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Abstract 

The Paleoproterozoic Monchegorsk Complex, located in the Russian part of the 

Fennoscandian Shield, constitutes one of the largest mafic-ultramafic layered intru-

sions in Europe. The complex hosts extensive contact-style PGE-Ni-Cu sulfide min-

eralization along its margin, irrespective of the host lithology, which ranges from 

peridotite to pyroxenite and gabbronorite. The mineralized intervals reach up to 3 

ppm Pt + Pd and attain a thickness of up to 50 m in the central portions of the intru-

sion, thinning towards the periphery. 

Our study shows that the key process controlling the size and grade of a contact-

style deposit in the Monchegorsk Complex, was the efficiency of sulfide collection in 

distinct zones of the intrusion. Strongly mineralized basal contacts are always associ-

ated with intense brecciation and the presence of large amounts of felsic pegmatite, 

suggesting a multi-stage emplacement of the mafic-ultramafic succession. Thermal 

modeling demonstrates that multiple episodes of magma influx are required to allow 

for significant partial melting of the basement. Moreover, the interaction between 

magma and basement led to the local addition of water and potentially carbon dioxide 

to the magma, resulting in partial melting of cumulus phases and a reduction in vis-

cosity of the interstitial melt. This increased the porosity of the mush in the vicinity of 

the lower intrusion contact, which promoted preferential sulfide liquid accumulation 

at the base, while the local decrease in magma viscosity facilitated gravitational set-

tling of sulfide droplets. These factors led to an efficient collection of sulfide liquid, 

especially in the center of the complex, where permeability was maintained the long-

est due to slower cooling relative to more peripheral parts. 
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Introduction 

Layered intrusions around the world are a major target for metal exploration, as 

they host the bulk of global platinum-group element (PGE), Cr and V resources. Al-

most all economic PGE deposits are hosted in laterally extensive, but narrow reefs in 

the central portions of intrusions, such as in the Bushveld Complex (South Africa), 

the Great Dyke (Zimbabwe) and the Stillwater Complex (USA). The only known 

economic non-reef-hosted PGE deposits are the Platreef in the Bushveld Complex and 

the Roby Zone of the Lac des Iles Complex (Canada). As opposed to reef-style min-

eralization, the Platreef comprises a relatively thick succession of a variety of miner-

alized mafic-ultramafic rock types along the basal contact of the complex, which is 

why this deposit type is termed "contact-style" (e.g., Zientek, 2012). In fact, most 

large layered intrusions globally host contact-style mineralization of variable thick-

ness and metal concentration, notably the Portimo Complex (Finland), the East Bull 

Lake Complex (Canada) and the Fedorova-Pana intrusion (Russia), but none of them 

are exploitable under current market conditions (Iljina, 1994; Peck et al., 2001; 

Schissel et al., 2002). 

Genetic aspects of contact-style mineralization, especially concerning the 

Platreef, are still under debate. In particular the timing of sulfide saturation relative to 

the final emplacement has been intensively discussed: some authors argued that the 

mineralization formed in response to in situ contamination by country rocks in spatial 

proximity to the final emplacement (e.g., Buchanan et al., 1981; Gain and Mostert, 

1982), whereas more recent studies suggested that the in situ contamination did not 

play a critical role in triggering sulfide saturation, as several lines of evidence indicate 

that the magma was sulfide-saturated before final emplacement (Holwell et al., 2014; 
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Kinnaird et al., 2005; Lee, 1996; Maier et al., 2008; Manyeruke et al., 2005; McDon-

ald and Holwell, 2011; Peck et al., 2001). 

Critical factors controlling the size and distribution of these deposits in relation 

to the unmineralized igneous succession are not fully understood either. Notably, the 

stratigraphically lowermost portions of a layered complex, mostly represented by a 

thick peridotitic cumulate, commonly lack contact-style mineralization at the base – 

only higher up in the sequence do these deposits occur, e.g., Konttijärvi/Ahmavaara, 

Platreef.  

This characteristic also applies to one of Europe's largest layered intrusions, 

namely the Monchegorsk Complex. It is located approx. 120 km south of Murmansk 

on the Kola Peninsula of Russia and hosts extensive contact-style PGE-Ni-Cu miner-

alization. The complex belongs to a group of Paleoproterozoic layered intrusions, oc-

curring across the Fennoscandian Shield, which also includes the Portimo Complex in 

Finland. Recent exploration in the area, targeting the mineralized contact between the 

intrusion and the floor rocks, yielded intersections of up to 10.9 ppm Pt + Pd over 5.9 

m (Eurasia Mining plc, 2010), for a total of 27.8 Mt of category C1 + C2 mineral re-

serves at 0.6 ppm Pt and 1.1 ppm Pd, respectively (Eurasia Mining plc, 2017). 

In this study, we provide a new perspective on the formation of contact-style 

PGE mineralization based on a thorough analysis of a range of mineralized basal con-

tacts at different stratigraphic levels of the complex. The detailed compositional and 

lithological characterization of the mineralization, using mineral chemistry as well as 

lithophile and chalcophile element geochemistry in conjunction with thermal model-

ing, allows us to improve the understanding of ore-forming processes associated with 

the formation of mineralized basal intrusion contacts. Furthermore, these results have 

important implications for exploration targeting contact-style sulfide mineralization. 
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Geological Setting 

One of the most important periods of global mafic-ultramafic magmatism in 

Earth's history is the Paleoproterozoic (e.g., Maier and Groves, 2011). Expressions of 

the magmatic activity are recorded in a number of voluminous layered intrusions, 

dyke swarms and volcanic suites across the Canadian and the Fennoscandian Shield 

in northern Europe (Vogel et al., 1998). On the basis of coeval magmatism, Bleeker 

and Ernst (2006) suggested that the Fennoscandian Shield was situated along the 

southern margin of the Superior Craton at the end of the Archean. The tectonic setting 

as well as the mantle source of magmatism remain under debate, but most researchers 

prefer a rift-related mantle plume melting model followed by large-scale contamina-

tion with older felsic crustal rocks to explain the trace element and isotopic signature 

of the igneous rocks (Amelin et al., 1995; Barnes et al., 2001; Ciborowski et al., 2015; 

Hanski et al., 2001b; Puchtel et al., 1997; Yang et al., 2016).  

Several studies have demonstrated considerable petrological and stratigraphic 

similarities between the layered intrusions on both shields (Iljina and Lee, 2005; 

James et al., 2002; Schissel et al., 2002). The Fennoscandian layered intrusions, how-

ever, seem to be more significant with respect to PGE, Ni, Cu, Cr and V mineraliza-

tion. Several well-known PGE and Cr occurrences as well as sub-economic to eco-

nomic deposits are associated with the Finnish intrusions, whereas base and precious 

metal mineralization in the Russian part of the Fennoscandian Shield are less promi-

nent, despite a long history of mining and exploration going back to the 1930s. These 

intrusions host a spectacular range of mineralization styles, ranging from stratiform 

chromitites and basal contact-style PGE-Ni-Cu mineralization to different types of 

PGE reefs in the lower and upper portions of the intrusion (e.g., Alapieti et al., 1990; 
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Chashchin et al., 1999; Huhtelin, 2015; Iljina et al., 1992; Kozlov, 1973; Mutanen, 

1997; Schissel et al., 2002; Sharkov and Chistyakov, 2012). 

One of the most remarkable Fennoscandian intrusions in terms of mineralization 

is the 2.5 Ga Monchegorsk Complex as it hosts virtually all deposit types associated 

with layered intrusions in a single complex. These include dunite-hosted massive 

chromitite, internal PGE reefs associated with interlayered dunite and pyroxenite as 

well as evolved leucogabbronorite, PGE-Ni-Cu mineralization at the basal intrusion 

contact and massive Ni-Cu sulfide mineralization in steeply dipping veins and pods 

(e.g., Karykowski et al., 2016).  

