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n-Alkane/urea inclusion compounds are crystalline materials
in which n-alkane ‘guest’ molecules are located within
parallel one-dimensional ‘host’ tunnels formed by a helical
hydrogen-bonded arrangement of urea molecules. The
periodic repeat distance of the guest molecules along the
host tunnels is incommensurate with the periodic repeat
distance of the host substructure. The structural properties
of the high-temperature phase of these materials (phase I),
which exist at ambient temperature, are described by a
(3 + 1)-dimensional superspace. Recent publications have
suggested that, in the prototypical incommensurate composite
systems, n-nonadecane/urea and n-hexadecane/urea,
two low-temperature phases II and ‘III’ exist and that
one or both of these phases are described by a (3 + 2)-
dimensional superspace. We present a phenomenological
model based on symmetry considerations and developed in
the frame of a pseudo-spin–phonon coupling mechanism,
which accounts for the mechanisms responsible for the
I ↔ II ↔ ‘III’ phase sequence. With reference to published
experimental data, we demonstrate that, in all phases of
these incommensurate materials, the structural properties are
described by (3 + 1)-dimensional superspace groups. Around
the temperature of the II ↔ ‘III’ transition, the macroscopic
properties of the material are not actually associated with a
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phase transition, but instead represent a ‘crossover’ between two regimes involving different
couplings between relevant order parameters.

1. Introduction
Many nanoporous organic crystalline materials can be described as host–guest composite systems
constructed from two interpenetrated substructures. Urea inclusion compounds [1] are a widely studied
family of host–guest composite materials in which ‘guest’ molecules are located within parallel one-
dimensional ‘host’ tunnels formed by a helical hydrogen-bonded arrangement of urea molecules. The
urea host structure with empty tunnels is not stable, and the urea tunnel structure exists only when the
tunnels are filled by a dense packing of guest molecules. Suitable guest molecules are linear long-chain
alkane-based molecules, for which the molecular diameter is similar to the diameter of the urea host
tunnels (approx. 5.25 Å).

Most urea inclusion compounds containing n-alkane [CH3(CH2)mCH3] guest molecules are
incommensurate materials [1–6], with stoichiometry defined by a misfit parameter γ = chost/cguest,
where chost and cguest are the periodic repeat distances, along the tunnel direction, of the host and
guest substructures, respectively [2] (figure 1). The periodicity (chost) of the host substructure along
the tunnel depends on the pitch of the helical arrangement of urea molecules, with chost ≈ 11.02 Å
for n-alkane/urea inclusion compounds at ambient pressure [7,8]. The periodicity (cguest) of the guest
substructure along the tunnel axis depends on the length of the n-alkane guest molecule in the
extended all-trans conformation required to fit inside the urea tunnel structure (for reasons discussed
elsewhere [9–11], the value of cguest is typically about 0.5 Å shorter than the van der Waals length of
the guest molecule). At ambient pressure, the value of the misfit parameter is γ = chost/cguest = 0.418
for the n-nonadecane/urea (m = 17) inclusion compound [6] and γ = 0.486 for the n-hexadecane/urea
(m = 14) inclusion compound [12]. Clearly, the different values of γ arise from the different
lengths of the n-nonadecane and n-hexadecane guest molecules, which give rise to different values
of cguest.

The basic structure of the urea host substructure is hexagonal with space group P6122 (or P6522),
arising from the helical hydrogen-bonded assembly of urea molecules that forms linear, non-intersecting
tunnels parallel to the hexagonal c-axis [4,7,8] (figure 1). The composite crystal has sixfold symmetry
as a consequence of the fact that the n-alkane guest molecules are distributed statistically in at least
six energetically equivalent orientations [13,14]. For cases in which the n-alkane guest molecules exhibit
three-dimensional ordering (i.e. with inter-tunnel ordering of the guest molecules in addition to ordering
of the guest molecules along the tunnel axis), another important structural parameter [4] is the offset
(denoted by �g), along the tunnel direction, between the positions of guest molecules in adjacent tunnels
(�g is defined in figure 1). For most n-alkane/urea inclusion compounds [3], the value of the offset
is �g = 0, and in this case, the basic guest structure is described [4,15] by space group P622. In this
situation, the overall symmetry of these host–guest composite materials is described [4] by the (3 + 1)-
dimensional superspace group P6122(00γ ), with four integer indices (h, k, l, m) required to index all
observed reflections in the diffraction pattern:

Qhklm = ha∗ + k b∗ + l c∗
host + m c∗

guest. (1.1)

The (h, k, 0, 0) reflections are main reflections that are common to both the host and guest
substructures, the (h, k, l, 0) reflections are main reflections of the host substructure (and also contain
information on incommensurate modulations within the guest substructure), the (h, k, 0, m) reflections are
main reflections of the guest substructure (and also contain information on incommensurate modulations
within the host substructure) and the (h, k, l, m) reflections with l �= 0 and m �= 0 are satellite reflections
[4–6,8].

A wide range of techniques have been used to explore structural phase transitions in n-alkane/urea
inclusion compounds [1,13,14,16–25]. Early studies reported that these materials undergo a single
phase transition at a temperature Tc1 below ambient temperature [20,26,27], with the phase transition
temperature depending on the identity (chain length) of the n-alkane guest molecule. This phase
transition is a ferroelastic transition from the hexagonal phase I above Tc1 to an orthorhombic phase
II below Tc1. In the low-temperature phase, the space group of the basic host structure is P212121
(note that P212121 is a subgroup of P6122). In the low-temperature phase, a ‘herringbone’ antiferro
ordering of the orientations of the guest molecules (projected onto the plane perpendicular to the tunnel
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Figure 1. (a) Structure of an n-alkane/urea inclusion compound at ambient temperature viewed along the tunnel axis. (b) Schematic
representation of a tunnel inclusion compound viewed perpendicular to the tunnel axis, showing guest molecules (red) arranged along
the host tunnel structure (blue). The periodic repeat distances of the host and guest substructures along the tunnel axis are denoted as
chost and cguest, respectively. The offset, along the tunnel axis, between the positions of guest molecules in adjacent tunnels is denoted
as�g.

