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Abstract

The Malliavin calculus is an extension of the classical calculus of variations from determin-

istic functions to stochastic processes. In this paper we aim to show in a practical and didac-

tic way how to calculate the Malliavin derivative, the derivative of the expectation of a

quantity of interest of a model with respect to its underlying stochastic parameters, for four

problems found in mechanics. The non-intrusive approach uses the Malliavin Weight Sam-

pling (MWS) method in conjunction with a standard Monte Carlo method. The models are

expressed as ODEs or PDEs and discretised using the finite difference or finite element

methods. Specifically, we consider stochastic extensions of; a 1D Kelvin-Voigt viscoelastic

model discretised with finite differences, a 1D linear elastic bar, a hyperelastic bar undergo-

ing buckling, and incompressible Navier-Stokes flow around a cylinder, all discretised with

finite elements. A further contribution of this paper is an extension of the MWS method to

the more difficult case of non-Gaussian random variables and the calculation of second-

order derivatives. We provide open-source code for the numerical examples in this paper.

Introduction

The classical derivative is a fundamental tool of calculus that is widely used across every field

of mathematics, science and engineering. Various generalisations and extensions of the classi-

cal derivative, e.g. local and/or partial Frechét and Gâteaux derivatives [1], are now common

tools in the repertoire of practitioners working in many fields. Modern extensions such as frac-

tional and non-local derivatives are finding increasing use in several fields of science and tech-

nology, see e.g. [2–6]. The semi-inverse method of [7] is a powerful tool for the establishment

of variational principles (Euler-Lagrange) from governing equations for physical problems.

By contrast, the Malliavin calculus [8], an extension of the notions of classical calculus of

variations to stochastic processes, is certainly less widely known. In our view, this is probably

because the vast majority of papers written on the subject require study of mathematics and

stochastics to an advanced level. However, we think that Malliavin calculus deserves a wider

audience. The objective of this paper then is introduce the Malliavin derivative as a useful

numerical tool for practitioners to understand the behaviour of stochastic PDEs in mechanics,
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rather than to fully explain the technicalities of Malliavin calculus. Interested readers are

referred to e.g. [8–10] for a full mathematical treatment.

We are not the first to apply Malliavin calculus as a useful tool for practical computation.

The Malliavin calculus can be used to efficiently calculate the Greeks, the sensitivity of finan-

cial instruments to their underlying parameters e.g. [11–14]. In the physical sciences we are

aware of only a handful of recent papers that use techniques inspired by the Malliavin calculus

to understand the behaviour of systems with stochastic behaviour. We are not aware of any

papers in the engineering mechanics community on the topic. [15] introduced the methodol-

ogy of Malliavin Weight Sampling (MWS), the method we adopt in this paper, and applied it

to the simulation of particles undergoing Brownian motion. [16] presented a more general

framework for deriving the MWS update rules and its practical implementation. [17] used the

MWS to evaluated linear response functions of particle systems forced by coloured noise.

When the coefficients of the models are assumed to follow known statistical distributions,

then the likelihood ratio method can be seen as a Malliavin weighting function [11, 12, 18].

The Malliavin theory is however more general and allows the determination of the optimal

weight with minimum variance even if the specification of the stochastic parameters involved

in the model are not known explicitly.

The contribution of this paper is as follows; we show the application of the Malliavin

Weight Sampling method [15] to four archetypal problems in mechanics. Unlike the examples

in [15], we consider some models defined by partial differential equations (PDEs) that are dis-

cretised using the finite element method. We make a new extension of the MWS method to

parameters defined by non-Gaussian distributions. This has important practical value because

it is often important to model parameters with distributions that preclude realisations with

non-physical values, e.g. positive viscosity in a fluid mechanics problem. Finally we extend the

MWS method in [15] to the calculation of second-order derivatives.

An outline of this paper is as follows; we give an outline of the MWS method and use the

MWS method to study the behaviour of a simple Kelvin-Voigt visco-elastic system with Gauss-

ian and non-Gaussian stochastic variables respectively. We extend the analysis of the Kelvin-

Voigt system to the second derivative. We then study; a 1D elastic bar, a hyperelastic bar prone

to buckling, and Navier-Stokes flow around a cylinder, all discretised in space using the finite

element method. Finally we summarise and suggest some interesting avenues for future

research.