Geology of the Fennoscandian Shield 

The Fennoscandian Shield of northern Europe consists of three distinct tectonic 

units: (1) the Kola Domain, (2) the Karelian Domain and (3) the Belomorian Mobile 

Belt (Fig. 1). The main episode of continental growth of the Kola Domain occurred in 

response to terrane accretion from 2.9 to 2.7 Ga (Hölttä et al., 2008). High-pressure 

granulites from the Belomorian Mobile Belt suggest that the Kola Domain collided 

with the Karelian Domain at 2.72 Ga, thus producing the Fennoscandian Shield. It 

records two distinct periods of mantle plume activity associated with intraplate rifting 

towards the end of the Archean. The first magmatic event occurred only on the Kola 

Domain, producing the 2.5 Ga layered intrusions Mt. General'skaya, Monchepluton, 

Main Ridge and Fedorova-Pana (Amelin et al., 1995; Balashov et al., 1993; Bayanova 

et al., 2010; Groshev et al., 2009; Serov et al., 2007). The second magmatic event af-

fected the entire shield at 2.44 Ga, forming numerous layered intrusions, such as the 

Kemi, Penikat, Portimo, Koillismaa, Näränkävaara, Koitelainen and Akanvaara intru-

sions in Finland, the Pyrshin, Imandra Lopolith, Kandalaksha, Kolvitsa, Olanga and 

Burakovsky in Russia and the Kukkola-Tornio intrusion bordering Sweden and Fin-
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land (Alapieti et al., 1990; Amelin et al., 1995). According to Bleeker and Ernst 

(2006), these two episodes can be correlated with the 2.5 Ga Mistassini and the 2.48 – 

2.45 Ga Matachewan events in Canada, respectively. 

Geology of the Monchegorsk Complex 

The Paleoproterozoic Monchegorsk Complex is located in the Kola Domain of 

the Fennoscandian Shield (Fig. 1). It was emplaced into Archean high-grade meta-

morphic basement of the Kola Group, comprising metapelites, quartzites, banded iron 

formation and minor dioritic gneisses (Rundqvist and Mitrofanov, 1993). The com-

plex is overlain by volcanic and sedimentary rocks of the Strel'na Group, which repre-

sent the lowermost unit of the Imandra-Varzuga Greenstone Belt (Melezhik and Sturt, 

1994; Vrevskii et al., 2010; Zagorodny et al., 1982). The Monchegorsk Complex 

comprises two spatially separate intrusions, covering an area of ∼ 550 km2: the pre-

dominantly ultramafic Monchepluton (∼ 65 km2) and the mafic Main Ridge (∼ 485 

km2), which are separated by the Monchetundra Fault trending northwest (Fig. 2 in-

set).  

The Monchepluton is crescent-shaped and consists of six distinct mountains ar-

ranged in two branches. The north-northeast-trending branch, reaching approximately 

7 km across, is ultramafic in composition and referred to as "NKT Massif", compris-

ing Mts. Nittis, Kumuzhya and Travyanaya (Fig. 2). The west-trending branch is 

mafic-ultramafic in composition and slightly longer with 9 km, consisting of Mts. 

Sopcha, Nyud and Poaz. The intersection of the two branches is occupied by a dunitic 

body, hosting several massive chromitite layers known as the "Dunite Block", which 

is considered to belong to the Monchepluton (Smolkin et al., 2004). The total thick-

ness of the Monchepluton is more than 2,700 m, but a continuous stratigraphic profile 

across the intrusion is difficult to obtain due to tectonic fragmentation of the complex.  
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A composite profile across the Monchepluton can be subdivided into five major 

zones: (1) the Peridotite Zone at the base of the complex, reaching ca. 500 m in thick-

ness including the Dunite Block; (2) the Interlayered Peridotite-Pyroxenite Zone, 

reaching ca. 300 m in thickness; (3) the Pyroxenite Zone with a thickness of more 

than 750 m; (4) the Noritic Zone in the upper portion of the intrusion with a thickness 

of at least 450 m and (5) the Gabbroic Zone with a thickness of more than 700 m (the 

uppermost portion of the intrusion has been eroded), comprising the Vuruchuaivench 

intrusion, which has been shown to represent the continuation of the underlying 

Noritic Zone (Rundkvist et al., 2014; Sharkov and Chistyakov, 2012) (Fig. 3). 

Lithostratigraphy and nature of mineralization  

The stratigraphy of the NKT Massif and Nyud is rather simple lithologically, 

but highly complex in terms of texture (Fig. 4, 5). Detailed logs of drill cores, inter-

secting the basal intrusion contact at Nittis and Nyud, are shown in Figure A1.  

The Nittis intrusion, as intersected by drill holes MT79 and MT94, comprises a 

more than 300-m-thick succession of strongly layered orthopyroxenite. The lower-

most 7 m of the intrusion constitute a diffuse contact zone characterized by a change 

in texture from strongly layered to distinctly ophitic orthopyroxenite (Figs. 4 A, A1). 

Additionally, several lenses, schlieren and patches of felsic pegmatite interlayered 

with different metasedimentary rocks occur in the lower part of the contact zone (Fig. 

4 A, B). Hence, a distinct boundary between the ultramafic intrusion and the Archean 

basement cannot be defined. The contact zone is further associated with dolerite 

dykes and veins cross-cutting the complex unit. The bulk of the sulfide mineralization 

is hosted by the layered orthopyroxenite, covering some 30 m at the base of the intru-

sion. Moreover, several thin sulfide-rich veinlets occur above the basal mineralized 

zone (Fig. 4 C, D). In addition to the basal sulfide mineralization, steeply dipping 
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massive sulfide veins, ranging from 5 cm to 3 m in thickness, occur mainly in the cen-

tral parts of the intrusions, which were not intersected by drill holes MT79 and MT94 

(Figs. 4 E, 5). They may reach a vertical thickness of more than 150 m and can be 

traced for up to 1.5 km, before they pinch out (Kozlov, 1973).  

Stratigraphically deeper portions of Nittis were sampled close to the contact be-

tween the Pyroxenite Zone and the underlying Interlayered Pyroxenite-Peridotite 

Zone (Fig. 5 A-B). A continuous sample set across the latter was collected at Mt. 

Kumuzhya and comprises olivine-rich lithologies, ranging from harzburgite to 

orthopyroxenite. Samples from the Peridotite Zone, located at the base of the NKT 

Massif, were recovered from an abandoned sulfide mine dump at Mt. Travyanaya, 

exploiting the contact zone between the intrusion and the floor rocks, which is repre-

sented by mineralized gabbronorite from the intrusion margin as well as different 

peridotitic rock types, mainly comprising harzburgite. Additional samples from the 

Peridotite Zone were collected from an abandoned chromite mine in the Dunite 

Block. The minimum cumulative thickness of the NKT Massif at the current erosional 

level is > 1,100 m. 

On the basis of historic drilling, Kozlov (1973) reported that the basal mineral-

ized zone generally follows the lower intrusion contact marked by gabbronorite, ex-

tending across the entire NKT Massif and Mt. Sopcha (Fig. 5 A-B). Its thickness in-

creases from the peripheral parts of the intrusion towards the center, reaching up to 50 

m, with average sulfide contents of 3 to 5 vol % (Dedeev et al., 2002). The mineral-

ized gabbronorite described by Kozlov (1973) is absent in the studied section at 

Nittis. However, the mineralized gabbronorite from the basal contact of the 

Travyanaya intrusion may be a representative analogue in terms of texture and com-

position. Drill holes MT79 and MT94, used for this study, intersected the western part 
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of the Nittis intrusion, thus representing a more peripheral segment of the mineralized 

interval (Fig 2). 

Moreover, a basal mineralized contact zone has been intersected by drill hole 

1815 collared in the peripheral part of the Nyud intrusion (Fig. 5 E-F). The mineral-

ized horizon at Nyud comprises an approximately 20-m-thick unit of sulfide-bearing 

melanorite, overlying interlayered tonalite with abundant felsic pegmatite veins and 

schlieren similar to Nittis (Fig. A1). The mineralized melanorite gives way to barren 

melanorite up-section without a significant change in texture. The visible sulfide 

abundance is very similar to that at Nittis with approximately 3 vol %. The sulfides 

mostly occur as relatively small interstitial patches, reaching about 10 mm in diame-

ter, together with minor sulfide-rich veinlets, in particular close to the intrusion con-

tact.  

Samples and analytical methods 

Weathered portions of outcrop samples were removed prior to crushing, split-

ting and milling in an agate planetary mill at Cardiff University. After heating each 

sample for two hours at 900 °C, the Loss on Ignition (LOI) was determined gravimet-

rically. Fusion digestion with subsequent inductively coupled plasma optical emission 

spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-

MS) was used to determine major and trace elements following methods and instru-

mentation described by McDonald and Viljoen (2006). The platinum-group element 

(PGE) concentrations were determined at LabMaTer, Université du Québec at 

Chicoutimi (UQAC), using ICP-MS after nickel-sulfur fire assay, following the ana-

lytical protocol outlined by Savard et al. (2010). Analytical precision and accuracy are 

given in Table 1. Sulfur was analyzed by high-temperature combustion combined 
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with infrared (IR) spectrometry and sulfur titration, using a Horiba 220V S-C analyzer 

at LabMaTer, following the methodology outlined by Bédard et al. (2008).  

