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Abstract

Data assimilation, which relies on explicit knowledge of dynamical models, is a well-known1

approach that addresses models’ limitations due to various reasons, such as errors in input2

and forcing datasets. This approach, however, requires intensive computational efforts, es-3

pecially for high dimensional systems such as distributed hydrological models. Alternatively,4

data-driven methods offer comparable solutions when the physics underlying the models are5

unknown. For the first time in a hydrological context, a non-parametric framework is imple-6

mented here to improve model estimates using available observations. This method uses Takens7

delay-coordinate method to reconstruct the dynamics of the system within a Kalman filtering8

framework, called the Kalman-Takens filter. A synthetic experiment is undertaken to fully9

investigate the capability of the proposed method by comparing its performance with that of a10

standard assimilation framework based on an adaptive unscented Kalman filter (AUKF). Fur-11

thermore, using terrestrial water storage (TWS) estimates obtained from the Gravity Recovery12

And Climate Experiment (GRACE) mission, both filters are applied to a real case scenario13

to update different water storages over Australia. In-situ groundwater and soil moisture mea-14

surements within Australia are used to further evaluate the results. The Kalman-Takens filter15

successfully improves the estimated water storages at levels comparable to the AUKF results,16

with an average RMSE reduction of 37.30% for groundwater and 12.11% for soil moisture esti-17

mates. Additionally, the Kalman-Takens filter, while reducing estimation complexities, requires18

a fraction of the computational time, i.e., ∼8 times faster compared to the AUKF approach.19
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1. Introduction20

A precise study of terrestrial water storage (TWS) changes is essential to better un-21

derstand the spatio-temporal variations of water resources and their effects on the hydrological22

cycles. In this regard, hydrological models become valuable tools for simulating hydrological23

processes at global (e.g., Döll et al., 2003; Huntington, 2006; Coumou and Rahmstorf, 2012;24

van Dijk et al., 2013) and regional (e.g., Chiew et al., 1993; Wooldridge and Kalma, 2001;25

Christiansen et al., 2007; Huang et al., 2016) scales. These models are formulated based on26

physical/conceptual principles to represent ‘reality’ and are still being developed to accurately27

simulate all complex hydrological processes, including interactions between water cycle compo-28

nents (e.g., surface and sub-surface water exchange). These models, however, can be subject to29

various sources of uncertainties, e.g., errors in input and forcing data, and imperfect accounting30

for the physical underlying dynamics, such as those used to simulate evapotranspiration (van31

Dijk et al., 2011; Vrugt et al., 2013).32

Classically, data assimilation can be used to improve imperfect models by integrating avail-33

able observations with the underlying physical model. Many studies have implemented data34

assimilation techniques in the fields of ocean and atmospheric sciences (e.g., Bennett, 2002;35

Hoteit et al., 2002; Kalnay, 2003; Schunk et al., 2004; Lahoz, 2007; Zhang et al., 2012; Hoteit36

et al., 2012; Tardif et al., 2015; Zhao et al., 2017) and hydrology (e.g., Seo et al., 2003; Vrugt37

et al., 2005; Weerts and El Serafy, 2006; Rasmussen et al., 2015; Kumar et al., 2016; Girotto38

et al., 2016, 2017; Schumacher et al., 2018). Data assimilation is often used to improve model39

simulations of soil moisture (e.g., Entekhabi et al., 1994; Calvet et al., 1998; Montaldo et al.,40

2001; Reichle et al., 2002; De Lannoy et al., 2007, 2009; Kumar et al., 2009; Brocca et al., 2010;41

Renzullo et al., 2014; Kumar et al., 2015; Lievens et al., 2015; De Lannoy et al., 2015), TWS42

(e.g., Zaitchik et al., 2008; van Dijk et al., 2014; Tangdamrongsub et al., 2015; Schumacher43

et al., 2016, 2018; Khaki et al., 2017a, 2018a,b), evapotranspiration and sensible heat fluxes44

(e.g., Schuurmans et al., 2003; Pipunic et al., 2008; Irmak and Kamble, 2009; Yin et al., 2014),45

surface water and river discharge (e.g., Bras and Restrepo-Posada, 1980; Awwad et al., 1994;46

Young, 2002; Madsen and Skotner, 2005; Vrugt et al., 2006; Andreadis et al., 2007; Neal et al.,47

2009; Giustarini et al., 2011; Lee et al., 2011; McMillan et al., 2013; Li et al., 2015). Stan-48

dard data assimilation techniques have their limitations though, e.g., the general requirement49

of intensive computations for high dimensional systems in realistic applications (Tandeo et al.,50

2015). Furthermore, when a physical model (i.e., model’s underlying equations) is not available,51
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the application of a traditional data assimilation framework that relies on these equations for52

forecasting can be limited (see, e.g., Palmer, 2001; Reichle and Koster, 2005; Hersbach et al.,53

2007; Arnold et al., 2013).54

A number of studies employ data-driven (non-parametric) approaches to produce accurate55

statistical simulations (e.g., Sauer, 2004; Tandeo et al., 2015; Dreano et al., 2015; Hamilton et56

al., 2016; Lguensat et al., 2017). Hamilton et al. (2015) and Berry and Harlim (2016) considered57

the case when models are partially known. In other cases with completely unknown systems,58

e.g., no available information about the physics of the underlying models and correspondingly59

their equations, the application of data assimilation becomes rather complicated. Hamilton et60

al. (2016) developed a new model-free filter based on the non-parametric Takens approach and61

Kalman filtering when the physical model is not available. The main idea of Takens’ theorem62

is that the model equations can be replaced by a data-driven non-parametric reconstruction63

of the system’s dynamics. The filter implements Takens’ method for attractor reconstruction64

within the Kalman filtering framework, allowing for a model-free approach to filter noisy data65

(Hamilton et al., 2016). Takens method has been used in various studies for non-parametric66

time series predictions (see, e.g., Packard et al., 1980; Takens, 1981; Sauer et al., 1991; Sauer,67

