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 22 

Abstract 23 

Analyses of seismic amplitude vs. angle are widely used to estimate hydrocarbon reservoir 24 

properties. In this paper we have investigated the accuracy of existing approximations based on 25 

the Zoeppritz equation, using synthetic numerical experiments that correlate P-wave reflectivity 26 

in isotropic media with reservoir porosity. An effective medium non-interacting approach (NIA) 27 

in rock physics modelling was used to compute the properties of fluid-saturated (water + gas) 28 

reservoir, which were then used in seismic modelling. In parallel, a Bayesian approach was used 29 

to estimate reservoir porosities from angle-dependent reflection coefficients and seismic 30 

amplitudes. A Maximum a posteriori solution of the Bayesian approach was also utilised to obtain 31 

an inverted porosity distribution in the reservoir model. The results of our forward models are 32 

important as they suggest that most of the approximations deviate from the exact Zoeppritz 33 

solutions with increasing angles of incidence of seismic waves. The results from the Bayesian 34 

inversion show that the Rüger and Bortfeld approximations agree with the exact Zoeppritz 35 

solutions to accurately estimate reservoir porosity. All the other approximations, except for 36 

Smith's, underestimate reservoir porosity and should be used in pre-stack inversion with caution. 37 

Smith’s and Fatti’s approximations failed to estimate reservoir porosity because of associated 38 

uncertainties. 39 

 40 

Keywords: Seismic amplitude vs. angle; Rock physics modelling, Non-interacting approach, 41 

Bayesian approach, Metropolis algorithm, Pre-stack seismic inversion. 42 

 43 

 44 
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1. Introduction 45 

The analysis of seismic amplitude variation with angle of incidence (AVA) is commonly used in 46 

the evaluation of porosity, lithology and fluids in hydrocarbon reservoirs. This analysis can 47 

become further useful when integrated with appropriate rock physics models. The roots of AVA 48 

analyses derive from the classical writings of Green (1839) and Knott (1899), who have studied 49 

the effect of interfaces on the reflection and transmission of seismic waves. In addition, Zoeppritz 50 

(1919) published a series of equations, among which the most important is the Zoeppritz equation 51 

regarding the partition of energy across isotropic media. This equation expressed the partition of 52 

energy of a plane wave when it hits the interface between two isotropic layers with different 53 

properties. As a result, several approximations to the exact Zoeppritz solution have been used in 54 

AVA analyses of isotropic media around the globe due to their relative ease of applicability 55 

(Bortfeld 1961; Aki and Richards 1980; Shuey 1985; Smith and Gidlow 1987; Hilterman 1989; 56 

Fatti et al. 1994; Rüger 2002). 57 

The validity of the approximations described above depends on key assumptions used in their 58 

formulation. Each approximation describes the P-wave reflection coefficient as a function of a 59 

wave's angle of incidence and local rock properties such as the compressional and shear wave 60 

velocities, density, Poisson’s ratio and other elastic parameters. These approximations are widely 61 

used because they are empirical and able to explain the AVA phenomenon on seismic, to then 62 

return meaningful physical properties of sub-surface units. For instance, the Shuey’s 63 

approximation (Shuey 1985) tells us about the intercept (reflection strength at zero offset), gradient 64 

(the rate of change of reflection strength with incident angle) and curvature (the rate of change of 65 

reflectivity gradient) of a seismic wave. These AVA attributes are particularly helpful in the 66 

identification of low impedance gas sands (Castagna and Swan 1997). 67 
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Rock Physics Modelling acts as a bridge between seismic and rock properties, having a crucial 68 

role in seismic reservoir characterization (Avseth et al. 2005). Rock Physics Modelling plays a 69 

significant role in linking elastic parameters, such as impedance and velocity, to reservoir 70 

properties of interest (lithology, porosity and pore fluids; Wang 2001; Bosch et al. 2010). Rock 71 

Physics Modelling is widely combined with geostatistical techniques in seismic inversion. 72 

Combining rock physics data with geo-statistics during seismic inversion can be helpful to reduce 73 

uncertainties (Mukerji et al. 2001). By comparing this modelled (calculated) seismic data with raw 74 

(observed) seismic data, desired rock parameters can be calculated by iteratively using stochastic 75 

approaches (Grossman, 2003; Shahraini et al. 2011; Ali and Jakobsen 2011a; Ali and Jakobsen 76 

2011b; Ali and Jakobsen 2014; Ali et al. 2015).  77 

Pre-stack seismic inversion is widely used to estimate reservoir properties in the petroleum 78 

industry. This is a complicated process because it is an ill-posed problem with a non-unique 79 

solution. Therefore, it is important to overcome these challenges in order to estimate reservoir 80 

properties up to a satisfactory level. In order to overcome the problem of model instability, Du and 81 

Yan (2013) proposed a method for the estimation of fluid factors by utilising offset-limited data. 82 

