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ABSTRACT 
The climate based Daylight Autonomy (DA) metric has 
been gaining ground in the field of sustainable building 
design as a measure for the amount of daylight within 
spaces and associated energy savings. In this study, 
Artificial Neural Networks (ANNs) were used to predict 
DA levels in interior spaces as an alternative to 
computationally expensive simulations. Research was 
carried out in three phases of increasing complexity: First, a 
neural network was trained and validated for a single design 
space. Subsequently, the window design was altered and a 
neural network was trained and tested on its ability to 
predict DA levels according to changes in window design. 
Lastly, the neural network was trained to account for the 
effects of shading from an external obstruction. After 
sufficient training, the ANN, during the recall stage, was 
able to predict DA, on average, within 3 DA short of the 
simulated DA results for both the shaded and unobstructed 
scenario. The results obtained show the potential of neural 
networks as a prediction tool for estimating Daylight 
Autonomy. 
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1 INTRODUCTION 
Daylight is an essential physiological and psychological 
human need that has been shown to improve human well-
being and work performance [1, 2]. As a measure for 
daylight, current building standards and guidelines (e.g. BS 
8206-2:2008; BR209-2011) still predominantly rely on the 
Daylight Factor (DF). This metric however has been 
criticized for its inability to distinguish between a better or 
worse design approach as it takes into account neither 
climate, orientation nor shading [3]. In place, climate-based 

daylight metrics have been recommended as a design driver 
to evaluate design solutions.  

This paper employs the climate based Daylight Autonomy 
metric (DA) and investigates the potential of applying 
artificial neural networks (ANNs) to predict this metric. By 
proving the potential of ANNs to learn or mimic the 
behaviour of simulation tools, it aims to establish a basis for 
ANNs to partially replace time-consuming simulations in 
design optimization processes. 

The next part of the paper gives the definition for DA, 
describes the basic construct of ANNs and explores the 
current application of ANNs as prediction tools. In the third 
section, the four methodological experiments undertaken in 
this study are described, after which the results are reported 
in section 4. The last section evaluates the findings and 
draws the conclusions for this paper.  

2 ARTIFICIAL NEURAL NETWORK PREDICTIONS OF 
DAYLIGHT AUTONOMY 

Daylight Autonomy (DA) measures the amount of occupied 
hours in a year, in which a given illuminance target can be 
met by daylight alone [4]. For office work, 300 lux is a 
typical target taken as the illuminance threshold. To 
illustrate, a DA of 80% reports that artificial lighting may 
not be required for 80% of occupied hours in a year. This 
metric and variations of the metric (such as Spatial Daylight 
Autonomy and Useful Daylight Illuminances) are thus 
commonly used in lighting design for designing daylight 
harvesting systems [5]. Time-consuming climate based 
simulations at hourly or smaller time steps are needed to 
calculate the annual result of this metric. As such, research 
has also ventured into the field of machine learning and 
proposed neural networks to tackle the problem of 
computational expensive simulations while maintaining 
prediction accuracy [6].   

Artificial neural networks are the mathematical description 
of ‘brain-like’ systems that have been developed with 
biological neural networks as their core concept [7]. 
Characteristically, ANNs are a construct arranged in an 

 



input layer, one or more hidden layers in the middle and an 
output layer (Figure 1). The layers consist of a variable 
number of neurons with variable connection strengths. The 
connection strengths between the neurons of each layer are 
established by providing the ANN with a set of training 
data and the respective results, to which it then develops a 
pattern of connections that replicate complex functions and 
mimic non-linear behaviour. Depending on the applied 
learning rules and the transfer functions between neurons, 
the networks can be trained as prediction models to 
compute continuous output such as illuminances  (function 
approximation)[8], or binary output that classifies data into 
categories (classification), e.g. illuminance categories such 
as Useful Daylight Illuminances [9]. 

Figure 1. Neural network architecture with five input neurons, four 
neurons in the hidden layer and one neuron in the output layer. 

One of the studies that applied ANN-based modelling 
successfully predicted illuminance levels in an office 
building with a percentage error of 3% compared to field 
measurements [6]. The study used Illuminance 
measurements alongside time variables and weather data to 
train the network. In another study, the illuminance results 
obtained from a trained neural network were used to 
optimize the slat angle of blinds [10]. Good prediction 
results were also obtained in a study that applied neural 
networks to estimate sky luminances. The study showed an 
overall better performance of the ANN over CIE sky 
models [11].  

