong to SY(K), then the BLUE mea-
sure for f can be chosen so that it has no atoms and no weights assigned to
any derivatives of y(t).
Assume now that T = [A,B], the vector-function f is smooth enough and all
components fi of f belong to H(K) but not necessarily to SY(K). As shown
in Section 2.5, we can choose vector-measures ζi(dt) (i = 0, 1, . . . , q) satis-
fying (2.5) so that there are no continuous parts in the measures ζi(dt),

i = 1, . . . , q. Formally, this can be expressed as ζ0(dt) = z
(0)
A δA(dt) +
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14 H. DETTE ET AL.

z
(0)
B δB(dt)+z(t)dt and ζi(dt) = z

(i)
A δA(dt)+z

(i)
B δB(dt) for i = 1, . . . , q, where

z(t) is some continuous function on [A,B] and z
(i)
A , z

(i)
B (i = 0, 1, . . . , q) are

some vectors. Define

f̃(t) = f(t)−
q∑

i=0

z
(i)
A K(i)(A, t)−

q∑

i=0

z
(i)
B K(i)(B, t) .(2.8)

From (2.5), all components of f̃ belong to SY (K) and f̃(·) =
∫ B
A
K(s, ·)z(s)ds.

Summarizing, for any sufficiently smooth f ∈ H(K), the function f̃ ∈
SY (K) exists and is uniquely defined. The BLUE measures for f and f̃
can be chosen so that the measure for f̃ has no atoms and the continuous
components of the BLUE measures for f and f̃ are proportional; we may
call such f̃ ∈ SY (K) a representative of f ∈ H(K) in SY (K). Note also
that the above discussion shows that the functions in SY (K) have, as a rule,
a very peculiar form.

2.8. Signed least squares estimators and the BLUE. The ordinary least
square estimator (OLSE) of θ in the model (1.1) for the design measure ξ
is given by θ̂OLSE =

∫
M−1f(t)Y (t)ξ(dt) with M =

∫
f(t)fT (t)ξ(dt) and

covariance matrix D(θ̂OLSE) = M−1
[∫ ∫

K(t, s)f(t)fT (s)ξ(dt)ξ(ds)
]
M−1.

Assume that for some probability density p(t) on T and some non-degenerate
m ×m matrix Λ we have

∫
K(t, s)p(t)f(t)dt = Λf(s) for all s ∈ T . In this

case, for the continuous design ξ(dt) = p(t)dt we obtain

D(θ̂OLSE) =M−1

[∫
Λf(s)fT (s)p(s)ds

]
M−1 =M−1Λ.

At the same time, the condition (2.5) with q = 0 is satisfied by the measure
ζ0(dt) = Λ−1f(t)p(t)dt and hence from Corollary 2.1 we deduce that ζ0(dt)
gives the BLUE with covariance matrix

[∫
ζ0(dt)f

T (t)

]−1

=

[∫
Λ−1f(t)fT (t)p(t)dt

]−1

=M−1Λ.

This implies that in this case the OLSE with design ξ(dt) = p(t)dt coincides
with the continuous BLUE.
Matrix-weighted estimators (MWE) introduced in Dette et al. (2016) gen-
eralize the OLSE by giving specific m × m matrix weights to all points
t ∈ T . They showed that if f ∈ H(K) and q = 0, then the optimal MWE
is also the BLUE. If all matrix weights contain only −1, 0 or 1, then the
MWE becomes the (generalized) signed least square estimator (SLSE). It
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 15

was also shown that if the number of observations N tends to infinity then
for a suitable sequence of designs the asymptotic covariance matrix of the
discrete SLSE converges to the covariance matrix of the BLUE. However,
unless f ∈ SY (K), the rate convergence is extremely slow as many design
points are required to emulate weights which the BLUE measure assigns
to the end-points A and B. These results are generalizable to the case of
differentiable kernels as considered in this paper.

2.9. BLUE and energy minimization. The problem of constructing the con-
tinuous BLUE generalizes the problem of the so-called energy minimization
problem (see e.g. Sejdinovic et al. (2013) and Székely and Rizzo (2013) for
details), which for a given (conditionally) positive definite kernel K(s, t) is
the minimization problem

∫

T

∫

T
K(s, t)G(ds)G(dt) → min

G∈G
(2.9)

where G is the set of finite signed measures on T such that
∫
T G(dt) = 1

(signed measures of total mass 1). This is exactly the problem of construc-
tion of the continuous BLUE for the case m = 1, q = 0, general T and the
location-scale regression model with f(t) = 1. For a general f with m = 1
and q = 0, the unbiasedness condition for a general linear estimator (2.1) is∫
T f(t)G(dt) = 1 and it reduces to

∫
T G(dt) = 1 when f(t) = 1.

On the other hand, if f(t) 6= 0 for all t ∈ T then we can define G̃(dt) =
f(t)G(dt) and K̃(s, t) = K(s, t)/(f(s)f(t)). Then the problem of construct-
ing the BLUE for the model (1.1) withm = 1, q = 0 and general T is exactly
the energy minimization problem (2.9) for the kernel K̃(s, t), assuming that
it is also a positive definite kernel.

3. BLUE for processes with trajectories in C1[A,B]. In this sec-
tion, we assume that the error process is exactly once continuously differen-
tiable (in the mean-square sense).

3.1. A general statement. Consider the regression model (1.1) and a linear
estimator in the form

θ̂G0,G1 =

∫

T
y(t)G0(dt) +

∫

T
y(1)(t)G1(dt),(3.1)

where G0(dt) and G1(dt) are signed vector-measures. The following corollary
is a specialization of Corollary 2.1 when q = 1.
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16 H. DETTE ET AL.

Corollary 3.1. Consider the regression model (1.1) with the covariance
kernel K(t, s) and such that y(1)(t) exists in the mean-square sense for all
t ∈ [A,B]. Suppose that y(t) and y(1)(t) can be observed at all t ∈ T . Assume
that there exist vector-measures ζ0 and ζ1 such that the equality

∫

T
K(t, s)ζ0(dt) +

∫

T
K(1)(t, s)ζ1(dt) = f(s),

is fulfilled for all s ∈ T , and such that the matrix

C =

∫

T
f(t)ζT0 (dt) +

∫

T
f (1)(t)ζT1 (dt)

is non-degenerate. Then the estimator θ̂G0,G1 defined in (3.1) with Gi =
C−1ζi (i = 0, 1) is a BLUE with covariance matrix C−1.