Liang et al., (2017) addressed the same problem by utilising edge-preserving regularization and a 83 

Markov random field. Chiappa and Mazzotti (2009) formulated a linear Bayesian inversion 84 

method to estimate petrophysical properties. Sun et al. (2015) introduced pre-stack elastic 85 

integration techniques by considering the impact of rock physics and amplitude-preserving 86 

processing algorithms on pre-stack inversion. Finally, Anwer et al. (2017) utilised an anisotropic 87 

T-matrix approach in a Bayesian inversion scheme to characterise anisotropic sand-shale medium. 88 

The aim of this study is to investigate the accuracy of existing approaches used in AVA modelling 89 

to determine porosity in isotropic media. In order to accomplish our aim, we have followed the 90 
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workflow presented in Figure 1. A rock physics model based on an effective medium approach 91 

was used to compute the effective properties for fluid saturated isotropic reservoir rocks. These 92 

properties were then utilised to compute P- and S-wave velocities (𝑉𝑃 and 𝑉𝑆 respectively) and 93 

density (𝜌), and these two latter parameters were applied in a forward model to compute angle 94 

dependent P-wave reflection coefficients using the exact Zoeppritz solution, or approximations to 95 

the exact solution. AVA synthetic gathers were computed by convolving these reflection 96 

coefficients with a source wavelet. The exact Zoeppritz solution or approximations to the exact 97 

solution were used to invert the data to estimate porosity using a Bayesian approach and the 98 

Metropolis Algorithm of the Monte Carlo method (Tarantola 2005). Porosity distribution 99 

throughout the reservoir was also estimated using the maximum a posteriori solution of the 100 

Bayesian approach for each approximation, so we could investigate any implications of our 101 

methods to the determination of reservoir porosity. 102 

 103 

2. Forward Modelling 104 

 105 

The forward model used in this study can be written as: 106 

 𝒅 = 𝑮(𝒎). (1)  (1) 

Here d is the vector of observed seismic AVA data, 𝒎 is a vector of unknown parameters (porosity 107 

in our case) and 𝑮 is a forward modelling operator, which is a combination of rock physics 108 

modelling and seismic attribute generation (AVA data). In the following section we present a brief 109 

description of rock physics and seismic modelling. 110 
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 111 

2.1 Rock Physics Modelling 112 

The main purpose of rock physics is to understand the influence of rock properties, e.g. lithology, 113 

porosity, saturation, etc., on seismic velocities. There are several theories to estimate the elastic 114 

properties of dry and saturated rocks containing pores and cracks of different aspect ratios. Ali et 115 

al. (2015) showed a comparison between rock physics models based on effective stiffness and 116 

compliance methods for fractured reservoir characterization. A good rock physics model can 117 

efficiently estimate reservoir properties, which can then be correlated with seismic data to allow 118 

the modelling of an entire reservoir. Hence, a realistic model was assumed in this study containing 119 

a quartz matrix, interconnected spherical pores, randomly oriented micro-cracks that do not 120 

contribute to porosity, and a mixture of water and gas as pore saturating fluids (Figure 2). The 121 

input to rock physics model, in the form of elastic properties of quartz matrix and fluid, is given 122 

in Table 1.  123 

We used a non-interacting approach (NIA) based on effective medium modelling to compute 124 

effective properties of isotropic reservoirs. Hudson and Knopoff (1989) proposed a relationship to 125 

obtain effective compliance 𝑺∗ for an isotropic medium, based on a NIA, as follows: 126 

 𝑺∗ = 𝑺(0)– ∑ (𝑣(𝑟)(𝑺(0): 𝑪(𝑟)– 𝑰4): 𝑲
(𝑟))𝑁

𝑟=1 , (2) 

in which 𝑺(0) represents the compliance tensor of background matrix,  𝑣(𝑟) is the volume 127 

concentration of pores and randomly oriented micro-cracks, the stiffness tensor 𝐶(𝑟) is associated 128 

with the inclusions (pores and randomly oriented micro-cracks), 𝑰4 is the identity for fourth-rank 129 

tensors,  and 𝐾(𝑟) represents the K-tensor of Eshelby (1957) which can be given as (Jakobsen and 130 

Johansen 2005): 131 
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 𝑲(𝑟) = 𝑨(𝑟): 𝑺(0), (3) 

where, 132 

 𝑨(𝑟) = [𝑰4– 𝑮(𝑟): (𝑪(𝑟)– 𝑪(0))]
−1

. (4) 

Here 𝑮(𝑟) is a fourth-rank tensor given by the Green’s function integrated over a characteristic 133 

spheroid with the same shape as inclusions (pores and randomly oriented micro-cracks) of type 𝑟 134 

(Jakobsen et al. 2003; Ali and Jakobsen 2011a; Ali and Jakobsen 2011b; Ali and Jakobsen 2014). 135 