Mineral compositions of olivine, pyroxene and plagioclase were determined, us-

ing a Zeiss Sigma HD Analytical Field Emission Gun SEM equipped with two Ox-

ford Instruments 150 mm2 EDS detectors at Cardiff University. Analyses were carried 

out using an accelerating voltage of 20 kV, 2.5 nA beam current and a spot size of 2 – 

4 μm. The counting time was 30 s for each spot. Natural minerals and synthetic met-

als from Astimex Ltd. were used for calibration. Olivine, diopside and plagioclase 

from the same supplier were measured during the analytical runs to monitor instru-

mental drift. 

Results 

Petrography 

The sample set from the Dunite Block, the NKT Massif and the Nyud intrusion 

comprises 45 samples, representing lherzolite, harzburgite, olivine-websterite, (oli-

vine-)orthopyroxenite, melanorite, mineralized gabbronorite, felsic pegmatite and 

basement lithologies. 

The lherzolite is a coarse-grained mesocumulate with 60 to 65 vol % olivine, 25 

to 30 vol % orthopyroxene and 10 to 15 vol % poikilitic clinopyroxene. In addition to 

approximately 1 vol % chromite, the rock also contains minor interstitial plagioclase, 

whereas sulfides are completely absent. The only occurrence of this rock type is in the 

Dunite Block, representing the lowermost portion of the Peridotite Zone (Fig. 3). 

The harzburgite is a fine- to medium-grained mesocumulate with 50 to 85 vol 

% olivine, 10 to 45 vol % orthopyroxene and minor clinopyroxene as well as plagio-

clase. The rock type is only present in the Interlayered Pyroxenite-Peridotite Zone at 
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Kumuzhya and in the Peridotite Zone exposed at Travyanaya (Fig. 5 A-B). 

Harzburgite from the latter hosts disseminated interstitial sulfide mineralization and 

thin sulfide veinlets cross-cutting the rock (Fig. 6 A). The total amount of sulfide 

reaches about 2 vol %. 

The olivine-websterite is a medium- to coarse-grained orthocumulate with ap-

proximately 65 vol % orthopyroxene, 15 vol % olivine, 7 vol % clinopyroxene and 8 

vol % plagioclase. It only occurs in the lowermost portion of the NKT Massif exposed 

at Travyanaya. The analyzed sample is also characterized by abundant disseminated 

interstitial sulfide blebs, which reach up to 5 mm across and account for ~ 5 vol %. 

The layered orthopyroxenite is an adcumulate with 70 to 90 vol % 

orthopyroxene and is only present at Nittis and Kumuzhya. Orthopyroxene occurs as 

highly elongated crystals of up to 10 mm with an aspect ratio of up to 9:1 (Fig. A2). 

Additionally, much smaller equant cumulus orthopyroxene is present in between the 

elongated ones, reaching 1 mm in diameter (Fig. 7 A). Anhedral plagioclase accounts 

for < 10 vol % and occurs interstitial to the orthopyroxene. Clinopyroxene reaches up 

to 5 vol % and mostly forms small blebs within or along the margins of 

orthopyroxene. Moreover, large poikilitic grains interstitial to orthopyroxene are pre-

sent. Olivine occurs only in a few samples, especially in those from Kumuzhya and 

the lower portions of the Nittis intrusion, where it accounts for up to 30 vol %. It is 

mostly subhedral, reaching up to 1 mm across. Most of the samples contain minor 

amounts of subhedral chromite. Sulfides generally occur in relatively large interstitial 

patches of up to 10 mm, comprising pyrrhotite, pentlandite and chalcopyrite with mi-

nor pyrite (Fig. 6 B). 

The ophitic orthopyroxenite is mineralogically similar to the layered 

orthopyroxenite described above. Its texture, however, is distinctly ophitic, defined by 
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randomly oriented lath-shaped orthopyroxene crystals with interstitial plagioclase. 

This rock type is commonly brecciated and intruded by mineralized layered 

orthopyroxenite, but it is not mineralized itself and only present in the basal contact 

zone of the Nittis intrusion. 

The melanorite occurs exclusively at Nyud and shares many similarities with 

the layered orthopyroxenite from Nittis; however, the former is characterized by a 

higher modal abundance of mostly poikilitic plagioclase, ranging from 10 to 25 vol % 

(Fig. 7 B). Additionally, the mineral lamination is not as strongly developed as in the 

orthopyroxenite due to lower aspect ratios of the orthopyroxene crystals. 

Clinopyroxene is generally present as patchy oikocrysts, accounting for less than 5 

vol %. Olivine is absent, whereas chromite occurs only as an accessory phase. 

The mineralized gabbronorite is a medium-grained rock type with a distinctly 

ophitic texture defined by up to 4-mm-long plagioclase laths, accounting for ~ 55 vol 

%, whereas poikilitic clino- and orthopyroxene comprise ~ 30 and 12 vol %, respec-

tively. Interstitial sulfide is spatially associated with pyroxene and reaches up to 2 vol 

% (Fig. 6 C). 

The felsic pegmatite is always associated with the contact between the mafic-

ultramafic rocks and the basement. It is a highly variable rock type in terms of grain 

size as it ranges from very coarse- to fine-grained over short distances (Fig. 7 C). It 

generally consists of anhedral quartz and feldspar with minor amounts of mica. Local-

ly, these minerals may form symplectites. 

The country rock at the base of the NKT Massif is a relatively variable metased-

iment, consisting of different proportions of mica, chlorite, staurolite, quartz and feld-

spar, which form a strongly banded mica schist (Fig. 7 D). Fragments of this rock 

type frequently occur within orthopyroxenite close to the basal contact of the Nittis 
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intrusion. In addition, these metasediments may contain up to 7 vol % sulfide over an 

interval of 2 m close to the intrusion contact, primarily comprising pyrrhotite with 

minor chalcopyrite and pentlandite. The same sulfide assemblage also occurs in gray 

tonalite, where it is in direct contact with the Nyud intrusion. 

Mineral chemistry 

The mineral chemistry of rock-forming minerals was determined in a set of 34 

samples from the Dunite Block, the NKT Massif and the Nyud intrusion. The full da-

taset of mineral compositions is available in Table A1. As a result of the ubiquitous 

presence of cumulus orthopyroxene, the most suitable proxy for tracing the degree of 

fractionation is the Mg# of orthopyroxene (100 x molar Mg/(Mg+Fe)). A correspond-

ing stratigraphic profile across the Monchepluton is shown in Figure 3. The Mg# of 

orthopyroxene covers a relatively small range at Nittis, varying from 84 in 

orthopyroxenite to 89 in the most primitive olivine-orthopyroxenite (sample 

15NMAS-1) with Cr concentrations from 4,000 to 4,800 ppm (Fig. 8). The 

Kumuzhya intrusion features slightly more magnesian orthopyroxene with Mg# rang-

ing from 88 to 89 and up to 4,600 ppm Cr. The most primitive orthopyroxene compo-

sitions were measured in a harzburgite from Travyanaya, reaching Mg# = 91 with up 

to 5,000 ppm Cr. The Nyud intrusion is generally characterized by lower Mg# with an 

average of 83 and 3,400 to 3,900 ppm Cr. The Mg# of clinopyroxene from the NKT 

Massif varies from 84 to 91, whereas clinopyroxene from the Nyud intrusion has an 

Mg# of 85. Olivine from the NKT Massif covers a range in forsterite contents from 

Fo82 to Fo87. Only chromite-rich dunite and lherzolite from the Dunite Block have 

even more magnesian olivine with Fo92 and Fo89, respectively. The stratigraphic var-

iation in mineral chemistry across the Nittis intrusion shows a distinct approximately 
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200-m-thick basal compositional reversal in orthopyroxene composition (Fig. 11), 

which is also evident in clinopyroxene and olivine compositions (not shown). 

Lithophile element geochemistry 

A total of 57 samples, covering the Dunite Block, the NKT Massif and Nyud, 

were analyzed for lithophile elements. The full dataset of whole rock geochemical 

analyses can be found in Table A2. 