axis) exists between adjacent tunnels [14,16,17]. It was later suggested [22] that this phase transition is
governed by an antiferro ordering of the n-alkane guest molecules affecting both the host shearing and
the guest orientations. A theoretical analysis [4] described the phase transition within the framework
of a (3 + 1)-dimensional superspace group description of all possible group–subgroup-related host and
guest substructures. It followed that phase I is described by superspace group P6122(00γ ) and phase II
is described by superspace group P212121(00γ ). In both phases I and II, the host and guest substructures
have the same periodicities in the ab-plane (i.e. the plane perpendicular to the tunnel axis), and the
misfit parameter γ along the tunnel axis (c-axis) is the same in phases I and II. In the ab-plane, phase
II is described by an orthorhombic unit cell which is very similar to the orthohexagonal description
of the hexagonal unit cell of phase I but with no C-centring. Thus, for phase II, the orthorhombic
unit cell is primitive and the lattice parameters ao and bo are approximately related by ao ≈ bo

√
3

(figure 2).
In this paper, we focus on the low-temperature phase transitions (at ambient pressure) in

n-nonadecane/urea and n-hexadecane/urea, as they are the most extensively studied members of
the family of incommensurate n-alkane/urea inclusion compounds and are regarded as prototypical
incommensurate systems.

For n-nonadecane/urea, the I ↔ II phase transition occurs at Tc1 ≈ 157 K (on cooling). However,
the ‘classical’ description of this phase transition, as discussed above, was questioned recently [28],
together with the report of another phase transition at a lower temperature Tc2 ≈ 140 K (on cooling),
corresponding to a weak thermal event in DSC data [29]. The ‘new phase’ below Tc2 was denoted as
‘phase III’ [28]. Because the (3, 2, 0, 0) reflection (using the orthorhombic setting discussed above), which
is a main reflection for both the host substructure and the guest substructure, was not observed in phase II
below Tc1, these authors [28] concluded that the orthorhombic unit cell is C-centred (i.e. suggesting that
the C-centre is ‘preserved’ from the orthohexagonal description of the hexagonal phase I), while they
concluded that the orthorhombic unit cell of ‘phase III’ below Tc2 is not C-centred. Furthermore, these
authors also suggested [30] that an additional modulation with period ci exists along the tunnel axis in
both phases II and ‘III’, leading to a second incommensurate misfit parameter δ = chost/ci in coexistence
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Figure 2. Schematic representation of the hexagonal (a, b) and orthorhombic (ao, bo) unit cells in n-alkane/urea inclusion compounds
viewed along the tunnel axis (c-axis). The thick solid lines represent the projection of thewalls of the urea host tunnels onto the ab-plane.
In the tunnel at the top, an n-alkane guest molecule is included (again in projection) to indicate the preferred orientation of the guest
molecules relative to the host tunnel.

with the misfit parameter γ = chost/cguest along the same direction. Within this interpretation, five integer
indices (h, k, l, m, n) are required to index each reflection in the diffraction pattern:

Qhklmn = h a∗ + k b∗ + l c∗
host + m c∗

guest + n c∗
i . (1.2)

The indices m and n relate to the misfit parameters γ and δ, respectively, with c∗
guest = γ c∗

host and c∗
i =

a∗ ± δc∗
host, where a* is the reciprocal lattice vector corresponding to the orthorhombic ao lattice vector in

real space (figure 2). The experimental values reported in [30] for n-nonadecane/urea are γ = 0.418 and
δ = 0.090. Space group C2221(00γ )(10δ) was assigned [30] to phase II and space group P212121(00γ )(00δ)
was assigned [30] to ‘phase III’.

A similar I ↔ II ↔ ‘III’ sequence of phase transitions has been reported [12] for n-hexadecane/urea,
with the phase transition temperatures (on cooling) Tc1 ≈ 150 K and Tc2 ≈ 125 K. However, in
this case, the symmetry of phase II was described by the (3 + 1)-dimensional superspace group
P212121(00γ ) and the symmetry of ‘phase III’ was described by the (3 + 2)-dimensional superspace group
P212121(00γ )(00δ), and the temperature-independent misfit parameters were reported to be γ = 0.486
and (for ‘phase III’) δ = 0.058.

However, a very recent paper [31] (based on a high-resolution synchrotron single-crystal X-ray
diffraction study of n-nonadecane/urea at ambient pressure) refuted the recently reported [28,30]
interpretations (summarized above) of the structural properties of n-nonadecane/urea and instead
demonstrated conclusively that the symmetries of both phases II and ‘III’ can be described by (3 + 1)-
dimensional superspace groups, which provide a complete description of the structural properties of
these phases. In particular, the misfit parameters γ and δ in the (3 + 2)-dimensional superspace group
description are not independent, as the following relation was proved [31] to exist (within experimental
accuracy):

δc∗
host = −2 c∗

host + 5 c∗
guest, (1.3)

so that δ = –2 + 5γ . Correspondingly, the indices (l, m, n) in the (3 + 2)-dimensional superspace group
description [30,32,33] are also not independent. On this basis, a (3 + 1)-dimensional superspace group
can be defined with only four independent indices (h, k, l′, m′), where l′ and m′ are related to the indices
l, m and n in the (3 + 2)-dimensional superspace description (equation (1.2)) by the following equation:

l′ = l − 2n and m′ = m + 5n. (1.4)

It follows that both phases II and ‘III’ of n-nonadecane/urea are correctly described by the same
(3 + 1)-dimensional superspace group P212121(00γ ).
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Similarly, the symmetry of ‘phase III’ of n-hexadecane/urea was shown [31] to be correctly described

by a (3 + 1)-dimensional superspace group rather than the (3 + 2)-dimensional superspace group
suggested previously [12], as the following relation was proved [31] to exist (within experimental
accuracy): δ = 2 – 4γ .