2004). This technique replaced the model with a delay coordinate embedding scheme and has68

been shown by Hamilton et al. (2016) to not only obtain comparable results to a standard69

Kalman filter-based framework, but also may perform better when model errors are significant.70

A similar idea has been used by Tandeo et al. (2015) and Lguensat et al. (2017) to simulate the71

dynamics of complex systems using a non-parametric sampler. They applied an Analog Data72

Assimilation (AnDA) scheme that reconstructs the system’s dynamics in a fully data-driven73

manner. While AnDA does not require knowledge of the dynamical model, it assumes that a74

representative catalog of trajectories of the system is available. They show that the data-driven75

method performs well without using the physical model.76

The main motivation of this study, therefore, is to apply for the first time the Kalman-77

Takens method in a hydrological context and investigate its capability to enhance a hydrological78

model’s estimates. Its performance is then compared with that of a traditional data assimilation79

system. The motivation behind selecting the Kalman-Takens method is that it does not use the80

model’s equations, and requires less computational burden to predict high-dimensional systems81

compared to other existing methods (e.g., Hamilton et al., 2015; Tandeo et al., 2015; Berry and82

Harlim, 2016). This study extends the Kalman-Takens approach to enable its application to83
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a more complicated state observation transition systems, e.g., for a case of updating various84

variables (e.g., soil moisture and groundwater) using only TWS observations. The proposed85

scheme exploits model trajectories for these variables as the training data and is then applied to86

assimilate TWS data derived from the Gravity Recovery And Climate Experiment (GRACE)87

satellite mission into the hydrological system states over Australia for the period 2003–2013. It88

should be pointed out here that the use of model trajectory in this method, and the reliance89

of data-driven on data in general, results in updating observable state variables only. This,90

however, is different in a standard data assimilation, which can further update other variables91

subject to availability of the physical model.92

GRACE TWS data have been assimilated in many studies, where they have proved to93

be highly capable of improving the performance of hydrological models (e.g., Zaitchik et al.,94

2008; van Dijk et al., 2014; Eicker et al., 2014; Reager et al., 2015; Schumacher et al., 2018).95

Nevertheless, GRACE data assimilation has always been challenging due to the unique charac-96

teristics of its measurements, such as the coarser spatio-temporal resolution compared to most97

of the existing hydrological models (Khaki et al., 2017b). A successful data assimilation method98

should be able to account for these limitations in GRACE products while vertically spreading99

their information into various water compartments (see, e.g., Schumacher et al., 2016; Khaki100

et al., 2017b). Khaki et al. (2017a) showed that assimilating GRACE data can significantly101

improve the hydrological model performance over Australia (see also Khaki et al., 2017c; Tian102

et al., 2017). In order to benchmark the performance of the proposed data-driven technique, its103

outputs are compared to those of a standard data assimilation framework based on an adaptive104

unscented Kalman filter (AUKF, Berry et al., 2013). The results of both methods are evalu-105

ated against in-situ measurements, as well as through a synthetic experiment to fully investigate106

their efficiency in assimilating GRACE TWS data.107

The remainder of this contribution is organized as follow: datasets are presented in Section108

2, the filtering scheme described in Section 3 and the results discussed in Section 4 before109

concluding the study in Section 5.110

2. Model and Data111

2.1. W3RA112

The 1◦×1◦ version of the World-Wide Water Resources Assessment (W3RA;113

http://www.wenfo.org/wald/data-software/) model from the Commonwealth Scientific and In-114
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dustrial Research Organisation (CSIRO) is chosen for the study. The model is designed to115

simulate landscape water stores and describe the water balance of the soil, groundwater and116

surface water stores in which each cell is modeled independently of its neighbors (van Dijk, 2010;117

Renzullo et al., 2014). The model’s forcing includes daily meteorological fields of minimum118

and maximum temperature, short-wave radiation, and precipitation from Princeton University119

(Sheffield et al., 2006). The model state vector in our experiment is composed of storages of120

the top, shallow root and deep root soil layers, groundwater, and surface water for the period121

of January 2003 to December 2012.122

2.2. GRACE TWS123

For the same period, GRACE level 2 (L2) Stokes’ coefficients (up to degree and order124

90) and associated full error information are obtained from the ITSG-Grace2014 gravity field125

model (Mayer-Gürr et al., 2014). Three degree 1 coefficients (C10, C11, and S11) and degree 2126

and order 0 (C20) coefficient are replaced by those of Swenson et al. (2008) and that of Cheng127

and Tapley (2004), respectively. Further, we apply the DDK2 smoothing filter (Kusche et al.,128

2009) to mitigate a colored/correlated noise in the coefficients (see also Khaki et al., 2018c), and129

thereafter convert them into 1◦×1◦ TWS fields following Wahr et al. (1998). The mean TWS130

for the study period is taken from the W3RA model and is aggregated to the GRACE TWS131

change time series to reach absolute values related to W3RA (Zaitchik et al., 2008). Error132

information of ITSG-Grace2014 is used to construct an observation error covariance matrix133

(Eicker et al., 2014; Schumacher et al., 2016).134

2.3. In-situ measurements135

In-situ groundwater and soil moisture measurements are used to evaluate the perfor-136

mance of the proposed data assimilation framework. Groundwater data is provided from the137