The Malliavin Weight Sampling (MWS) method

Problem setting

Consider a non-linear, possibly time-dependent stochastic partial differential equation F(u,m)

= 0 with random parameter m. For each possible value of m, u is the solution of the PDE and

therefore u depends explicitly on m (m 7! u(m)). To simplify the notation, the spatial position

x and time t are omitted but it is understood that u can also depend on x 2 O � Rd where d =

{1, 2, 3} is the spatial dimension of the domain and/or t 2 Rþ.

Let ðOp;F ; PÞ a probability space where Op is the sample space, F is a σ-algebra of subsets

of Op and P is a probability measure. We are interested to evaluate the expected value of a

quantity of interest J(m) = J(u(m)) denoted by E½J� [19]:

E½J�≔
Z

Op

JðuðoÞÞ � dPðoÞ: ð1Þ
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In a practical way, if m is a random variable with probability density function fm, Eq (1) writes:

E½J�≔
Z

R
JðuðxÞÞ � fmðxÞdx: ð2Þ

As we will see, the Malliavin Weight Sampling method (MWS) [16] allows the evaluation of

the sensitivity of the expected value of the quantity of interest with respect to the mean value of

the stochastic parameter m as [9, 11, 16, 18]:

@E½J�
@ �m

¼ E½Jqm�; ð3Þ

where qm is the Malliavin weight for the parameter m and �m is the mean of m. Under certain

condition of regularity [11, 20, 21] when the probability density function (PDF) of the parame-

term is known, the Malliavin weight qm associated can be computed directly from the PDF of

m. This approach can be viewed as an integration by parts, and is a direct result of Malliavin

calculus where we take the derivative of random functions rather than the classical derivative.

We emphasise again the quite different nature of the above derivative Eq (3) to the classical

notion of a derivative from elementary calculus.

In Eq (3), we suppose that the quantity of interest J does not depend explicitly on the

parameter m. Later we introduce a more general equation Eq (35) that must be considered if

in fact J does depend on m.

The simplest approach to calculate E½Jqm�, and the one we use exclusively in this paper, is to

use the standard Monte Carlo estimator; that is, take Z independent and identically distributed

(iid) realisations mz of m, solve for Jz≔ J(u(mz)) before taking the sample mean of the set of

realisations {J1, . . ., JZ}:

@E½J�
@ �m

¼ E½Jqm� �
1

Z

XZ

z¼1

JðmzÞ � qmðmzÞ: ð4Þ

From the central limit theorem, the error in Eq (4) is normally distributed with variance

Z−1 V where V is the variance of Jqm.

What will not be clear to the reader at this stage is how to determine the Malliavin weights.

Through a simple practical examples in the next section, we will explain how to use the MWS

method, determine the specification of the weights for both Gaussian and non-Gaussian distri-

butions on the parameter m, and thus calculate the Malliavin derivative Eq (3).

Kelvin-Voigt model

The Kelvin-Voigt constitutive model with Young’s modulus E, viscosity η and loading stress σ
can be written as the following linear ordinary differential equation:

E�ðtÞ þ Z
d�ðtÞ

dt
¼ s: ð5Þ

A schematic of this model is shown in Fig 1.

The initial condition on the strain is �(t = 0) = 0 and we study the response of the system for

time t 2 [0, T]. Our quantity of interest functional is the value of the strain at time t, i.e.:

J≔ �ðtÞ ð6Þ

and we are interested in its expected value (mean) E½�ðtÞ�.
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Gaussian case

We first consider the case that the randomness can be modelled as a Gaussian random vari-

able. A similar model is shown in [16].

We choose choose to model the stress as a random noise:

sðtÞ ¼ s0 þ ax; ð7Þ

where σ0 and α are constant and ξ is a a Gaussian random variable with zero mean and unit

variance. ξ represents the uncertainty related to the value of the stress σ.

From Eq (7), the mean value of σ is σ0 and the variance of σ is equal to α2. We assume

throughout that the Young’s modulus E and the viscosity η are perfectly known. Given that the

forcing stress σ for the system is random, the strain � is also random. The goal then is to evalu-

ate the derivative of the expected value of the strain with respect to the mean value σ0:

@E½�ðtÞ�
@s0

ð8Þ

using the method of MWS.