A comment [34] has been published in response to paper [31] refuting some of our interpretations,
but admitting explicitly the existence of the relationships between the two misfit parameters γ and
δ for n-nonadecane/urea and n-hexadecane/urea quoted above and in paper [31]. Given that the
(3 + 2)-dimensional superspace groups proposed previously [12,28,30] for n-nonadecane/urea and
n-hexadecane/urea have been shown [31] to be incorrect, some general observations can be made based
on the true degrees of freedom in these systems. Clearly, the orthorhombic distortion is achieved by
orientational ordering of the guest molecules about the tunnel axis, coupled with the elastic properties
of the host substructure [22]. By contrast, the translational motions of the guest molecules along
the tunnel axis do not interact strongly with the host substructure, as evidenced by the molecular
transport properties of these materials [35–38]. However, interactions between n-alkane guest molecules
in adjacent tunnels play a role in the three-dimensional ordering of the guest molecules in the composite
host–guest structure, evidenced by the fact that a well-defined value of �g (defined above) is observed
for n-alkane/urea inclusion compounds (for most n-alkane guest molecules, �g = 0, but values of
�g �= 0 have been reported [32,39] for the n-heptane/urea and n-dodecane/urea inclusion compounds).
Furthermore, an important feature of incommensurate n-alkane/urea inclusion compounds is that the
misfit parameter γ is independent of temperature [12,30].

Within the context of these observations, this paper presents a phenomenological model that
accounts for the mechanisms responsible for the I ↔ II ↔ ‘III’ sequence of phase transitions in the
n-nonadecane/urea and n-hexadecane/urea inclusion compounds. Our model is based on symmetry
considerations and is developed within the frame of a pseudo-spin–phonon coupling mechanism, as
suggested previously [22]. In particular, we show that this model is sufficient to explain the very low
intensity (which others [28] may have interpreted as zero intensity) of the (h, k, 0, 0) reflections with h + k
odd in phase II of n-nonadecane/urea. Moreover, we demonstrate that the differences between phases II
and ‘III’ are explained by different couplings that exist between the relevant pseudo-spin variables and
the translational motions of the n-alkane guest molecules.

2. Symmetry properties of n-nonadecane/urea and n-hexadecane/urea
2.1. Group to subgroup relations
In phase I of n-nonadecane/urea and n-hexadecane/urea, the space group of the basic host structure is
P6122 and the space group of the basic guest structure is P622. Thus, the superspace group based on the
host sublattice is P6122(00γ ) with lattice parameters (a, b, chost). In both low-temperature phases II and
‘III’, the orthorhombic unit cell is similar to the orthohexagonal description of the hexagonal unit cell of
phase I, but with no C-centring (figure 2). Thus, we deduce that the transitions to phases II and ‘III’ are
related to a lattice instability occurring at a zone boundary point M(½, 0, 0), which is a reciprocal point
common to both host and guest sublattices in the hexagonal Brillouin zone [40]. This point M is replaced
at the zone centre (Γ point) in the low-temperature phases II and ‘III’. The wavevector point group at
point M is 222 (D2) and the corresponding irreducible representations, denoted as M1/A, M2/B1, M3/B2
and M4/B3, are three-dimensional as there are three arms in the star of this wavevector [40]. Thus, the
order parameter associated with each representation has three components qi (i = 1, 2, 3) relative to the
three arms of the star of the wavevector. However, in the present case, we only need to consider solutions
that belong to the subspaces for which qj = Q �= 0 for only one of the indices j (with qi = 0 for i �= j), as only
one arm of the star of point M is involved in the phase transition [40]. It follows that each equivalent
point M1(½, 0, 0), M2(0, ½, 0) and M3(−½, ½, 0) generates a ferroelastic domain, and the three domains
are related to each other by the threefold axis collinear with the c-axis (tunnel axis) in phase I, which is lost
in the orthorhombic low-temperature phase. In fact, an additional splitting of each domain (by about 2°
at 90 K) is observed, due to the energy cost of domain walls, resulting in six orthorhombic domains [19].

Table 1 reports the character table of the critical wavevector group at point M(½, 0, 0) corresponding
to the subspace q1 (only the generating symmetry elements are shown). The subgroups induced by each
irreducible representation for both the host and guest sublattices [41] and their representation in (3 + 1)-
dimensional superspace groups [4] are also shown. It turns out that superspace group P212121(00γ ) is
solely induced by the M2/B1 irreducible representation, which thus defines the symmetry of the primary
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G (0, 0, 0) D6 G (0, 0, 0) D2 M(1/2, 0, 0) D2

P6122(00g ) P212121(00g ) P6122(00g )

(e1–e2) ; (S5) A (S¢6) (T ¢z)

(e1–e2, e6) ; (S5, S6) E2

(e6) ; (S6) B1

A2

B1

B2 B2

B3

M3/B2

M1/A

M4/B2E1

M2/B1 (S¢6) ; (T ¢z)

Figure 3. The compatibility relations between the irreducible representations of superspace group P6122(00γ ) at the zone centre point
Γ (0, 0, 0) (left column) and at the zone boundary point M(½, 0, 0) (right column) with those at the zone centre point Γ (0, 0, 0) of
superspace group P212121(00γ ) (middle column).

Table 1. Character table [40] of the critical wavevector group at point M(½, 0, 0) (only generating symmetry elements are shown)
together with the subgroups induced by each irreducible representation for both the host and guest substructures [41] and their
description in (3+ 1)-dimensional superspace groups on the basis of the host sublattice [4].

irreducible
representation

{C2z|00½}host
{C2z|000}guest

{C′′21|00½}host
{C′′21|000}guest

{E|100}host
{E|100}guest

induced host
subgroup

induced guest
subgroup

induced
superspace group

M1/A 1 1 −1 P2221 P222 P2221(00γ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2/B1 1 −1 −1 P212121 P21212 P212121(00γ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M3/B2 −1 −1 −1 P21221 P2122 P21221(00γ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M4/B3 −1 1 −1 P22121 P2212 P22121(00γ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

order parameter of the phase transition (i.e. all symmetry properties of the low-temperature phase are
determined by this order parameter, provided the misfit parameter γ remains constant). In figure 3, we
report the compatibility relations that exist between the irreducible representations of space group P6122
and those of the zone centre in the P212121 subgroup, including the irreducible representations at point
M (table 1), as well as those of the Γ point of phase I which remains as a zone centre point in the P212121
subgroup. It transpires that the identity representation A of the P212121 subgroup (which necessarily
represents the symmetry of the order parameters in the distorted low-temperature phase) is compatible
not only with M2/B1 but also compatible with the E2 representation at the zone centre of P6122 (figure 3).
Such associated order parameters are generally considered as secondary order parameters [42]. Indeed,
we note that, when considered alone, the zone centre E2 representation induces the C-centred C2221 space
group, of which P212121 is a subgroup [41]. Such a transition would necessarily be a first-order transition,
as the symmetrized third power [E2]3 = A1 + A2 + E2 contains the totally symmetric representation,
allowing the presence of a third-order invariant in the Landau free-energy development.