The major element composition of the analyzed samples is primarily controlled 

by variations in the modal proportion of rock-forming minerals. Peridotites from 

Kumuzhya, Travyanaya and the Dunite Block are mainly characterized by high modal 

proportions of olivine with varying amounts of ortho- and clinopyroxene, as reflected 

in the high MgO concentrations of more than 40 wt % (Fig. 9 A, B). Notably, the 

peridotites show a bimodal distribution in terms of Cr concentrations, reflecting dis-

tinct differences in chromite abundance (Fig. 9 C). Kumuzhya orthopyroxenites gen-

erally feature higher modal proportions of orthopyroxene relative to olivine, resulting 

in slightly lower MgO concentrations, ranging from 33 to 38 wt %. Nittis 

orthopyroxenites have distinctly lower MgO contents of 17 to 28 wt %, as they are 

mainly composed of orthopyroxene with varying proportions of plagioclase, whereas 

clinopyroxene and olivine are minor components. The analyzed melanorites from 

Nyud have 16 to 25 wt % MgO due to slightly higher modal proportions of plagio-

clase compared to Nittis orthopyroxenites. Chromium concentrations are also slightly 

lower at Nyud. The mineralized gabbronorite from Travyanaya has the lowest MgO 

and Cr concentrations with 8 wt % and < 300 ppm, respectively. Notably, the ana-

lyzed samples from Nittis and Nyud show considerable overlap with mafic-ultramafic 

rocks from the Fedorova-Pana intrusion (Schissel et al., 2002); however, the latter 

have consistently higher CaO concentration due to slightly higher modal abundances 
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of clinopyroxene (Fig. 9 A, B). Lithologies similar to those from Travyanaya or the 

Dunite Block with > 34 wt % MgO seem to be absent in the Fedorova-Pana intrusion. 

A broadly positive correlation between whole rock Mg# and Cr/V ratios is evident 

among the analyzed chromite-poor lithologies, allowing for a comparison of the dif-

ferent intrusions with respect to the degree of fractionation (Fig, 9 D). 

In terms of primitive mantle-normalized incompatible trace element patterns, 

most mafic-ultramafic samples have fractionated patterns with strongly negative Nb-

Ta and minor Ti anomalies (Fig. 10 A - E). Moreover, many of them feature minor 

positive Zr-Hf and variable P anomalies. Only samples from the lowermost part of 

Nittis and a distinctly ophitic orthopyroxenite, associated with the mineralized zone, 

are characterized by relatively unfractionated incompatible trace elements with 

strongly positive Zr-Hf anomalies, whereas the Nb-Ta anomaly in these rocks is ra-

ther subtle to absent (Fig. 10 B). These compositions are remarkably similar to rocks 

from the Sompujärvi (SJ) Reef in the Penikat intrusion (Maier et al., in review). The 

melanorites from Nyud, however, show a strong overlap with orthopyroxenites from 

Nittis and the mineralized gabbronorite from Travyanaya (Fig. 10 C). Olivine-rich 

lithologies, such as olivine-orthopyroxenite from Kumuzhya and lherzolite from the 

Dunite Block, have generally lower total incompatible trace element concentrations 

and are distinct from the Nittis orthopyroxenites as well as Nyud melanorites (Fig. 10 

D). In contrast, harzburgite from Kumuzhya and Travyanaya plot between 

orthopyroxenites from Nittis and lherzolites from the Dunite Block, reflecting slight 

differences in modal olivine/pyroxene ratios (Fig. 10 E). The mineralized metasedi-

ment from Nittis as well as the mineralized tonalite from Nyud both have typical up-

per crustal incompatible trace element patterns with a strong enrichment in light rare 

earth elements (REE) relative to heavy REE (Fig. 10 F). Felsic pegmatite from the 
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intrusion contact shows extremely negative Ti anomalies in comparison to the associ-

ated basement lithologies. 

Downhole geochemical data along a composite profile across the peripheral 

portion of the Nittis intrusion show a distinct upward increase in whole rock MgO 

concentrations and Cr/V ratios, whereas Al2O3 contents decrease significantly (Fig. 

11). La/Nb ratios mostly range from 2 to 3; however, close to the basal contact, the 

ratio increases gradually towards the pegmatite. The only exception is an ophitic 

orthopyroxenite sample with exceptionally high Cr/V and low La/Nb ratios. 

Chalcophile elements 

Magmatic sulfides are generally assumed to be the primary host for chalcophile 

metals in layered intrusions. The analyzed sample set from the Dunite Block, the 

NKT Massif and the Nyud intrusion shows a broadly positive correlation between 

chalcophile metals and S, confirming sulfide as the main control on chalcophile metal 

abundances (Fig. 12 A - E). Variations in correlation between Ni and S can be partly 

attributed to Ni hosted in olivine, whereas elevated Ir concentrations result from high 

modal abundances of chromite (i.e., Dunite Block). The correlation between Cu, Pt, 

Pd and S, however, becomes notably poorer in samples with less than 1,000 ppm S, 

which is also evident in the negative correlation between Cu/S, Pt/S and S in this 

sample subset (Fig. 12 F, G). A plot of Pd/Pt vs. Pd/Ir shows that both Pd and Pt as 

well as Pd and Ir are fractionated (Fig. 12 J). Variations in Pd/Ir ratios can be ex-

plained by chromite crystallization and monosulfide solid solution (mss) fractiona-

tion, whereas changes in Pd/Pt ratios are difficult to account for (Fleet et al., 1993; 

Puchtel and Humayun, 2001). 

Notably, a group of samples plots away from the general trend; they are charac-

terized by anomalously high PPGE (Pd, Pt, Rh) and low IPGE (Ir, Os, Ru), resulting 
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in elevated PPGE to IPGE ratios (Fig. 12 E, I, K). All of these samples represent sul-

fide veins of variable thickness cross-cutting the layered succession containing inter-

stitial sulfides. 

Drill core profiles, intersecting the mineralized contact of the Nittis and Nyud 

intrusions, show that significant sulfide accumulation (up to 5 wt % S) is exclusively 

associated with the basal contact zone of each intrusion (Fig. 13 A, B). These zones 

are characterized by elevated base metal concentrations, reaching up to 2 wt % Cu 

and Ni each, and 0.15 wt % Co, whereas precious metal concentrations may be as 

high as 3.3 ppm Pt + Pd. Moreover, basement lithologies at both intrusions are miner-

alized in spatial proximity to the mafic-ultramafic rocks. Another remarkable zone of 

mineralization was intersected some 100 m above the basal contact of Nittis. The 

mineralization is hosted in several thin sulfidic veinlets, cross-cutting the 

orthopyroxenitic cumulate over a vertical thickness of about 3 m, and reaches up to 

32.8 ppm Pt + Pd (Fig. 4 D). Sulfur concentrations are relatively low across the min-

eralized interval, which is why the mineralization is difficult to distinguish macro-

scopically. 

All rocks from the NKT Massif and the Nyud intrusion have > 20 ppb Pt + Pd, 

indicating that they crystallized from a magma, which was saturated in sulfide (Figs. 

12 C, D, 13). In addition, Cu/Pd ratios in the mafic-ultramafic rocks are generally be-

low the primitive mantle value, reflecting the presence of cumulus sulfide (Fig. 13). 

In contrast, samples from the Dunite Block have < 15 ppb Pt + Pd, which is consistent 

with a crystallization from a sulfide-undersaturated magma (Fig. 12 H). 

This is particularly evident in primitive mantle-normalized chalcophile element 

patterns of the analyzed samples as chromite-poor lherzolite from the Dunite Block 

has generally low PGE concentrations and almost flat patterns with Pd/Ir ratios below 
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6, supporting a lack of cumulus sulfide, whereas harzburgite from Travyanaya has 

higher PGE concentrations and features an enrichment in PPGE relative to IPGE with 

positive Pd as well as Rh anomalies and a high Pd/Ir ratio of more than 75 (Figs. 12 J, 

14 A). Chromite-rich dunite from the Dunite Block exhibits a strong enrichment in 

IPGE relative to PPGE, which reflects the presence of IPGE-rich cumulus chromite 

(e.g., Capobianco and Drake, 1990).  

All other lithologies from Travyanaya, ranging from websterite to 

orthopyroxenite and gabbronorite, have remarkably similar patterns with Pd/Ir ratios 

from 48 to 65 and positive Pd as well as Rh anomalies (Fig. 14 B). Kumuzhya, Nittis 

and Nyud lithologies also show positive Pd and Rh anomalies and relatively high 

Pd/Ir ratios of more than 20 (Fig. 14 C, D, E). Only the ophitic orthopyroxenite from 

Nittis has a different pattern lacking distinct anomalies. It is worth noting that the pos-

itive Pd and Rh anomalies are characteristic of many other Fennoscandian intrusions 

of similar age, such as the Portimo Complex, and also in parts of the Great Dyke of 

Zimbabwe and the Muskox intrusion in Canada (Barnes and Francis, 1995; Iljina et 

al., 1992; Maier et al., 2015). The mineralized metasediment from Nittis as well as the 

mineralized tonalite from Nyud show similar chalcophile element patterns to the min-

eralized melanorite and orthopyroxenite from the respective intrusions, which sug-

gests a common origin of the sulfide mineralization (Fig. 14 F). Notably, the mineral-

ized tonalite is also distinct in its pattern from the barren one, despite similar 

lithophile element chemistry. 