In order to incorporate the case of empty inclusions, the stiffness parameter is taken out of the 136 

equation so that Equation (2), for a dry rock, can be rewritten as (Hu and McMechan 2009): 137 

 𝑺∗ = 𝑺(0) + ∑𝑣(𝑟) 𝑲(𝑟)

𝑁

𝑟=1

 (5) 

For the effect of fluid saturation we used the isotopic Gassmann’s equation (Gassmann 1951), 138 

which is given by: 139 

 𝐾𝑠𝑎𝑡 = 𝐾𝑑𝑟𝑦 + 

(

  
 (1 − (

𝐾𝑑𝑟𝑦

𝐾𝑓𝑟𝑎𝑚𝑒
))

2

(
𝜑
𝐾𝑓

) + (
1 −  𝜑
𝐾𝑓𝑟𝑎𝑚𝑒

) − (
𝐾𝑑𝑟𝑦

(𝐾𝑓𝑟𝑎𝑚𝑒)
2)

)

  
 

. (6) 

In Equation (6) 𝐾𝑠𝑎𝑡, 𝐾𝑑𝑟𝑦, 𝐾𝑓𝑟𝑎𝑚𝑒 and 𝐾𝑓 represent the bulk modulus of fluid-saturated rock, dry 140 

rock, dry rock frame and pore-saturating fluid, respectively, and 𝜑 represents porosity. 𝐾𝑓 is 141 

computed using Wood’s relationship (Wood 1955), which is given by: 142 
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1

𝐾𝑓
=

𝑆𝑔

𝐾𝑔
+

𝑆𝑂

𝐾𝑂
+

𝑆𝑊

𝐾𝑊
. (7) 

In Equation (7), 𝑆𝑔 and 𝐾𝑔, 𝑆𝑂 and 𝐾𝑂, 𝑆𝑊 and 𝐾𝑊 are the saturation and bulk modulus of gas, oil 143 

and pore saturating water, respectively. 144 

The effective moduli and density from this rock physics model were estimated for different 145 

porosities, and then used to compute P- and S-wave velocities. As the Lamé’s parameter (λ) and 146 

shear modulus (μ) are sufficient to characterise an isotropic medium, these moduli can also be 147 

expressed in terms of the stiffness parameters C11 and C44. The effect of porosity on P- and S-148 

wave velocities, and stiffness parameters (C11 and C44), is shown in Figure 3. An increase in 149 

porosity weakens a volume of rock by decreasing the bulk and shear moduli. As a result of this 150 

reduction, P- and S-wave velocities, together with the stiffness parameters above, decrease with 151 

increasing porosity. Such trends are more or less expected, but they would have been difficult to 152 

quantify without a suitable rock physics model. 153 

 154 

2.2 Seismic Modelling 155 

The solution of seismic forward modelling started with the development of numerical solutions 156 

for the wave equation (Krebes 2004). Two-dimensional (2D) seismic forward modelling can be 157 

undertaken using ray tracing, matrix method, finite difference and finite-element methods. One of 158 

the key parts in seismic forward modelling is the computation of reflection coefficients by utilising 159 

P- and S-wave velocities and density in the exact Zoeppritz solution, or approximations to the 160 

exact solution, as previously discussed. When an incident P-wave strikes an interface between two 161 

layers of different properties, at a non-zero incident angle, it is converted into four rays as shown 162 
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in Figure 4. The energy partition at the interface can be calculated using the Zoeppritz energy 163 

equation re-written as follows (Pujol 2003): 164 

[

𝑅𝑃𝑃

𝑅𝑃𝑆

𝑇𝑃𝑃

𝑇𝑃𝑆

] =

[
 
 
 
 
 

− sin 𝑒 cos 𝑓 sin 𝑒′ cos 𝑓′

cos 𝑒 sin 𝑓 cos 𝑒′ −sin 𝑓′

sin 2𝑒 − (
𝑉𝑝

𝑉𝑠
) cos 2𝑓 (

𝜌′

𝜌
) (

𝑉𝑝

𝑉𝑝′) ((
𝑉𝑠′

𝑉𝑠
)

2

) sin 2𝑒′ (
𝜌′

𝜌
) (

𝑉𝑝

𝑉𝑠′) ((
𝑉𝑠′

𝑉𝑠
)

2

) cos 2𝑓′

−cos 2𝑓 −(
𝑉𝑠

𝑉𝑝
) sin 2𝑓 (

𝜌′

𝜌
) (

𝑉𝑝′

𝑉𝑝
) cos 2𝑓′ (

𝜌′

𝜌
) (

𝑉𝑠′

𝑉𝑝
) sin 2𝑓′

]
 
 
 
 
 