We choose to solve the ODE Eq (5) using an Euler explicit finite difference method with

time step δt:

�ðt þ dtÞ ¼ �ðtÞ þ
dt
Z

s0 � E�ðtÞ þ
ax
ffiffiffiffiffi
dt
p

� �

: ð9Þ

Remark. Note that the multiplying term before ξ contains
ffiffiffiffiffi
dt
p

and not δt. This is a ‘con-

forming’ discretisation of the stochastic noise term, resulting in a dependence of the variance

of the random parameter on the discretisation size. Informally, taking the limit, we can recover

the original ODE Eq (5) as:

E
d�
dt

� �

¼ ðs0 � E�ðtÞÞ=Z; ð10Þ

Fig 1. Schematic of a Kelvin-Voigt model with Young’s modulus E, viscosity η and loading stress σ. We model the loading stress σ as

a random noise (random variable), inducing a random strain � as the output of the model.

https://doi.org/10.1371/journal.pone.0189994.g001
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and:

V Z
d�
dt
� ðs0 � E�ðtÞÞ

� �

¼ a2: ð11Þ

Where V½�� is the the variance. Given that E½
ffiffiffiffiffi
dt
p

x� ¼ 0 and E½ð
ffiffiffiffiffi
dt
p

axÞ
2
� ¼ a2dt, the numeri-

cal method in Eq (9) is consistent in the following sense:

lim
dt!0

1

dt
E½�ðt þ dtÞ � �ðtÞ� ¼ ðs0 � E�ðtÞÞ=Z; ð12Þ

lim
dt!0

1

dt
E½½Zð�ðt þ dtÞ � �ðtÞÞ � dtðs0 � E�ðtÞÞ�

2
� ¼ a2: ð13Þ

For this next part, we adopt the same notation as [16]. We denote � the strain of the the sys-

tem at time t and we denote �0 the strain of the the system at time t + δt. Furthermore, we let P
(�) and P(�0) be the probability that the strain of the system is � and �0 respectively. The propa-

gator W(�! �0) must satisfy:

Pð�0Þ ¼
Z

�

Wð�! �0ÞPð�Þd�; ð14Þ

Z

�0

Wð�! �0Þd�0 ¼ 1: ð15Þ

Eq (14) means that the probability that the strain of the system is �0 is the sum (integral) of all

the probabilities to be at � multiplied by the probability that the system passes from state � to �0

during δt. Condition Eq (15) comes from the integration of the first condition over �0.

To derive the analytical expression of the propagator in Eq (18) we start with the fact that

x
?
¼ a

ffiffiffiffiffi
dt
p

x is Gaussian N* (0, δtα2), hence the probability density function is known and

must satisfy the following condition:

Z þ1

� 1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdta2
p exp �

x
?2

2dta2

 !

dx
?
¼ 1: ð16Þ

With an integration by substitution from Eq (9), with:

x
?
¼ ðð�0 � �ÞZ � dts0 þ dtE�Þ; ð17Þ

we can then show the expression of the propagator, the probability that the system passes from

state � to �0 during δt is given by [16]:

Wð�! �0Þ ¼
Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdta2
p exp �

ðð�0 � �ÞZ � dts0 þ dtE�Þ2

2dta2

� �

: ð18Þ

With the propagator in hand we will now see how it is possible to evaluate the Malliavin

derivative with the MWS method. To recap, we denote by J(�) a quantity of interest of our sys-

tem and we want to compute the derivative of the mean value of this quantity of interest E½J�
with respect to a parameter �m, in this case σ0 when σ = σ0 + αξ.

The form of the Malliavin weights qm can be obtained using the following procedure. First,

we know that with dP(�) = P(�)d�, Eq (1) we can write:

E½J� ¼
Z

�

JPð�Þd�; ð19Þ
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and by taking the derivative of Eq (19) [11, 16, 18]:

@E½J�
@ �m

¼

Z

�

JPð�Þ
@lnP
@m

d�: ð20Þ

To define a set of rules for updating qm, we differentiate Eq (14) with respect to m:

Pð�0Þ
@lnP0

@ �m
¼

Z

�

Wð�! �0ÞPð�Þ
@lnPþ @lnW

@m
d�; ð21Þ

and we obtain the following rule for updating the Malliavin weight:

qmðt þ dtÞ ¼ qmðtÞ þ
@lnW
@m

: ð22Þ

In the example of random stress with σ = σ0 + ξ, we obtain:

@lnW
@s

¼
ffiffiffiffiffi
dt
p

x=a: ð23Þ

For random Young’s modulus E = E0 + ξ we would have the same expression. In the case of

random viscosity η = η0 + ξ we would obtain following the same logic:

@lnW
@Z
¼ x=a: ð24Þ

With the expression for the Malliavin weight Eq (23) in hand we can now implement an

algorithm to calculate the derivative. The procedure is very simple; we take Z samples of the

evolutions of the stochastic ODE using the explicit Euler scheme whilst simultaneously evolv-

ing the Malliavin weight qm. At teach time step Algorithm 1 describes this procedure in more

detail.