In contrast to the interstitial PGE-Ni-Cu mineralization, characterized by Pd/Ir 

ratios, ranging from 20 to 600, and strongly positive Pd as well as Rh anomalies, sul-

fide veins from Travyanaya and Nittis have completely different patterns with much 

higher Pd/Ir ratios, starting above 2,500 and reaching up to 18,000 (Fig. 14 G, H). 
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Additionally, the positive Rh anomalies are not as pronounced and may also be absent 

in the most fractionated samples. These veins strongly resemble massive sulfide min-

eralization associated with micronorites from Nyud (Fig. 14 G). 

Discussion 

Emplacement mode: liquid or crystal-mush? 

Many layered intrusions and mafic sills are characterized by a basal composi-

tional reversal, in which whole rock and mineral compositions become progressively 

more primitive towards the center of the intrusion or sill. A number of studies have 

shown that these basal reversals provide valuable insight into the processes associated 

with the emplacement of mafic-ultramafic intrusions (e.g., Alapieti, 1982; Campbell, 

1978; Lightfoot et al., 1984; Page, 1979). 

 Key features of the basal reversal at Nittis are an upward increase in the Mg# of 

orthopyroxene, whole rock MgO concentrations and Cr/V ratios, which are mirrored 

by decreasing Al2O3 concentrations. Moreover, La/Nb ratios remain relatively con-

sistent across the pyroxenitic part of the profile (Fig. 11). 

Several models for the origin of these reversals have been proposed, ranging 

from the crystallization of compositionally diverse liquids as a result of in situ con-

tamination or magma stratification to the crystallization of crystal-liquid mixtures, 

affected by crystal settling, flow differentiation, convection and variable amounts of 

trapped liquid (see Latypov, 2003 for a review). 

In situ contamination of a crystal-poor parental magma with the immediate host 

metasediments would have considerably affected the incompatible trace element sig-

nature of the magma, especially close to the intrusion contact, where the degree of 

contamination would have been the highest. The near-constant La/Nb ratios across 
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most of Nittis, however, argue strongly against in situ contamination as the principle 

mechanism for the development of a basal reversal. Only sample 79-145, which is in 

direct contact with the host metasediment, has a slightly elevated La/Nb ratio, indicat-

ing that the extent of in situ contamination is confined to the immediate surroundings. 

This is further supported by Bekker et al. (2016), who noted a slightly stronger mass-

independent fractionation of sulfur isotopes in NKT Massif samples from the intru-

sion contact relative to those from the intrusion center.  

Additionally, the highly elongated crystal shape of orthopyroxene, defining the 

typical mineral lamination of the Nittis pyroxenites, is unlikely to have formed in situ 

during the crystallization of a liquid (Fig. 7 A). The upward increase in whole rock 

MgO concentrations together with the antithetical behavior of Al2O3 reveal a distinct 

shift in modal mineralogy with stratigraphic height. As orthopyroxene is the only cu-

mulus phase, the Al2O3 concentrations, reflecting the abundance of interstitial plagio-

clase, can be used as a proxy for the amount of trapped liquid (Fig. 11). The highest 

Al2O3 concentrations and therefore amount of trapped liquid occur at the basal contact 

of the intrusion and subsequently decrease towards the top of the succession. It is dif-

ficult to explain these features with the crystallization of a crystal-poor liquid as this 

would have produced distinct variations in the grain size of orthopyroxene and plagi-

oclase as a function of cooling rate. Orthopyroxene in the layered orthopyroxenite, 

however, does not show any systematic changes in grain size from the intrusion con-

tact to the center and plagioclase remains an interstitial phase. Moreover, the ubiqui-

tous presence of sulfide-saturated lithologies and the homogeneous large-scale distri-

bution of cumulus sulfide in peridotites, pyroxenites and norites is also inconsistent 

with an initially crystal-poor magma chamber as gravity-driven sulfide settling would 

be expected under these conditions. 
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 The basal reversal can thus be best explained by a decreasing trapped liquid 

component away from the intrusion contact, whereby original liquidus compositions 

of orthopyroxene were modified by reaction with trapped liquid (e.g., Barnes, 1986a). 

This may not only affect major elements, but also trace elements, such as Cr and V. 

The extent of the modification depends on the amount of trapped liquid as indicated 

by the negative correlation between the Mg# of orthopyroxene as well as the Cr/V 

ratios and the whole rock Al2O3 concentrations – the higher the amount of trapped 

liquid, the higher the extent of modification. 

Thus, the geochemistry of the basal reversal helps to constrain the emplacement 

mode of the NKT Massif. Our data are consistent with a model in which the intrusion 

was emplaced as a crystal mush with relatively high amounts of suspended cumulus 

orthopyroxene. Close to the intrusion margins, elevated cooling rates hindered effec-

tive and thorough gravitational settling of orthopyroxene, resulting in high amounts of 

trapped liquid. As cooling rates generally decrease away from the intrusion contact, 

the amount of interstitial liquid trapped in the cumulate was also lower, as reflected in 

the smaller trapped liquid shift (Fig. 11).  

Genetic aspects of contact-style PGE-Ni-Cu mineralization at Monchegorsk 

Cross-cutting relationships in drill core together with relative abundance and 

geochemical data indicate that the earliest pulse of magma, intruding relatively cold 

basement lithologies underlying the Monchegorsk area, was volumetrically insignifi-

cant, yet important for the formation of sulfide mineralization. It is represented by the 

ophitic orthopyroxenite, which has the most primitive composition of all Nittis 

lithologies and seems to have crystallized from a sulfide-undersaturated magma with 

a distinct La/Nb ratio close to that of the primitive mantle (Fig. 11). Even though the 

first pulse of magma did not contribute any sulfides, it introduced considerable heat 
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into the basement, resulting in an increased ambient temperature (Fig. 15 A). The se-

cond phase of magmatism was much more significant in terms of volume and caused 

intense brecciation of the ophitic orthopyroxenite. The ubiquitous presence of sulfide-

saturated rocks across the NKT Massif and the Nyud intrusion requires an early sul-

fide saturation event, prior to final emplacement, most likely in a staging magma 

chamber (Fig. 15 B). After reaching sulfide saturation, the sulfide droplets were en-

riched in PGE, while interacting with the magma, and eventually settled to the base of 

the staging chamber together with crystallizing olivine and orthopyroxene. This proto-

cumulate, consisting of cumulus olivine, orthopyroxene, liquid sulfide and residual 

silicate melt, was episodically remobilized and crudely density-sorted within the crys-

tal mushes as it was transported into higher crustal levels. Upon final emplacement of 

these large volumes of crystal mush, the preheated basement underwent not only par-

tial melting, as reflected in the frequent occurrence of felsic pegmatite, but also 

devolatilization, which led to the local addition of water and potentially carbon diox-

ide to the magma (Fig. 15 C). 

The effect of this is twofold: (1) the added volatiles act as fluxes, thus lowering 

the melting point of the cumulus minerals, which results in local small-scale dissolu-

tion of these cumulus phases within the crystal mush, and (2) it reduces the viscosity 

of the interstitial melt. Although Mg-rich orthopyroxene has a high liquidus tempera-

ture, thermodynamic considerations suggest that the melting temperature of cumulus 

orthopyroxene can be readily suppressed to less than 1,100 °C in the presence of pla-

gioclase and water. 

On the one hand, local melting of cumulus phases resulted in an enhanced po-

rosity of the crystal mush in the vicinity of the lower contact, promoting preferential 

sulfide liquid collection at the base of the intrusion. On the other hand, the local de-



 

 23  

crease in magma viscosity facilitated the gravitational settling of sulfide droplets. To-

gether with the basement preheating and the associated lower cooling rate, these fac-

tors led to a relatively efficient accumulation of sulfide, especially in the center of the 

intrusion, where permeability was maintained the longest due to slower cooling rela-

tive to more peripheral parts (Fig. 15 D). In some places, the settling sulfide liquid 

also percolated into the basement as reflected in the mineralized basement lithologies 

at Nittis and Nyud (Fig. 14 F). The migration of sulfide liquid has also been observed 

in many other intrusions, such as the Portimo Complex, where the mineralization ex-

tends for several tens of meters into the basement (Iljina et al., 1992). Despite general-

ly low modal sulfide abundances of up to 5 vol % in these basement lithologies, the 

sulfide liquid may have percolated into the footwall through an interconnected sulfide 

network, which may develop at even lower sulfide abundances (Godel, 2013). 

