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ABSTRACT: The stability of Sn-Beta for the continuous upgrad-

ing of hexoses is improved dramatically upon the addition of small 

amounts of water to the methanol/sugar reaction feed, despite water 

itself being an unfavourable solvent. Herein, the molecular level 

origin of this effect is investigated. Spectroscopic studies of the cat-

alytic materials pre-, post- and during operation, with operando 

UV-Vis, 119Sn CPMG MAS NMR, DRIFTS-MS, TGA, TPD/O-

MS and porosimetry, are coupled to additional kinetic studies, to 

generate detailed structure-activity-lifetime relationships. In doing 

so, we find that the addition of water influences two particular pro-

cesses – fouling and active site modification. However, mitigating 

the second is the most crucial role of water. Indeed, in the absence 

of water, the loss of Sn-OH and Si-OH sites occurs. Notably, these 

changes in active site hydration correlate to deactivation and reac-

tivation of the system. The consequences of these findings, both for 

mechanistic understanding of the system in addition to the design 

of alternative regeneration methods, are also discussed.  

        Keywords: biomass upgrading, 

sugar conversion, zeolites, tin, in situ spectroscopy.  

Introduction 

The production of important commodity chemicals from renewable 

resources represents a focal point of contemporary chemical re-

search.1-5 Given their abundance and functionality, cellulose-based 

derivatives are the most viable source of carbon for the production 

of chemicals. Whilst several possible strategies exist for converting 

such feedstock into chemicals, selective catalytic methodologies 

offer several advantages, particularly in the context of process in-

tensification. Of particular interest is the conversion of highly func-

tionalised molecules such as glucose and fructose, which can be 

obtained following depolymerisation of cellulose. In this respect, 

the heterogeneous catalyst Sn-Beta (Sn- is of prime interest, hav-

ing been shown to be highly active and selective for a range of pro-

cesses such as i) fructose production via glucose-fructose isomeri-

sation;6-10 ii) the generation of renewable monomers such as alkyl 

lactates,11,12 furanics13,14 and methyl vinyl glycolate;15-16 iii) the H2-

free reduction of carbonyl compounds via catalytic transfer hydro-

genation;17 and the Baeyer-Villiger oxidation of (renewable) ke-

tones with H2O2 as oxidant.18-20  

Possessing an ability to operate continuously, without exhibiting 

excessive levels of deactivation, is one of the most important prop-

erties a promising heterogeneous catalyst must exhibit, in order to 

be suitable for industrialization.21,22 As such, study and optimiza-

tion of the stability of the catalyst under continuous conditions is 

paramount. In contrast to fossil feedstock, the highly oxygenated 

nature of sugar-based substrates necessitates processing in the liq-

uid phase. The addition of the solvent, alongside the chelating sub-

strates present in solution, can dramatically impact the stability of 

a solid material, particularly when elevated pressures and tempera-

tures are required for sufficient levels of macroscopic performance 

to be achieved.23,24 As such, despite the significant interest in cata-

lytic sugar upgrading, development of robust catalytic materials ca-

pable of continuous operation has lagged behind, prohibiting 

greater intensification. 

Recently, we demonstrated that dramatic improvements to the sta-

bility of Sn- during both glucose-fructose isomerisation, and the 

conversion of fructose to methyl lactate, could be achieved by add-

ing small quantities of water to the conventional sugar/methanol 

feed, despite water itself being highly unfavourable as a solvent.25 

In fact, upon the addition of water (1-10 wt. %) to the feed, reactiv-

ity was found to increase by a factor of 2.5, and catalyst stability 

improved by one order of magnitude. Combined, these permitted 

continuous operation for up to 57 days without major losses in ac-

tivity to be achieved.25  

Herein, we investigate the molecular level origin of this surprising 

effect. Spectroscopic studies of the catalytic materials pre-, post- 

and during operation, with operando UV-Vis, 119Sn CPMG MAS 

NMR, DRIFTS-MS, TGA, TPO-MS and porosimetry, are coupled 

to additional kinetic studies, to generate detailed structure-activity-

lifetime relationships. These studies reveal that the addition of wa-

ter primarily influences two distinct deactivation mechanisms. 

Firstly, its presence in the solution minimises the accumulation of 

carbonaceous residue within the pores of the zeolite, diminishing 

the extent of fouling. Additionally, water also prohibits loss of hy-

dration of the isomorphously substituted Sn and Si atoms. Studies 

reveal that minimising the second of these processes is the domi-

nant role of water, and that minimised fouling is, at most, only par-

tially responsible for improved stability. The consequences of these 

findings, both with respect to mechanistic understanding of the sys-

tem, in addition to the development of novel catalyst regeneration 

protocols, are also presented.   