New South Wales Government (NSW) within the Murray-Darling Basin, which includes 70%138

of Australia’s irrigated area, covers an area of over one million square kilometers, and extends139

over much of the central and south-eastern parts of Australia (Mercer et al., 2007). The data is140

rescaled to a monthly temporal scale to be consistent with GRACE and time series of ground-141

water storage anomalies. Considering that a specific yield for converting well-water levels to142

variations in groundwater storage (Rodell et al., 2007; Zaitchik et al., 2008) is not available, we143

use the value of 0.13 specific yield obtained from the range between 0.115 and 0.2 as suggested144

by the Australian Bureau of Meteorology (BOM) and Seoane et al. (2013).145
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Furthermore, in-situ soil moisture products are acquired from the moisture-monitoring net-146

work, known as the OzNet network (http://www.oznet.org.au/), over the Murrumbidgee catch-147

ment (Smith et al., 2011) and rescaled to the same temporal scale as above. The data contains148

long-term records of measured volumetric soil moisture at various soil depths at 57 locations149

across the Murrumbidgee catchment area. Soil measurements at 0–8 cm, the 0–30 cm, and 0–90150

cm layers are used to assess the estimated soil moisture results of the proposed assimilation151

framework. The results can be evaluated using representative soil moisture sites within the152

basin. Here, we use an analysis suggested by De Lannoy et al. (2007) to acquire the represen-153

tative soil moisture in-situ measurements (see other methods, in e.g., Famiglietti et al., 2008;154

Orlowsky and Seneviratne, 2014; Nicolai-Shaw et al., 2015). The method is based on relative155

differences dm,n for site m and time step n, which can be calculated as (De Lannoy et al., 2007),156

157

dm,n =
SMm,n − SMn

SMn

, (1)

where SMm,n is the soil moisture measurement at m and n, and SMn represents the spatially158

averaged soil moisture. Once dm,n is calculated for each site, the temporally average difference159

(d̄m) and its standard deviation (STD(dm)) are computed. The most representative site is then160

the one with d̄m and STD(dm) closer to 0.161

3. Methodology162

3.1. Adaptive Unscented Kalman Filter (AUKF)163

Consider the following nonlinear system,164

xt = f(xt−1) + vt−1, (2)

yt = h(xt) + ut, (3)

where f , the system dynamics, describes the evolution of state vector, x, over time (t) and h,165

the observation function, maps xt to the observations, yt. vt−1 represent the process noise,166

which is assumed to be Gaussian with mean 0 and covariance Q. ut indicates observation noise167

with covariance R, which is assumed to be known (see Section 2). In the present study, x168

consists of different water storages including top, shallow and deep soil water, vegetation, snow,169

surface, and groundwater storages while y represents the GRACE TWS data.170
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For nonlinear systems, the unscented Kalman filter (UKF) (Julier and Uhlmann, 1997; Julier171

et al., 2000; Julier and Uhlmann, 2004; Simon, 2006; Wan and van der Merwe, 2001; Terejanu,172

2009) can be used for state estimation. The UKF approximates the propagation of the mean173

and covariance of a random variable through a nonlinear function using a deterministic sampling174

approach that generates an ensemble of state values known as sigma points. Given the current175

state and covariance estimates xat−1 and Pa
t−1 at step t of the filter, 2L+ 1 sigma points (where176

L is the dimension of the state vector) are generated by,177

x0
t−1 = xat−1, (4)

xit−1 = xat−1 +
(√

(L+ λ)Pa
t−1

)
i

i = 1, . . . , L, (5)

xi+Lt−1 = xat−1 −
(√

(L+ λ)Pa
t−1

)
i

i = 1, . . . , L, (6)

with
(√

(L+ λ)Pa
t−1

)
i

being the ith column of the matrix square root (e.g., lower triangular178

Cholesky factorization, Wan and van der Merwe, 2000) of (L + λ)Pa
t−1. The corresponding179

weights to the above sigma points defined as,180

w0
s =

λ

(L+ λ)
, (7)

w0
c =

λ

(L+ λ)
+ (1− α2 + β), (8)

wis = wic =
1

2(L+ λ)
i = 1, . . . , 2L, (9)

where
∑2L

i=0w
i
s =

∑2L
i=0w

i
c = 1. In Eqs. 5–9, λ is the scaling parameter, which can be calculated181

as λ = α2(L+ κ)− L. The scaling factor α determines the spread of the sigma points around182

xat−1, and κ is a secondary scaling parameter usually set to 0 (the specific value of kappa is not183

critical, see e.g., Julier and Uhlmann, 1997; Van der Merwe, 2004). β is employed to incorporate184

a prior knowledge about the noise distribution (e.g., the optimal choice for Gaussian distribution185

is β = 2, e.g., Wan and van der Merwe, 2001).186

Between these factors, the selection of α has larger impacts on the ensemble spreads and187

controls the “size” of the sigma-point distribution. α determines how the sigma points can188

be scaled towards or away from the mean of the prior distribution. For example, α = 1 and189

correspondingly λ = 0 leads the distance between xat−1 and the sigma points to be proportional190

to
√
L. Positive values of λ (for α > 1) scales the sigma points further from xat−1 while negative191
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values of λ (for α < 1) scales the sigma points towards xat−1. In other words, the larger values192

for this scaling factor causes a larger spread in the sigma points while smaller values result in193

more concentration around prior distribution (Van der Merwe, 2004). Ideally α should be a194

small number, e.g., 1e − 4 ≤ α ≤ 1 (Song and He, 2005) to avoid sampling non-local effects195

when the nonlinearities are strong. However, optimal sets of this factor along with κ and β are196

generally problem specific and can be optimized arbitrary. For the current study, the values197

of parameters are assumed as α = 0.5, κ = 0, and β = 2. Nevertheless, it is found that the198

implemented AUKF is not very sensitive to the parameter selection as long as they result in a199

numerically well-behaved set of sigma-points and weights (see also Van der Merwe, 2004).200

The sigma points are advanced forward one time step using model f and observed using the201

function h,202

xf,jt = f(xj
t−1), j = 0, . . . ,2L, (10)

yf,jt = h(xf ,j
t ), j = 0, . . . ,2L. (11)

The transformed points (xf,jt and yf,jt ) are then used to calculate their respective forecast means203

and covariance matrices,204

xft =

2L∑
j=0

wjsx
f,j
t , (12)

yft =
2L∑
j=0

wjsy
f,j
t , (13)

Pf
t =

2L∑
j=0

wjc

(
xf,jt − xft

)(
xf,jt − xft

)T
+ Qt−1, (14)