−1

[

sin 𝑒
cos 𝑒
sin 2𝑒
cos 2𝑓

].        (8) 165 

with: 166 

 𝑅𝑃𝑃 - P-wave reflection coefficient 167 

𝑅𝑃𝑆 - S-wave reflection coefficient 168 

𝑇𝑃𝑃 - P-wave transmission coefficient 169 

𝑇𝑃𝑆 - S-wave transmission coefficients. 170 

In Equation (8), 𝑉𝑝, 𝑉𝑠 and 𝜌 are the P- and S-wave velocities and density of upper medium, 171 

respectively. 𝑉𝑝′, 𝑉𝑠′ and 𝜌′ are P- and, S-wave velocities and density of the gas reservoir 172 

respectively. In addition, 𝑒 and 𝑒′, and 𝑓 and 𝑓′ are the reflection and transmission angles of P-and 173 

converted S-wave respectively. 174 

From the original Zoeppritz equations, different seismic amplitude vs. offset (AVO) 175 

approximations can be classified into linear and nonlinear AVO approximations (Rüger 2002). 176 

The key assumptions leading to linear AVO approximations are justified by the fact that certain 177 

sedimentary rocks show weak to moderate contrasts in elastic parameters (Thomsen 1986; 178 

Thomsen 1995). The exact Zoeppritz solution and approximations to exact solution are dependent 179 

upon the angle of incidence, at which the seismic wave strikes an interface, but generally the 180 

seismic data is a function of offset. This same offset should be converted in an angle during the 181 

application of processing algorithms. This type of analysis is called as AVA instead of AVO. 182 
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In order to perform AVA modelling, P and S-wave velocities and density obtained from rock 183 

physics modelling are placed in Equation (8), or approximations to Equation (8), to compute 184 

reflection coefficients for different angles of incidence of a seismic wave. These angle dependent 185 

reflectivities can be convolved with source wavelet to obtain an AVA seismic response. 186 

In this study, a rock physics model was iteratively used to compute effective moduli and density 187 

for different porosities at reservoir level. The sensitivity of P-wave reflection coefficient for 188 

porosity, using the exact Zoeppritz solution and approximations to the exact solution, is shown in 189 

Figure 5. The values of P-wave reflection coefficient are greater for smaller porosity and decrease 190 

with increase in porosity. In turn, velocity and density of the medium are responsible for this 191 

behaviour because they increase with decreasing porosity, and vice-versa. P-wave reflection 192 

coefficient for the exact Zoeppritz solution along with its approximations decreases with a relative 193 

increase in the angle of incidence, and form Class-1 AVO anomalies according to Rutherford and 194 

Williams (1989). 195 

 196 

3. Inverse modelling 197 

Seismic inversion is an important tool to estimate rock properties from seismic data using a 198 

combination of rock physics and statistical techniques. There are different approaches for the 199 

quantitative estimation of reservoir properties using seismic inversion. The scientific study of a 200 

physical system can be conducted in three steps: a) parameterisation of the system, b) forward 201 

modelling, and c) inverse modelling (Tarantola 2005). A non-linear inverse problem is considered 202 

in this study as: 203 

 𝑮(𝒎)  ≈  𝒅. (9) 
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Here 𝒎 represents a vector of physical parameters related to the porosity of the Earth model, and 204 

𝒅 is data vector of observed values, i.e. in this work, the angle dependent reflectivity/seismic AVA 205 

gathers. 𝑮 is a combination of the rock physics and seismic attributes, i.e. angle-dependent 206 

reflectivity/seismic gathers as a function of porosity. 207 

A real physical system is best modelled by incorporating the effect of noise in forward model. 208 

Therefore, by including the noise term in Equation (9) (Aster et al. 2005), we have: 209 

 𝑮(𝒎)  ≈  𝒅 +  𝜂. (10) 

In Equation (10), 𝜂 represents the noise vector and generally it is assumed to be Gaussian 210 

(Tarantola 2005; Aster et al. 2005). The noise in seismic data is mainly introduced during its 211 

acquisition, and can be coherent (originated due to seismic source) or incoherent (noise introduced 212 

due to some other sources like traffic, wind, river, high tension wires above geophones etc.). 213 

Incoherent noise is also called random noise because its behaviour varies for each shot gather in a 214 

data volume. This noise can be minimised by increasing the fold of seismic data. Coherent noise 215 

includes diffractions, refractions, multiples, etc., and should be removed by the application of 216 

sophisticated processing algorithms before performing AVA inversion (Grossman 2003; Zhang et 217 

al. 2014; Marfurt and Alves 2015). 218 

We used a Bayesian approach to get the probability distribution of porosities from our forward 219 

modelling. The Bayes’ theorem (Aster et al. 2005) provides a framework in which the posterior 220 

probability of the variables of interest, derived from uncertain data, is obtained using a priori 221 

information. This a priori information is used to obtain unique maxima of Probability Density 222 

Functions (PDF) and makes solutions stable when using uncertain data (Duijndam 1988a, 1988b). 223 

The probabilistic prediction provides a natural way of understanding the uncertainty of the 224 
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problem. Uncertainties in a Bayesian framework for AVO inversion were discussed by Houck 225 