 

Results and Discussion 

Kinetic observations. The continuous performance of Sn-, con-

taining between 2 and 10 wt. % Sn (henceforth denoted XSn- 

where X represents the loading in wt. %) was examined for the low 

temperature isomerisation of glucose to fructose (henceforth de-

noted GI) under benchmarked conditions.25,26,27 To elucidate the 



 

impact of water, reactions were performed both in pure methanol 

(MeOH), and a mixture of water and methanol (10:90 w/w, hence-

forth denoted H2O:MeOH). In contrast to previous studies,25 all ki-

netic experiments were performed on undiluted catalyst samples, 

pressed and sieved to 63-75 m, in order to aid spectroscopic study 

of the ex reactor samples by removing the typically employed dil-

uent material (SiC). As can be seen (Table 1, Figure S1), the addi-

tion of small amounts of H2O to MeOH significantly improves the 

stability of Sn- at both high and low Sn loadings, with the rate of 

deactivation (kd)28 decreasing by a factor of six following its addi-

tion to the feed in both cases. These studies thus reveal that in ad-

dition to being observed in two different catalytic systems (GI and 

methyl lactate production25), the positive influence of water is ob-

served irrespective of the precise Sn loading of the catalyst (2-10 

wt. % Sn), further indicating that similar catalytic chemistry occurs 

in the material even at elevated loadings, in line with our previous 

research.25  

 

Table 1. Rate of deactivation of 2Sn- and 10Sn- during 

continuous glucose isomerization in MeOH or H2O:MeOH.  

 Rate of deactivation / Kd (X.h-1) 

Catalyst MeOH H2O:MeOH 

10Sn- 0.016 0.0026 

2Sn- 0.028 0.005 

Rate of deactivation calculated by the Levenspiel method.28  

 

Characterisation of textural properties. To elucidate the mo-

lecular level origin of the water effect, structure-activity-lifetime 

relationships were generated, primarily for samples of 10Sn- fol-

lowing operation in MeOH or H2O:MeOH for 50-60 h. Over this 

time period, the catalyst exhibited approximately 55 and 5 % loss 

of activity in MeOH and H2O:MeOH, respectively. Since the cata-

lyst retains crystallinity during this period of operation,25,26 prelim-

inary characterisation studies of the undiluted, ex reactor samples 

were performed with TGA, TPO-MS and 13C MAS NMR. TGA 

(Figure S2) and TPO-MS (Figure 1, Left) studies indicate that mul-

tiple species are lost during thermal treatment of the used catalytic 

samples, with both methanol and CO2 detected during analysis of 

the effluent. In terms of the CO2 released, control experiments per-

formed by solvothermally treating the catalyst in MeOH and H-

2O:MeOH for identical periods of time indicate that a large fraction 

of these residues arise from the solvent alone (Figure S3). This 

agrees well with 13C MAS NMR analyses, which indicate that only 

one detectable resonance ( = 49.8 ppm) is observed in all used 

samples, characteristic of retained methanol (Figure 1, Right). Ac-

counting for the fact that each retained sugar molecule provides six-

times more CO2 during TPO, and that only one resonance is ob-

served by MAS NMR, it is evident that the major species retained 

in the catalyst after reaction arise from the solvent. Even so, it is 

clear that that the total type and quantity of this retained carbon is 

diminished when water is co-added to the reaction feed.  

Given that pore fouling is an established form of Sn- deactiva-

tion,29 it is possible that the decrease in the quantity of carbona-

ceous residues in the co-presence of water may minimise the con-

tribution of fouling to deactivation. Consequently, porosimetry 

analysis of the partially deactivated samples was also performed 

(Table 2). Interestingly, both samples exhibit a loss of porosity fol-

lowing continuous operation. However, a direct correlation be-

tween remaining porosity of the sample and the extent of activity 

loss is not evident, as both samples lose approximately 15-25 % 

pore volume during this operational period. Although it cannot be 

ruled out that deactivation arises from the retention of a specific 

type of residue, and/or blockage of a particular type of active site, 

these measurements already suggest that minimised pore fouling is 

not the dominant role of water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (Left) TPO-MS measurements from Sn- following re-

action in MeOH and H2O:MeOH. The evolution of MeOH and CO2 

are displayed. (Right) 13C MAS NMR analysis of Sn- following 

GI in MeOH and H2O:MeOH.  

 

Table 2. Porosity data for various stannosilicate catalysts prior 

to, and following, continuous operation for GI.  

Entry Catalyst SSA 

(m2 g-1) 

Vmicro 

(cm3 g-1) 

Activity 

lost (%) 

1 10Sn- pelletized 

(63-75 m) 

351 0.226 - 

2 10Sn- used in  

MeOH 

279 0.178 55 

3 10Sn- used in 

H2O:MeOH 

294 0.192 5 

Porosity data determined by N2 isotherms; Brunauer-Emmett-

Teller surface area (SBET) calculated from BET method, and mi-

cropore volume (Vmicro) derived from the t-plot method.  