The deterministic constants are given to be η = 1, E = 1 and we take a time step of δt = 0.01

for the finite difference scheme. We evaluate by the MWS method the derivative of the

expected value of � with respect to σ0 for a loading time t 2 [0, T] with T = 30s. In this example

the number of realisations is fixed at Z = 20000. We compare the results with the analytical

solution which is:

@E½��
@s0

¼
1

E
1 � exp �

Et
Z

� �� �

: ð25Þ

We briefly remark that for all numerical results presented in this paper there are two

sources of errors committed with respect to the undiscretised problem. The first error is due to

the deterministic approximation of the PDE (finite difference or finite element method), and

the second due to the stochastic approximation (Monte Carlo estimator). In all cases we drive

the error in the deterministic approximation of the PDE far lower than that in the stochastic

approximation, such that the error is dominated by the number of realisations Z used in the

Monte Carlo estimator.

In Fig 2 we can see that the MWS method gives a good estimation of the Malliavin deriva-

tive, particularly in the non-steady state regime t� 5s. The relative error and so the global sta-

tistical error can become very high when the system reaches a steady state because the value of

the sensitivity derivative is constant but the statistical error is compounded after each time

step. To address this issue a technique can be employed based on the correlation function [16].

The reader is referred to [16] for further details. We have implemented this correlation correc-

tion, which we denote MWS-steady-state, and we can see in Fig 2 that the error is greatly

Calculating the Malliavin derivative of some stochastic mechanics problems
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reduced in the steady-state regime. For the numerical examples presented in the following sec-

tions, we will consider only the systems undergoing transition or purely steady state systems.

Therefore we will not use the MWS-steady-state method again in this paper.

Non-Gaussian case

In this section we explain how to calculate the derivative for non-Gaussian stochastic parame-

ters using the MWS method. The procedure is similar to that shown in the previous part but

the rule for updating the Malliavin weight must be modified.

We begin as before by considering uncertainty in the stress σ:

s ¼ s1 þ cx

¼ s1 þ cE½x�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s0

þ cðx � E½x�Þ: ð26Þ

where ξ a random variable with probability density function f(x) and c and σ1 are two con-

stants. We have written Eq (26) in the form of a constant s0 ¼ s1 þ cE½z� plus a random vari-

able cðz � E½z�Þ with zero mean. Then it follows that σ0 is the mean of the uncertain stress σ.

We will use the MWS method to evaluate the derivative of the expected value of the quantity

of interest with respect to σ0.

Algorithm 1: Malliavin Weight Sampling algorithm for time dependent problem. The notation

used is that of the Kelvin-Voigt example in but the same basic algorithm is used throughout the

paper. Note that a correction term is needed for systems in steady state, see [16].

Data: σ0, E, η and the random variable ξ 2 N(0, 1).
Result: @E½�ðtÞ�=@s0, the derivative of the mean of � with respect to the
mean stress σ0 at time t.

Fig 2. Malliavin derivative of the expected value of the strain with respect to the loading σ0 for the

Kelvin-Voigt model with uncertain stress modelled as a Gaussian random variable. Comparison

between the exact solution, the MWS method and the the MWS-steady-state method with a correction using

the correlation function to improve the convergence of the MWS method when the system transitions into the

steady state. For the MWS method we use Z = 20000 realisations at each time step.

https://doi.org/10.1371/journal.pone.0189994.g002
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@E½�ðtÞ�=@s0 ¼ 0 for all t. .initialisation
for z = 0 to Z − 1 do
t = 0; .time
�(t) = 0; .initial condition
qσ = 0; .MWS weight
for i = 1 to n do
Draw realisation of random variable ξi;

�ðt þ dtÞ ¼ �ðtÞ þ s0dt
Z
�

E�ðtÞdt
Z
þ
ffiffiffi
dt
p

xi
Z
;

qsðt þ dtÞ ¼ qsðtÞ þ @lnW
@s
¼ qs þ

ffiffiffiffiffi
dt
p

xi;
@E½�ðt þ dtÞ�=@s0þ ¼ �ðt þ dtÞqs=Z;
tþ ¼ dt;

end
end

To be able to use the MWS method the probability density function on the parameter must

satisfy some regularity conditions, see [11, 20, 21]. Intuitively, the probability density function

must be sufficiently “regular” on R which holds for the Gaussian, log-normal, Beta(α> 1, β>
1) and Gamma(k> 1, θ) distributions. However, a uniform distribution between two values a
and b can not be considered “regular” because the probability density function is not differen-

tiable at a and b. Instead, we choose to regularised approximation of a uniform distribution

using a Beta(1 + e, 1 + e) random variable with e� 1.