The next theorem provides sufficient conditions for vector-measures of some
particular form to define a BLUE by (3.1) for the case T = [A,B]. This
theorem, which is proved in Section 6, will be useful for several choices of
the covariance kernel below. Assume that s3 = K(3)(s−, s) − K(3)(s+, s)
is a non-zero constant; here K(j)(s−, s) and K(j)(s+, s) are one-sided j-th
derivatives of K at the diagonal. Define the vector-function

z(t) = (τ0f(t)− τ2f
(2)(t) + f (4)(t))/s3,

and vectors

zA =
(
f (3)(A)− γ1,Af

(1)(A) + γ0,Af(A)
)
/s3,

zB =
(
− f (3)(B) + γ1,Bf

(1)(B) + γ0,Bf(B)
)
/s3,

z1,A =
(
− f (2)(A) + β1,Af

(1)(A)− β0,Af(A)
)
/s3,

z1,B =
(
f (2)(B) + β1,Bf

(1)(B) + β0,Bf(B)
)
/s3,

where τ0, τ2, γ0,A, γ1,A, β0,A, β1,A, γ0,B, γ1,B, β0,B, β1,B are some constants. De-
fine the functions

J1(s) =− γ1,AK(A, s) + β1,AK
(1)(A, s) + τ2K(A, s)−K(2)(A, s),

J2(s) = γ0,AK(A, s)− β0,AK
(1)(A, s)− τ2K

(1)(A, s) +K(3)(A, s),

J3(s) =− γ1,BK(B, s) + β1,BK
(1)(B, s)− τ2K(B, s) +K(2)(B, s),

J4(s) = γ0,BK(B, s)− β0,BK
(1)(B, s) + τ2K

(1)(B, s)−K(3)(B, s).

(3.2)
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BLUE IN CONTINUOUS TIME REGRESSION MODELS 17

Theorem 3.1. Consider the regression model (1.1) on the interval T =
[A,B] with errors having the covariance kernel K(t, s). Suppose that the
vector of regression functions f is four times differentiable and the kernel
K(t, s) is once differentiable for all t, s ∈ [A,B] and is four times differ-
entiable for t 6= s such that s3 6= 0 and K(i)(s−, s) − K(i)(s+, s) = 0,
i = 0, 1, 2. Using the notation of the previous paragraph define the vector-
measures ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt and ζ1(dt) = z1,AδA(dt) +
z1,BδB(dt). Assume that there exist constants τ0, τ2, γ0,A, γ1,A, β0,A, β1,A,
γ0,B, γ1,B, β0,B, β1,B such that (i) the identity

τ0K(t, s)− τ2K
(2)(t, s) +K(4)(t, s) ≡ 0(3.3)

holds for all t, s ∈ [A,B] with t 6= s, (ii) the identity J1(s) + J2(s) + J3(s) +
J4(s) ≡ 0 holds for all s ∈ [A,B], and (iii) the matrix C =

∫
T f(t)ζ

T
0 (dt) +∫

T f
(1)(t)ζT1 (dt) is non-degenerate. Then the estimator θ̂G0,G1 defined in

(3.1) with Gi(dt) = C−1ζi(dt) (i = 0, 1) is a BLUE with covariance ma-
trix C−1.

3.2. Two examples for integrated error processes. In this section we illus-
trate the application of our results calculating the BLUE when errors follow
an integrated Brownian motion and an integrated process with triangular-
shape kernel. All results of this section can be verified by a direct application
of Theorem 3.1. We first consider the case of Brownian motion, where the
integrated covariance kernel is given by

K(t, s) =

∫ t

a

∫ s

a

min(t′, s′)dt′ds′

=
max(t, s)(min(t, s)2 − a2)

2
− a2(min(t, s)− a)

2
− min(t, s)3 − a3

6
(3.4)

and 0 ≤ a ≤ A.

Proposition 3.1. Consider the regression model (1.1) with i covariance
kernel (3.4) and suppose that f is four times differentiable on the interval
[A,B]. Define the signed vector-measures ζ0(dt) = zAδA(dt) + zBδB(dt) +
z(t)dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where z(t) = f (4)(t),

zA = f (3)(A)− 6(A+ a)

(A+ 3a)(A− a)2
f (1)(A) +

12A

(A+ 3a)(A− a)3
f(A),

z1,A = −f (2)(A) + 4(A+ 2a)

(A+ 3a)(A− a)
f (1)(A)− 6(A+ a)

(A+ 3a)(A− a)2
f(A),

zB = −f (3)(B), z1,B = f (2)(B).
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Assume that the matrix C =
∫ B
A
f(t)ζT0 (dt)+

∫
T f

(1)(t)ζT1 (dt) is non-degenerate.

Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a
BLUE with covariance matrix C−1.

The next example is a particular case of Proposition 3.1 when a = 0.

Example 3.1. Consider the regression model (1.1) on T = [A,B] with the
covariance kernel (3.4) with a = 0:

K(t, s) = min(t, s)2(3max(t, s)−min(t, s))/6 .(3.5)

Suppose that f is differentiable four times. Define the vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t)dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where

zA = f (3)(A)− 6

A2
f (1)(A) +

12

A3
f(A),

z1,A = −f (2)(A) + 4

A
f (1)(A)− 6

A2
f(A),(3.6)

zB = −f (3)(B), z1,B = f (2)(B), z(t) = f (4)(t).

If C =
∫ B
A
f(t)ζT0 (dt)+

∫ B
A
f (1)(t)ζT1 (dt) is non-degenerate then the estimator

θ̂G0,G1 with Gi(dt) = C−1ζi(dt) is a BLUE with covariance matrix C−1.