(2002). 226 

An inverse problem is solved using a Bayesian approach that combines the prior distribution 𝑃(𝒎) 227 

for the model parameters with the likelihood function 𝑃(𝒅|𝒎). This way, one can obtain a 228 

posterior probability distribution 𝑃(𝒎|𝒅) over a model space such as (Aster et al. 2005): 229 

 𝑃(𝒎|𝒅) =
𝑃(𝒎)𝑃(𝒅|𝒎)

𝑃(𝒅)
. (11) 

In this equation, the posterior probability distribution 𝑃(𝒎|𝒅) represents the solution of the inverse 230 

problem, and 𝑃(𝒅) is considered as normalisation constant. The solution for a posterior probability 231 

density function (Aster et al. 2005) using a Gaussian approach is given by: 232 

 𝑃(𝒎|𝒅) =  𝑁 . 𝑒−𝑱(𝒎). (12) 

In Equation (12), the constant N is called the normalization constant, and 𝑱(𝒎) represents the 233 

objective function to be minimised. The objective function by assuming Gaussian statistics can be 234 

given as (Aster et al. 2005): 235 

 𝑱(𝒎) =  ½ [(𝑮(𝒎) −  𝒅)𝑇𝑪𝑫
−𝟏(𝑮(𝒎) −  𝒅) + (𝒎 – 𝒎𝟎)

𝑇𝑪𝑴
−𝟏(𝒎 – 𝒎𝟎)]. (13) 

Here, 𝒎𝟎 represents the mean value of the a priori distribution, 𝑪𝑫 is the covariance matrix for 236 

the data, and 𝑪𝑴 is the covariance matrix representing the model space. In case of uninformative 237 

prior information, Equation (13) can be represented by the likelihood function. The posterior 238 

distribution represents the full solution to an inverse problem. The evaluation of posterior 239 

distribution depends on the number of unknown parameters. As, in this study, we have only one 240 

unknown parameter (porosity), the posterior distribution given by Equations 12-13 represents the 241 
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solution of the inverse problem. In case of higher number of unknown parameters, the exploration 242 

of posterior distribution can be performed using the methods presented by Ali and Jakobsen 243 

(2011a), Ali and Jakobsen (2011b), Shahraini et al. (2011) and Ali and Jakobsen (2015). 244 

We also used the Metropolis algorithm of the Monte Carlo method to estimate reservoir porosity 245 

using the exact Zoeppritz solution, and approximations to the exact solution. This method was 246 

developed by Metropolis and Ulam (1949), Metropolis et al. (1953) and Hastings (1970), 247 

consisting of a Markov Chain Monte Carlo (MCMC) technique used to estimate a solution by 248 

sampling through a posterior (arbitrary) distribution. The basic idea of this method is to sample 249 

the target distribution by performing a random walk, from sample to sample, and modify the walk 250 

according to some pre-defined conditions (Tarantola 2005). 251 

 252 

4 Results and Discussion 253 

 254 

4.1. Accuracy in forward modelling 255 

Rock Physics Modelling was used to compute the effective moduli and density of a model 256 

presented in Figure 2. The aspect ratio of randomly oriented micro-cracks used in Rock Physics 257 

Modelling was set to 1/1000. The properties of the quartz matrix and fluids (water + gas) are given 258 

in Table 1.  259 

The seismic velocity for the model was computed from these moduli, and from density, by iterating 260 

the rock physics model for different porosities discussed in section 2.1. These velocities and 261 

density were utilised in Equation (8), and approximations to Equation (8), in order to obtain angle-262 

dependent P-wave reflectivity for different porosity values discussed in section 2.2. The properties 263 
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of overburden strata required to compute reflection coefficients are shown in Table 1. The 264 

comparison of the exact Zoeppritz solution (and approximations to the exact solution) for different 265 

porosities, with respect to the angle of incidence of seismic waves, is shown in Figure 6.  266 

In Figure 6 one can observe that almost all the approximations, except Fatti and Smith's, are in 267 

good agreement with the exact Zoeppritz's solution at relatively small incidence angles. However, 268 

they start to deviate from the Zoeppritz's solution as the angle of incidence increases (Figure 6). 269 

The Fatti’s approximation (Fatti et al. 1994) has a comparatively higher gradient and deviates from 270 

the exact Zoeppritz solution even at near-incidence angles. Importantly, Smith’s reflectivity values 271 

(Smith and Gidlow 1987) start to increase and move away from the exact Zoeppritz solution with 272 

increasing porosity (Figure 6). All other approximations do not change their behaviour 273 

significantly with increasing porosity values (Figure 6). 274 

The P-wave reflection coefficients obtained from a combination of rock physics and seismic 275 

modelling were convolved with source wavelet to obtain synthetic seismic AVA gathers for 276 

different porosity levels. These P-wave reflection coefficients are displayed in Figure 7 to 10 for 277 

porosity values of 0.1, 0.2, 0.3 and 0.4, respectively. All the approximations reveal a polarity 278 

reversal, with the Fatti’s approximation having the largest negative amplitude - hence disagreeing 279 

with the exact Zoeppritz solution (Figures 7-10). The amplitude of synthetic AVA gathers shows 280 

a decreasing trend with respect to angle of incidence (Figures 7-10). Synthetic amplitude is higher 281 

at low porosities for all approximations, and decreases with increasing porosity. 282 