Continuing, we again discretise Eq (5) using an explicit Euler method with time step δt:

�ðt þ dtÞ ¼ �ðtÞ þ
dt
Z

s0 � E0�ðtÞ þ
c
ffiffiffiffiffi
dt
p ðx � E½x�Þ

� �

: ð27Þ

Alternatively, in the case of uncertainty in the Young’s modulus, the discretisation can be writ-

ten:

�ðt þ dtÞ ¼ �ðtÞ þ
dt
Z

s0 � E0�ðtÞ þ
c �ðtÞ
ffiffiffiffiffi
dt
p ðE½x� � xÞ

� �

; ð28Þ

or, for uncertainty related to the viscosity:

�ðt þ dtÞ ¼ �ðtÞ þ
s0 � E�ðtÞ

xþ Z
dt: ð29Þ

The probability density function of the beta distribution, for 0� x� 1, and shape parame-

ters α, β> 0, is:

f ðx; a; bÞ ¼
1

Bða;bÞ
xa� 1ð1 � xÞb� 1

: ð30Þ

The beta function B is a normalisation constant to ensure that the total probability integrates

to 1. In general we will evaluate and update the Malliavin weight for the parameter m as:

qmðt þ dtÞ ¼ qmðtÞ þ
@lnW
@m

¼ qmðtÞ þ
@lnf ðxÞ
@x

@x

@m
: ð31Þ

Note that in Eq (31), it is important to check that the condition E½qmðtÞ� ¼ 0 is verified. If

E½qmðtÞ� 6¼ 0, the updated rule must be corrected. An example of performing this correction is

given in the next section entitled extension to second derivative. Finally, we note that for the

initial condition we always impose qm(t = 0) = 0.
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For the uncertain Young’s modulus modelled with a beta distribution, we have:

@lnW
@m

¼
ðb � 1Þ

ffiffiffiffiffi
dt
p

cð1 � mÞ
�
ða � 1Þ

ffiffiffiffiffi
dt
p

c m
: ð32Þ

For the uncertain stress with beta distribution, we have:

@lnW
@m

¼
ðb � 1Þ

ffiffiffiffiffi
dt
p

cð1 � mÞ
�
ða � 1Þ

ffiffiffiffiffi
dt
p

c m
: ð33Þ

For the uncertain viscosity with beta distribution, we have:

@lnW
@m

¼
b � 1

cð1 � mÞ
�

a � 1

c m
: ð34Þ

These results and further calculations are summarised in Table 1.

The Malliavin derivatives of the Kelvin-Voigt model with respect to the mean of the three

parameters {σ0, η0, E0} modelled as beta(2, 2) distributions are shown in Fig 3. The exact solu-

tion is computed semi-analytically using standard integration rules. Good agreement between

the MWS and semi-analytical solution is observed for E0 and σ0. For the viscosity η0 the num-

ber of Monte Carlo samples is not sufficient to achieve negligible error, but the overall trend is

followed.

Extension to second derivative

The MWS method can also be used to compute the second Malliavin derivative of the expected

value of a quantity of interest J. If the quantity of interest does not depend explicitly of the ran-

dom parameter, the expression given in Eq (3) is valid, but the more general form is the follow-

ing:

@E½J�
@ �m

¼ E
@J
@ �m

� �

þ E½Jqm�: ð35Þ

In Eq (35), when we want to compute the second derivative the term @J
@ �m

� �
does not vanish

because in this case J is the first derivative with respect to �m and therefore depends on the

parameter �m in general. By applying Eq (35), we can show for example in the case of uncertain

Young’s modulus that:

@
2E½�ðtÞ�
@E2

0

¼ E½�ðtÞðqEEðtÞ þ qEðtÞ
2
� CEE � C

2

EÞ�; ð36Þ

Table 1. Summary of main results for Kelvin-Voigt model with three distributions on three different

model parameters.

distribution @ lnW
@s

or @ lnW
@E

@ lnW
@Z

Beta(α, β) ðb� 1Þ
ffiffiffi
dt
p

cð1� mÞ �
ða� 1Þ

ffiffiffi
dt
p

mc

ðb� 1Þ

cð1� mÞ �
ða� 1Þ

mc

Gamma(κ, θ) � ðk� 1Þ
ffiffiffi
dt
p

mc þ
ffiffiffi
dt
p

yc

� ðk� 1Þ

mc þ
1

yc

log-Normal(μ, σ)
ffiffiffi
dt
p

mc 1þ lnm� m

s2

� �
1

mc 1þ lnm� m

s2

� �

https://doi.org/10.1371/journal.pone.0189994.t001
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with the following updating rule:

qEEðt þ dtÞ ¼ qEEðtÞ þ
@

2lnW
@E2

; ð37Þ

and:

qEðt þ dtÞ ¼ qEðtÞ þ
@lnW
@E

: ð38Þ

The constant C2
E and CEE allow to ensure that the expected value of the global Malliavin weight