As shown in Section 2.5, the expressions (3.6) are not the only expressions
defining the BLUE; indeed, using Lemma 2.2, we can construct many other
measures defining a BLUE. Specifically, let ψ(t) be a vector of arbitrary
differentiable functions on T . Define the vector-measures ζ0,ψ(dt) = ζ0(dt)−
ψ(A)δA(dt) +ψ(B)δB(dt) +ψ(1)(t)dt and ζ1,ψ(dt) = ζ1(dt) +ψ(t). Then the

matrix C does not depend on the choice of ψ and all estimators θ̂G0,ψ ,G1,ψ

with Gi,ψ(dt) = C−1ζi,ψ(dt) are BLUE. In particular, if ψ(t) ≡ 0, then we
get the expression (3.6), where the derivative of y(t) at the interior points of
[A,B] is not used. However, if we choose ψ(t) such that ψ(1)(t) = −f (4)(t)
for all t ∈ [A,B], then the estimator θ̂G0,ψ ,G1,ψ

would not use observations of

the process y(t) but instead use the observations of the derivative y(1)(t) at
the interior points of the interval [A,B]; the corresponding BLUE is defined
by the vector-measures

ζ0(dt) =
[
− 6

A2
f (1)(A) +

12

A3
f(A)

]
δA(dt),

ζ1(dt) = −
[
f (2)(A)− 4

A
f (1)(A) +

6

A2
f(A)

]
δA(dt)(3.7)

+f (2)(B)δB(dt)− f (3)(t)dt.
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In particular, for the location-scale model with f(t) ≡ 1 and arbitrary
ψ we obtain ζ0,ψ(dt) = 12/A3δA(dt)− ψ(A)δA(dt) + ψ(B)δB(dt) + ψ(1)(t)dt
and ζ1,ψ(dt) = −6/A2δA(dt)+ψ(t). This gives different BLUE-defining mea-

sures G but the value C =
[
12/A3 − ψ(A) + ψ(B) +

∫ B
A
ψ(1)(t)dt

]
= 12/A3

(the inverse of the BLUE variance) does not depend on the choice of ψ.

Consider now the integrated triangular-shape kernel

K(t, s) =

∫ t

0

∫ s

0
max{0, 1− λ|t′ − s′|}dt′ds′

= ts− λmin(t, s)
(
3max(t, s)2 − 3ts+ 2min(t, s)2

)
/6.(3.8)

Proposition 3.2. Consider the regression model (1.1) on T = [A,B]
with integrated covariance kernel (3.8), where λ(B − A) < 1. Suppose that
f is four times differentiable. Define the signed vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t)dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where
z(t) = f (4)(t)/(2λ) and

zA =
[
f (3)(A)− 6κ2

A2κ4
f (1)(A) +

6λ

Aκ4
f (1)(B) +

12κ1
A3κ4

f(A)
]
/(2λ),

z1,A =
[
− f (2)(A) +

4κ3
Aκ4

f (1)(A)− 2λ

κ4
f (1)(B)− 6κ2

A2κ4
f(A)

]
/(2λ),

z1,B =
[
f (2)(B)− 2λ

κ4
f (1)(A) +

4λ

κ4
f (1)(B) +

6λ

Aκ4
f(A)

]
/(2λ),

zB = −f (3)(B)/(2λ), κj = Aλ− jBλ+ 2j.

Assume that the matrix C =
∫ B
A
f(t)ζT0 (dt)+

∫ B
A
f (1)(t)ζT1 (dt) is non-degenerate.

Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a
BLUE with covariance matrix C−1.

3.3. Explicit form of the BLUE for the integrated processes. We conclude
this section establishing a direct link between the BLUE for models with
non-differentiable error processes and the BLUE for regression models with
an integrated kernel of the form (3.11) below. Note that this extends the
class of kernels considered in Sacks and Ylvisaker (1970) in a nontrivial way.
Consider the regression model (1.1) with a non-differentiable error process
with covariance kernel R(t, s) and the BLUE θ̂G0 =

∫
T y(t)G0(dt). From

Corollary 2.1 we have for the vector-measure ζ0(dt) satisfying (2.5) and
defining the BLUE

∫ B

A

R(t, s)ζ0(dt) = f(s)(3.9)
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and Var(θ̂G0) = C−1 =
( ∫

T f(t)ζ
T
0 (dt)

)−1
. The unbiasedness condition for

the measure G0(dt) = C−1ζ0(dt) is

∫

T
f(t)GT0 (dt) = Im.

Define the integrated process as follows:

ỹ(t) =

∫ t

a

y(u)du, f̃(t) =

∫ t

a

f(u)du, ε̃(t) =

∫ t

a

ε(u)du

with some a ≤ A (meaning that the regression vector-function and the error
process are defined on [a,B] but observed on [A,B]) so that

f̃ (1)(t) = f(t), ỹ(1)(t) = y(t), ε̃(1)(t) = ε(t) .

Consider the regression model

ỹ(t) = θT f̃(t) + ε̃(t),(3.10)

which has the integrated covariance kernel

K(t, s) =

∫ t

a

∫ s

a

R(u, v)dudv.(3.11)

The proof of the following result is given in Section 6.

Theorem 3.2. Let the vector-measure ζ0 satisfy the equality (3.9) and de-
fine the BLUE θ̂G0 with G0(dt) = C−1ζ0(dt) in the regression model (1.1)
with covariance kernel R(·, ·). Let the measures η0, η1 satisfy the equality

∫

T
K(t, s)η0(dt) +

∫

T
K(1)(t, s)η1(dt) = 1(3.12)

for all s ∈ T . Define the vector-measures ζ̃0 = −cη0 and ζ̃1 = −cη1 + ζ0,
where the vector c is given by c =

∫ A
a
[
∫ B
A
R(t, s)ζ0(dt) − f(s)]ds. Then the

estimator θ̂G̃0,G̃1
defined in (3.1) with G̃i(dt) = C̃−1ζ̃i(dt) (i = 1, 2), where

C̃ =

∫
f̃(t)ζ̃T0 (dt) +

∫
f̃ (1)(t)ζ̃T1 (dt),

is a BLUE in the regression model (3.10) with kernel (3.11).
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Repeated application of Theorem 3.2 extends the results to the case of sev-
eral times integrated processes.
If a = A in (3.11) we have c = 0 in Theorem 3.2; in this case, the statement of
Theorem 3.2 can be proved easily. Moreover, in this case the class of kernels
defined by (3.11) is exactly the class of kernels considered in equation (1.5)
and (1.6) of Sacks and Ylvisaker (1970) for once differentiable processes
(k = 1 in their notation). We emphasize that the class of kernels considered
here is much richer than the class considered in this reference.