2.2. Pseudo-spins (reorientations)
Single-crystal 2H NMR studies [14] of n-nonadecane/urea have shown that the n-nonadecane guest
molecules adopt preferred orientations in both the hexagonal and orthorhombic phases, such that the
projection of the plane of the carbon ‘skeleton’ onto the ab-plane points towards opposite corners
of the hexagonal projection of the host tunnel (figure 2). For n-alkanes with odd chain length (e.g.
n-nonadecane), the point symmetry is mm2 (C2v), and the C2 axis of the n-alkane guest molecule
coincides with one of the C′

2 axes of the hexagonal host structure (figure 2). For n-alkanes with even
chain length (e.g. n-hexadecane), the point symmetry is 2/m (C2h), and the C2 axis of the n-alkane guest
molecule coincides with one of the C′′

2 axes of the hexagonal host structure (figure 2).
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site k = 2

site k = 2

site k = 1

(a) (b)

site k = 1

ao

bo
bo

ao

C ¢2 C ¢2

C≤2
C≤2

bb aa
4 45 5

6 6

1 1

3 3

2 2

Figure 4. Schematic representation, viewed along the tunnel axis, of the orientational properties of the guestmolecules (symbolized by
arrows) in n-alkane/urea inclusion compounds showing: (a) orientational disorder among six equi-probable orientations in hexagonal
phase I (space group P6122) and (b) an ordered arrangement of two preferred orientations in the orthorhombic phase II (space group
P212121), leading to a herringbone arrangement of the projections of the guest molecules in adjacent tunnels.

We consider a simple Frankel model of jump reorientations of a rigid n-alkane guest molecule
with odd chain length about the tunnel axis (c-axis), between six energetically equivalent orientations
(figure 4) which are related to each other by 60° rotation around the sixfold axis of the tunnel. We use pi
to denote the occupation probability of orientation i, with the condition that

∑6
i=1 pi = 1 in each phase.

In the hexagonal phase I, the statistical sixfold site symmetry of the n-alkane guest molecule in each
tunnel is achieved when pi = 1/6 (i = 1, 2, . . . , 6); (figure 4a), which describes the time-averaged and
space-averaged orientational distribution of the n-alkane guest molecules irrespective of the details of
the dynamics of the reorientation processes [43–47]. Following the procedure based on the method of
projection operators [48], the pseudo-spin variables si associated with the orientation of an n-alkane
guest molecule of odd chain length at a site with 622 (D6) symmetry in phase I are found to have the
following form:

A1 s1 = ± 1√
6

(p1 + p2 + p3 + p4 + p5 + p6),

B1 s2 = ± 1√
6

(p1 − p2 + p3 − p4 + p5 − p6) ,

E1

⎧⎨
⎩s3 = ± 1√

12
(2p1 + p2 − p3 − 2p4 − p5 + p6)

s4 = ± 1
2 (−p2 − p3 + p5 + p6)

and E2

⎧⎨
⎩s5 = ± 1√

12
(2p1 − p2 − p3 + 2p4 − p5 − p6)

s6 = ± 1
2 (−p2 + p3 − p5 + p6).

(2.1)

The coordinate s1 belonging to the totally symmetric representation A1 is merely the identity and
hence cannot be a symmetry-breaking order parameter. By contrast, all other coordinates si (i �= 1) are
symmetry-breaking coordinates and may represent order parameters. We note that, for n-alkanes of even
chain length, coordinates si of the same form are established, except that the coordinate s2 now belongs
to the representation B2 instead of B1. This does not change anything in our model, as neither the B1
representation nor the B2 representation is involved in the phase transition mechanism, as shown in the
following discussion.

Within the orthorhombic unit cell of the low-temperature phase, there are two n-alkane guest
molecules (labelled k = 1 and k = 2) and two urea tunnels per unit cell when projected onto the ab-plane
(figure 4b). The positions of the guest molecules with k = 1 and k = 2, expressed relative to the hexagonal
unit cell of the guest substructure in phase I, are as follows (figure 4b):

k = 1: positions (0, 0, 0), (0, 1, 0), (0, 2, 0), etc.
k = 2: positions (1, 0, 0), (1, 1, 0), (1, 2, 0), etc. deduced from the k = 1 positions by the translation
{E|100}.
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It follows that the relevant pseudo-spin variables Si developed on the basis of the site coordinates si

at the zone centre (i.e. those variables belonging to E2 symmetry; figure 3) have the following form:

E2

{
S5 = s1

5 + s2
5

S6 = s1
6 + s2

6

, (2.2)

where the superscript (k = 1, 2) of the coordinates sk
i refers to the labels for the two guest sites specified

above. At point M(½, 0, 0) of the Brillouin zone, the sole S′
i pseudo-spin variable with M2/B1 symmetry

(figure 3) is
M2/B1, S′

6 = s1
6 − s2

6. (2.3)

Following the arguments developed in §2.1, we establish that the S′
6 pseudo-spin variable with M2/B1

symmetry (equation (2.3)) acts as a primary order parameter for the hexagonal-to-orthorhombic phase
transition, while S5 (equation (2.2)) is a secondary order parameter (figure 3). From equations (2.1–2.3),
we also establish that the ground state corresponding to the expected ‘herringbone’ arrangement of
the guest molecules in the low-temperature phase (see §1) [14,16,17] is achieved under the concomitant
actions of S5 and S′

6 (with S5 �= 0 and S′
6 �= 0), corresponding to

p1
2 = p1

5 = p2
3 = p2

6 = 1
2 . (2.4)

As shown in figure 4b, this situation does indeed correspond to a ‘herringbone’ arrangement of the n-
alkane guest molecules in the low-temperature orthorhombic phase. This description also implies that
the ground state is disordered, with the n-alkane guest molecules occupying two equivalent orientations
in each site, related by the {C2z|000} symmetry operation of the orthorhombic P21212 space group
of the basic guest structure (table 1), in agreement [4] with orientational disorder of the n-alkane
guest molecules in superspace group P212121(00γ ). As a consequence, a ‘frozen’ orientational disorder
resulting in a ‘glassy’ crystalline state is expected at very low temperature; indeed, an excess heat capacity
has been detected [49] between T = 0.1 K and T = 0.7 K for n-nonadecane/urea, which is well described
by a two-level system model and could then be the signature of an orientational ‘glassy’ state due to the
guest substructure.