 

Site selective spectroscopic methods. In addition to pore 

fouling, the loss and/or reorganisation of active sites is also a pri-

mary cause of zeolite deactivation. To gain further insight regard-

ing the impact of water, site selective spectroscopic studies were 

thus performed. Given its sensitivity to the active sites of the cata-

lyst, in addition to other chromophoric species that could be formed 

during the reaction, UV-Vis spectroscopy represents a powerful 

method of gaining insight into the impact of water.30 However, to 

maximise the scientific rigour of the analysis, UV-Vis analysis was 

performed in operando, following development of a continuous re-

actor capable of permitting UV-Vis spectra to be collected through-

out continuous operation of the catalyst (so called operando spec-

troscopy).31-35 Notably, measuring the absorption spectra in oper-

ando permits the rate of evolution of each band to be correlated 

against real kinetic performance. Importantly, the kinetic data ob-

tained from this reactor was identical to that obtained for the same 

system in a conventional reactor (Figure S4). To aid comparison, 

spectra are shown in “difference” mode, background subtracted to 

the spectra of the fresh catalyst recorded at the beginning of each 



 

reaction. Accordingly, positive signals represent absorption fea-

tures gained during the reaction, whilst negative signals represent 

those features lost during reaction. Preliminary control experi-

ments, performed by treating Sn- and dealuminated  with various 

reactants under otherwise operational conditions for 1 h on stream, 

revealed the following: (1) All chromophoric changes were related 

to Sn i.e. in the absence of Sn, no absorption changes were ob-

served; (2) Interaction between Sn and pure methanol results in the 

formation of two positive absorption features (260 nm and 315 nm), 

and a negative absorption signal at 223 nm; and (3) interaction be-

tween Sn and glucose results in absorptions at 341 and 440 nm 

(Figure 2). We note that the contact time in each reaction was ad-

justed so that both systems presented an initial conversion of ± 40 

%, to ensure both reactions were monitored over similar stages of 

the reaction coordinate.21 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Control samples performed for assignment of UV-Vis 

spectra, achieved by dosing 10Sn- and dealuminated  with pure 

methanol (MeOH), methanol/glucose (MeOH/G) and metha-

nol/water/glucose (MeOH/H2O/G) solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Difference UV-Vis spectra of 10Sn- during GI in (top) 

MeOH, and (bottom) H2O:MeOH. Spectra were recorded in oper-

ando (110 °C, 10 bar backpressure, XGLU(0) = 40 %).  

 

Figure 3 presents the difference spectra of 10Sn- during GI in 

MeOH (top) and H2O:MeOH, by collection of the absorption spec-

tra in operando. As expected from control experiments, the 300-

450 nm region rapidly increases in absorbance during the very early 

stages of both reactions, due to the interactions between Sn-metha-

nol (315 nm) and Sn-glucose (341, 440 nm). Interestingly, intensity 

in this region is slightly higher when water is present, possibly in-

dicating preferential transport of glucose to Sn in the co-presence 

of water. In MeOH, intensity above 350 nm diminishes after ap-

proximately 10 h on stream, where as in 10:90 H2O:MeOH, the in-

tensity remains largely consistent until longer times on stream. The 

lower energy Sn-glucose feature (440 nm) is also present at the very 

early stages of both catalytic reactions. However, its intensity di-

minishes rapidly in both systems, particularly so in pure methanol.  

An obvious difference in the high-energy region of both systems is 

also evident. Indeed, whilst intensity in the high energy region 

(210-300 nm) remains relatively constant in H2O:MeOH, a de-

crease in intensity at 223 nm and an increase in intensity at 260 nm 

is observed when the reaction is performed in MeOH. Interestingly, 

the degree of change in this region also correlates to time on stream 

in both systems, remaining relatively consistent in H2O:MeOH, but 

gradually increasing in magnitude throughout the operational pe-

riod in MeOH as the catalyst suffers deactivation.  

 

 

 

 

 

 

 

 

 

 

Figure 4. (Left) Difference UV-Vis spectra of 10Sn- during GI in 

MeOH and H2O:MeOH at 25 h on stream, and (Right) Relative 

performance of 10Sn- for GI in MeOH and H2O:MeOH at 25 h.  

 

To better compare the impact of these changes, particularly with 

respect to kinetic performance, the difference spectra of each reac-

tion, collected at 25 h on stream, is presented in Figure 4 Left, 

alongside the relative performance of the catalyst in both systems 

at that same point in time (Figure 4, Right). When correlated to the 

performance of the catalyst over both operational periods (Figure 

3), in addition to the relative performance of the catalyst in both 

solvents at one fixed point in time (Figure 4), it is clear that only 

two of the changes correlate to loss of activity. These include the 

change of intensity in the high energy region (decrease at 223 nm, 

increase at 260 nm), in addition to the decrease in intensity between 

350-400 nm. Crucially, the absence of water is essential for these 

spectral changes to occur, and each change occurs at similar time 

periods of the reaction in MeOH.  

As control studies indicate that the changes in the high energy re-

gion arise from interaction of the catalyst with pure methanol (Fig-

ure 2), the ability of the solvent alone to diminish the activity of 

10Sn- was investigated. To do so, GI was performed after sol-

vothermally treating 10Sn- in pure methanol for 24 h prior to op-

eration i.e. glucose was introduced into the feed after treating the 

catalyst in methanol for 24 h at 110 °C and 10 bar of backpressure. 

As can be seen (Figure 5), the starting conversion obtained after 



 

treating the catalyst in methanol for 24 h (18 %) matches the con-

version value obtained after continuous operation of the catalyst 

over the same period of time, even though no glucose has passed 

over the catalyst during the first 24 h. This strongly indicates that 

changes occurring to Sn4+ due to the solvent, and not factors related 

to the presence of substrate, are the primary reasons for catalyst 

deactivation.  

