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Abstract Kernel mapping is one of the most widespread approaches to in-
trinsically deriving nonlinear classifiers. With the aim of better suiting a
given dataset, different kernels have been proposed and different bounds and
methodologies have been studied to optimise them. We focus on the opti-
misation of a multi-scale kernel, where a different width is chosen for each
feature. This idea has been barely studied in the literature, although it has
been shown to achieve better performance in the presence of heterogeneous
attributes. The large number of parameters in multi-scale kernels makes it
computationally unaffordable to optimise them by applying traditional cross-
validation. Instead, an analytical measure known as centered kernel-target
alignment (CKTA) can be used to align the kernel to the so-called ideal kernel
matrix. This paper analyses and compares this and other alternatives, provid-
ing a review of the literature in kernel optimisation and some insights into the
usefulness of multi-scale kernel optimisation via CKTA. When applied to the
binary support vector machine paradigm (SVM), the results using 24 datasets
show that CKTA with a multi-scale kernel leads to the construction of a well-
defined feature space and simpler SVM models, provides an implicit filtering of
non-informative features and achieves robust and comparable performance to
other methods even when using random initialisations. Finally, we derive some
considerations about when a multi-scale approach could be, in general, useful
and propose a distance-based initialisation technique for the gradient-ascent
method, which shows promising results.

⋆ This paper is a very significant extension of a preliminar conference version [31] including
much additional material: a comprehensive review of kernel model selection methods, a more
detailed description of the method considered and a wider experimental section, comparing
other multi-scale algorithms, and increasing the number of benchmark datasets. Besides,
some hints about when multi-scale kernels are useful and how to initialise them are provided.
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1 Introduction

The crucial ingredient of kernel methodologies is undoubtedly the application
of the so-called kernel trick [42], a procedure that maps the data into a higher-
dimensional, or even infinite, feature space H via some mapping Φ. The kernel
function implicitly determines the feature space H in such a way that a poor
choice of this function can lead to significantly impaired performance. These
choices are related to the definition of a metric between input patterns that
fosters correct classification. This optimisation is often performed using a grid-
search or cross-validation procedure over a previously defined search space.

Some authors suggest the use of the multi-scale kernel [6] (also known as
a multi-parametric, anisotropic or ellipsoidal kernel), where a different kernel
parameter is chosen for each feature. The general motivation for the use of
multi-scale kernels is that, in real-world applications, the attributes can present
very different nature, which hampers the performance of spherical kernels (i.e.,
with the same kernel width for each attribute) [24,17]. However, the number
of parameters (as many as the number of features) makes the computational
cost prohibitive when considering a cross-validation technique.

Ideally, we would like to find the kernel that minimises the true risk of
a specific classifier for a specific dataset. Unfortunately, this quantity is not
accessible; therefore, different estimates or bounds have been developed based
on both analytical and experimental knowledge. In most of these cases, a large
amount of computation time is needed because the bounds or the algorithms
require training the learning machine several times and might even require
solving an additional optimisation problem. Moreover, some of the bounds are
not differentiable, which means that they must be smoothed to use a gradient
descent method [6], which can result in a loose solution.

To overcome these handicaps, a differentiable and simpler approach has
been proposed, which is known as kernel-target alignment (KTA) [10,7]. KTA
is independent of the learning algorithm, and thus avoids the expensive com-
putational training of the classifier. Essentially, KTA aims to find a kernel
function k in a restricted family of kernels such that the induced Gram ma-
trix presents the smallest distance to the ideal kernel matrix, which preserves
perfectly the entire training label structure (represented in this case by simi-
larities between patterns). Centred KTA (CKTA) [7] is an extension of KTA
that has recently been shown to correlate better with peformance and to avoid
some data distribution issues.