P
yf
t

=

2L∑
j=0

wjc

(
yf,jt − yft

)(
yf,jt − yft

)T
+ Rt, (15)

as well as the cross covariance between xft and yft ,205

P
xf
t ,y

f
t

=

2L∑
j=0

wjc

(
xf,jt − xft

)(
yf,jt − yft

)T
. (16)

In the analysis step of the filter, the measurements (e.g., GRACE-derived TWS) are used206

to correct the forecasted state and respective covariance matrix using the Kalman update207
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equations,208

xat = xft + K(yt − yft ), (17)

K = P
xf
t ,y

f
t
P−1

yf
t

, (18)

Pa
t = P

xf
t
−KP

yf
t
KT . (19)

where K is the Kalman gain.209

Critical to the success of the UKF is the selection of the filter noise covariances, and in210

particular the process noise covariance matrix Q. Here, we use the method of Berry et al.211

(2013) to adaptively estimate this covariance matrix. We refer to this as the adaptive unscented212

Kalman filter (AUKF). Building on the method of Mehra (1990, 1992), the general idea of Berry213

et al. (2013) is to use the increment, εt = yt−yft , to estimate the noise covariance at each time214

step. The method begins by forming an empirical estimate Qe
t−1 for Q,215

Pe
t−1 = F−1t−1H

−1
t−1εt−1ε

T
t−1H

−T
t−1 + Kt−1εt−1ε

T
t−1H

−T
t−1, (20)

Qe
t−1 = Pe

t−1 − Ft−2P
a
t−2F

T
t−2, (21)

where Pe
t−1 is an empirical estimate of the background covariance. In Eqs. 20 and 21, F216

and H are local linearizations of the nonlinear dynamic models f and h, respectively, and are217

estimated using a linear regression on the ensembles (see Eq. 7 in Berry et al., 2013, for218

details regarding this linearization). It is worth mentioning that we must store linearizations219

Ft−2,Ft−1,Ht−1,Ht, increments εt−1, εt, analysis covariance Pa
t−2, and Kalman gain Kt−1 from220

the t− 1 and t− 2 steps of the filter. To form a stable estimate of Q, the noisy estimate Qe
t−1221

is combined using an exponentially weighted moving average,222

Qt = Qt−1 + (Qe
t−1 −Qt−1)/τ, (22)

where τ is the window of the moving average. Berry et al. (2013); Hamilton et al. (2016) provide223

additional details on the estimation of noise covariance.224

3.2. Kalman-Takens Method225

The main idea of the Kalman-Takens method is to replace the model-based forecast in the226

AUKF with the advancement of the dynamics non-parametrically, thus requiring no knowledge227
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of f (in Eq. 2). We provide a brief description of the method below, specifically highlighting228

modifications in adopting the algorithm to our problem. Full details of the methodology can229

be found in Hamilton et al. (2016, 2017).230

In the present study, we consider a different setup to implement the Kalman-Takens filter for231

a more complicated state observation transition systems. While the data available are gridded232

GRACE TWS, our interest is in estimating the different water variables (i.e., top, shallow233

and deep soil water, vegetation, snow, surface, and groundwater). These variables with no234

independent observation available, are provided by the W3RA model and are used to produce235

delay-coordinate vectors. We generate a synthetic set of model trajectories (open-loop run) for236

these variables to serve as the training data for the Kalman-Takens filter. The training data237

represents the state of the system. It is also used to generate a local proxy f̃ for the unknown238

model f (cf. Eq. 2), which is not available in the non-parametric framework, so Eq. 10 for239

advancing the ensemble forward in time in AUKF is not implementable. This brings us to Eq.240

23, which defines the delay-coordinate vector z at each step of the filter using the historical241

state variables from the open-loop run by,242

zt = [xo
t,x

o
t−1, . . . ,x

o
t−d], (23)

where d is the number of temporal delays. xo contains the open-loop top, shallow and deep soil243

moisture, vegetation, snow, surface, and groundwater. Once the delay coordinate is created,244

the assimilation procedure can be applied. At each AUKF step, an ensemble of delay vectors245

is formed and advanced non-parametrically using a local approximation f̃ . This nonparametric246

prediction helps to build local models for predicting the dynamics at the forecast step (Hamilton247

et al., 2017). Given the above current delay-coordinate, the non-parametric advancement starts248

by locating the N nearest neighbors (i.e., points located within a given Euclidean distance; not249

only adjacent points), within a set of training data,250

z1t = [xo1
t ,x

o1
t−1, . . . ,x

o1
t−d],

z2t = [xo2
t ,x

o2
t−1, . . . ,x

o2
t−d], (24)

...

zNt = [xoN
t ,x

oN
t−1, . . . ,x

oN
t−d].
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The known z1t+1, z
2
t+1, . . . , z

N
t+1 (based on xo1

t+1,x
o2
t+1, . . . ,x

oN
t+1), are used in a local model to251

predict zt+1. The local model f̃ , which can be generated using a weighted average of the nearest252

neighbors (Hamilton et al., 2016; Lagergren et al., 2018) can be written as,253

zt+1 = ω1z
1
t+1 + ω2z

2
t+1 + . . .+ ωNz

N
t+1, (25)

ωi =
e−(di/σ)

2∑N
j=1 e−(dj/σ)

2
, (26)

where di is the distance of the jth neighbour to zt and σ is a bandwidth parameter, which254

controls the contribution of each neighbor in the local model (here σ = 2). The above prediction255

is applied to estimate the delay coordinate vector at t+ 1.256

The process of building a local model for forecasting the delay-coordinate vector is repeated257

for each sigma point in the ensemble. After f̃ has been defined, the remainder of the AUKF258

update scheme is implemented. Important to the Kalman-Takens method is the selection of d259