3.4. BLUE for AR(2) errors. Consider the continuous-time regression model
(1.1), which can be observed at all t ∈ [A,B], where the error process is a
continuous autoregressive (CAR) process of order 2. Formally, a CAR(2)
process is defined as a solution of the linear stochastic differential equation
of the form

dε(1)(t) = ã1ε
(1)(t) + ã2ε(t) + σ20dW (t),(3.13)

where ã1 and ã2 are constants, Var(ε(t)) = σ2 andW (t) is a standard Wiener
process, [see Brockwell et al. (2007)]. Note that the process {ε(t)|t ∈ [A,B]}
defined by (3.13) has a continuous derivative and, consequently, the process
{y(t) = θT f(t) + ε(t)| t ∈ [A,B]}, is a continuously differentiable process
with drift on the interval [A,B]. In this section we derive the explicit form
for the continuous BLUE using Theorem 3.1. An alternative approach would
be to use the coefficients of the equation (3.13) as indicated in Parzen (1961).
There are in fact three different forms of the autocorrelation function ρ(t) =
K(0, t) of CAR(2) processes [see e.g. formulas (14)–(16) in He and Wang
(1989)], which are given by

ρ1(t) =
λ2

λ2 − λ1
e−λ1|t| − λ1

λ2 − λ1
e−λ2|t| ,(3.14)

where λ1 6= λ2, λ1 > 0, λ2 > 0, by

ρ2(t) = e−λ|t|
{
cos(ω|t|) + λ

ω
sin(ω|t|)

}
,(3.15)

where λ > 0, ω > 0, and by

ρ3(t) = e−λ|t|(1 + λ|t|) ,(3.16)

where λ > 0. Note that the kernel (3.16) is widely known as Matérn ker-
nel with parameter 3/2, which has numerous applications in spatial statis-
tics [see Rasmussen and Williams (2006)] and computer experiments [see
Pronzato and Müller (2012)]. In the following results, which are proved in
Section 6.7, we specify the BLUE for the CAR(2) model.
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Proposition 3.3. Consider the regression model (1.1) with CAR(2) er-
rors, where the covariance kernel K(t, s) = ρ(t − s) has the form (3.14).
Suppose that f is a vector of linearly independent, four times differentiable
functions on the interval [A,B]. Then the conditions of Theorem 3.1 are
satisfied for s3 = 2λ1λ2(λ1 + λ2), τ0 = λ21λ

2
2, τ2 = λ21 + λ22, βj,A = βj,B = βj

and γj,A = γj,B = γj for j = 0, 1, where β1 = λ1 + λ2, γ1 = λ21 + λ1λ2 + λ22,
β0 = λ1λ2 and γ0 = λ1λ2(λ1 + λ2).

Proposition 3.4. Consider the regression model (1.1) with CAR(2) er-
rors, where the covariance kernel K(t, s) = ρ(t − s) has the form (3.15).
Suppose that f is a vector of linearly independent, four times differentiable
functions. Then the conditions of Theorem 3.1 hold for s3 = 4λ(λ2 + ω2),
τ0 = (λ2 + ω2)2, τ2 = 2(λ2 − ω2), βj,A = βj,B = βj and γj,A = γj,B = γj
for j = 0, 1, where β1 = 2λ, γ1 = γ1 = 3λ2 − ω2, β0 = λ2 + ω2 and
γ0 = 2λ(λ2 + ω2).

The BLUE for the covariance kernel in the form (3.16) is obtained from
either Proposition 3.3 with λ1 = λ2 = λ or Proposition 3.4 with ω = 0.

Remark 3.1. In the online supplement Dette et al. (2018) we consider the
regression model (1.2) with a discrete AR(2) error process. Although the
discretised CAR(2) process follows an ARMA(2, 1) model rather than an
AR(2) [see He and Wang (1989)] we will be able to establish the connection
between the BLUE in the discrete and continuous-time models and hence
derive the limiting form of the discrete BLUE and its covariance matrix.

4. Models with more than once differentiable error processes. If
T = [A,B] and q > 1 then solving the Wiener-Hopf type equation (2.5)
numerically is virtually impossible in view of the fact that the problem
is severely ill-posed. Derivation of explicit forms of the BLUE for smooth
kernels with q > 1 is hence extremely important. We did not find any general
results on the form of the BLUE in such cases. In particular, the well-known
paper Sacks and Ylvisaker (1970) dealing with these kernels does not contain
any specific examples. In Theorem 3.2 we have already established a general
result that can be used for deriving explicit forms for the BLUE for q > 1
times integrated kernels, which can be used repeatedly for this purpose. We
can also formulate a result similar to Theorem 3.1. However, already for
q = 2, even a formulation of such theorem would take a couple of pages and
hence its usefulness would be very doubtful.
In this section, we indicate how the general methodologies developed in the
previous sections can be extended to error processes with q > 1 by two
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examples: twice integrated Brownian motion and CAR(p) error models with
p ≥ 3, but other cases can be treated very similarly.

4.1. Twice integrated Brownian motion.

Proposition 4.1. Consider the regression model (1.1) where the error
process is the twice integrated Brownian motion with the covariance kernel

K(t, s) = t5/5!− st4/4! + s2t3/12, t < s.

Suppose that f is 6 times differentiable and define the vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t)dt, ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), ζ2(dt) =
z2,AδA(dt) + z2,BδB(dt), where z(t) = −f (6)(t),

zA = (−A5f (5)(A) + 60A2f (2)(A)− 360Af (1)(A) + 720f(A))/A5,

z1,A = (A4f (4)(A)− 36A2f (2)(A) + 192Af (1)(A)− 360f(A))/A4,

z2,A = (−A3f (3)(A) + 9A2f (2)(A)− 36Af (1)(A) + 60f(A))/A3,

zB = f (5)(B), z1,B = −f (4)(B), z2,B = f (3)(B).

Then the estimator θ̂G0,G1,G2 defined by (2.1) (for q = 2) with Gi(dt) =
C−1ζi(dt) (i = 0, 1, 2),

C =

∫

T
f(t)ζT0 (dt) +

∫

T
f (1)(t)ζT1 (dt) +

∫

T
f (2)(t)ζT2 (dt),

is the BLUE with covariance matrix C−1.