ðqEEðtÞ þ qEðtÞ
2
� CEE � C2

EÞ has an expected value equal to zero. In this specific case we have:

C2
E ¼ E

@lnW
@E

� �2
" #

; ð39Þ

CEE ¼ E
@

2lnW
@E2

� �

: ð40Þ

The precise specification of the constants depends on the distribution. We compute them ana-

lytically or by using standard numerical integration techniques found in e.g. Scipy or Maple.

In Fig 4, a comparison between the analytical solution and the MWS method is given for

the value of the second derivative depending on time of the expected value of � with respect to

the Young’s modulus. For the sake of example, the problem specification is the same as in pre-

vious sections, with the exception that the random variable follows a log-normal(μ, σ) distribu-

tion with mean equal to 0.5 and standard deviation equal to 0.25 which corresponds to μ =

Fig 3. Malliavin derivatives of the expected value of the strain with respect to the mean of the

stochastic parameters (Young’s modulus E0, viscosity η0 and stress loading σ0). Comparison between

the exact solution and the MWS method. All uncertain parameters are modeled with a beta(2, 2) distribution.

Z = 105 realisations are performed for each estimator and the mean value of 10 estimators is plotted for each

parameter. Note that the value of Z is not large enough for the viscosity to converge with an negligible error

compared to the two other parameters. By increasing Z, this error could be reduced.

https://doi.org/10.1371/journal.pone.0189994.g003
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−0.804 and σ = 0.473. The analytical solutions for the two constants CEE and C2
E are in this case:

CEE ¼ C2
E ¼ 1þ 1

s2

� �
exp ð2s2 � 2mÞ: ð41Þ

As we can see in Fig 4, the MWS method gives a good approximation for the evaluation of the

second derivative with Z = 107 realisations.

Extension to random process

In this paper we deal with random noise and in the next section we show numerical results of

stochastic mechanics problems where models are defined as PDEs. The probability density

function of the random variables used in these examples does not depend on time. Similarly to

the Kelvin-Voigt model presented before, we study a time dependent problem in a finite

dimensional space by splitting the time interval [0, T] into a finite number of increments. Note

that it is also possible to take into account the random noise only at the initial time instead of

generating random variables at each time step. It would be possible to extend this work to ran-

dom process, e.g. by using a Wiener process W(t) which verifies in particular (W(t + δt) −W
(t)) * N(0, δt). In this case, even for simple ODEs, it is very difficult to obtain analytical solu-

tions because the probability density function of a random process evolves in time. The Mallia-

vin calculus is very well adapted to address these stochastic problems but requires much more

advanced mathematical tools as those presented in this paper. In addition, the Malliavin calcu-

lus has the advantage and the specificity that it is possible to directly work in the continuum

(infinite dimensional space) to evaluate the sensitivity derivatives. We hope that the first and

simple approach restricted to random variables presented in this paper may be of interest to

the engineering community and encourage them to investigate the benefits that the Malliavin

calculus could provide in the context of stochastic PDEs.

Fig 4. Second sensitivity derivative of the expected value of the strain with respect to the Young’s

modulus for the Kelvin-Voigt model. Comparison between the exact solution solution and the MWS

method. The Young’s modulus is modelled with a log-normal distribution. For the MWS method, Z = 107

realisations are performed. Note that the value of Z for the same order of magnitude for the error is higher for

the second derivative compared to the first derivative because the variance V in the Malliavin estimator is

bigger and we know from the central limit theorem that the error is in OðV1=2Z� 1=2Þ.

https://doi.org/10.1371/journal.pone.0189994.g004
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PDE examples

We now turn our attention to models that are defined as PDEs. To solve the deterministic eval-

uations of the PDEs we use the finite element method. We have chosen to use DOLFIN, part

of the FEniCS Project to implement the finite element method solvers [22].