(the number of delays) and neighbors N . Here, we consider different values of N and d and260

set them based on the filter performance, which is described in Section 4. The assumption of261

using the model trajectory rather than observations for generating delay vectors allows us to262

reconstruct the system representing various water storage compartments. The same assumption263

is made by Lguensat et al. (2017), where trajectories of the system and not the physical model264

is available. In fact, we hypothesize that the available model outcomes can be used for the265

non-parametric sampling of the dynamics and updated by the GRACE TWS (as a summation266

of all the water variables at each grid point). This means that one can essentially correct267

state variables of the system, without having data for each individually, using the data-driven268

framework. The application of this method can address some severe limitations in traditional269

data assimilation such as large computational cost.270

FIGURE 1

3.3. Synthetic experiment271

A synthetic experiment is undertaken to assess the efficiency of the proposed data as-272

similation schemes in simulating physical processes. One important problem with hydrological273

models, and specifically W3RA, is their limitations in simulating anthropogenic impacts on274

the water cycle. For example, excessive groundwater extractions, which can largely affect sub-275
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surface water storages, are not modeled in W3RA and a successful data assimilation process276

should be able to correct for this drawback by taking the advantage of additional observations.277

Here, we choose to test both AUKF and Kalman-Takens filters to improve upon model simula-278

tions between 2003 and 2013 over Iran (32.4279◦N , 53.6880◦E). The rationale behind choosing279

Iran for this synthetic analysis, and not Australia, is that a remarkable water storage decline280

is reported over this region, mainly due to anthropogenic impacts, which cannot be detected281

by W3RA (see Khaki et al., 2018b). A major part of the negative water storage trend is due282

to human impacts (see details in Forootan et al., 2017; Khaki et al., 2018b). Synthetic ob-283

servations are produced using the WaterGAP Global Hydrology Model (WGHM; Döll et al.,284

2003; Müller et al., 2014) monthly TWS outputs, which contain the anthropogenic impacts285

(Khaki et al., 2018b), at two different spatial resolution of 1◦×1◦ and 3◦×3◦. This can help286

to test whether data assimilation can account for human impacts on water storage and also287

to investigate the effect of spatial resolution on the final results. WGHM TWS estimates are288

assumed as our observations after rescaling into 1◦×1◦ and 3◦×3◦ and perturbing using Monte289

Carlo sampling of multivariate normal distributions with the errors representing the GRACE290

level 2’s standard errors. The data assimilation is implemented using both filtering methods at291

the aforementioned spatial scales.292

3.4. Evaluation metrics293

To evaluate the assimilation results against in-situ groundwater and soil moisture mea-294

surements, three metrics, (i) the Root-Mean-Squared Errors (RMSE), (ii) standard deviation295

(STD), and (iii) Nash-Sutcliffe coefficient (NSE) are used. Groundwater and soil moisture in-296

situ measurements from various stations are spatially averaged to the location of the nearest297

model grid points and are compared with their respective estimates. To this end, using the298

variation time series of in-situ data and the results of assimilation techniques, RMSE, STD,299

and NSE are calculated by,300

RMSE =

√√√√ 1

n

n∑
i=1

(xi − zi)2, (27)

STD =

√√√√ 1

n

n∑
i=1

(xi − x̄)2, (28)

NSE = 1−
[∑n

i=1(xi − zi)2∑n
i=1(zi − z̄)2

]
, (29)
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where xi is the predicted value (for n samples) and zi represents the measured in-situ value.301

In Eqs. 27–29, x̄ and z̄ are the average of the predicted and measured values, respectively.302

Furthermore, to statistically assess the significance of the results, the student t-test is applied.303

The estimated t-value and the distribution at 0.05 significant level are used to calculate p-values.304

4. Results305

4.1. Synthetic experiment306

The results of synthetic experiment, which is chosen to assess the capability of the two307

data assimilation schemes in improving model’s simulation of physical processes are presented in308

this section. TWS variations from W3RA (open-loop; model integration without assimilation),309

AUKF and Kalman-Takens filters (with N = 14 and d = 11, see Section 4.2 for details), as well310

as synthetic observations, are displayed in Figure 2, where the time series represent spatially311

averaged TWS variations over the entire Iran. The trend lines corresponding to each time series312

are also depicted in the figure. As can be clearly seen, W3RA’s open-loop run does not correctly313

capture the negative trend in the TWS time series as visible in the observations. Assimilation314

results, on the other hand, successfully reproduce the negative trend. Except for few cases,315

e.g., 2009 and 2011, Kalman-Takens performs closely to AUKF. The assimilation trend lines316

also show that the filtered results capture the existing trend of the observations. In addition to317

the trends, there are larger correlations between AUKF (14% on average) and Kalman-Takens318

(12% on average) with the observations compared to the open-loop results. An evaluation of the319

assimilation results against the original WGHM TWS, i.e., before perturbation using GRACE320

noises, are shown in Figure 3.321

FIGURE 2

Figure 3 shows the scatter plot of the open-loop, AUKF, and Kalman-Takens TWS esti-322

mates against WGHM at the two spatial resolutions of 1◦×1◦ and 3◦×3◦ to assess the filters’323

performances at various spatial scales. Note that temporal assessment is also investigated in324

Section 4.2. It can be seen that at both spatial scales, there are larger agreements between the325

filtered results and WGHM. There are also smaller RMSEs after filtering, which suggests the326

capability of both methods to improve model simulations even in case of remarkable human327

impact. While every assimilation scenario leads to smaller RMSE than the open-loop run, the328
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least RMSEs are achieved at 1◦×1◦ resolution. This shows that assimilating TWS observations329

at a finer resolution can provide better estimates regardless of the filtering method. It can also330

be seen that both AUKF and Kalman-Takens provide comparable results at both spatial scales,331

leading to approximately 48% RMSE reduction. The filters’ comparable results at 3◦×3◦ spa-332

tial resolution suggests their similar performance for downscaling TWS observations into the333

1◦×1◦ W3RA resolution.334

FIGURE 3

4.2. Assessment with in-situ data335

Independent groundwater and soil moisture in-situ measurements within the Murray-336

Darling Basin in Australia are used to evaluate the results. This is done by comparing the337