In an effort to evaluate the daylight performance of a 
building, a more recent study used ANNs for hourly 
predictions of the climate-based metric UDI (Useful 
Daylight Illuminances). The network was able to correctly 
classify the UDI category for most days of the year and 
showed a better performance than support vector machines, 
another machine learning technique [9]. ANNs also yielded 
promising results for annual predictions of the Daylight 
Autonomy metric [12]. Although the studies show the 
ANNs potential as an alternative computational model for 

daylight predictions, one of the major drawbacks stems 
from the effort required to collect or generate the data 
required for ANN training. Additionally, Neural Network 
models remain as a black box [13] and the sensitivity of 
prediction results towards a selected neural network 
architecture as well as the randomly selected initial weight 
settings make their robustness questionable. 

This research models artificial neural networks to predict 
annual DA levels for changes in façade design, specifically 
window dimension and window location. The data is 
generated from daylight simulations. So as to improve 
reliability and robustness of the networks, the study ran 
multiple trials and optimized the neural network 
architecture for each training set individually before 
applying the ANN to predict the DA metric.  

3 METHODOLOGY 

3.1 ANN Settings 
A neural network model was developed by providing a set 
of input output pairs to the network to undergo supervised 
training. In this case, the design variables were the input 
and their corresponding DA values the output. This study 
employed a feed-forward neural network that uses the back-
propagation training. Back-propagation neural networks are 
popular for function approximation problems [14] and use 
gradient descent to adjust connection weights between 
neurons. As such, there is risk of getting stuck in local 
minima. To mitigate this risk, network settings such as the 
speed or learning rate and the step size in which the 
network weights are adjusted as well as the initial weight 
setting itself become crucial factors affecting the outcome 
of ANN training [15]. Therefore, the Levenberg-Marquardt 
algorithm was implemented in conjunction with back-
propagation for a faster convergence during training and 
increased robustness [16], as it switches between gradient-
descent and a Newton-like update of the weights.  The 
neural networks were modeled and trained in MATLAB 
and each network was trained ten times with randomised 
initial weight settings. 

As the connections between neurons are at the basis of 
neural network modeling, the ANN architecture, 
specifically the number of neurons in the hidden layer, are a 
paramount influencer of ANN models [17]. A typical 
approach to determining the optimum number of hidden 
neurons is one of trial and error. Research has 
recommended a pyramidal structure in which the number of 
neurons is smaller than the number of input neurons and 
bigger than then the number of output neurons [18]. Similar 
studies in the field however found predictions results to be 
more accurate with a larger number of neurons in the 
hidden layers [19]. For this study, a script was written that 
tests the performance of ANN models starting from a small 
number of three hidden neurons up to 25 hidden neurons. 

All input data was normalised to the range of -1 and 1 
before training and a tan-sigmoidal activation function was 

 



employed in between the input and hidden layer and the 
hidden and output layer. To mitigate overfitting [20], the 
training data set was subdivided into a validation set of 30% 
and the default MATLAB setting of six maximum 
validation failures was selected to initiate an early stopping 
of neural network training before completion of 1000 
training epochs. 

3.2   Simulation Design 
A generic model of 10 x 10 m with and a cantered window 
and a window head height of 2.7 m was chosen as the base 
model for daylight evaluations (Figure 2). The daylight 
simulations were run on Diva for Rhino, a validated and 
Radiance-based simulation tool [21]. DA was calculated for 
121 sensor points at a work plane height of 0.8 m. 

 
Figure 2. Generic model used for daylight simulations. 

Window length and location of the window on the south 
facing façade were varied by 1 m in each alteration with 
resulting designs shown in Figure 4-7.  

In an additional scenario, a one-storey building was placed 
diagonally across the model in 8 m distance from it. The 
training data generated from this scenario was used to 
investigate the ability of the ANN model to cope with 
additional noise in the training data. 

 
Figure 3. Overshadowing from an external obstruction.  

The training and testing of ANN models was undertaken in 
the four parts: 

Neural Network Validation  
Daylight simulation results for all 121 sensor points of design 
A (Figure 4) were extracted and attributed a sensor point ID 
according to the distance from each sensor point to the center 
of the window. The data was then used to generate the ANN 
input and target data. 90% of the data was used for training 
and early stopping; the remaining 10% of the data was 
withheld for testing ANN prediction accuracy. This was 
done once with the data that was generated from the 
unshaded scenario and repeated a second time with the data 
generated from the model that received shading from a 
neighboring building. 

Predicting DA for Variations in Window Dimension 
Simulations results were extracted from A to I (Figure 4) 
and window width was added as an input feature for neural 
network training.  In a first run, the input and target data for 
B was withheld from training. After training and optimizing 
the ANN architecture, DA levels were predicted for all 
sensor points in B. In a second run, the ANN was retrained 
using the input and target data from A to G and I as training 
data and the data for H was withheld for testing. After 
training and optimizing the ANN architecture, DA levels 
were predicted for all sensor points in H. This was done for 
both the unshaded and shaded scenario. 