 283 

4.2 Accuracy in inverse modelling 284 
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In order to check the accuracy of P-wave reflection coefficient approximations for AVO 285 

inversions, we tried to retrieve true reservoir porosity (0.15) from synthetic reflection coefficient 286 

and amplitude data (with 25% noise/uncertainty/standard deviation of observed seismic data) using 287 

the Bayesian approach and the Monte Carlo method discussed in Section 3. Normally, the 288 

uncertainty (standard deviation/noise level) in seismic AVA data is within the range of 10-30% 289 

(Ren et al. 2017). Noise represents the uncertainty left in the observed data after the application of 290 

sophisticated seismic AVA-processing algorithms such as amplitude preserving migration 291 

(Grossman 2003; Zhang et al. 2014). The amplitude of seismic data is the most important factor 292 

in seismic AVA analyses, and preserving the true amplitude via sophisticated algorithms is crucial.  293 

We have considered an uninformative prior in our inverse problem, so the objective function is 294 

only represented by the likelihood function. The choice of uninformative prior gives an equal 295 

likelihood for all unknown parameters to be estimated during the inversion process. The source of 296 

prior information comes from independent measurements (e.g. well logs and laboratory 297 

measurements of porosity). The results of this inversion are shown in Figure 11 to 14.  Figures 11-298 

12 represent the inversion result in the form of a posterior distribution, whereas Figures 13-14 299 

represent the inversion result obtained via the sampling of the posterior distribution, i.e. a Monte 300 

Carlo method. 301 

Rüger and Bortfeld’s (Bortfeld 1961; Rüger 2002) approximations show a good agreement with 302 

the exact Zoeppritz solution, and associated uncertainties are comparatively smaller. Aki and 303 

Richards, Hilterman and Shuey’s approximation (Aki and Richards 1980; Hilterman 1989; Shuey 304 

1985) underestimates reservoir porosity. In addition, the uncertainty for Smith’s approximation is 305 

quite high and cannot be used in AVA inversion for reservoir porosity. It is also interesting to note 306 

that the inversion results from angle-dependent reflection coefficients and seismic amplitudes are 307 
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the same (Figures 11-12). This stems out from the fact that seismic amplitudes are basically the 308 

result of convolving reflection coefficients with a source wavelet. 309 

Finally the Maximum a posteriori solution of the Bayesian approach was used to recover the 310 

porosity distribution in the reservoir. Initially, a Gaussian random porosity field (a smoothly 311 

varying field; Buland and Omre 2003) representing reservoir porosity was generated (100×100 312 

grid blocks), and this field was then compared with the porosity fields recovered by the exact 313 

Zoeppritz solution, and approximations to the exact solution, by minimising the objective function 314 

as: 315 

     J(𝐦) = ∑ [
𝑅𝑖

𝑐(𝒎)−𝑅𝑖
𝑜

∆𝑅𝑖
]
2

40
𝑖=1 .               (14) 316 

In this equation, 𝑅𝑖
𝐶 and 𝑅𝑖

𝑂 are respectively the calculated and observed reflectivities. The term 317 

‘∆𝑅𝑖’ in the denominator ∆𝑅𝑖represents the standard deviation (noise/uncertainty) present in the 318 

synthetic AVA data.  319 

Results obtained from this latter procedure are shown in Figure 15. Porosities recovered by Rüger 320 

and Bortfeld’s approximations are in good agreement with the exact Zoeppritz solution, and 321 

recover reservoir porosities to a satisfactory level. In comparison, Aki and Richards, Hilterman 322 

and Shuey’s approximations underestimate porosity, with its effect being more prominent for 323 

smaller porosities. Fatti and Smith’s approximations completely failed to recover reservoir 324 

porosity due to their high associated uncertainty. Uncertainty associated with each approximation 325 

is shown in Table 2. 326 

It is important to mention that the inversion results in Figures 11 to 14 represent the results in the 327 

form of a single grid block. The inverse numerical experiment presented in Figure 15, in the form 328 

of Gaussian field on 100×100 grid blocks for porosity, is very important in the context of its 329 
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application on raw data. More specifically, the inversion procedure presented in Figures 11 to 14 330 

is repeated for 100×100 grid blocks and the optimum (true) value of porosity is recovered utilising 331 

the Maximum a posteriori solution of the Bayesian approach. One can visually inspect the 332 

performance of approximations to the exact solution by comparing them with the result of exact 333 