AUKF and Kalman-Takens estimates of groundwater and soil moisture with those of the in-338

situ measurements. Note that further analysis is undertaken to assess the impacts of the filters339

on non-assimilated variables and the results are provided in the supplementary material. Before340

comparing AUKF and Kalman-Takens results against in-situ measurements, we investigate the341

effect of various setups in the Kalman-Takens performance. Different scenarios are considered342

regarding the number of neighbors N (i.e., 2–40) and also the number of delays d (i.e., 1–25).343

To reach the best setup amongst these values, we compare the results of each scenario to the344

in-situ groundwater measurements. Figure 4 shows the average absolute groundwater errors345

resulting from each case. Increasing the number of neighbors can improve the approximation of346

training data for a particular point to a certain extent (due to the existing spatial correlations).347

However, selecting N too large can cause a rapid growth of errors, which is related to the effect348

of over-smoothing the training step. This is different for delays d, where much larger errors349

are present for smaller values that underestimate temporal variabilities in the data. From our350

numerical investigations, it can be seen that applying the Kalman-Takens filter with N = 14351

and d = 11 provides the best result. It is worth mentioning that we use these setups of the352

Kalman-Takens filter throughout this study.353

FIGURE 4

The comparison between the open-loop run, AUKF, and Kalman-Takens results are de-354

picted in Figure 5, which displays scatter plot of each filter’s RMSE and STD calculated using355

14



in-situ groundwater measurements. Three different temporal evaluations are considered to fur-356

ther investigate the effect of temporal downscaling on the results. The GRACE TWS data357

(with approximately 30 days temporal scale) and associated errors are interpolated into a daily358

and 5-daily samples (see also Tangdamrongsub et al., 2015; Khaki et al., 2017b) using the359

spline interpolation between consecutive months. The assimilation is then undertaken on a360

daily, 5-day, and monthly basis. Figure 5 indicates that both AUKF and Kalman-Takens filters361

result in smaller RMSE and STD compared to the open-loop run for all the three temporal362

scales. In the daily and to a lesser degree 5-day assimilation cases, AUKF performs slightly363

better than the Kalman-Takens, with smaller RMSE and STD, which could be attributed to the364

contribution of the model equations for spreading TWS information between different variables365

after assimilation. Nevertheless, the performance of the non-parametric filter is satisfactory for366

both cases and comparable to that of AUKF. Interestingly, the performances of the two filters367

are even closer when assimilating monthly data. As a general result, this demonstrates that368

temporal downscaling of GRACE TWS data is recommended for data assimilation purpose369

regardless of the filtering method used. The average RMSE values for the 5-day assimilation370

using AUKF and Kalman-Takens filters are 51.28 (∼13% smaller than daily and ∼7% smaller371

than monthly) and 53.61 (∼16% smaller than daily and ∼5% smaller than monthly), respec-372

tively. Based on the above evaluation, it can be concluded that different temporal scales have373

similar effects on both filters, where the AUKF and Kalman-Takens filters perform better for374

the 5-day assimilation case.375

FIGURE 5

More detailed statistics are provided in Table 1 to better compare the performances of the376

implemented filters against in-situ groundwater measurements. The evaluation is undertaken377

using RMSE and NSE metrics (see Section 3.4) based on the 5-day assimilation case. Note378

that in this table, basin-scale results are provided in addition to the results of the grid-based379

evaluation. Considering the coarse spatial resolution of W3RA and the fact that a number of380

groundwater stations can be found in each grid cell, basin-averaged assessment is performed as381

an alternative examination. The spatially averaged open-loop results and those from filters over382

the Murray-Darling Basin are tested against basin-average groundwater time series. Results of383

Table 1 confirm the behavior seen in Figure 5. While smaller RMSEs are obtained from AUKF384
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for both grid- and basin-based tests, the application of the Kalman-Takens method significantly385

decreases groundwater RMSE values (30.22% on average). Also larger NSE values are obtained386

by both filters compared to the open-loop run. These results prove a high capability of the387

Kalman-Takens for improving state estimates, very close to the AUKF performance. Table 1388

also indicates that the Kalman-Takens approach can be used as traditional data assimilation389

to reduce noise in the final state variables, which are the results of solving complex inverse390

problems, e.g., groundwater estimates are improved from GRACE-derived TWS. This is also391

true for soil moisture estimates (cf. Table 2).392

TABLE 1

We use different soil moisture layers from in-situ measurements including 0-8 cm (compared393

to the model top soil moisture layer), 0-30 cm (compared to the summation of the model top394

and shallow soil moisture layers), and 0-90 cm (compared to the summation of the model top,395

shallow, and deep soil moisture layers) for evaluating the results. Note that considering the396

difference between W3RA states (i.e., column water storage measured in mm) and the OzNet397

measurements (i.e., volumetric soil moisture) and the fact that converting the model outputs398

into volumetric units may introduce a bias (Renzullo et al., 2014), only NSE analysis is carried399

out and the results are provided in Table 2. Similar improvements as for groundwater evaluation400

are also found by comparing the filters estimates against OzNet soil moisture measurements401

(Table 2). Larger NSE values are found from data assimilation filters for all three soil layers.402

Average NSE from the Kalman-Takens method is 0.73, ∼12.3% larger than the open-loop run,403

and slightly smaller than AUKF results (0.74). Table 2 confirms that the capability of the404

Kalman-Takens method for improving the soil moisture estimates similar to AUKF (13.7% on405

average). The largest improvements for both filters are achieved in the root zone (0–90 cm)406

moisture layer. Table 2 suggests that AUKF better reflects the GRACE observations, especially407

at this layer. This, however, does not necessarily lead to better approximations in the shallow408

soil moisture layer, where the non-parametric approach shows higher improvements compared409

to AUKF.410

TABLE 2
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4.3. Assessing the performance of AUKF and Kalman-Taken filters411