Constraining the composition of the parental magma is rather difficult as chilled 

margins have not been observed in the Monchegorsk Complex. The Mg# of the pa-

rental magma, however, can be calculated with the Mg-Fe olivine-liquid partition co-

efficient of 0.30, using the most primitive olivine composition from the NKT Massif 

(Roeder and Emslie, 1970). Forsterite contents reach up to 87.2 mol % in olivine from 

the NKT Massif, which corresponds to a parental magma with Mg# = 67.1. This 

composition is similar to siliceous high-Mg basalts (SHMB) that are considered to 

represent the parental magma for other Paleoproterozoic intrusions, such as the 

Portimo Complex (Saini-Eidukat et al., 1997). Moreover, Paleoproterozoic picrites in 

northern Finland analyzed by Hanski et al. (2001a) have a similar Mg#, averaging at 

66.7 (n = 3). 

The poor correlation between Cu, Pt, Pd and S in samples with relatively low S 

concentrations has been observed in many intrusions, similar to samples from this 
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study with less than l,000 ppm S (Fig. 12 B, C, D, F, G), which is generally attributed 

to late magmatic or hydrothermal S loss (e.g., Cawthorn and Meyer, 1993; Maier and 

Barnes, 1996). In contrast, the positive correlation between Pt and Pd as well as Ir and 

Pd suggests limited mobility of the PGE as Pd may behave mobile, while Pt and Ir are 

generally regarded as immobile elements (Fig. 12 H, I). 

Therefore, assuming a picritic parental magma containing 498 ppm Ni, 86 ppm 

Cu, 9.54 ppb Pd and 0.76 ppb Ir (see Barnes and Lightfoot, 2005), the chalcophile 

element chemistry of the contact-style mineralization can be explained by sulfide seg-

regation at R factors between 1,000 and 10,000 with limited fractional crystallization 

of the sulfide liquid (Fig. 16). It is worth noting that the mss component is rather un-

derrepresented in the dataset, possibly indicating further mss-rich sulfide mineraliza-

tion at depth.  

Thermal modeling of basement preheating 

Distinct geochemical and textural characteristics of the intersected ophitic 

orthopyroxenite, together with complex cross-cutting relationships at the base of 

Nittis, indicate that this rock type may represent a volumetrically minor first pulse of 

magma intruding into the crust. This pulse may have introduced significant heat into 

the basement, allowing for relatively slow cooling of the second major intrusive 

event, which led to effective sulfide collection at the base of the complex. This hy-

pothesis can be tested numerically, assuming conductive heat transfer by using the 

explicit finite difference method. Discretization of Newton's one-dimensional heat 

diffusion equation yields: 

����� = ��� + 
∆t 
����� �����������

�∆��� �, where κ is the thermal diffusivity (κ = 2 x 

10-6 m2s-1). A detailed derivation of the one-dimensional explicit heat function togeth-
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er with the respective boundary conditions for the model can be found in Electronic 

Appendix 1. 

The intention of the model is to evaluate two possibilities: 

(1) Intrusion of a 1500-m-thick crystal mush into preheated basement 

(2) Intrusion of a 1500-m-thick crystal mush into cold basement 

The preheating of the basement was modeled assuming the intrusion of multiple 

sills with an average thickness of 50 m and a spacing of 250 m from approximately 2 

to 4 km depth, as shown in Figure 17 A. The intruding sills were assumed to have a 

temperature of 1200 °C (e.g., Huppert et al., 1985). The model shows that these thin 

sills cool relatively quickly, reaching less than 800 °C after 10 years; however, base-

ment temperatures in excess of 700 °C are only attained in close vicinity of the sills (< 

5 m). Nevertheless, these sills are capable of raising the average basement tempera-

ture from less than 120 °C to more than 350 °C across the intruded basement thick-

ness (Fig. 17 A). 

In a second step, it was assumed that the main pulse of magma, which produced 

the NKT Massif, was emplaced with a temperature of 1200 °C into preheated base-

ment at a depth of 2.5 km, as shown in Figure 17 B. The frequent occurrence of felsic 

pegmatite close to the intrusion contact strongly suggests partial melting of the imme-

diate basement, but dehydration melting requires temperature in excess of 700 °C 

(e.g., Singh and Johannes, 1996). The model indicates that this temperature is reached 

up to 50 m away from the intrusion contact after 100 years and even 120 m away after 

1000 years. Therefore, dehydration melting may also affect distal regions of the 

basement, given that the latter is preheated. 

Alternatively, it may be assumed that the main pulse of magma was emplaced 

into cold basement, while all other variables remained unchanged. In this case, a geo-

thermal gradient of 30 K/km was used for the basement temperature profile. The 
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thermal modeling in Figure 17 C illustrates that basement temperatures in excess of 

700 °C can only be attained directly at the intrusion contact upon emplacement. As a 

consequence, only insignificant volumes of pegmatite would be produced at the con-

tact, which cannot account for the high abundance of pegmatite observed in drill core. 

Afterwards, temperatures gradually decrease from 700 °C, indicating much higher 

cooling rates compared to the emplacement into a preheated basement. 

Thermal modeling shows that the early intrusion of relatively thin sills may lead 

to a thorough preheating of cold basement to temperatures of ca. 350 °C. Subsequent 

intrusions can then cause partial melting of the latter to produce the abundant pegma-

tite, which would not have been feasible without preheating the basement. 

Comparison of Nittis with the Finnish Portimo and Penikat intrusions 

The Paleoproterozoic Portimo Complex in northern Finland is not only broadly 

coeval with the Monchegorsk Complex, but it also hosts several sizable examples of 

contact-style sulfide mineralization related to the basal contact of the intrusion (e.g., 

Iljina, 1994). 

The Suhanko-Konttijärvi intrusion in the southern part of the Portimo Complex 

includes a succession of orthopyroxene-rich cumulates in its lower portion (e.g., 

Ahmavaara), which reaches up to 150 m in thickness with abundant floor rock xeno-

liths (Iljina 1992). However, the modal proportion of plagioclase is much higher at 

this stratigraphic level compared to the Nittis intrusion. Another important strati-

graphic difference is the presence of a relatively thick marginal zone at Portimo. This 

zone is entirely missing at Nittis and Nyud, the latter being characterized by a rela-

tively thin basal contaminated zone of approximately 20 m, comprising tonalite and 

pegmatite that give way to melanorite. The basal portion of the Narkaus intrusion in 

the northern part of the Portimo Complex consists of an about 80-m-thick 
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orthopyroxenite, similar to Nittis, but it also hosts a massive chromite layer, which 

does not occur at Nittis. Therefore, a direct correlation with Paleoproterozoic Finnish 

intrusions proves to be inexpedient. In fact, the orthopyroxenitic body at Nittis is 

much thicker than in any of the Finnish intrusions, which suggests that the total vol-

ume of magma may have been significantly larger in the Monchegorsk Complex.  

Another richly mineralized Paleoproterozoic intrusion in northern Finland is the 

Penikat intrusion, hosting at least seven PGE-enriched horizons (Alapieti and 

Halkoaho, 1995). Notably, most samples from Penikat are characterized by relatively 

strong negative Nb-Ta anomalies similar to the Monchegorsk Complex (Maier et al., 

in review); however, the exceptionally primitive SJ Reef at Penikat as well as the 

most primitive ophitic orthopyroxenite from Nittis lack this feature (Fig. 10 B), which 

may indicate that the parental magma to the most primitive rocks at both intrusions 

may not have necessarily featured a negative Nb-Ta anomaly. This is particularly im-

portant with respect to magma derivation as negative Nb-Ta anomalies are consistent 

with either melting of asthenospheric mantle followed by crustal contamination or 

melting of the sub-continental lithospheric mantle (SCLM) (e.g., Amelin and Se-

menov, 1996; Hanski et al., 2001b; Huhma et al., 1990; Puchtel et al., 1997; Yang et 

al., 2016). Since both alternatives have been considered as a possible source for the 

2.5 to 2.44 Ga magmatism across the Fennoscandian Shield, the lack of negative Nb-

Ta anomalies in some of the most primitive lithologies from the Monchegorsk Com-

plex and the Penikat intrusion suggests that the widespread Nb-Ta depletion may not 

be a primary feature, inherited from the source region, but resulted from crustal con-

tamination of asthenospheric mantle melt. This model would be consistent with recent 

Os, Nd, and Sr isotope data from Yang et al. (2016), which also argue for a mantle 

plume rather than an SCLM source. 
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Origin of cross-cutting massive sulfide veins 

The ubiquitous cross-cutting massive sulfide veins associated with the NKT 

Massif seem to postdate the solidification of the host cumulates based on the sharp 

contact relationships between the two. Detailed element mapping of the vein contact 

reveals a 1 to 2-mm-thick alteration halo, with localized sulfide infiltration into the 

host rock, possibly reflecting small-scale partial melting (Fig. 6 D). Mantle-

normalized chalcophile element patterns also suggest a different origin of these veins 

in comparison to the interstitial sulfide mineralization concentrated at the basal con-

tact of the intrusion (Fig. 14 G, H). The extremely high Pd/Ir ratios of up to 15,000 

strongly resemble Cu-rich veins at Noril'sk, Cape Smith, Sudbury and PGE-rich sul-

fide veins at Kilvenjärvi (Portimo Complex), representing highly fractionated sulfide 

liquid (e.g., Andersen et al., 2006; Barnes and Lightfoot, 2005; Duran et al., in press; 

Li et al., 1992). Modeling of sulfide segregation from an undepleted picrite at differ-

ent R factors together with variable degrees of sulfide liquid fractionation provides 

further insight into the formation and origin of these veins.  