Elastic bar with stochastic Young’s modulus

The strong form PDE and boundary conditions of the behaviour of a 1-dimensional elastic bar

(see Fig 5) are:

E
d2uðxÞ

dx2
þ f ¼ 0; uð0Þ ¼ 0 and

duðLÞ
dx
¼ 0: ð42Þ

We take f = 1, L = 1 and a stochastic Young’s modulus:

E ¼ 2ð1þ xÞ; ð43Þ

with ξ a random variable with beta(2, 2) distribution.

The forward model is described by the following weak residual formulation, find u 2
H1
DðOsÞ such that:

Fðu; ~uÞ≔ �
Z

Os

E ru � r~u dxþ
Z

Os

f ~u dx ¼ 0 8~u 2 H1

0
ðOsÞ; ð44Þ

where the space H1
DðOsÞ is the usual Sobolev space of square-integrable functions with square-

integrable weak derivatives on the domain Os≔ [0, 1] that satisfy the Dirichlet boundary con-

dition u(0) = 0 and H1
0
ðOsÞ vanish on the whole boundary. We solve the forward model using

a piecewise linear finite element method with 1024 cells in the mesh.

The quantity of interest is:

J ¼
Z 1

0

uðxÞdx: ð45Þ

The derivative of the expected value of Jwith respect to the mean value of the Young’s modulus

�E can be computed analytically in this case:

@E½J�
@�E
¼ �

Z 1

0

1

3ð2þ 2xÞ2
xð1 � xÞ
Bð2; 2Þ

dx ¼ 1 � 3
2

lnð2Þ: ð46Þ

This problem is a stationary (not time-dependent), in contrast to the Kelvin-Voigt model

considered previously. However, this stationary problem can be solved using the same tech-

niques. We introduce the concept of pseudo-time, where the system evolves from its initial

state at t = 0 to the final solution at time t = T through the a single solution of the PDE Eq (44).

Fig 5. Elastic bar with stochastic Young’s modulus.

https://doi.org/10.1371/journal.pone.0189994.g005
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Therefore in algorithm 1 we take the pseudo-time step as δt = T and hence n = 1. As before,

the Malliavin weight still has initial condition qm(0) = 0.

Finally, the relative error between the MWS method with Z = 5 × 105 realisations and the

analytical solution is 3.0 × 10−3.

Buckling of a hyperelastic beam with stochastic Young’s modulus

We study the deformation of a 2D geometrically non-linear hyperelastic beam with stochastic

Young’s modulus E. We have deliberately designed this problem so that for some values of E
the beam undergoes buckling, and for others not.

Consider a hyperelastic body that in its undeformed state occupies the domain O0 ¼

½0; L� � ½0; e� � R2 with L = 0.2m and e = 0.01m (see Fig 6), and in its deformed state occupies

some (unknown) domain O � R2. φ is the map between the material points X in the unde-

formed domain O0 and points x in the deformed domain O:

φ : O0

2X! x 2 O; ð47Þ

Fig 6. Hyperelastic beam: Mesh and schematic of boundary conditions. (1) a realisation of the problem where there is a geometric instability (buckling)

and (2) another without.

https://doi.org/10.1371/journal.pone.0189994.g006
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The deformation gradient can be written FðXÞ≔ @φ
@X. The right Cauchy-Green tensor is then

defined as C ≔ F
T
F.

The Neo-Hookean stored energy density of the body is then:

WðFÞ ≔ mðIc � 2Þ=2 � m log I3 þ lð log I3Þ
2
=2: ð48Þ

where I3 ≔ det ðFÞ and and IC ¼ tr ðCÞ. λ and μ are the Lame parameters and can be

expressed as a function of the Young’s modulus E and Poisson’s ratio ν as:

l ¼
En

ð1þ nÞð1 � 2nÞ
and m ¼

E
2ð1þ nÞ

: ð49Þ

We choose to model the Young’s modulus as a log-normal random variable with mean value

11MPa and standard deviation 2MPa. We take Poisson’s ratio as a fixed constant ν = 0.3.

Defining the displacement field as u ≔ φ − X and a linear functional f that encodes the

external tractions we can characterise the elastic equilibrium displacement field u� as the solu-

tion to the following minimisation problem:

u� ¼ arg min
u2½H1

DðO0Þ�
2

LðuÞ

¼ arg min
u2½H1

DðO0Þ�
2

Z

O0

WðFÞ dx0 � hf;ui

( )

;

ð50Þ

where ½H1
DðO0Þ�

2
is the usual vector-valued Sobolev space of square integrable functions with

square integrable derivatives that satisfies the given Dirichlet boundary conditions and dx0 is a

measure on O0. We fix the left hand of the beam, u(0, y) = 0 and apply a surface traction in the

negative x direction on the right hand of the beam of magnitude f.
For one Monte Carlo realisation we solve the non-linear problem using a Newton method

from SNES [23] with continuation in the loading parameter f and a third-order backtracking

line search. We let the symbolic differentiation capabilities of UFL derive the residual and

Jacobian of the forward model for use in the Newton method. We solve the linear systems aris-

ing from the Newton iterations using a conjugate gradient method preconditioned using alge-

braic multigrid (Hypre BoomerAMG [24]) interfaced from PETSc [23].