 

 

 

 

 

 

 

Figure 5. Catalytic performance of 10Sn- for GI in MeOH as a 

fresh catalyst (black squares) and after a 24 h pre-treatment period 

in methanol.  

 

The high energy region of the UV-Vis spectra is related to the lig-

and-to-metal charge transfer (LMCT) bands of the Sn4+ sites of the 

catalyst.36 Hence, changes in this spectral region relate to changes 

to the coordination sphere of Sn4+, possibly through ligand ex-

change, and/or changes in its speciation, such as its agglomeration 

into oxidic particles. Thus, to better understand the changes that 

occur to the Sn sites of the zeolite during operation, 119Sn MAS 

NMR experiments were performed.37-38 In line with recent devel-

opments, spectra were recorded by Carr-Purcell-Meiboom-Gill 

(CPMG) echo-train acquisition methods, as exemplified by the 

Ivanova group.39,40 Due to the signal enhancements made possibly 

by CPMG methods, spectra could be recorded on materials con-

taining naturally abundant quantities of Sn. All ex reactor samples 

were measured without prior heat treatment, in order to preserve 

integrity of the samples following operation, and were thus com-

pared to fresh samples also in their hydrated forms.  

Figure 6 Left presents the direct excitation CPMG (DE-CPMG) 
119Sn MAS NMR spectrum of 10Sn- prior to reaction (a), and fol-

lowing 50 h of reaction in MeOH (b) and H2O:MeOH (c). Given 

differences in t1 relaxation times, precise quantification of the per-

centage of each species is not possible. Indeed, we note that meas-

urement of samples with a recycle delay time of only 2s dramati-

cally under-represents the quantity of isomorphously substituted Sn 

(Figure S5). However, systematic comparison prior to, and follow-

ing reaction, still allows a (semi)-quantitative insight of the changes 

in speciation that occur, provided identical acquisition methods are 

employed.    

Four dominant resonances are observed in the fresh catalyst, at 

chemical shifts of -705, -655, -600 and -541 ppm. The presence of 

multiple signals indicates the presence of multiple Sn species, and 

is a consequence of the high Sn loading of the sample (10 wt. % 

Sn). In fact, the signals at -541 and -600 ppm are indicative of pen-

tacoordinated Sn and extra-framework (inactive) SnOx species, re-

spectively,40 which we have previously demonstrated to be specta-

tors during catalytic operation.41 As further evidence of this, we re-

fer to Table 1 and Figure S1, which demonstrate the same kinetic 

phenomena in the presence of water is observed irrespective of the 

loading of Sn employed. In addition to these signals, two major 

resonances at -655 and -705 ppm are also observed. Resonances at 

these chemical shifts are typically assigned to the framework Sn 

sites of the catalyst in their hydrated form i.e. octahedral, frame-

work Sn sites.42-44 However, as the precise chemical shift of these 

species depends on multiple factors, including T-site occupation, 

degree of Sn, the number and type of proximal defects, in addition 

to the exact method of analysis, we simplistically treat both reso-

nances as one type of site, that being octahedrally coordinated 

framework Sn4+ sites in a hydrated state. Notably, analysis of 1Sn-

, possessing only 1 wt. % Sn but exhibiting a two-fold higher turn-

over frequency i.e. activity per gram of Sn,41 indicates that the spe-

cies responsible for the signal at -705 ppm is likely the most im-

portant site, as the relative intensity of this signal dominates at 

lower loadings when the highest levels of TOF are obtained (Figure 

S6). 

Following continuous operation in MeOH (b) and H2O:MeOH (c), 

only minor changes to the Sn sites are observed by DE-CPMG (Fig-

ure 6, Left). Most notable amongst these is the relative growth in 

intensity for the -600 ppm signal, and a small increase in the rela-

tive ratio of the -655 to the -705 ppm signal. These indicate the 

formation of some additional, inactive, SnOx sites, in addition to 

minor modification to the T sites of the catalyst, respectively. Alt-

hough it is not possible to quantify the extent of this restructuring 

within each particular sample (Vide Supra), it is evident that these 

changes are almost identical in both systems, despite the dramatic 

differences in relative activity after 50-60 h on stream. Hence, these 

changes clearly do not correlate to decreased performance, which 

is much more dramatic in MeOH. This also indicates that the for-

mation of extra-framework SnOx is not the only reason behind the 

increase in absorption at 260 nm during continuous operation in 

MeOH (Figure 4), as this absorption signal does not form during 

continuous operation in H2O:MeOH despite a similar amount of 

SnOx forming during this reaction. Taken together, DE-CPMG in-

dicates that the same types of Sn species are mainly present in the 

catalytic material after reaction regardless of the choice of solvent. 

This rules out dramatic changes to the Sn site speciation as being 

the primary reason for deactivation.  

 

 

 

 

 

 

 

 

Figure 6. (Left) 119Sn DE-CPMG MAS NMR spectra of 10Sn- 

prior to (a) and following reaction in MeOH (b) and H2O:MeOH 

(c). (Right) 119Sn CP-CPMG MAS NMR spectra of 10Sn- prior to 

and following reaction in MeOH and H2O:MeOH. 