4.2. CAR(p) models with p≥ 3. Consider the regression model (1.1), which
can be observed at all t ∈ [A,B] and the error process has the continuous
autoregressive (CAR) structure of order p. Formally, a CAR(p) process is a
solution of the linear stochastic differential equation of the form

dε(p−1)(t) = ã1ε
(p−1)(t) + . . .+ ãpε(t) + σ20dW (t),

where Var(ε(t)) = σ2 and W is a standard Wiener process, [see Brockwell
et al. (2007)]. Note that the process ε has continuous derivatives ε(1)(t), . . . ,
ε(p−1)(t) at the point t and, consequently, the process {y(t) = θT f(t) +
ε(t)| t ∈ [A,B]} is continuously differentiable p − 1 times on the interval
[A,B] with drift θT f(t). Define the vector-functions

z(t) = (τ0f(t) + τ2f
(2)(t) + . . .+ f (2p)(t))/s2p−1,
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and vectors

zj,A =
∑2p−j−1

l=0
γl,j,Af

(j)(A)/s2p−1,

zj,B =
∑2p−j−1

l=0
γl,j,Bf

(j)(B)/s2p−1

for j = 0, 1, . . . , p− 1, where s2p−1 = K(2p−1)(s−, s)−K(2p−1)(s+, s).

Proposition 4.2. Consider the regression model (1.1) with CAR(p) er-
rors. Define the vector-measures

ζ0(dt) = z0,AδA(dt) + z0,BδB(dt) + z(t)dt,

ζj(dt) = zj,AδA(dt) + zj,BδB(dt), j = 1, . . . , p− 1,

for j = 1, . . . , p−1. Then there exist constants τ0, τ2 . . . , τ2(p−1) and γl,j,A, γl,j,B,

such that the estimator θ̂G0,G1,...,Gp−1 defined by (2.1) (for q = p − 1) with
Gj(dt) = C−1ζj(dt) (i = 0, 1, . . . , p− 1),

C =

∫

T
f(t)ζT0 (dt) +

p−1∑

j=1

∫

T
f (j)(t)ζTj (dt),

is a BLUE with covariance matrix C−1.

Let us consider the construction of a BLUE for model (1.1) with a CAR(3)
error process in more detail. One of several possible forms for the covariance
function for the CAR(3) process is given by

ρ(t) = c1e
−λ1|t| + c2e

−λ2|t| + c3e
−λ3|t| ,(4.1)

where λ1, λ2, λ3 are the roots of the autoregressive polynomial ã(z) = z3 +
ã1z

2 + ã2z + ã3,

cj =
kj

k1 + k2 + k3
, kj =

1

ã′(λj)ã(−λj)
,

λi 6= λj , λi > 0, i, j = 1, . . . , 3, see Brockwell (2001). Specifically, we have

c1 =
λ2λ3(λ2 + λ3)

(λ1 − λ2)(λ1 − λ3)(λ1 + λ2 + λ3)
,

c2 =
λ1λ3(λ1 + λ3)

(λ2 − λ1)(λ2 − λ3)(λ1 + λ2 + λ3)
,

c3 =
λ1λ2(λ1 + λ2)

(λ3 − λ1)(λ3 − λ2)(λ1 + λ2 + λ3)
.
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In this case, a BLUE is given in Proposition 4.2 with the following parame-
ters:

τ0 = −λ21λ22λ23, τ2 = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3, τ4 = −λ21 − λ22 − λ23,

s5 =
2λ1λ2λ3(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)

λ1 + λ2 + λ3
= 2

∏
i λi

∏
i 6=j(λi + λj)∑
i λi

,

z0,A = f (5)(A)−
∑

iλ
2
i f

(3)(A)−
∏
iλif

(2)(A)

+[
∑

i 6=jλ
2
iλ

2
j +

∏
iλi

∑
iλi]f

(1)(A)−
∏
iλi

∑
i 6=jλiλjf(A)

z1,A = −f (4)(A) +
∑

i,jλiλjf
(2)(A)−

∏
i 6=j(λi + λj)f

(1)(A) +
∏
iλi

∑
iλif(A)

z2,A = f (3)(A)−
∑

iλif
(2)(A) +

∑
i 6=jλiλjf

(1)(A)−
∏
iλif(A)

−z0,B = f (5)(B)−
∑

iλ
2
i f

(3)(B)−
∏
iλif

(2)(B)

+[
∑

i 6=jλ
2
iλ

2
j +

∏
iλi

∑
iλi]f

(1)(B)−
∏
iλi

∑
i 6=jλiλjf(B)

−z1,B = −f (4)(B) +
∑

i,jλiλjf
(2)(B)−

∏
i 6=j(λi + λj)f

(1)(B) +
∏
iλi

∑
iλif(B)

−z2,B = f (3)(B)−∑
iλif

(2)(B) +
∑

i 6=jλiλjf
(1)(B)−∏

iλif(B)

If we set λ1 = λ2 = λ3 = λ then the above formulas give the explicit form
of the BLUE for the Matérn kernel with parameter 5/2; that is, the kernel
defined by ρ(t) =

(
1 +

√
5tλ+ 5t2λ2/3

)
exp

(
−
√
5tλ

)
.

5. Numerical study. In this section, we describe some numerical results
on comparison of the accuracy of various estimators for the parameters in
the regression models (1.1) with [A,B] = [1, 2] and the integrated Brownian
motion as error process. The kernel K(t, s) is given in (3.5) and the explicit
form of the covariance matrix of the continuous BLUE can be found in
Example 3.1. We denote this estimator by θ̂cont.BLUE . We are interested in
the efficiency of various estimators for this differentiable error process. For a
given N (in the tables, we use N = 3, 5, 10), we consider the following four
estimators that use 2N observations:

• θ̂BLUE(N,N): discrete BLUE based on observations y(t1), . . . , y(tN ),
y′(t1), . . . , y

′(tN ) with ti = 1 + (i − 1)/(N − 1), i = 1, . . . , N . This
estimator uses N observations of the original process and its derivative
(at equidistant points).
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• θ̂BLUE(2N − 2, 2): discrete BLUE based on observations y(t1), . . . ,
y(t2N−2), y

′(1), y′(2) with ti = 1+ (i− 1)/(2N − 3), i = 1, . . . , 2N − 3.
This estimator uses 2N − 2 observations of the original process (at
equidistant points) and observations of its derivative at the boundary
points of the design space.