2.3. Translations (acoustic modes)
For the urea host substructure, the pure translational motions close to the Brillouin zone centre are
the acoustic modes. The propagation of these modes depends on the elastic constants of the crystal,
and hence are related to the spontaneous strain that takes place at a ferroelastic phase transition (see
§3, equation 3.4). In the present case, the elastic tensor components in the hexagonal phase transform
as A1(e1+e2, e3), E1(e4, e5) and E2(e1–e2, e6) symmetries [50,51]. It follows that the spontaneous strain
es associated with the (e1–e2) strain tensor component responsible for an orthorhombic distortion is a
secondary order parameter together with the S5 pseudo-spin coordinate (figure 3). The associated elastic
constants are (c11–c12) = 2 c66.

For the n-alkane guest substructure, the unique pure translational degree of freedom at the zone centre
is the ‘sliding mode’, which represents translation of the n-alkane guest substructure as a whole relative
to the urea host substructure along the tunnel axis. The sliding mode is analogous to the phason mode
in modulated incommensurate systems, and hence, it is expected to exhibit very low (but non-zero)
activation energy. Indeed, a diffusive or over-damped mode in the range of 0.8 meV that could be related
to a sliding mode with a gap has been reported at the zone centre [25,52]. In any case, the sliding mode,
which is polarized along the c-axis and hence belongs to A2 symmetry at the zone centre, cannot be
related to any order parameter, provided that the misfit parameter γ remains constant (figure 3).

In both the host and guest substructures, the longitudinal acoustic (LA) and transverse acoustic (TA)
modes at point M(½, 0, 0) transform as M4/B3 (TAx polarized along the a-axis), M3/B2 (LAy polarized
along the b-axis) and M2/B1 (TAz polarized along the c-axis). The TAz mode of the guest substructure
(denoted as T′

z in figure 3) is of particular interest as it belongs to the M2/B1 representation of the
order parameter responsible for the loss of C-centring in the orthorhombic low-temperature phase.
Furthermore, it corresponds to pure translational motions of the n-alkane guest molecules along the
tunnel axis, which are alternately out of phase between successive tunnels along the [110] direction of
the orthorhombic unit cell (figure 4). This mode can therefore be viewed as a zone boundary sliding
mode, probably associated with a low activation energy. ‘Freezing’ of such a motion will result in a static
configuration in which the n-alkane guest molecules in successive tunnels along the [110] direction are
alternately displaced along the c-axis by +δg/2 or −δg/2 from their average positions.
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3. The pseudo-spin phonon coupling mechanism
On the basis of symmetry properties and a pseudo-spin translation coupling mechanism, we have
identified two primary order parameters belonging to the zone boundary M2/B1 representation, namely
the T′

z zone boundary sliding mode (denoted as Q1) and the S′
6 pseudo-spin coordinate (denoted as

Q2). Furthermore, two secondary order parameters belonging to the zone centre E2 representation have
been identified, namely the S5 pseudo-spin coordinate and the spontaneous strain es corresponding to
the component (e1–e2) of the strain tensor (figure 3). Different couplings between these variables are
allowed by symmetry. In particular, bilinear coupling between Q1 and Q2 (which both belong to M2/B1
symmetry) of the form Q1Q2 is allowed, and bilinear coupling between S5 and es (which both belong
to E2 symmetry) of the form S5es is allowed. Furthermore, linear–quadratic coupling terms are allowed
between primary and secondary order parameters of the form (Q1)2S5, (Q1)2es, (Q2)2S5 and (Q2)2es.

A complete treatment would consider four competing ‘full’ order parameters S5, es, Q1 and Q2,
each exhibiting its own temperature dependence and all dependent on each other. Such a complicated
situation is unworkable in practice using classical analytical methods, unless some simplifications are
adopted. First, we limit our discussion to the subspace of the wavevector group at point M corresponding
to q1 �= 0 with q2 = q3 = 0 (see §2.1). In this context, starting from the hexagonal high-temperature phase
I (S5 = es = Q1 = Q2 = 0) and provided the misfit parameter γ remains unchanged between the high-
temperature and low-temperature phases (see §2.1), only two solutions for the low-temperature phases II
and ‘III’ are induced by the M2/B1 and E2 representations, specifically the C2221(00γ ) superspace group
(corresponding to S5 �= 0, es �= 0, Q1 = 0, Q2 = 0) and the P212121(00γ ) superspace group (corresponding
to S5 �= 0, es �= 0, Q1 �= 0, Q2 �= 0). Furthermore, it has been shown that both phases II and ‘III’ belong to the
same P212121(00γ ) superspace group [31]. As the phase with superspace symmetry C2221(00γ ) remains
a virtual phase at ambient pressure, we adopt a shortcut by considering that, as a first approximation, Q1
and Q2 behave as ‘full’ order parameters (i.e. with their own temperature dependences) and that S5 and
es with E2 symmetry behave as ‘classical’ secondary order parameters. We note that the same approach
was adopted by Breczewski et al. [53] to describe the ferroelastic phase transition in n-heptadecane/urea,
but they considered only one zone boundary order parameter involved in the transition instead of the
two coupled order parameters Q1 and Q2 used here.