The quantity of interest is defined as:

J ¼
Z

O

juyj dx: ð51Þ

The Malliavin derivative of E½J� with respect to the mean Young’s modulus obtained with the

MWS method with Z = 3 × 103 realisations is:

@E½J�
@E0

� � 3:1� 10� 6 m3=MPa: ð52Þ

No analytical solution exists for comparison. If we use dolfin-adjoint [25], we can compute the

classical derivative of J with respect to the Young’s modulus around the mean parameter:

@J
@E

�
�
�
�
E¼E0

� � 3:5� 10� 8 m3=MPa: ð53Þ

In this example the difference between the classical derivative and the Malliavin derivative is

quite pronounced. This difference is caused by the presence of an instability (buckling). This

instability is not activated when E = E0, hence, the classical derivative tells us that J is relatively
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insensitive to perturbations in the Young’s modulus about E0. However, the Malliavin deriva-

tive tells us that E½J� is in fact quite sensitive to changes in the mean of the Young’s modulus

E0. The Malliavin derivative gives us quite a different perspective on the sensitivity of this prob-

lem than the classical one.

Incompressible Navier-Stokes equations with stochastic viscosity

We consider the incompressible Navier-Stokes equations on a domain O in R2 consisting of a

pair of momentum and continuity equations:

_u þru � u � nDuþrp ¼ f;

r � u ¼ 0:
ð54Þ

In Eq (54), u refers to the unknown velocity of the fluid, ν is the viscosity of the fluid, p the

unknown pressure and f is a given source. The mesh, geometry and boundary conditions for

the incompressible Navier-Stokes problem are shown in Fig 7. The viscosity is modelled as a

random variable:

n ¼ 0:015þ 0:01ðx � 0:005Þ; ð55Þ

with ξ a log-normal distribution with mean equal to 0.5 and standard deviation equal to 0.25.

We solve the PDE for a given parameter ν with FEniCS [26] (FE approximation) using

Chorin’s method with time step δt = 0.01 for t 2 [0, 1], see [27] for more details on the imple-

mentation. For one realisation of the viscosity the velocity at time t = 1 s is show in Fig 8.

The quantity of interest is the total volume of fluid that exits the right end of the domain:

J ¼
Z t¼1

t¼0

Z

Sp¼0

u � n dsdt; ð56Þ

where Sp = 0 is the surface with normal vector n on the right side where the pressure is imposed

to zero.

The derivative of E½J� with respect to η0 obtained with the MWS method for Z = 4 × 105

realisations is:

@E½J�
@Z0

� � 7:9 s=m2: ð57Þ

Fig 7. Mesh, geometry and boundary conditions for the incompressible Navier-Stokes problem.

https://doi.org/10.1371/journal.pone.0189994.g007
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No analytical solution exists for comparison. If we use dolfin-adjoint [25], we can compute the

derivative of J with respect to the viscosity around the mean parameter:

@J
@Z

�
�
�
�

Z¼Z0

� � 7:85 s=m2: ð58Þ

The two sensitivity derivatives are close. In this example, contrary to the hyperelastic example,

the Malliavin approach does not give us a particularly different interpretation of the

sensitivity.

Conclusion

In this paper we have shown how to calculate the Malliavin derivative using the method of

Malliavin Weight Sampling. We have applied the method to some typical mechanics models

that can be described by ODEs and PDEs, and solved those models using finite difference and

finite element methods. In addition, we have extended the existing practical literature on

MWS to non-Gaussian random variables and the calculation of second-order derivatives. We

are currently investigating the extension of this work from random parameters to problems

with variables modelled as random fields. We are also exploring the use of the Malliavin

Fig 8. Velocity magnitude at time t = 1 s for one realisation of the viscosity.

https://doi.org/10.1371/journal.pone.0189994.g008
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derivative in derivative-driven variance reduction methods e.g. [28]. Code showing the calcu-

lation of the Malliavin derivative for the examples in this paper is freely available at: https://dx.

doi.org/10.6084/m9.figshare.5432722 [29].
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