Zoeppritz solution. This approach is, in this work, suggested as the most practical way of 334 

estimating the distribution of porosity in reservoir intervals using raw seismic data. 335 

 336 

4.3 Applications on raw seismic data 337 

For applications on raw seismic data, pre-stack seismic data processed typically for AVA/AVO 338 

analyses using the workflows given by Ostrander (1984), Chiburis (1984), Castagna and Backus, 339 

1993, Grossman (2003) and Zhang et al. (2014), are required along with well-log and any ancillary 340 

laboratory information. The petrophysical analysis of well-log data and laboratory measurements 341 

will provide the basic input parameters required to perform the Rock Physics Modelling necessary 342 

to obtain the effective elastic properties of the gas sand reservoir. Using these effective elastic 343 

properties, seismic modelling can be performed by exact Zoeppritz solution, or approximations to 344 

the exact solution (calculated data). From pre-stack seismic data (near, mid and far angle gathers), 345 

the amplitudes/angle–dependent reflection coefficients can be obtained at reservoir level (observed 346 

data). For angle-dependent reflection coefficients, the amplitudes obtained at reservoir level should 347 

be convolved with the inverse source wavelet extracted from seismic and well-log data.  348 

The calculated and observed data are used in the Bayesian approach and their misfit is minimised 349 

in the form of porosity or desired parameter describing the reservoir character via the objective 350 

function. The sensitivity of the desired reservoir parameter with seismic AVA amplitudes, or 351 
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angle-dependent reflection coefficient, is crucial for the inversion procedure, i.e. if porosity 352 

changes, the seismic AVA data must also change.  353 

In a nutshell, the results presented in this study using synthetic numerical experiments are 354 

important to everyone working with AVA data. The analysis of seismic amplitude variation with 355 

angle of incidence (AVA) is commonly used in the evaluation of reservoir character. It can be very 356 

useful to know which seismic AVA model is suitable to provide reliable results during AVA 357 

analyses and seismic-data inversion.   358 

5 Conclusions 359 

 360 

AVA analysis and inversion in isotropic media require computation of P-wave reflection 361 

coefficients between two layers with different properties. There are several approximations to the 362 

exact Zoeppritz solution for this purpose and these are often used in practice. It may be an 363 

interesting idea to investigate the accuracy of these existing approximations within the context of 364 

seismic reservoir characterization via AVA analysis or inversion. In this study, we have 365 

investigated the accuracy of AVA approximations and their implications to the determination of 366 

reservoir porosity both in synthetic forward and inverse numerical experiments. 367 

 Forward modelling results show that all the approximations to the exact solution, except for Fatti's 368 

and Smith's, are in good agreement with the exact Zoeppritz solutions at smaller angles of 369 

incidence. However, they start to deviate from it as incidence angle increases from 20o. 370 

In synthetic AVA gathers, all the approximations to the exact solution show a decrease in seismic 371 

amplitude with increasing porosity, and polarity reversals at relatively small porosity values. 372 
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Fatti’s approximation shows the largest negative amplitude, whereas Smith’s approximation 373 

returns large positive amplitudes. They are both in disagreement with the exact Zoeppritz solution. 374 

In AVA inversion tests using Bayesian and Monte Carlo methods, Rüger and Bortfeld 375 

approximations show a good agreement with the exact Zoeppritz solution, while the Aki and 376 

Richard, Hilterman and Shuey’s approximations underestimate the reservoir porosity and should 377 

be used in AVA inversion with caution. The uncertainty for Smith’s approximation is significantly 378 

high and it cannot be used in AVA inversion for reservoir porosity. 379 

The Maximum a posteriori solution for porosity inversion shows that porosities recovered by 380 

Rüger and Bortfeld’s approximations are in good agreement with the exact Zoeppritz solution and 381 

recover reservoir porosities to a satisfactory level. Aki and Richard, Hilterman and Shuey’s 382 

approximations underestimate porosity and the effect is more prominent for smaller porosities. 383 

Fatti's and Smith’s approximations completely failed to recover reservoir porosity due to their 384 

associated high uncertainty. We hope that this study will provide the readers an insight on choosing 385 

a suitable approximation for AVA analyses and inversion as methods in reservoir characterisation. 386 

Table 1: Elastic properties of solid mineral, fluid and overburden used in the computation of 387 

reflection coefficients in this work (𝐺𝑃𝐴 (𝐺𝑖𝑔𝑎𝑝𝑎𝑠𝑐𝑎𝑙) =  109𝑃𝑎 =  109𝐾𝑔 .𝑚−1. 𝑠−2). 388 

Material Bulk Modulus (GPA) 

Shear Modulus 

(GPA) 

Density (g/cm3) 