In the present case, the temperature dependences of S5 and es are entirely related to those of Q1 and
Q2 through the coupling terms (Q1)2S5, (Q1)2es, (Q2)2S5 and (Q2)2es, which prevent the formation of the
phase with C2221(00γ ) symmetry. Furthermore, we suppose that the order parameter Q1 first condenses
at Tc1, and that Q2 is related to the thermal anomaly at Tc2 (Tc1 > Tc2). At this stage of our analysis,
this choice is arbitrary and could be reversed, as discussed in §4. Accordingly, we express the Landau
free-energy potential developed up to sixth order as follows:

�F = 1
2 A1(Q1)2 + 1

4 B1(Q1)4 + 1
6 C1(Q1)6 + 1

2 A2(Q2)2 + 1
4 B2(Q2)4 + 1

6 C2(Q2)6 + DQ1Q2

+ 1
2 E(S5)2 + 1

2 FS5(Q1)2 + 1
2 c0

11((e1)2 + (e2)2)c0
12e1e2 + G(e1 − e2)(Q1)2, (3.1)

where c0
11 and c0

12 are the ‘bare’ elastic constants [50] such as (c0
11 − c0

12) = 2c0
66. For simplicity, we have

retained only the bilinear coupling term Q1Q2 and the linear–quadratic coupling terms (Q1)2S5 and
(Q1)2es. All other allowed couplings between Q2, S5 and es (i.e. (Q2)2S5 and (Q2)2es) are neglected
because the transition at Tc2 does not produce any detectable anomaly in the temperature dependence
of es (see §4). Also, no Lifshitz invariant or gradient terms are considered because the misfit parameter
γ (i.e. the parameter that describes all the incommensurate properties of the n-alkane/urea inclusion
compounds) remains temperature-independent through the observed phase transitions. As we must
account for two thermal anomalies at low temperature, occurring at Tc1 and Tc2, we need to introduce
two critical temperatures, which we denote as T1 (the temperature at which A1 changes sign) and T2 (the
temperature at which A2 changes sign):

A1 = a1(T − T1) and A2 = a2(T − T2), (3.2)

with a1 > 0 and a2 > 0. The spontaneous strain is defined as follows:

es = (e1 − e2) = ao − bo
√

3
ao

. (3.3)

The minimization equations (∂�F/∂S5) = 0 and (∂�F/∂ei) = 0 (i = 1, 2) give

S5 = − F
E

(Q1)2 and es = − 2G

(c0
11 − c0

12)
(Q1)2, (3.4)
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so that es = ((2GE)/(F(c0

11 − c0
12))) S5.

Thus, es is directly proportional to S5, as expected. Then, equation (3.1) can be rewritten as follows:

�F = 1
2 A1(Q1)2 + 1

4 B′
1(Q1)4 + 1

6 C1(Q1)6 + 1
2 A2(Q2)2 + 1

4 B2(Q2)4 + 1
6 C2(Q2)6 + DQ1Q2, (3.5)

where

B′
1 = B1 − 2(F)2

E
− 4(G)2

(c0
11 − c0

12)
. (3.6)

A similar form of the free-energy expansion has been considered by Salje and coworkers [51,54–56]
to describe the phase transition in sodium feldspar. The condition that the system is in thermodynamic
equilibrium for any combination of the order parameters is

∂�F
∂Q1

= ∂�F
∂Q2

= 0, (3.7)

which leads to two basic equations that must be satisfied simultaneously:

A1Q1 + B′
1(Q1)3 + C1(Q1)5 + DQ2 = 0 (3.8)

and

A2Q2 + B2(Q2)3 + C2(Q2)5 + DQ1 = 0. (3.9)

Only two solutions of equations (3.8) and (3.9) exist, which define two thermodynamic phases:

phase I : P6122(00γ ) : Q1 = 0, Q2 = 0 (3.10)

and

phase II : P212121(00γ ) : Q1 �= 0, Q2 �= 0. (3.11)

No further phase described by only one order parameter is stable for D �= 0. However, the
uncoupled expression in Q1 and Q2 (i.e. with D = 0 in equation (3.5)) would produce two successive
phase transitions around T1 and T2 (equation (3.2)). Hence, for B′

1 > 0 and B2 > 0, a second-order
phase transition will occur at a temperature Tc between T1 and T2. For B′

1 < 0 and B2 > 0, a first-order
phase transition (as observed experimentally) will occur at a temperature Tc = Tc1 with Tc > T1 and
Tc > T2 (note that the signs of B′

1 and B2 are not imposed by any symmetry constraints). Importantly,
the thermal anomaly at Tc2 is no longer associated with a phase transition, but should be viewed instead
as a ‘crossover’ point between two regimes [51] involving two-order parameters Q1 and Q2 with the
same symmetry but different values of the ratio Q1/Q2. At temperatures T in the range T2 < T < Tc, the
order parameter Q1 dominates over Q2, because the non-zero value of Q2 is induced via the coupling
coefficient D, whereas for T < T2, the order parameter Q2 increases because of the change of sign of the
coefficient A2. Hence, around T2, many macroscopic properties of the crystal (such as heat capacity and
elastic constants) will show similar types of behaviour to those that would be expected to occur at a
structural phase transition. Therefore, in the experimental context (and provided no further structural
evidence is available), the ‘crossover’ described above could readily be confused with a phase transition,
with or without symmetry breaking [51].

Now, the minimization of equation (3.5) gives

Q2 = − 1
D

(A1Q1 + B′
1(Q1)3 + C1(Q1)5). (3.12)

Putting this expression for Q2 into equation (3.5) leads to a complicated even power expression of
degree 15 (not given here) for �F in (Q1)2, the analytical treatment of which is unworkable in practice.
Nevertheless, the true minimum of �F together with the equilibrium value of Q1 can be determined
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numerically. Then, the equilibrium value of Q2 is deduced from equation (3.12) and the excess heat
capacity (�Cp) can also be simulated numerically from the relation:

�Cp = −T
∂2�F
∂T2 . (3.13)

To proceed further with numerical simulations, we have normalized the order parameters to unity
(Q1 = Q2 = 1) at absolute zero temperature. In the absence of coupling (i.e. with D = 0), we obtain

T1 = B′
1 + C1

a1
and T2 = B2 + C2

a2
. (3.14)

Furthermore, the jump (denoted as Q1c) in Q1 at Tc (corresponding to the first-order phase transition) is
given by

(Q1c)2 = −3B′
1

4C1
(3.15)

with B′
1 < 0 as specified above. Hence, we are left with seven independent free parameters, specifically:

(Q1c)2, T1, T2, C1, B2, C2 and D.