Our chalcophile element data indicate that the veins represent highly fractionat-

ed sulfide liquid (melt fraction F ∼ 10 %) at different R factors, ranging from less 

than 100 to more than 100,000 (Fig. 16). Furthermore, massive sulfide mineralization 

associated with micronorites cross-cutting the Nyud intrusion has largely similar 

chalcophile element pattern that lack the positive Rh anomaly typical of interstitial 

sulfide mineralization in the mafic-ultramafic cumulates of the Monchegorsk Com-

plex (Fig. 14 G). Hence, these sulfide veins do not seem to be directly related to the 

formation of the contact-style PGE-Ni-Cu mineralization intersected at the base of 

Nittis and Nyud. 
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Note on the Dunite Block and its relation to the Monchegorsk Complex 

The Dunite Block is generally considered to be a tectonically uplifted ultramafic 

block, which represents the lowermost portion of the Monchegorsk Complex (e.g., 

Chistyakova et al., 2015; Smolkin et al., 2004). It hosts the most primitive lithologies 

in the Monchegorsk area dominated by dunite and lherzolite with highly magnesian 

olivine, reaching forsterite contents of up to 91.6 mol %. Subsolidus re-equilibration 

between olivine and chromite, however, may have affected olivine compositions to a 

certain degree, even though analyses were primarily conducted on olivine cores (e.g., 

Ozawa, 1984). The corresponding parental magma would have most likely been a liq-

uid of komatiitic composition with Mg# ∼ 77, possibly similar to broadly coeval 

komatiites from the Central Lapland Greenstone Belt described by Hanski et al. 

(2001a). As a consequence, the SHMB, considered to be the parental magma for most 

Paleoproterozoic layered intrusions in the Fennoscandian Shield, including the NKT 

Massif, would have merely represented a fractionation product of a komatiite. Alter-

natively, the Dunite Block crystallized from a distinct batch of magma, but the close 

temporal and spatial relationship between the Dunite Block and the other parts of the 

Monchepluton strongly suggests a common origin. 

 Another important difference between the Dunite Block and the NKT Massif is 

the mineral chemistry of the ultramafic cumulates: orthopyroxene from the Dunite 

Block has considerably lower Cr concentrations than orthopyroxene from Travyanaya 

(3000 ppm vs. 5000 ppm Cr) at similar Mg# (Fig. 8); the latter being inconsistent with 

fractional crystallization of a komatiitic parental magma. However, Cr concentrations 

of orthopyroxene are not only controlled by the parental magma composition, but also 

by the oxygen fugacity, as magma oxidation results in a higher partition coefficient 

for Cr between orthopyroxene and melt (Barnes, 1986b). In addition, all NKT Massif 
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lithologies are saturated in sulfide, whereas none of the analyzed Dunite Block sam-

ples contain cumulus sulfide. 

These characteristics can only be explained, if sulfide saturation occurred after 

the crystallization of the cumulus minerals that were later emplaced as the Dunite 

Block. Therefore, it is likely that highly magnesian cumulus phases were crystallizing 

from a sulfide-undersaturated magma, while it was undergoing progressive contami-

nation with basement lithologies. This eventually led to sulfide saturation along with 

an increase in the oxygen fugacity of the magma, which increased the partition coeffi-

cient for Cr between orthopyroxene and melt, and produced Cr-rich orthopyroxene. 

Subsequently, the overlying portions of the complex crystallized from a sulfide-

saturated magma. The model, however, implies that the SHMB only represents a frac-

tionation product of a contaminated komatiitic parental magma. Ultimately, the 

Dunite Block, as an early magmatic phase, may have also contributed to the preheat-

ing of the basement, thus facilitating the formation of contact-style mineralization. 

Summary and implications for exploration 

Our study highlights key processes that lead to the formation of contact-style 

sulfide mineralization, based on the geology and geochemistry of the Monchegorsk 

Complex. The chalcophile element chemistry indicates that sulfide saturation oc-

curred relatively early, possibly in a staging chamber, prior to the final emplacement 

of the complex as all lithologies contain cumulus sulfide. Therefore, the critical con-

trol on the formation of a sizable deposit is the efficient collection of sulfide in dis-

tinct zones of a layered intrusion, i. e. along the basal intrusion contact. 

The frequent brecciation of mafic-ultramafic rocks, basement lithologies and 

felsic pegmatite, especially in the contact zone of the intrusion, suggests a multi-stage 
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emplacement of the complex. Our thermal modeling shows that the early intrusion of 

sills may lead to a thorough preheating of the cold basement to temperatures of ca. 

350 °C.  

The basement preheating did not only facilitate the assimilation of (S-rich) 

basement lithologies to trigger sulfide saturation, but it also affected cooling rates, 

which directly controlled the duration of potential sulfide accumulation through gravi-

tational settling, especially in the center of the intrusion, where permeability was 

maintained the longest due to slower cooling relative to more peripheral parts. More-

over, dehydration melting of the basement introduced water and carbon dioxide into 

the magma, resulting in local melting of cumulus phases, which increased the porosity 

of the cumulate or crystal mush towards the base. This interstitial space was then 

filled with sulfide liquid. In addition, the volatiles may have also reduced the viscosity 

of the interstitial melt, facilitating sulfide settling. The lack of preheating, however, 

considerably reduces the degree and extent of potential interaction between the mag-

ma and the basement, which leads to an inefficient collection of sulfide liquid at the 

base of the complex. 

As a consequence, layered intrusions, comprising two or more temporally relat-

ed, but distinct injections or pulses of magma, should be prospective with respect to 

contact-style sulfide mineralization. Notably, the richest contact-style PGE deposits in 

the northern limb of the Bushveld Complex are located in areas where the Lower 

Zone is present (see McDonald et al., 2017 for a detailed geological map of the north-

ern limb); the same applies to the Portimo Complex, where the presence of earlier 

Portimo Dykes seems to correlate with higher grade mineralization (see Iljina and 

Lee, 2005). Moreover, Groshev et al. (2009) suggested that the 300-m-thick mineral-
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ized zone at the base of the Fedorova intrusion was emplaced after the formation of 

the more than 4-km-thick mafic-ultramafic main body of the layered intrusion. 
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Captions 

Fig. 1. Simplified geological map of the north-eastern part of the Fennoscandian 

Shield, showing the location of Paleoproterozoic layered intrusions. Modified after 

Alapieti et al. (1990). 

 

Fig. 2. Simplified geological map of the Monchegorsk Complex. The location of dia-

mond drill cores used in this study are shown as red circles. Solid and dashed red lines 

indicate Ni-Cu-PGE mineralization. The inset shows the full extent of the 

Monchegorsk Complex, which is composed of the crescent-shaped Monchepluton 

(dark gray) and the elongated Main Ridge (light gray). 1: Volchetundra; 2: 

Monchetundra; 3: Chunatundra. Abbreviations: per = peridotite; px = pyroxenite; chr 

= chromite. 

 

Fig. 3. Simplified stratigraphic column across the Monchepluton together with the 

Mg# of orthopyroxene from the Dunite Block, the NKT Massif and Nyud (this study). 
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Red circles show outcrop samples, whereas black circles represent drill core samples. 

Abbreviations: interlay. = interlayered; px = pyroxenite; per = peridotite. 

 

Fig. 4. Typical lithologies from the ultramafic Nittis intrusion. (A, B) Mineralized 

contact zone between ophitic orthopyroxenite and the underlying basement lithologies 

with a ca. 2-m-thick interval of mineralized metasediment. Note the complex interlay-

ering between metasediment and pegmatite (drill hole MT79: 146.5 - 153.2 m depth). 

(C) Layered orthopyroxenite with abundant mm-sized sulfide veins (MT79: 120.8 m 

depth), overlying finely disseminated interstitial sulfide mineralization (MT79: 121.6 

m depth). (D) Dark sub-mm-thick PGE-rich sulfide vein in layered orthopyroxenite. 

Note that this sample contains ∼ 30 ppm Pt + Pd (sample 79-39). (E) Steeply dipping 

massive Ni-Cu sulfide vein hosted by orthopyroxenite close to the center of the Nittis 

intrusion. Abbreviations: opx = orthopyroxenite. 