Here, we compare the performances of the AUKF and Kalman-Takens filters from various412

perspectives including increment applied, state covariance, computational efficiency, and water413

storage forecasting. Figure 6 shows the increments implemented by each filtering technique414

during the study period. We estimate average increment (i.e., ε discussed in Section 3.1) at415

all grid points for AUKF and the Kalman-Takens approach. One can see how the filters deal416

with the GRACE TWS observations in the update steps. Both methods decrease the increment417

as assimilation proceeds forward in time. This is found to be smaller for the Kalman-Takens418

method (see the trend lines in Figure 6) compared to AUKF. In fact, AUKF integrates the419

ensemble members through the model f , while the non-parametric approach uses the local420

proxy f̃ . Consequently, larger misfits between the Kalman-Takens method forecast estimates421

and observations can be expected. Nevertheless, Figure 6 shows that the local proxy performs422

comparably to f in most of the time. In addition to increments, the difference between the423

filter’s forecasting also affects the estimated error covariances, especially forecast covariance424

matrix (cf. Figure 7).425

FIGURE 6
426

FIGURE 7

Pf and Pa are calculated at assimilation steps for both filters. The average of the matrices’427

diagonal elements are displayed in Figure 7. Despite the filters different performances in Figure428

6, both methods perform very similar in dealing with the error covariances. The distribution of429

scattered error points from the Kalman-Takens filter and the corresponding trend line largely430

matches that of AUKF, which demonstrate that the filters have comparable uncertainty esti-431

mates. This indicates the ability of the Kalman-Takens method, which not only improves the432

model states but is also competitive with the traditional data assimilation system.433

4.3.1. Filters efficiency434

Computational complexity is important for data assimilation methods, especially when435

dealing with a high dimensional system, such as in hydrological studies. Therefore, a good data436

assimilation filter requires balancing between processes undertaken to achieve accurate estimates437

and computational efficiency. While the Kalman-Takens filter’s capability for improving state438
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estimates have already been demonstrated (cf. Sections 4.1 and 4.2), its potential for decreasing439

the computational cost is examined here. This is done by comparing the computation time of the440

AUKF and Kalman-Takens filtering methods from various perspectives including forecasting,441

analysis steps, and filtering over the entire study period. Importantly, the following computation442

time estimates have been obtained using identical hardware. In the forecast step, the average443

computation time (for 794 grid points within Australia) is considerably lower for the Kalman-444

Takens filter, e.g., 6.12 second against 8.57 second for AUKF. This is due to the fact that the445

Kalman-Takens filter exploits the proxy model (f̃), which is based on a local approximation and446

requires much less computation than a physics-based model. The average computational time447

at the analysis steps is 5.74 second for the Kalman-Takens filter and 7.83 seconds for AUKF.448

Considering that both methods are using similar analysis filtering, this difference is due to the449

local scheme (based on d delays and N neighbor points) in the Kalman-Takens method. The450

values of delays d and neighbors N determine the number of local points used in the analysis451

and accordingly the size of the underlying vectors and matrices. AUKF, on the other hand,452

solves for all grid points altogether, which requires a larger amount of memory and time. In453

general, it is found that the Kalman-Takens is considerably less computationally demanding,454

i.e., ∼ 8 times faster for the entire experiment period, compared to the AUKF implementation455

for assimilating all observations into the system states.456

4.3.2. Water storage update457

In this section, we analyze the spatio-temporal increments derived by assimilating the458

GRACE TWS observations and explore their effects on the states. Figure 8 presents the average459

TWS time series after applying each filter, open-loop, and GRACE observations over Australia.460

Both filters largely decrease the misfits between the model states and the GRACE observations,461

which is expected since GRACE is used as a constraint. AUKF, however, has a larger impact462

on the states, especially where a significant TWS variation exists (e.g., 2006 and 2011–2012).463

The Kalman-Takens method, on the other hand, shows a smoother time series. Based on these464

results, we find that the Kalman-Takens approach is able to efficiently integrate observations465

into the model and correct missing trends as well as amplitudes and phases. Nevertheless, one466

can conclude that this method might not be able to efficiently extract spontaneous or high rate467

seasonal effects unless the training data has these variabilities/dynamics.468
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FIGURE 8

The correlation between the estimated TWS time series from the open-loop model run469

and the filters’ estimates at each grid point within Australia and those of the GRACE TWS470

are presented in Figure 9. The filters largely increase the correlation between model derived471

TWS and those of GRACE. The largest correlations (with 0.92 average) is obtained by AUKF472

suggesting that this method better reflects the GRACE TWS into the states. The average473

correlation between TWS of the Kalman-Takens and GRACE is 0.89 (0.03 less than AUKF),474

and when compared to only 0.52 obtained from the open-loop estimates, the efficiency of the475

method becomes visible. Correlations of the open-loop TWS and GRACE are smaller over the476

mountainous area along the East coast compared to other parts of the country. This is due to477

difficulties of modeling hydrology in complex terrain areas (mountains). On the other hand,478

both assimilation methods show good performances by increased correlations with GRACE479

data. Over large parts of Australia, the performances of the Kalman-Takens filter and AUKF480

are found to be similar in terms of correlations with the GRACE TWS.481

FIGURE 9

To further assess the capability of the filtering approaches for improving the model simu-482

lations, we test their ability in correcting the model variables for extreme and poorly known483

hydrological phenomena. To this end, the filters’ TWS results are monitored between 2003484

and 2012 over the Murray-Darling Basin. As shown by Schumacher et al. (2018), a long-term485

drought period (2001–2009), known as Millennium Drought (e.g., Ummenhofer et al., 2009;486

LeBlanc et al., 2012; van Dijk et al., 2013), has remarkably affected TWS variations in the487

basin. This negative TWS trend has then been followed by an above average precipitation,488

mainly caused by El Niño Southern Oscillation (ENSO; see, e.g., Boening et al., 2012; Forootan489

et al., 2016) for the period of 2010–2012. Here, we investigate the capability of the open-loop,490