4. Comparison with experimental data
We recall that the n-nonadecane/urea and n-hexadecane/urea inclusion compounds have been reported
to undergo two successive phase transitions at Tc1 (about 157 K on cooling for n-nonadecane/urea and
about 150 K on cooling for n-hexadecane/urea) and at Tc2 (about 140 K on cooling for n-nonadecane/urea
and about 125 K on cooling for n-hexadecane/urea), corresponding to the phase sequence I → II → ‘III’
on decreasing temperature as discussed above [12,28,30].

In §3, we have proposed instead that the ‘transition’ at Tc2 actually corresponds to a ‘crossover’
between two competing order parameters belonging to the same symmetry. Now, the observed phase
transition at Tc1 is clearly first order, given the abrupt changes in lattice parameters (and hence in the
spontaneous strain e1–e2) and the thermal hysteresis observed at this transition [12,29,57], which implies
that B′

1 < 0 (and C1 > 0) in equation (3.5). We also recall that two zone boundary order parameters Q1
and Q2 both contribute to the new reflections (h, k, l′, m′) that appear in the low-temperature phase
in positions with h + k odd, including main reflections for the host substructure (with m′ = 0), main
reflections for the guest substructure (with l′ = 0) and satellite reflections (with l′ �= 0 and m′ �= 0). We
emphasize that the respective contributions of Q1 and Q2 may be different for different n-alkane/urea
inclusion compounds, and hence may explain differences in behaviour such as those observed [12,28]
between n-nonadecane/urea and n-hexadecane/urea.

We now compare our model potential with experimental data for n-nonadecane/urea, using the
following strategy to select suitable values of the parameters [(Q1c)2, T1, T2, C1, B2, C2 and D] in
our model. First, the jump of (Q1)2 at Tc1 [denoted as (Q1c)2] was fixed at 0.5 in order to comply
qualitatively with the experimental results obtained for es = (e1–e2) at Tc1 for n-nonadecane/urea [57]
and n-hexadecane/urea [12] (see equations (3.4) and (3.15)). Then, the value of T1 was set to 126 K,
corresponding to Tc1 ≈ 157 K (as observed for n-nonadecane/urea), and the value of T2 was set to 140 K,
corresponding to Tc2 ≈ 140 K (as observed for n-nonadecane/urea). The coefficients B2, C1 and C2 were
adjusted manually so that the thermal anomaly around Tc2 is sufficiently narrow and intense. Finally,
we have found that very weak values of the coupling coefficient D are required in order to reproduce the
experimental data qualitatively (this observation is completely consistent with previous studies [47,58],
which concluded that the reorientational and translational motions of the n-alkane guest molecules in
n-alkane/urea inclusion compounds are uncorrelated). The results of our calculations using C1 = 0.5,
B2 = 0.1 and C2 = 0.9, together with either D = 10−4 or D = 5 × 10−3, are shown in figure 5.

Clearly, our calculated data for the excess heat capacity �Cp as a function of temperature (figure 5b)
are in good qualitative agreement with experimental DSC data reported for n-nonadecane/urea [29] and
n-hexadecane/urea [12]. Thus, a strong thermal anomaly is associated with the first-order transition at
Tc1, and only a weak thermal anomaly is associated with the ‘crossover’ at Tc2.

The temperature dependences of (Q1)2 and (Q2)2, calculated using the phenomenological parameters
specified above, are shown in figure 5b. According to the relations in equation (3.4), (Q1)2 is proportional
to both S5 and es. No direct measurement of S5 has been reported so far, but es can be determined from
the lattice parameters ao and bo (equation (3.3)) for n-nonadecane/urea [57] and n-hexadecane/urea [12].
On qualitative grounds, the results shown in figure 5b agree with experimental results ([57, fig. I-8] and
[12, fig. 6]), which exhibit a marked jump of es at the temperature Tc1 of the first-order phase transition,
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Figure 5. Calculations of experimental data as a function of temperature for n-nonadecane/urea using our phenomenological model:
(a) excess heat capacity at constant pressure and (b) squared order parameters. The data were calculated (see equations (3.5), (3.12) and
(3.13)) for T c1 = 157 K and T c2 = 140 K (corresponding to the reported phase transition temperatures for n-nonadecane/urea on cooling)
togetherwith the values of theparameters discussed in the text and for twodifferent values of the couplingparameter:D= 10−4 (dashed
lines) and D= 5× 10−3 (continuous lines).

followed by a damped regular increase at lower temperatures, as expected for a ‘weak’ first-order phase
transition.

As mentioned above, Q1 and Q2 are related to the intensities of the main reflections with h + k odd and
the intensities of the satellite reflections with h + k odd in the low-temperature phase. Furthermore, the
intensities of these peaks are proportional to the square of the order parameter responsible for the phase
transition [59]. Thus, plots of (Q1)2 versus T and (Q2)2 versus T calculated using our model (figure 5b)
can be compared directly to the intensities of the relevant reflections as a function of temperature.

In the case of n-nonadecane/urea containing fully deuterated guest molecules, an abrupt increase in
the intensities of the satellite reflections (h, k, l′, m′) with l′ �= 0, m′ �= 0 and h + k odd has been reported
[28, fig. 3b] at the transition near Tc1, followed by a regular increase up to a maximum and then a slow
decrease down to about Tc2. This reported behaviour is consistent with the results obtained from our
ad hoc model, except for the existence of the maximum between Tc1 and Tc2. At the same time, the
main reflections of the host substructure (h, k, l′, 0) with h + k odd and the main reflections of the guest
substructure (h, k, 0, m′) with h + k odd are very weak, but it is evident [28, fig. 3b] that their intensities
increase as temperature decreases, which is the predicted behaviour for (Q2)2 according to our model
(figure 5b) and is in good agreement with experimental observations that we reported recently [31].
Below 130 K, the intensities of these reflections exhibit a marked and progressive increase [28, fig. 3], as
expected from our model (figure 5b).