 

Fig. 5. Schematic geological cross-sections, corresponding to profiles A-B (NKT 

Massif), C-D (Nittis), E-F (Nyud) in Figure 2. Red lines indicate vertical massive sul-

fide veins. Modified from Chashchin and Mitrofanov (2014) and Dokuchaeva and 

Yakovlev (1994). 

 

Fig. 6. Elemental maps of different types of sulfide mineralization associated with the 

NKT Massif. (A) Thin sulfide veinlets cross-cutting harzburgite from Travyanaya 

(sample 15TMAS-5). (B) Interstitial sulfide mineralization in orthopyroxenite from 

the basal contact zone at Nittis (sample 79-138). (C) Interstitial sulfide in ophitic 

gabbronorite from the base of Travyanaya (sample 15TMAS-1). (D) Contact between 

olivine-orthopyroxenite and vein-hosted massive sulfide mineralization from the cen-

tral part of the Nittis intrusion (sample 15NMAS-1). Note the local injection of sul-

fide into the immediate host rock. Abbreviations: opx = orthopyroxene; pl = plagio-

clase; amph = amphibole; chr = chromite; sul = sulfide; cpy = chalcopyrite; pn = 

pentlandite; po = pyrrhotite. 

 

Fig. 7. Photomicrographs of major rock types in the Nittis and Nyud intrusions. (A) 

Strongly layered orthopyroxenite from Nittis; crossed polarized light (XPL) (sample 

94-118). (B) Melanorite from Nyud; XPL (sample 1815-11). (C) Pegmatite from the 
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contact zone at Nittis; XPL (sample 79-150). (D) Xenolith of banded mica schist from 

the contact zone at Nittis; plane polarized light (sample 79-156). 

 

Fig. 8. Plot of Cr concentrations vs. Mg# in orthopyroxene from the Dunite Block, the 

NKT Massif and the Nyud intrusion. 

 

Fig. 9. Lithophile element variation of lithologies from the Dunite Block, the NKT 

Massif and the Nyud intrusion. (A) CaO vs. MgO. (B) Al2O3 vs. MgO + Fe2O3. (C) 

Cr vs. MgO. (D) Cr/V vs. Mg#. Data from the Fedorova intrusion were taken from 

Schissel et al. (2002). Abbreviations: ol = olivine; opx = orthopyroxene; cpx = 

clinopyroxene; pl = plagioclase; chr = chromite. 

 

Fig. 10. Primitive mantle-normalized multi-element variation diagram of 

Monchegorsk lithologies analyzed for this study. Normalization values were taken 

from McDonough and Sun (1995). Data for the siliceous high-Mg basalts (SHMB) 

and the SJ Reef were taken from Guo et al. (2013) and Maier et al. (in review), re-

spectively. 

 

Fig. 11. Compositional variation of lithophile elements and orthopyroxene composi-

tions across the Nittis intrusion. Note that orthopyroxene from the mineralized 

orthopyroxenite has slightly higher Mg# due to subsolidus re-equilibration with sul-

fide. 

 

Fig. 12. Binary variation diagram of chalcophile elements. (A) Ni vs. S. (B) Cu vs. S. 

(C) Pt vs. S. (D) Pd vs. S. (E) Ir vs. S. (F) Cu/S vs. S. (G) Pt/S vs. S. (H) Pd vs. Pt. (I) 

Ir vs. Pd. (J) Pd/Pt vs. Pd/Ir. (K) Pd/Rh vs. S. Note that sulfide veins plot in a distinct 

field away from the samples containing interstitial sulfide. 

 

Fig. 13. Downhole chalcophile element geochemistry for drill holes, intersecting the 

basal mineralized contact at (A) Nittis and (B) Nyud. The primitive mantle value was 

taken from Barnes and Maier (1999). 

 

Fig. 14. Primitive mantle-normalized chalcophile element pattern of lithologies from 

the Dunite Block, the NKT Massif and the Nyud intrusion. (A) Dunite Block. (B) 
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Travyanaya. (C) Kumuzhya. (D) Nittis. (E) Nyud. (F) Basement lithologies. (G) Sul-

fide veins at Travyanaya. (H) Sulfide veins at Nittis. Abbreviations: gn = 

gabbronorite; opx = orthopyroxenite; hz = harzburgite; min = mineralized; ol = oli-

vine. Data for the Portimo Complex and the Fedorova intrusion were taken from Iljina 

et al. (1992) and Groshev et al. (unpublished data), respectively. Normalization fac-

tors were taken from Barnes and Maier (1999). 

 

Fig. 15. Schematic model for the formation of contact-style sulfide mineralization in 

the Monchegorsk Complex. Note that the partial melting of the basement in (C) relies 

on the preheating of the basement through the intrusion of early sills and dykes. See 

text for explanation. 

 

Fig. 16. Binary ratio plot of Ni/Pd vs. Cu/Ir. The black solid line shows model sulfide 

compositions at different R factors. The black dashed lines represent model composi-

tions of monosulfide solid solution (mss), crystallizing from sulfide liquids undergo-

ing fractionation, and residual liquid. The dotted lines show different end-member 

mss (blue) and residual sulfide liquid (red) compositions, assuming different degrees 

of fractionation (F = fraction of residual liquid). Sulfide melt/silicate melt D values: 

30,000 for the PGE, 1,000 for Cu and 500 for Ni. Mss/sulfide melt D values as sum-

marized in Maier and Barnes (1999). Half-filled symbols represent samples, contain-

ing vein-hosted sulfide. 

 

Fig. 17. Temperature-depth profile for different modeled intrusion emplacement sce-

narios. (A) Preheating of the basement by multiple sills with a thickness of 50 m and a 

spacing of 250 m. (B) Emplacement of a 1.5-km-thick crystal mush into preheated 

basement at a depth of 2.5 km. (C) Emplacement of a 1.5-km-thick crystal mush at a 

depth of 2.5 km into cold basement. Note that significant partial melting of the base-

ment (> 700 °C) is only feasible in a preheated basement. See text and Electronic Ap-

pendix 1 for further explanation. Green = mafic-ultramafic rocks; pink = basement. 

 

Fig. A1. Lithological logs for drill cores MT79 and 1815, intersecting the basal intru-

sion contact at Nittis and Nyud, respectively. 
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Fig. A2. Elemental map of orthopyroxenite sample 79-23. Abbreviations: opx = 

orthopyroxene; cpx = clinopyroxene; sul = sulfide. 

 

Table 1. Comparison of results obtained at LabMaTer and the accepted values for in-

ternational standards 

 

Table A1. Mineral chemistry 

 

Table A2. Whole rock geochemical analyses 

 

Electronic Appendix 1: Derivation of the one-dimensional explicit heat function. 
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Table 1 Comparison of results obtained at LabMaTer and the accepted values for international standards

Geolabs

This run 1 sigma
working 

value
a 1 sigma This run 1 sigma Certificate This run 1 sigma

working 

value
a 1 sigma Certificate 1 sigma This run 1 sigma

Os (ppb) 2.08 0.43 2.80 0.19 0.01 0.02 n.v. 120.00 1.94 135.40 4.60 150.00 n.v. 0.18 0.06

Ir 5.98 0.91 6.62 0.74 0.17 0.01 0.19 337.01 3.08 338.50 4.50 322.00 10.00 0.01 0.01

Ru 15.93 0.59 16.85 0.93 0.45 0.04 0.44 143.98 2.35 147.10 1.30 145.00 7.00 0.03 0.01

Rh 14.09 1.51 15.35 1.24 0.85 0.06 0.90 254.30 3.51 254.60 2.90 222.00 15.00 0.02 0.01

Pt 103.91 28.68 97.40 20.99 12.79 0.76 13.43 1962.89 35.18 2032.00 45.40 1910.00 70.00 0.12 0.06

Pd 121.51 18.95 123.40 18.60 16.18 1.44 17.96 1572.23 24.49 1534.30 36.12 1450.00 50.00 0.51 0.19

Au 40.71 8.49 37.33 11.55 4.26 1.05 4.63 220.65 1.92 311.60 30.80 300.00 43.00 1.23 0.16

KPT = Quartz diorite (in-house LabMaTer)

LK-NIP = Nipigon Diabase (Geolabs)

WMS-1a = Wellgreen massive sulfide (CANMET)

a
 = Savard et al. (2010)

n.v. = no value

KPT

LabMaTer (n = 8) LabMaTer LabMaTer (n = 7)

LK-NIP

LabMaTer (n = 2) LabMaTer CANMET

WMS-1a Blank

LabMaTer (n = 36)
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