• θ̂BLUE(2N, 0): discrete BLUE based on observations y(t1), . . . , y(t2N )
with ti = 1 + (i − 1)/(2N − 1), i = 1, . . . , 2N . This estimator uses
2N observations of the original process (at equidistant points) and no
observations from its derivative.

• θ̂OLSE(2N, 0): ordinary least square estimator (OLSE) based on obser-
vations y(t1), . . . , y(t2N ) with ti = 1+ (i− 1)/(2N − 1), i = 1, . . . , 2N .
This estimator uses 2N observations of the original process (at equidis-
tant points) and no observations from its derivative.

In Table 1 we use the results derived in this paper to calculate the efficiencies

Eff(θ̃) =
Var(θ̂cont.BLUE)

Var(θ̃)
,(5.1)

where θ̃ is one of the four estimators under consideration. In particular we
consider three different scenarios for the response function f(t) in model (1.1):

m = 1, f(t) = 1,(5.2)

m = 3, f(t) = (1, sin(3πt), cos(3πt))T ,(5.3)

m = 5, f(t) = (1, t, t2, 1/t, 1/t2)T .(5.4)

The formulas provided in Example 3.1 give us expressions for a continuous
BLUE. For the model (5.2) (recall that [A,B] = [1, 2]) we obtain ζ0(dt) =
12δ1(dt) and ζ1(dt) = −6δ1(dt). Therefore, the estimator θ̂cont.BLUE =
y(1) − 0.5y′(1) is a BLUE. For the model (5.3) we obtain from Exam-
ple 3.5 the vector-measures ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt and
ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where z(t) = 34π4(0, sin(3πt), cos(3πt))T ,

zA =




12
27π3 + 18π

−12


, zB =




0
27π3

0


, z1,A =




−6
−12π

−9π2 + 6


, z1,B =




0
0

−9π2


.

Similarly we get the BLUE measures for the model (5.4).
The results are very typical for many regression models with differentiable
error processes (i.e. q = 1) and can be summarized as follows. Any BLUE is
far superior to the OLSE and any BLUE becomes highly efficient when N is
large. Moreover, the use of information from the derivatives in constructing
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Table 1

The efficiency defined by (5.1) for four different estimators based on 2N observations
and the regression functions in (5.2) - (5.4)

model (5.2) (5.3) (5.4)

N 3 5 10 3 5 10 3 5 10

θ̂BLUE(N,N) 1 1 1 0.412 0.929 0.997 0.696 0.960 0.998

θ̂BLUE(2N − 2, 2) 1 1 1 0.456 0.987 0.999 0.869 0.994 0.999

θ̂BLUE(2N, 0) 0.859 0.915 0.957 0.478 0.772 0.896 0.100 0.333 0.625

θ̂OLSE(2N, 0) 0.073 0.073 0.073 0.001 0.001 0.002 0.089 0.141 0.119

BLUEs typically makes them more efficient than the BLUE which only uses
values of {y(t)|t ∈ T }; this is not true in general: see the case N = 3
for model (5.3) in Table 1. We also emphasize that the BLUEs which use
more than two values of the derivative y′ of the process have lower efficiency
than the BLUE that uses exactly two values of derivatives, y′(A) and y′(B)
(recall that the total number of observations is fixed). Therefore the best
way of constructing the BLUE for N observations in the interval [A,B] is to
emulate the asymptotic BLUE: that is, to use y′(A) and y′(B) but for the
other N − 2 observations use values of the process {y(t)|t ∈ T }. Similarly,
for q times differentiable processes y(t) with q > 1 and N large enough, the
most efficient BLUE construction procedure would suggest observing values
of the derivatives y(i)(A) and y(i)(B) for i = 1, . . . , q and using remaining
N − 2q observations for observing values of process {y(t)|t ∈ T }.

6. Appendix.

6.1. Proof of Lemma 2.1. The mean of θ̂TG is

E[θ̂TG] = θT
q∑

i=0

∫

T
f (i)(t)GTi (dt) = θT

∫

T
F (t)GT (dt) ,

where F (t) = (f(t), f (1)(t), . . . , f (q)(t)). This implies that the estimator θ̂G
is unbiased if and only if

∫

T
F (t)GT (dt) = Im.(6.1)

Since G = (G0, G1, . . . , Gq) with Gi = C−1ζi, we have

∫

T
F (t)GT (dt) =

q∑

i=0

∫

T
f (i)(t)ζTi (dt)C

−1T = CTC−1T = Im ,

which completes the proof.
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6.2. Proof of Theorem 2.1 .
I. We will call a signed matrix-measure G unbiased if the associated esti-
mator θ̂G defined in (2.1) is unbiased; that is, (6.1) holds. The set of all
unbiased signed matrix-measures will be denoted by S. This set is convex;
moreover, if G,H ∈ S then (1− α)G+ αH ∈ S for any real α.
The covariance matrix of any estimator θ̂G is the matrix-valued function
φ(G) = Var(θ̂G) defined in (2.3). The BLUE minimizes this matrix-valued
function on the set S.
Introduce the vector-function d : T × S → R

m by

d(s,G) =

q∑

j=0

∫

T
K(j)(t, s)Gj(dt)− φ(G)f(s) .

The validity of (2.4) for all s ∈ T is equivalent to the validity of d(s,G) =
0m×1 for all s ∈ T . Hence we are going to prove that θ̂G is the BLUE if
and only if d(s,G) = 0m×1 for all s ∈ T . For this purpose we will need the
following auxiliary result.

Lemma 6.1. For any G ∈ S we have
∫
T d(s,G)GT (ds) = 0m×m, where

d(s,G) = (d(s,G), d(1)(s,G), . . . , d(q)(s,G)) is an m×(q+1) matrix.

Proof of Lemma 6.1 Using the unbiasedness condition (6.1), we have

∫

T
d(s,G)GT (ds) =

∫

T

∫

T
G(dt)K(t, s)GT (ds)− φ(G)

∫

T
F (s)GT (ds)

= φ(G)− φ(G)Im = 0m×m. �

For any two matrix-measures G and H in S, denote

Φ(G,H) =

∫

T

∫

T
G(dt)K(t, s)HT (ds)

which is a matrix of size m × m. Note that for any G ∈ S, the matrix
φ(G) = Φ(G,G) is exactly Var(θ̂G), the covariance matrix of θ̂G, see (2.3).
For any two matrix-measures G and H in S and any real α, we have

φ((1−α)G+αH) = (1−α)2φ(G) + α2φ(H) + α(1−α) [Φ(G,H) + Φ(H,G)] .