For n-hexadecane/urea, it is reported [12] that the main reflections with h + k odd first appear abruptly
at Tc1 ≈ 150 K, whereas the intensities of the satellite reflections with h + k odd grow progressively at
temperatures below about 130 K [12, fig. 11]. Significantly, these observations are also in qualitative
agreement with our model (figure 5b), but with the roles of Q1 and Q2 reversed compared to the situation
discussed above for n-nonadecane/urea. Thus, for n-hexadecane/urea, Q2 must be considered as the
driving order parameter instead of Q1 when the coupling occurs as (Q2)2S5 and (Q2)2es rather than as
(Q1)2S5 and (Q1)2es.
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Figure 6. Schematic representation, viewed along the tunnel axis (c-axis), of the orientations of the n-alkane guestmolecules in phases
I and II of the n-nonadecane/urea and n-hexadecane/urea inclusion compounds. The orientations of the guest molecules, projected onto
theab-plane, are shownas arrows. Inphase I, theguestmolecules are equally distributedamong six energetically equivalent orientations.
In the initial state of phase II for n-nonadecane/urea (state A), herringbone ordering of the guest molecules is partially achieved, with
the lengths of the arrows symbolizing the relative probability of different orientations. Guest molecules displaced by+δg/2 along the
tunnel axis are shown as blue arrows and guest molecules displaced by−δg/2 are shown as red arrows. In the initial state of phase II for
n-hexadecane/urea (state B), complete ‘herringbone’ ordering of the guest molecules is achieved. In the final state of phase II for both
n-nonadecane/urea and n-hexadecane/urea, herringbone ordering is achieved and the guest molecules adopt the same displacements
along the tunnel axis as in state A.

Our analysis demonstrates that two different contributions govern the intensities of the main
reflections with h + k odd and the intensities of the satellite reflections with h + k odd, in relation to
the two-order parameters Q1 and Q2. Hence, we propose that the intensity of the satellite reflections
is mainly associated with the T′

z zone boundary sliding mode polarized along the c-axis (Q1), as it is
related to the incommensurate properties of the composite crystal along the tunnel axis, and we propose
that the intensity of the main reflections is essentially governed by the pseudo-spin coordinate S′

6 (Q2),
as it is responsible for the commensurate ‘herringbone’ ordering of the n-alkane guest molecules in the
aobo-plane. Thus, for n-nonadecane/urea, it turns out that the zone boundary sliding mode T′

z (Q1)
first condenses at Tc1 together with the pseudo-spin coordinate S5, creating the spontaneous strain
es, while the pseudo-spin coordinate S′

6 (Q2) is almost inactive. As a result, orientational ordering of
the n-nonadecane guest molecules is partially achieved due to S5 and a small contribution of S′

6 (i.e.
Q1 >> Q2), whereas the anti-translations of the n-nonadecane guest molecules along the tunnel direction
have already condensed, resulting in the intermediate ‘state A’ of phase II schematized in figure 6.
Below the ‘crossover’ temperature T2, S′

6 (Q2) then condenses to achieve the final state of phase II with a
complete ‘herringbone’ orientational ordering of the n-nonadecane guest molecules.

In the case of n-hexadecane/urea, for which the roles of Q1 and Q2 are reversed, the pseudo-
spin coordinate S′

6 (Q2) first condenses at Tc1 together with S5, thus achieving complete ‘herringbone’
ordering of the n-hexadecane guest molecules, while T′

z (Q1) is almost inactive (i.e. Q2 >> Q1), resulting
in the intermediate ‘state B’ of phase II schematized in figure 6. Then, below the ‘crossover’ temperature
(T1 in this case), the zone boundary sliding mode T′

z (Q1) condenses to give the final state of phase II
(figure 6).

Clearly, the difference between the n-nonadecane/urea and n-hexadecane/urea inclusion compounds
may be interpreted in terms of differences in the coupling forces between Q1, Q2, S5 and es.

5. Concluding remarks
Based on a wide range of published data relating to structural phase transitions in the
incommensurate n-nonadecane/urea and n-hexadecane/urea inclusion compounds, and based on
symmetry considerations, we have identified the order parameters necessary to explain the I ↔ II ↔ ‘III’
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phase sequence reported recently in the literature for these materials. Specifically, the order parameters
are zone centre and zone boundary pseudo-spin coordinates, the coupling of which accounts for
‘herringbone’ orientational ordering of the n-alkane guest molecules and explains the transition from
the orientationally disordered hexagonal P6122(00γ ) phase I to the orientationally ordered orthorhombic
P212121(00γ ) phase II. Also involved are the macroscopic strain (e1–e2), which is responsible for the
orthorhombic distortion, and the so-called zone boundary sliding mode of the guest substructure relative to
the host substructure.

We have elaborated a simplified thermodynamic Landau potential taking into account the fact that
phases II and ‘III’ belong to the same (3 + 1)-dimensional superspace group P212121(00γ ). This model
can account qualitatively for the temperature dependence of the spontaneous strain and the temperature
dependence of the intensities of main reflections and satellite reflections. Hence, we have shown that the
reported II ↔ ‘III’ phase transition should actually be regarded as a ‘crossover’ between two competing
order parameters with the same symmetry: specifically, the zone boundary pseudo-spin coordinate and
the zone boundary sliding mode. So, we conclude that the herringbone orientational ordering and the
translational freezing of the n-alkane guest molecules take place in two steps within a single phase II,
with these two steps occurring in the reverse order on decreasing temperature for n-nonadecane/urea
and n-hexadecane/urea. Furthermore, our results show conclusively that the physical basis of the phase
transition mechanisms in these incommensurate composite materials does not require the introduction
of a higher-dimensional [(3 + 2)-dimensional] description [30] in superspace.

Finally, in the context of the (3 + 1)-dimensional description of the superspace group in phase II of
n-nonadecane/urea, the fact that satellite reflections are indexed with large values of l′ and m′ [31] may
appear unusual. However, we note that examples of incommensurate systems with high values of indices
for satellite reflections arise when the modulation function becomes discontinuous and a non-analytical
‘soliton regime’ can exist [60].
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