Predicting DA for Variations in Window Location 
Input and target data was extracted for simulations H1 to 
H7 (Figure 6). The location of the centre point of the 
window was added as an input feature for training the 
ANN. In a first run, data for H3 was withheld for testing, 
then another network was trained without the data set for 
H5. The optimised and trained networks were used to 
predict DA levels for H3 and H5 and prediction results are 
compared in the next section. Again this was done for both 
the obstructed and unobstructed scenario. 

Predicting DA for Variations in Window Dimension and 
Location 
In a final test, all data points for window dimension and 
location (Figures 4, 5 and 7) with the exception of data for 
G was used to train another network. After training and 
optimization of the network architecture, the network was 
used to predict DA levels for G1, G2, G6 and G7. 

 

Figure 4.  Resulting configurations for design variable: window width; change by: 1 m 



3.2 Neural Network Training Performance 
So as to determine a suitable network architecture for each 
prediction problem, the training performance was measured 
for networks with three to 25 neurons in the hidden layer. 
The Mean Squared Error (MSE) was used to measure 
training performance. ANN training was stopped when 
either the lowest possible MSE was reached at 1000 
training Epochs or when the MSE worsened six consecutive 
times on the validation set. As aforementioned, each 
network architecture was trained ten times and the 
architecture with the lowest MSE in ten runs was recalled 
for DA predictions.  

DA prediction results were generated in three ways: using 
the network with the lowest MSE, using the average output 
of the five networks with the lowest MSE for that 
architecture and by averaging the output of all ten trained 
networks. This was done to improve generalization [22]. 
Prediction accuracies and effectiveness of this are 
compared in the results section. 

3.3 Measurements of Prediction Accuracy 
The neural network output (between -1 and 1) was scaled 
back to DA levels before assessing the prediction accuracy. 
The accuracy measures used in this study are the Mean 
Absolute Error (MAE), the Root Mean Squared Error  

(RMSE) and the Mean Biased Error (MBE).  MAE,  RMSE 
and MBE are calculated by using the following equations 
where P is the predicted, and T the simulated DA value: 

𝑀𝐴𝐸 =   
𝑃! − 𝑇!!

!!!

𝑛
 

𝑅𝑀𝑆𝐸 =   
(𝑃! − 𝑇!)!!

!!!

𝑛
 

𝑀𝐵𝐸 =   
(𝑃! − 𝑇!)!

!!!

𝑛
 

Although both MAE and RMSE take large errors into 
account, RMSE places penalty on large errors and weighs 
them more heavily. A major difference between MAE and 
RMSE could therefore indicate either a small number of 
largely incorrect predictions or a larger number of 
moderately incorrect predictions [23]. The MBE was used 
to assess whether the trained architectures typically over or 
underestimate DA predictions and to gauge how far off the 
daylight evaluation of the entire space fell from the 
simulation. 

Figure 5.  Resulting configurations for design variable: window location; change by: 1 m 
 

Figure 6.  Resulting configurations for design variable: window location; change by: 1 m 

Figure 7.  Resulting configurations for design variable: window location; change by: 1 m 

 



4 RESULTS 

4.1 Network Architectures and Prediction Accuracies  
For each training set, the number of hidden neurons was 
optimised with the custom script. The number of neurons 
that resulted in the lowest MSE are listed in the table 
alongside MAE, MBE and RMSE for each prediction. 

Neural Network Validation  
Predictions for 10% of randomly selected data from ‘A’ 
were less than 1 DA away from the simulated DA level 
(Table 1). This was the case for both the unshaded and 
shaded scenario. The RMSE yielded results close to the 
MAE, showing that there were hardly any outliers. The 
high accuracy showed that the network was correctly 
trained on the data and could be used for annual DA 
predictions. Additionally, MBA of less than 0.1 DA 
suggests that prediction give overall high accuracy on the 
evaluation of daylight without a noticeable tendency to 
either over-or underestimate daylight predictions. The 
neural network architecture that was best able to match 
training and target data and return a lowest MSE had 13 
neurons in the hidden Layer.  