The directional derivative of φ((1− α)G+ αH) as α→ 0 is

∂

∂α
φ((1− α)G+ αH)

∣∣∣
α=0

= Φ(G,H) + Φ(H,G)− 2φ(G).(6.2)
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To rewrite (6.2), we note that
∫
T d(s,G)HT (ds) can be written as

∫

T
d(s,G)HT (ds) = Φ(G,H)− φ(G)

∫

T
F (s)HT (ds)(6.3)

= Φ(G,H)− φ(G),

where in the last equality we have used the unbiasedness condition (6.1)
for H. Using (6.2), (6.3) and the fact that the matrix Φ(H,G)−φ(G) is the
transpose of Φ(G,H)− φ(G) we obtain

∂

∂α
φ((1−α)G+ αH)

∣∣∣
α=0

=

∫

T
d(s,G)HT (ds) +

[∫

T
d(s,G)HT (ds)

]T
.

(6.4)

This yields that if d(s,G) = 0m×1 for all s ∈ T , then

∂φ((1− α)G+ αH)

∂α

∣∣∣
α=0

= 0m×m, ∀ H ∈ S .(6.5)

Also we have ∂2φ((1−α)G+αH)/∂α2 = 2φ(G−H), which is a non-negative
definite matrix for all G,H ∈ S.
Let us assume thatG ∈ S is such that d(s,G) = 0m×1 for all s ∈ T , fixH ∈ S
and a vector c ∈ R

m. Consider a function ψc,H(α) = cTφ((1− α)G+ αH)c
as a function of α ∈ R. This is simply a quadratic and convex function
of α, which, in view of (6.5), has zero derivative at α = 0. Therefore, for all
c ∈ R

m and H ∈ S we have ψc,H(0) = minα ψc,H(α), which is equivalent to

the assertion that θ̂G is the BLUE.
II. Assume now that G gives the BLUE θ̂G. This implies, first, that (6.5)
holds and second, for all c ∈ R

m cTφ(G)c ≤ cTφ(H)c, for any H ∈ S. Let
us deduce that d(s,G) = 0m×1 for all s ∈ T (which is equivalent to validity
of (2.4)). We are going to prove this by contradiction.
Assume that there exists s0 ∈ T such that d(s0, G) 6= 0. Define the signed
matrix-measure ζ = (ζ0, ζ1, . . . , ζq) with ζ0(ds) = G0(ds)+κd(s0, G)δs0(ds),
κ 6= 0, and ζi(ds) = Gi(ds) for i = 1, . . . , q.
Since G is unbiased, CG =

∫
T G(dt)F

T (t) = Im. For any small positive or
small negative κ, the matrix Cζ =

∫
T ζ(dt)F

T (t) = Im + κd(s0, G)f
T (s0)

is non-degenerate and its eigenvalues are close to 1. In view of Lemma 2.1,
H(ds) = C−1

ζ ζ(ds) is an unbiased matrix-measure. Using the identity (6.4)
and Lemma 6.1 we obtain for the measure Gα = (1− α)G+ αH:

∂φ(Gα)

∂α

∣∣∣
α=0

= κd(s0, G)d
T (s0, G)C

−1
ζ

T
+ κC−1

ζ d(s0, G)d
T (s0, G).
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Write this as ∂φ(Gα)/∂α
∣∣
α=0

= κ(X0A
T + AX0), where A = C−1

ζ and

X0 = d(s0, G)d
T (s0, G) is a symmetric matrix.

For any given A, the homogeneous Lyapunov matrix equation XAT+AX=0
has only the trivial solution X = 0 if and only if A and −A have no common
eigenvalues, see [§3, Ch. 8 in Gantmacher (1959)]; this is the case when
A = C−1

ζ and κ is small enough.

This yields that forX = X0, the matrixX0A
T+AX0 is a non-zero symmetric

matrix. Therefore, there exists a vector c ∈ R
m such that the directional

derivative of cTφ(Gα)c is non-zero. For any such c, cTφ(Gα)c < cTφ(G)c for
either small positive or small negative α and hence θ̂G is not the BLUE.
Thus, the assumption of the existence of an s0 ∈ T such that d(s0, G) 6= 0
yields a contradiction to the fact that G gives the BLUE. This completes the
proof that the equality (2.4) is necessary and sufficient for the estimator θ̂G
to be the BLUE .

6.3. Proof of Lemma 2.2. We repeat i times the integration by parts

∫

T
ψ(i)(t)ϕ(t)dt = ψ(i−1)(t)ϕ(t)

∣∣∣
B

A
−
∫

T
ψ(i−1)(t)ϕ(1)(t)dt

for differentiable functions ψ(t) and ϕ(t). This gives

∫

T
ψ(i)(t)ϕi(t)dt=

i∑

j=1

(−1)j−1ψ(i−j)(t)ϕi
(j−1)(t)

∣∣∣
B

A
+ (−1)i

∫

T
ψ(t)ϕ

(i)
i (t)dt.

Using the above equality with ψ(t) = y(i)(t) we obtain that the expectation
of two estimators coincide. Also, using this equality with ψ(t) = K(i)(t, s)
we obtain that the covariance matrices of the two estimators coincide.

6.4. Proof of Proposition 2.2. Straightforward calculus shows that

∫

T
K(t, s)ζ(dt) = K(A, s)zA +K(B, s)zB −

∫

T
K(t, s)f (2)(t)dt/(λ1 + λ2)

= K(A, s)zA +K(B, s)zB +
[
−K(t, s)f (1)(t)|sA +K(1)(t, s)f(t)|s−A

−K(t, s)f (1)(t)|Bs +K(1)(t, s)f(t)|Bs+
]
/(λ1 + λ2) = (1 + λ1A− λ2s)zA

+(1 + λ1s− λ2B)zB + f(s) +
[
K(A, s)f (1)(A)−K(1)(A, s)f(A)

−K(B, s)f (1)(B) +K(1)(B, s)f(B)
]
/(λ1+λ2)=f(s).