 

In contrast, clear differences in both ex reactor samples can be 

identified when cross polarisation (1H-119Sn, CP-CPMG) methods 

are employed (Figure 6, Right). In the fresh sample, both signals 

between -655 and -700 ppm are clearly amenable to cross polarisa-

tion, indicating both Sn species have protons in their vicinity. How-

ever, a clear decrease in the signal at -705 ppm is observed follow-

ing reaction in pure methanol. This indicates that the proton(s) in 

the vicinity of this particular Sn species are lost during reaction. 

Notably, this effect only occurs when water is absent, since the -

DE CP 



 

705 ppm signal remains present following reaction in H2O:MeOH, 

where very little deactivation is observed. Considering that the rel-

ative ratio between the -655 and -705 ppm signals does not change 

dramatically following both reactions, as evidenced by DE-CPMG, 

complimentary CP-CPMG studies indicate that it is the environ-

ment that surrounds the Sn sites that changes in the absence of wa-

ter. As the -705 ppm signal is dominant at lower loadings (Figure 

S6), when the highest levels of intrinsic activity are observed, 

changes to the environment of this species are likely to lead to con-

sequences for kinetic performance.  

 

 

 

 

 

 

 

 

Figure 7. 29Si MAS NMR of Sn-, prior to reaction, and following 

GI in MeOH and 10:90 H2O:MeOH. 

 

According to previous studies, the formation of Sn-OH species fol-

lowing interaction of Sn- with water, is also accompanied by the 

formation of Si-OH groups, particularly at the reaction tempera-

tures employed in this study.45 In good agreement to this, it is no-

table that both the fresh catalyst, and used sample following reac-

tion in H2O:MeOH, exhibit Q3 resonances (-103 ppm) in the 29Si 

MAS NMR spectra, indicating the presence of Si-OH groups (Fig-

ure 7).46 However, a much lower signal at this chemical shift was 

observed in the used sample obtained after reaction in MeOH. The 

absence of this signal indicates that the absence of water also per-

mits the loss of Si-OH to occur, analogously to the loss of the Sn-

OH. Given that the loss of these protons is only observed following 

substantial deactivation of the catalyst in pure methanol, it is clear 

that keeping hydration in the active site environment by maintain-

ing the presence of some water is essential for stability to be main-

tained. Since water is known to more readily adsorb to Sn- com-

pared to other substrates, such as NH3, alcohols and acetonitrile,47-

49 this may account for the positive effect of water even when pre-

sent at low levels (1 wt. %).25   

The loss of Si-OH and Sn-OH protons could be attributed to ligand 

exchange at the active site i.e. the displacement of coordinated wa-

ter for methanol and/or alkoxylation of a putative Sn-OH bond with 

methanol, or alternatively to (re-)condensation of the structure, 

with the (re-)formation of Sn-O-Si bonds. Although no concrete 

methodologies for identifying Sn-OH exist, and hence direct dif-

ferentiation of these pathways is not feasible, spectroscopic studies 

with DRIFTS reveal the formation of metal-alkoxylates to be at 

least partially responsible for the loss of signal (Figure 8). Indeed, 

treating Sn- with various alcohol probe molecules (methanol, d4-

methanol, ethanol, isoproponal) at 110 °C results in the formation 

of new vibrational signals that are sensitive both to the presence of 

Sn, in addition to the reduced mass of the R-OH probe molecule 

(Figure 8 Right, Figures S7-S8). Whilst this observation does not 

rule out a contribution from framework condensation (Sn-O-Si for-

mation) during the reaction, it clearly indicates that the formation 

of Sn-alkoxy species is at least partly responsible for the loss of Sn-

OH and Si-OH species. We note that such species were previously 

hypothesised by the group of Roman-Leshkov.50 Notably, flushing 

the DRIFTS cell with water following formation of the Sn-alkoxy 

species results in its removal from the DRIFTS spectrum, even 

when a large amount of physisorbed methanol is still present in the 

sample (Figure S9). These observations indicate both the reversi-

bility of alkoxy formation, in addition to the preferential binding of 

water over methanol. 

 

 

 

 

 

 

 

 

Figure 8. (Left) DRIFTS spectra of Sn- following dosing with 

methanol at 110 °C. (Right) Influence of molecular weight of the 

R-OH probe on the final vibrational wavenumber of the new vibra-

tion.    