AUKF, and Kalman-Takens TWS estimates to capture these two extreme events. Figure 10491

plots the average TWS time series of the above methods, as well as GRACE-derived TWS over492

the Murray-Darling Basin. As can be seen, while both Millennium drought (red shaded area)493

and ENSO effect (blue shaded area) are reflected in GRACE TWS time series, the open-loop494

run is unable to capture them, especially the drought effects. AUKF and the Kalman-Takens495
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filter, on the other hand, successfully depict the negative trend between 2003 and 2010, fol-496

lowed by a positive anomaly after 2010. Except for few points such as 2004, 2007, and late497

2009, the Kalman-Takens method presents a similar performance as AUKF in incorporating498

GRACE TWS data with states and reflecting extreme hydrological events.499

FIGURE 10

5. Conclusions500

The present study investigates the ability of the Kalman-Takens approach to reconstruct501

the nonlinear dynamics of a hydrological model. This is done to update observable state vari-502

ables based on new observations when a physics-based model is not available. This implies that503

contrary to a standard data assimilation, the Kalman-Takens filter does not affect non-observed504

variables (e.g., water discharge in our case). In this work, we introduce a new setup for the505

Kalman-Takens filter to reconstruct additional states (e.g., soil moisture and groundwater) us-506

ing the Gravity Recovery And Climate Experiment (GRACE) terrestrial water storage (TWS).507

The Kalman-Takens results are compared with a parametric forecasting approach of an adaptive508

unscented Kalman filtering (AUKF) as well as against in-situ groundwater and soil moisture509

measurements. The results prove a high capability of the Kalman-Takens for improving state510

estimates, largely comparable to the AUKF performance and as such, both provide efficient511

methods for assimilating GRACE TWS data. Results indicate that smaller RMSE (46.96 mm)512

and higher NSE (0.82) values are obtained from the application of the Kalman-Takens method513

in comparison to the open-loop run (69.40 mm RMSE and 0.58 NSE). Although AUKF per-514

forms slightly better in some cases, e.g., ∼3% higher improvement for groundwater estimates,515

which is expected since AUKF takes advantage of the full knowledge of the model while the516

non-parametric filter uses only the short noisy training data set from which to learn the dy-517

namics, in all cases considered, the Kalman-Takens results are generally very close to those518

of AUKF. The data-driven approach also increases the NSE values between the estimated soil519

moisture variations and the OzNet in-situ measurements for all soil layers (11.83% on average)520

as compared to AUKF (13.77% on average). The proposed approach also reduces estimation521

complexities by using the local proxy model. The Kalman-Takens filter performs more efficient522

(∼ 8 times faster) in terms of computational cost, which is very important to deal with a grow-523

ing amount of data sets in high dimensional systems. This contribution, to the best of the524
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authors’ knowledge, is the first effort in using the data-driven approach in hydrological studies525

with complex state observation transition systems. Further research should be undertaken to526

investigate the Kalman-Takens filter in different hydrological applications and also to explore527

its capability in dealing with multiple satellite products.528
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Figure 1: A schematic illustration of the data integration process implemented for this study.
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Figure 2: Average TWS variation time series over Iran from AUKF, Kalman-Takens, open-loop run, and WGHM
with corresponding trend lines.
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Figure 3: Scatter plots of open-loop, AUKF, and Kalman-Takens TWS estimates with respect to WGHM TWS
at the two spatial resolution of 1◦×1◦ and 3◦×3◦. The presented average RMSE values for each method is
calculated based on the original WGHM TWS (before perturbation using GRACE errors). In each sub-figure
reference (dashed) and fitted (solid) lines are illustrated.
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Figure 4: Estimated average errors from different scenarios considered based on the number of neighbors N and
delays d. The best estimates are achieved by applying the Kalman-Takens method using N = 14 and d = 11.

39



Figure 5: Average groundwater RMSE and STD of from the Kalman-Takens filter, AUKF, and open-loop run
computed using groundwater in-situ measurement. The results are presented for assimilation with three different
temporal scales (i.e., daily, 5-day, and monthly).
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Figure 6: An average TWS increment time series of AUKF and the Kalman-Takens filter on state vectors during
the process. Both methods decrease the increment as assimilation proceeds forward in time.
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Figure 7: An average estimated covariance matrices of Pf and Pa corresponding to 95% confidence level (dashed
lines) at each filtering step using the implemented filters.
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Figure 8: Spatially averaged TWS time series of filters’ estimates, GRACE TWS observations, and open-loop
run within Australia.
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Figure 9: Spatial correlations maps between GRACE TWS and open-loop run (a), AUKF estimates (b), and the
Kalman-Takens filter (c).
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Figure 10: Average TWS variations from the data assimilation filters, open-loop run, and GRACE TWS. The
red shaded area shows the Millennium Drought and blue shaded area represent a strong ENSO effect.
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Table 1: Summary of statistical values derived from the implemented methods using the groundwater in-situ
measurements. The reduction of the RMSE value of the AUKF and Kalman-Takens filters are calculated in
relation to the RMSE of the open-loop run.

Grid-based evaluation Basin scale evaluation

Metric Open-loop AUKF Kalman-Takens Open-loop AUKF Kalman-Takens

RMSE (mm) 74.57 51.28 53.61 69.40 45.16 46.96

NSE 0.51 0.77 0.75 0.58 0.82 0.81

RMSE reduction (%) – 31.23 28.11 – 34.93 32.33
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Table 2: Summary of NSE values estimated using state estimates derived from implemented methods and the
soil moisture in-situ measurements at different layers. The improvements (in %) are calculated based on the
increased correlation by applying the methods with respect to the open-loop run.

Method 0-8 cm 0-30 cm 0-90 cm

Open-loop 0.59 0.64 0.72

AUKF 0.63 0.71 0.89

Kalman-Takens 0.61 0.73 0.85

Improvements (%)
AUKF 6.77 10.94 23.61

Kalman-Takens 3.39 14.06 18.05
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