Therefore, the conditions of Corollary 2.1 are fulfilled.
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6.5. Proof of Theorem 3.1. It is easy to see that θ̂G0,G1 is unbiased. Further
we are going to use Corollary 3.1 which gives the sufficient condition for an
estimator to be the BLUE. We will show that the identity

LHS =

∫ B

A

K(t, s)ζ0(dt) +

∫ B

A

K(1)(t, s)ζ1(dt) = f(s)(6.6)

holds for all s ∈ [A,B]. By the definition of the measure ζ it follows that
LHS = zAK(A, s)+ zBK(B, s)+ IA+ IB + z1,AK

(1)(A, s)+ z1,BK
(1)(B, s),

where IA =
∫ s
A
K(t, s)z(t)dt, IB =

∫ B
s
K(t, s)z(t)dt. Indeed, for the vector-

function z(t) = τ0f(t)− τ2f
(2)(t) + f (4)(t), we have

s3IA = τ0

∫ s

A

K(t, s)f(t)dt− τ2

∫ s

A

K(t, s)f (2)(t)dt+

∫ s

A

K(t, s)f (4)(t)dt

= τ0

∫ s

A

K(t, s)f(t)dt− τ2K(t, s)f (1)(t)|sA + τ2K
(1)(t, s)f(t)|sA

−τ2
∫ s

A

K(2)(t, s)f(t)dt+K(t, s)f (3)(t)|sA −K(1)(t, s)f (2)(t)|s−A

+K(2)(t, s)f (1)(t)|s−A −K(3)(t, s)f(t)|s−A +

∫ s

A

K(4)(t, s)f(t)dt.

By construction, the coefficients τ0, τ2, are chosen such that the equality (3.3)
holds for all t ∈ [A,B] and any s, implying that integrals in the expression
for IA are cancelled. Thus, we obtain

s3IA = +τ2K(A, s)f (1)(A)− τ2K
(1)(A, s)f(A)−K(A, s)f (3)(A)

+K(1)(A, s)f (2)(A)−K(2)(A, s)f (1)(A) +K(3)(A, s)f(A)

−τ2K(s−, s)f (1)(s) + τ2K
(1)(s−, s)f(s) +K(s−, s)f (3)(s)

−K(1)(s−, s)f (2)(s) +K(2)(s−, s)f (1)(s)−K(3)(s−, s)f(s).
Similarly we have

s3IB = −τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f(B) +K(B, s)f (3)(B)

−K(1)(B, s)f (2)(B) +K(2)(B, s)f (1)(B)−K(3)(B, s)f(B)

+τ2K(s+, s)f (1)(s)− τ2K
(1)(s+, s)f(s)−K(s+, s)f (3)(s)

+K(1)(s+, s)f (2)(s)−K(2)(s+, s)f (1)(s) +K(3)(s+, s)f(s).

Using the assumption on the derivatives of the kernel K(t, s), we obtain

s3(IA + IB) = τ2K(A, s)f (1)(A)− τ2K
(1)(A, s)f(A)−K(A, s)f (3)(A)

+K(1)(A, s)f (2)(A)−K(2)(A, s)f (1)(A) +K(3)(A, s)f(A)

−τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f(B) +K(B, s)f (3)(B)

−K(1)(B, s)f (2)(B) +K(2)(B, s)f (1)(B)−K(3)(B, s)f(B) + s3f(s).
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Also we have

s3(zAK(A, s) + z1,AK
(1)(A, s)) =

=
(
f (3)(A)− γ1,Af

(1)(A) + γ0,Af(A)
)
K(A, s)

+
(
− f (2)(A) + β1,Af

(1)(A)− β0,Af(A)
)
K(1)(A, s)

= f (3)(A)K(A, s) + (−γ1,AK(A, s) + β1,AK
(1)(A, s))f (1)(A)

−K(1)(A, s)f (2)(A) + (γ0,AK(A, s)− β0,AK
(1)(A, s))f(A),

and a similar result at the point t = B. Putting these expressions into
(6.6) and using the assumption that constants γ1,A, β1,A, γ0,A, β0,A and
γ1,B, β1,B, γ0,B, β0,B are chosen such that the sum of the functions defined
in (3.2) is identically equal to zero, we obtain

∫ B

A

K(t, s)ζ0(dt) +

∫ B

A

K(1)(t, s)ζ1(dt) = f(s);

this completes the proof.

6.6. Proof of Theorem 3.2. Observing (3.9), we write the vector c as

c =

∫ A

a

[∫ B

A

R(t, s)ζ0(dt)− f(s)

]
ds

=

∫ A

a

[∫ B

A

R(t, s′)ζ0(dt)− f(s′)

]
ds′ +

∫ s

A

[∫ B

A

R(t, s′)ζ0(dt)− f(s′)

]
ds′

=

∫ B

A

∫ s

a

R(t, s′)ds′ζ0(dt)−
∫ s

a

f(s′)ds′ =

∫ B

A

K(1)(t, s)ζ0(dt)− f̃(s).

We now show that equation (2.5) in Corollary 2.1 holds for q = 1, f = f̃ and
ζi = ζ̃i. Observing (3.12) and the definition of ζ̃i in Theorem 3.2 we obtain

∫

T
K(t, s)ζ̃0(dt) +

∫

T
K(1)(t, s)ζ̃1(dt)

= −c
(∫

T
K(t, s)η0(dt) +

∫

T
K(1)(t, s)η1(dt)

)
+

∫

T
K(1)(t, s)ζ0(dt)

= −c · 1 + f̃(s) + c = f̃(s).

6.7. Proof of Propositions 3.3 and 3.4. For the sake of brevity we only give
a proof of Proposition 3.3, the other result follows by similar arguments. Di-
rect calculus gives s3 = K(3)(s+, s)−K(3)(s−, s) = 2λ1λ2(λ1+λ2). Then we

imsart-aos ver. 2014/10/16 file: ar2blue46.tex date: June 1, 2018



BLUE IN CONTINUOUS TIME REGRESSION MODELS 33

obtain that the identity (3.3) holds for τ0 = λ21λ
2
2 and τ2 = λ21+λ

2
2. Straight-

forward calculations show that identities (3.2) hold with the specified values
of constants γ1, γ0, β1, β0.
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