 

Kinetic confirmation of active site hydration effects. Oper-

ando UV-Vis, 119Sn CPMG MAS NMR, 29Si MAS NMR and 

DRIFTS studies indicate that deactivation of the catalyst in the ab-

sence of water is accompanied by the loss of Sn-OH and Si-OH 

species, at least partly due to ligand exchange at the active site. The 

loss of these sites could lead to deactivation through two distinct 

means. Firstly, maintaining hydration at the active site and its vi-

cinity may simply favour the transportation of sugars to and from 

the active site (transport hypothesis). An alternative role of hydra-

tion may be the stabilisation of a more intrinsically active Sn site 

(kinetic hypothesis). For example, several studies have reported 

that the open form of Sn-, where one or more Sn-OH and Si-OH 

bonds are present due to partial hydrolysis of the framework, is the 

most active form of the catalyst.51 In fact, theoretical studies have 

hypothesised that the temperature dependence of Sn-increases by 

approximately 30 kJ mol-1 when the site is fully closed, due to the 

loss of proximal Si-OH species that can contribute to H-bonding of 

the substrate.52,53  

To conclusively differentiate between the kinetic and transport hy-

potheses, an additional series of kinetic experiments focused on de-

termining the temperature dependence of the catalyst at various 

stages of deactivation was performed. If the system becomes lim-

ited by the uptake of glucose, the reaction should exhibit very low 

temperature dependence, indicative of transport limitations. In con-

trast, the formation of a less active Sn site should result in an in-

crease in the temperature dependence of the system, relative to the 

fresh catalyst. Finally, no change in the temperature dependence of 

the system would simply indicate that the same active sites are pre-

sent, but that their concentration is lower, due to the formation of 

inactive (spectator) Sn species. Figure 9 Left, presents the effective 

temperature dependence of the fresh catalyst, and that of the cata-

lyst following solvothermal treatment in methanol for 24 h. As can 

be seen, following pre-treatment of the sample in pure methanol for 

24 h, which induces approximately 35 % deactivation (Figure 5), 

the apparent temperature dependence of the reaction increases sub-



 

stantially, from 39 to 67 kJ mol-1 (Figure 9, Left). The increase cal-

culated from experiment (28 kJ mol-1) is in excellent agreement to 

the increase predicted from theory to occur following the loss of 

cooperating Sn-OH and Si-OH sites, further indicating the loss of 

hydrated active sites.52,53  

 

 

 

 

 

 

 

 

Figure 9. (Left) Apparent temperature dependence of fresh 10Sn-

, and 10Sn- pre-treated in pure methanol for 24 h prior to opera-

tion. A contact time of 0.19 minute was employed throughout both 

experiments, and temperatures of 100, 110 and 120 °C were used. 

(Right) Influence of K2CO3 on the selectivity to mannose (epimer-

isation product) during GI at 110 °C in pure methanol. 10Sn-, and 

10Sn- pre-treated in pure methanol for 24 h prior to operation, 

were used as catalysts. 

 

To further verify the hypothesis that it is the loss of Si-OH and Sn-

OH that results in diminished performance, the influence of alkali 

exchange was examined (Figure 9, Right). Indeed, several experi-

mental studies have demonstrated that ion-exchange of Sn-with 

alkali salts can dramatically impact its selectivity performance. For 

GI, ion-exchange has been shown to result in switch in reaction se-

lectivity, with epimerisation to mannose dominating in the presence 

of alkali metals, as opposed to the classical isomerisation to fruc-

tose in the absence of such additives.54,55 Likewise, ion-exchange 

at these positions during ML production results in an increased se-

lectivity to retro-aldol product formation.12 As can be seen (Figure 

9, Right), whereas the presence of K2CO3 results in a dramatic in-

crease in mannose selectivity for the fresh catalyst, the methanol-

treated sample is not modified by the presence of alkali (Table S1-

S2). This strongly indicates the absence of ion-exchangeable Si-

OH and Sn-OH species following partial deactivation of the cata-

lyst, in excellent agreement to the spectroscopic and kinetic evi-

dence.  

 

Regeneration studies. From the spectroscopic and kinetic ex-

periments presented above, it is clear that deactivation of the cata-

lyst relates to the loss of Sn-OH and Si-OH species in the absence 

of water. Since the dissociative adsorption of water, and the con-

current formation of Sn-OH and Si-OH species, is reportedly rapid 

when Sn- is exposed to water,45 it was hypothesised that activity 

should be restored in deactivated samples through simple sol-

vothermal treatment of the sample (low temperature regeneration). 

According to this hypothesis, the loss of Si-OH and Sn-OH should 

be reversible by re-introducing water into the feed, without the need 

for classical high temperature thermal treatment being performed. 

To probe this, a variety of washing protocols on partially deac-

tivated samples of Sn- were performed, following an initial cycle 

of GI in methanol for 60 h. As can be seen (Figure 10), solvother-

mally treating a partially deactivated sample of 10Sn- allows ini-

tial catalytic activity to be fully restored. Interestingly, the regener-

ation is sensitive to the solvent of choice, in addition to the time of 

treatment (12 h vs. 20 h). Indeed, whereas a solution of H2O:MeOH 

is able to fully restore catalytic activity within 20 h, employing 

methanol alone results in no recovery being achieved. This is in 

agreement to conclusion that it is methanol that is the primary cause 

of deactivation. Interestingly, when water alone is employed as 

wash solution, no regeneration is observed, even when the time of 

treatment is adjusted so that the same total quantity of water is 

flowed over the partially deactivated catalyst (2 h versus 20 h). This 

clearly emphasises the need to optimise the concentration of water, 

in order to balance active site recovery against amorphisation of the 

framework, which is known to occur in bulk water at these temper-

atures.26  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Low temperature, solvothermal regeneration of Sn-, 

following an initial cycle of GI in pure methanol. Second cycles 

were also performed in pure methanol.  