Predicting DA for Variations in Window Dimension 
The accuracy of predictions for B and H are listed in Table 
2. The ANN model with 23 and 24 neurons in the hidden 
layer returned the lowest MSE. Predictions for B are below 
3 DA away from the simulated results and estimates for 
both the shaded and unshaded scenario show similarly good 
results.  Prediction results for H have a slightly lower 
accuracy: although the absolute error again is less than 3 
DA, there is one outlier for the result: The MAE rises to 9.7 
and 5 DA when using the best trained network for 
predictions, indicating the neural network may have been 
over trained on the specific training and target data, making 
the network less suitable for generalizing or predicting for 
new cases [24]. Another possibility is that noise in the data 
may have been generated from the behaviour of the 
simulation tool itself. Diva works on the basis of three-
phase method and depending on the location and distance 
of sensor points to one another, results may be more or less 
representative of the grid in which the sensor point is 
located [25]. 

In general, over and underestimations cancelled each other 
out, meaning the overall estimation of daylight within the 
space would range around the same DA levels as the 
simulation. This was the case with one exception, whereby 
the best performing network underestimated predictions of 
H (obstructed) by a DA of 5%. Outliers seemed to be 
prevalent in both cases for which the network performed 
less accurate, based on the RMSE for both.  

Predicting DA for Variations in Window Location 
Predicting DA for variation in window location yielded 
very similar results to the prior case. All predictions had a 
MAE of max. 3 DA from the actual result with one 

exceptional case of 7 MAE when using the network with 
the lowest MSE for predictions in which case the network 
largely over predicted DA for that scenario. Not 
considering this case, accuracies were not consistently 
better or worse for the unshaded and shaded scenario. 
Despite an additional input feature used for training, the 
best performing network architectures had either the same 
number of hidden neurons or were close in range to the 
prior case for changes in window dimension.  

Predicting DA for Variations in Window Dimension and 
Location 
Predictions on four completely new cases for variations in 
both window dimension and window location yielded 
slightly worse results as the mean absolute prediction error 
went up from 3 to around 4 DA. This difference however is 
marginal in terms of interpretation of the overall daylight 
performance. Over- and underestimations were slightly 
more pronounced on two of the cases (G2 and G7), 
suggesting that the magnitude of variation may be too great 
and additional training data from a more similar case may 
improve results. One ANN model was optimized for all 
four predictions and the architecture with 24 hidden 
neurons returned the best training performance.  

4.2 Best Performing Networks and their Ability to 
Generalize 

The greatest consistency in prediction results was obtained 
by averaging the output of all ten trained networks. 
Networks with the lowest MSE achieved the best as well as 
the worst prediction accuracies. Overall results largely fell 
in the same range of error between 1 and 3% DA.  

The number of hidden neurons that were best able to match 
input data and corresponding targets fell in the same range, 
with 21 to 24 neurons respectively. If, depending on the 
training data, completely different number of neurons had 
led to optimum results, this would have meant that multiple 
neural networks need to be trained depending on the design 
variables and the data sets. Instead, the observed result 
suggests consistency in the way that the neural nets learn 
and that convergence within the ‘black box’ may not be at 
random.  

4.3 Computation Time 
Daylight simulations on Diva for Rhino took between 10 
and 15 minutes per case on a 2.6 GHz Intel Core i7.  The 
time required for training each ANN architecture took less 
than two minutes when provided with 726 data points. The 
training and optimization of ANNs used for predicting DA 
for variations in window dimension and location (G) took 
slightly longer with 2 minutes and 15 seconds as the 
networks were provided with a dataset of 2057 training 
samples. Once a neural network architecture was trained, 
the recall for the DA predictions itself took less than 1 
second.  

 