Quartz matrix 37.6 44 2.65 

Fluid (water/brine) 2.2 0 1 



19 
 

Fluid (gas) 0.02 0 0.065 

Overburden (Shale) 
18 7 2.35 

 389 

  390 
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Table 2: Uncertainty percentage of different approximations for the estimation of porosity using 391 

a Maximum a posteriori solution. 392 

Approximation Uncertainty (%) Status Remarks 

Shuey 53 Underestimates porosity Should be used with caution 

Hilterman 67 

Considerably 

underestimates porosity 

Should not be used in 

inverse modelling 

Fatti 100 Fails to recover porosity 

Should not be used in 

inverse modelling 

Aki and 

Richards 

42 Underestimates porosity Should be used with caution 

Smith 639 

High uncertainty, 

overestimates porosity 

Should not be used in 

inverse modelling 

Bortfeld 04 Closer to exact Zoeppritz Satisfactory 

Ruger 04 Closer to exact Zoeppritz Satisfactory 

 393 

 394 

 395 

 396 
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 397 

Figure 1: Schematic workflow used to estimate porosity from seismic AVA analyses. 398 

 399 

 400 

 401 

 402 

 403 
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 404 

Figure 2: Rock physics model includes quartz matrix, interconnected spherical pores, and 405 

randomly oriented micro-cracks that do not contribute to the porosity of the rock, with water and 406 

gas as pore-saturating fluids. The aspect ratio of randomly oriented micro-cracks was set to 1/1000.  407 

  408 
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 409 

Figure 3: C11, C44 and Vp, Vs plotted against porosity show a relative decrease with increasing 410 

porosity. 411 

 412 

 413 

 414 



24 
 

 415 

Figure 4: Partitioning of energy at an interface. Modified from Castagna and Backus (1993). 416 

 417 

 418 
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 419 

Figure 5: Reflection Coefficient (RC) sensitivity to porosity. The exact Zoeppritz equation, and 420 

all its approximations show a general decrease in reflection coefficient with increasing angles of 421 

incidence and porosity. The properties of overburden rocks are given in Table 1. 422 
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 423 

Figure 6: Comparison between the exact Zoeppritz solution, and approximations to the exact 424 

solution, for small and high porosity values. All the approximations, except for Fatti and Smith's, 425 

are in agreement with Zoeppritz's at small incidence angles (between 00 and 200), and deviate from 426 

it at large incidence angles. The properties of overburden rocks are given in Table 1. 427 
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 428 

Figure 7: AVA response of the exact Zoeppritz and approximations to the exact solution (Phi-429 

Fraction = 0.10). 430 

  431 
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 432 

Figure 8: AVA response of the exact Zoeppritz equation and its approximations to the exact 433 

solution (Phi-Fraction = 0.20). Every approximation shows polarity reversal at relatively large 434 

incident angles. 435 
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 436 

Figure 9: AVA response of the exact Zoeppritz equation and its approximations to the exact 437 

solution (Phi-Fraction = 0.30). 438 

  439 
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 440 

Figure 10: AVA response of the exact Zoeppritz and approximations to the exact solution (Phi-441 

Fraction = 0.40). 442 
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 443 

Figure 11: Results of the Bayesian inversion for porosity from angle-dependent reflectivity data 444 

(for incident angle ranging between 00 and 400 degrees) using the exact Zoeppritz equations and 445 

its approximations. True porosity is set at 0.15. The Rüger and Bortfeld approximations are in 446 

good agreement with the Zoeppritz solution. Aki and Richards, Shuey and Hilterman’s 447 

approximations underestimate porosity. The uncertainty for Smith’s approximation is very large, 448 

and Fatti’s approximation failed to recover a meaningful value for porosity. 449 
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 450 

Figure 12: Results of the Bayesian inversion for porosity from synthetic AVA gathers (for incident 451 

angle ranging between 00 and 400 degrees) using the exact Zoeppritz equation and its 452 

approximations. True porosity is set at 0.15. The Rüger and Bortfeld approximations are in good 453 

agreement with the Zoeppritz solution. Aki and Richards, Shuey and Hilterman’s approximations 454 

underestimate porosity. The uncertainty for Smith’s approximation is very large and Fatti’s 455 

approximation failed to recover a meaningful value for porosity. 456 
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 457 

Figure 13: Monte Carlo method for sampling the a posteriori distribution for porosity from angle-458 

dependent reflectivity data (incidence angles between 00 and 400degrees). True porosity is set to 459 

0.15.  460 
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 461 

Figure 14: Monte Carlo method for sampling the a posteriori distribution for porosity from 462 

synthetic AVA gathers (incidence angles between 00 and 400 degrees). True porosity is set to 0.15. 463 

 464 
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 465 

Figure 15: Maximum a posteriori solution used to recover the reservoir porosity distribution, for 466 

the exact Zoeppritz equation and its approximations under 25% noise settings. Aki and Richards, 467 

Bortfeld, Shuey and Rüger’s approximations recover reservoir porosity distribution up to some 468 

extent, but Fatti and Smith’s approximations failed to recover porosity to a satisfactory level. 469 

 470 

 471 

472 
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