 

Table 3. Porosimetry data for various Sn- catalysts prior to, 

and following, solvothermal regeneration.  

Porosity data determined by N2 isotherms; Brunauer-Emmett-

Teller surface area (SBET) calculated from BET method, and mi-

cropore volume (Vmicro) derived from the t-plot method.  

 

To gain a better understanding of the regeneration process, and 

hence to gain additional indirect insight regarding the mecha-

nism(s) of deactivation, spectroscopic studies of the catalyst fol-

lowing regeneration were performed (Table 3). Porosimetry re-

vealed that washing the sample in H2O:MeOH restored a large frac-

tion of pore volume, indicating removal of the carbonaceous resi-

due. This is in good agreement to the observation that the presence 

of water in the feed results in decreased retention of residue (Figure 

1, Table 2). Notably, although regeneration of the catalyst does not 

occur by treating the sample in MeOH alone, a large fraction of the 

Entry Catalyst Vmicro 

(cm3 g-1) 

1 Fresh 10Sn- pellet  0.226 

2 10Sn- used in pure MeOH for 50 h 0.178 

3 used 10Sn- after washing in H2O:MeOH 0.218 

4 used 10Sn- after washing in MeOH 0.198 



 

lost pore volume is still recovered by this treatment. The fact that 

carbonaceous residue is removed without regeneration being ob-

served further indicates that the accumulation of such residue, and 

pore fouling in general, is not the primary cause of deactivation, 

and that the removal of such residue is not the primary role of wa-

ter.  

To verify whether solvothermal regeneration of the catalyst results 

in restoration of the hydrated state of the catalyst, additional 119Sn 

CP-CPMG MAS NMR and UV-Vis measurements on the regener-

ated sample were performed (Figure 11). As can be seen, regener-

ation of the sample in H2O:MeOH results in regeneration of both 

the signal at -705 ppm in the 119Sn CP-CPMG MAS NMR spec-

trum, in addition to reversal of the high energy changes in the UV-

Vis spectra, both of which correlate to decreased kinetic perfor-

mance. We highlight that the ability to regenerate the catalyst with-

out resorting to classical high temperature (> 550 °C) thermal treat-

ment also represents a major breakthrough, as solvothermal treat-

ment of the catalyst means the reactor does not to be drained prior 

to regeneration, reduces overall energy input, and negates the re-

quirement for high temperature heating provision.  

 

 

 

 

 

 

 

 

Figure 11. (Left) UV-Vis of 10Sn- deactivated in MeOH (purple 

dotted line), 10Sn- deactivated in H2O:MeOH methanol (blue 

solid line) and following regeneration of 10Sn- in H2O:MeOH 

(grey dashed line).  (Right) 119Sn CP-CPMG MAS NMR spectra of 

fresh 10Sn- prior to (black), following reaction in pure methanol 

(purple) and following regeneration in H2O:MeOH (grey). 

 

Conclusions 

This study focuses upon elucidating the molecular level origin of 

how small amounts of water are able to mitigate deactivation dur-

ing the continuous conversion of sugars to chemicals. Spectro-

scopic studies of the catalytic materials pre-, post- and during- op-

eration, with operando UV-Vis, 119Sn and 29Si CPMG MAS NMR, 

DRIFTS-MS, TGA, TPO-MS and porosimetry, coupled with de-

tailed kinetic studies of these systems, reveal that the addition of 

water primarily influences the rate deactivation of Sn-Beta by two 

distinct mechanisms. Firstly, its presence in the solution minimises 

the accumulation of carbonaceous residue within the pores of the 

zeolite, minimising contributions from fouling. Additionally, its 

presence also minimises changes to the coordination sphere and the 

hydration state of isomorphously substituted Sn and Si. Combined, 

these studies reveal that minimising the loss of Sn-OH and Si-OH 

species is the dominant role of water, and that its addition to the 

feed maintains hydration of the active site environment. Although 

water also minimises fouling, this processes is, at most, only par-

tially responsible for improved stability. Based on these findings, 

novel regeneration protocols, based on solvothermal washing of de-

activated catalysts, are also presented. Given the benefits associ-

ated with regenerating samples without resorting to classical high 

temperature thermal treatment, future work will study the washing 

regeneration process in greater detail, with the aim of identifying 

its suitability as a replacement for conventional thermal regenera-

tion for other Sn- catalysed reactions.   

Experimental details 

Catalyst synthesis 

A commercial zeolite Al- (Zeolyst, NH4
+-form, Si/Al = 19) was 

dealuminated by treatment in HNO3 solution (13 M HNO3, 100 °C, 

20 mL g-1 zeolite, 20 hours). Solid-state stannation of dealuminated 

zeolite  was performed the procedure reported in reference 44, by 

grinding the appropriate amount of tin(II) acetate with the neces-

sary amount of dealuminated zeolite for 10 minutes in a pestle and 

mortar. Following this procedure, the sample was heated in a com-

bustion furnace (Carbolite MTF12/38/400) to 550 °C (10 °C min-

1 ramp rate) first in a flow of N2 (3 h) and subsequently air (3 h) 

for a total of 6 h. Gas flow rates of 60 mL min-1 were employed at 

all times. 