Predicted case 

No. of 
hidden 

neurons 
with lowest 

MSE 

Errors of 
best trained 

ANN 

Errors of 
top 5 

trained 
ANNs 

Errors of 10 
trained 
ANNs 

Elapsed 
time in 
seconds 

A - 
Unshaded 

MAE 
MBE 

RMSE 
13 

0.51 
-0.06 
0.63 

0.41 
-0.10 
0.49 

0.48 
-0.07 
0.55 

45.66 

A - 
Shaded 

MAE 
MBE 

RMSE 
13 

0.55 
0.09 
0.65 

0.51 
-0.05 
0.65 

0.54 
-0.02 
0.72 

40.31 

Table 1. Prediction accuracy: Neural Network validation 

Predicted case 

No. of 
hidden 

neurons 
with lowest 

MSE 

Errors of 
best trained 

ANN 

Errors of 
top 5 

trained 
ANNs 

Errors of 10 
trained 
ANNs 

Elapsed 
time in 
seconds 

B - 
Unshaded 

MAE 
MBE 

RMSE 
23 

1.01 
0.92 
1.22 

2.55 
2.67 
3.30 

1.67 
1.55 
2.09 

76.71 

H - 
Unshaded 

MAE 
MBE 

RMSE 
23 

9.77 
0.28 

13.71 

2.44 
-1.29 
3.16 

1.60 
-1.13 
2.16 

82.47	  

B - 
Shaded 

MAE 
MBE 

RMSE 
24 

1.48 
0.56 
1.81 

1.04 
0.13 
1.33 

0.96 
0.36 
1.18 

75.45 

H - 
Shaded 

MAE 
MBE 

RMSE 
23 

5.04 
-4.97 
7.11 

2.83 
-2.34 
4.15 

2.74 
-1.86 
3.85 

92.70 

Table 2. Prediction accuracy: Variations in window dimension 

Predicted case 

No. of 
hidden 

neurons 
with lowest 

MSE 

Errors of 
best trained 

ANN 

Errors of 
top 5 

trained 
ANNs 

Errors of 10 
trained 
ANNs 

Elapsed 
time in 
seconds 

H2 - 
Unshaded 

MAE 
MBE 

RMSE 
24 

2.39 
1.92 
3.68 

1.64 
0.56 
2.32 

2.30 
-1.94 
2.94 

77.17 

H6 - 
Unshaded 

MAE 
MBE 

RMSE 
23 

7.73 
6.84 
9.90 

2.21 
1.78 
3.00 

1.40 
0.87 
1.95 

68.41	  

H2 - 
Shaded 

MAE 
MBE 

RMSE 
23 

2.06 
-1.03 
3.55 

3.58 
3.46 
5.38 

2.15 
1.68 
3.14 

61.28 

H6 - 
Shaded 

MAE 
MBE 

RMSE 
21 

2.25 
-0.60 
3.68 

3.48 
-0.15 
4.59 

3.46 
-2.41 
4.68 

66.51 

Table 3. Prediction accuracy: Variations in window location 



Predicted case 

No. of 
hidden 

neurons 
with lowest 

MSE 

Errors of 
best trained 

ANN 

Errors of 
top 5 

trained 
ANNs 

Errors of 10 
trained 
ANNs 

Elapsed 
time in 
seconds 

G1 - 
Shaded 

MAE 
MBE 

RMSE 

24 

3.99 
0.15 
6.96 

2.47 
0.95 
3.98 

2,29 
-1,33 
4.20 

135.03 

G2 -
Shaded 

MAE 
MBE 

RMSE 

3.47 
3.37 
5.07 

4.51 
4.46 
6.39 

3,78 
3.68 
5.48 

G6 - 
Shaded 

MAE 
MBE 

RMSE 

2.71 
-2.52 
3.44 

2.90 
-2.59 
3.76 

1,39 
-0.98 
2.02 

G7 - 
Shaded 

MAE 
MBE 

RMSE 

3.46 
-4.31 
6.11 

3.32 
4.22 
5.38 

2,38 
2.12 
3.22 

Table 4. Prediction accuracy: Variations in window dimension and location 

5 CONCLUSION AND RECOMMENDATIONS FOR 
FUTURE RESEARCH 

It should be noted that this study investigates the potential 
of ANNs to estimate DA levels but does not infer on their 
ability to fully re-establish the DA measures that results 
from backward ray-tracing to the sky patches and the 
respective climate-data, which would require further 
research with more detailed data. Instead, observations are 
made on how close ANN predictions get to simulated DA 
levels as well as the consistency of predictions. This was 
done to gauge the suitability of ANNs to partially replace 
time-consuming simulations in daylight performance-based 
design explorations. Predictions typically fell within 3% 
DA on average away from simulated DA level of each 
sensor point and were more accurate in terms of evaluating 
daylight performance of the entire space, as indicated by the 
MBE results. A typical MBE close to 0 showed that there 
was no particular tendency to over or underestimate 
daylight levels.  

One of the main limitations pertains to the fact that the 
design variables need to be determined before training the 
ANN. This would make ANNs more suitable for 

application in design optimisation problems. In terms of 
robustness of the ANN models, outliers in prediction 
accuracy were repeatedly found when employing the 
models with the best training performance, possibly 
suggesting an overfitting of the networks to the training 
data. The results of this study show that training multiple 
networks and averaging their output provides more 
consistent prediction accuracies.  

Although we were able to predict daylight levels for 
changes in façade design in terms of window dimension 
and location, further research is needed to test prediction 
accuracy for more complex façade changes. Improvements 
in input feature selection and ANN settings such as a slower 
convergence rate are expected to improve results. The 
sample size used for training and the selection of data used 
as the validation set for early stopping are further factors 
that influence the results. A more in-depth exploration is 
still needed to validate the method and future work will 
investigate the adaptability of ANNs to predict DA levels 
under changing design with multiple design parameters.  
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