 

Kinetic studies 

Continuous GI reactions were performed in a plug flow, stainless 

steel, tubular reactor. The reactor was connected to an HPLC pump 

in order to regulate the reactant flow and allow operation at ele-

vated pressures. The catalyst was pelleted and particle size com-

prised between 63 and 77 μm were selected and placed in between 

two plugs of quartz wool. The catalyst was densely packed into a 

¼” stainless steel tube (4.1 mm internal diameter), and a frit of 0.5 

μm was placed at the reactor exit. The reactor was subsequently 

immersed in a thermostatted oil bath at the desired reaction temper-

ature. Pressure in the system was controlled by means of a back-

pressure regulator, typically set at 10 bar, in order to allow opera-

tions above the boiling temperature of the solvent. Aliquots of the 

reaction solutions were taken periodically from a sampling valve 

placed after the reactor and analysed by an Agilent 1260 Infinity 

HPLC equipped with a Hi-Plex Ca column and ELS detector and 

quantified against an external standard (sorbitol) added to the sam-

ple prior the injection. 

Solvothermal regeneration of the catalytic bed was performed by 

changing the reactor feed to the desired solvent or solvent mixture, 

which was flowed through the bed for a certain amount of time. 

The treatment was carried out at the same flow rate and the same 

temperature at which the reaction was performed (110 °C). Subse-

quently, the reactor feed was switch back to the reactant solution 

and a second cycle was performed. 

GI batch studies were performed in a pressurised Ace tubular glass 

reactor thermally controlled by a hot oil bath on an IKA hot plate. 

5 g of reactant solution (1 wt. % glucose in methanol), catalyst and 

K2CO3 (where required) were placed inside the reactor in order to 

fix the glucose/Sn and K+/Sn molar ratio to 50 and 0.5 respectively. 

Samples were periodically collected and analysed by HPLC as de-

scribed above. 

 

Catalyst Characterisation 

Specific surface area was determined from nitrogen adsorption us-

ing the BET equation, and microporous volume was determined 

from nitrogen adsorption isotherms using the t-plot method. Po-

rosimetry measurements were performed on a Quantachrome 

Quadrasorb, and samples were degassed prior to use (115 °C, 6h, 

nitrogen flow). Adsorption isotherms were obtained at 77 K. TGA 

analysis was performed on a Perkin Elmer system. Samples were 

held isothermally at 30 °C for 30 minutes, before being heated to 



 

550 °C (10 °C min-1 ramp rate) in air. TPO-MS measurements were 

performed on a home-made system formed by a Bruker Tensor II 

equipped with a Harrick praying mantis DRIFT cell, connected 

with a Hiden QGA Mass Spectrometer. A weighed amount of cat-

alyst was placed inside the DRIFT cell and its surface was con-

stantly monitored by the IR spectrometer. The cell was heated from 

30 to 550 °C (ramp rate 10 °C/min) and a constant flow of air was 

used throughout the experiment (10 mL min-1). The outlet of the 

cell was connected to a mass spectrometer for the online analysis 

of the effluent. Operando UV-Vis measurements were performed 

with a home made tubular reactor equipped with fibre optic UV-

Vis probe. UV-Vis measurements were performed with a light 

source (Ocean Optics DH-2000), spectrometer (Maya 2000 Pro, 

Ocean Optics) and a 600 µm UV-Vis fibre. The light was directed 

onto an optically transparent reactor column, located within a 

heated aluminium block. Ex situ UV-Vis were performed in a sim-

ilar manner, with the exception that the fibre was focused directly 

on the powder samples. MAS NMR analysis was performed at 

Durham University through the National solid-state NMR service. 

All the samples were non-enriched and were measured on a Bruker 

Avance III HD spectrometer at operating frequencies of 400, 100, 

149 and 79 MHz for 1H, 13C, 119Sn and 29Si, respectively. Typically, 

between 50-100 mg of solid sample was packed in a 4 mm rotor 

and spun at ± 12,000 Hz. For 119Sn MAS NMR, samples were 

measured by the CMPG method as described in references 39 and 

40. Spectra were acquired both in direct excitation and cross polar-

isation modes. Recycle delay times of 1 and 2 seconds was applied 

for 119Sn CP CPMG MAS NMR and 119Sn DE CPMG MAS NMR, 

respectively. DRIFT spectroscopy analyses were performed in Har-

rick praying mantis cell. The spectra were recorded on a Bruker 

Tensor Spectrometer over a range of 4000-650 cm-1 at a resolution 

of 2 cm-1. Alcohol adsorption studies with DRIFT spectroscopy 

were performed on the pre-treated zeolite powder (heated to 110 

°C for 30 min in nitrogen at 40 mL min-1 prior to adsorption). The 

alcohol was dosed by passing the gas stream through a saturator 

module. Samples were maintaining at 110°C during the experiment 

to simulate reaction conditions. Spectra were recorded after 20 min 

of absorption. 
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