The first objective of this paper is to provide an analysis of the literature
in kernel optimisation to find the most appropriate method for the multi-scale
kernel. As a result of this analysis, several advantages of CKTA have been iden-
tified over the rest of the methods: algorithm independence, data distribution
independence and simple optimisation. Therefore, this paper considers CKTA
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to select the multiple parameters of multi-scale kernels (multi-scale CKTA,
MSCKTA). The measure is optimised by a gradient ascent procedure in which
the free parameters are the different kernel widths of each feature, which, as
we will show, leads inherently to the filtering of non-informative features. To
the best of the authors’ knowledge, this idea has been considered only in [24]
and [21]. In the former one, non-centered KTA is used to optimise a multi-scale
version of a special type of kernel for the analysis of biological sequence data,
i.e., oligo kernels. In the latter, non-centered KTA is also tested to compare
spherical and multi-scale kernels with different optimisation techniques. In the
case of [21], although it is not clear that a multi-scale kernel may be in general
useful, the author argues that KTA is clearly the best suited method for model
selection in high-dimensional search spaces. The experiments performed in this
paper include a more general experimental setup with 24 benchmark datasets
and statistical comparisons to other uni and multi-scale methodologies, com-
prising an extensive experimental analysis that has not been performed until
now in the context of multi-scale kernels. Moreover, we also propose a novel
deterministic distance-based strategy for initialising the coefficient vector for
the gradient-ascent algorithm, which is compared to random and fixed initial-
isations. The results suggest that MSCKTA is a competitive technique that
provides binary SVM with a higher flexibility to address heterogeneous real
datasets and a better determined feature space that results in simpler SVM
models (in terms of the number of support vectors) at a reasonable computa-
tional complexity. This additional computational complexity when compared
to uni-scale methods is the price to pay to obtain more accurate and sim-
pler models. These conclusions are reinforced by graphically analysing those
datasets in which the performance is significantly improved by MSCKTA, thus
providing some hints about when the method should be applied. Furthermore,
as said, the methodology naturally spans a feature filter which could be ben-
eficial for model interpretation purposes.

The rest of the paper is organized as follows: Section II shows the literature
in kernel optimization for completeness and analyses what methods are better
suited for multi-scale kernels; Section III presents the MSCKTA optimization
method; Section IV describes the experimental study and analyses the results
obtained; and Section V outlines some conclusions and future work.

2 Related research

This section establishes the terminology and notation that will be used through-
out this study and briefly reviews the methodologies in the state-of-the-art.
The goal in binary classification is to assign an input vector x to one of
{C+1, C−1} classes (this label will be designated as y, where y ∈ Y = {C+1, C−1}),
when considering an input space X ∈ R

d, where d is the data dimensionality.
The training data are assumed to be generated from an i.i.d. D = {xi, yi}

N
i=1 ∈

X ×Y from an unknown distribution P (x, y). Therefore, the objective in this
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type of problem is to find a prediction function f : X → Y, f ∈ F that
minimises the expected loss or risk [42].

The methods presented in this paper will be applied to the binary SVM
paradigm [3,8]. This algorithm depends on several parameters: the cost pa-
rameter C, that controls the trade-off between margin maximisation and error
minimisation, and kernel parameters, that appear in the non-linear mapping
into the feature space.

The methods that we will present consider a specific kernel function (the
Gaussian kernel) and its optimisation. This selection of hyperparameters is
crucial because it can drastically degrade or improve the performance. For the
case of multi-scale or ellipsoidal Gaussian kernels, the optimisation involves
adjusting a vector of parameters. This paper will address precisely this type
of problem. In this sense, these parameters can be adjusted following two
strategies: algorithm-dependent methods (which require explicit training of
the kernel machine) and algorithm-independent (which do not consider any
concrete learning algorithm).

2.1 Algorithm-dependent estimators for model selection

The results obtained by the methods in this subsection are all dependent on
the kernel machines considered, therefore the solution for a kernel method
would not be equally valid for a different kernel machine. The most widely
used approach is the cross-validation method (CV). Although CV is a reliable
estimator, it presents an important computational load because it implies the
execution of the algorithm on every possible value of the parameter vector. As
a step forward, previous research [27] has presented a gradient-based method-
ology that uses a smooth estimation of the validation function with respect to
the SVM parameters.

Leave-one out (LOO) validation is also widespread in the literature be-
cause it provides an almost unbiased estimate of the error on the test data.
The computational cost in this case is even higher than for the CV. Because
of this, different strategies have been considered to provide a bound for the
error. These strategies are focused on the specific case of SVMs and allow the
optimisation of the kernel parameters. Some of them include the span of sup-
port vectors [41], the Jaakkola-Haussler bound [26], the Opper-Winther bound
[30] or the Wahba’s bound [43]. We will focus our study in the radius margin
bound and the span of support vectors.

These bounds are related to the concept of Empirical Risk Minimisation
(ERM). Related to this concept, a bound on the risk R of any function f ∈ F
of VC dimension h and especially the one minimising the empirical risk Remp

was derived (the radius margin bound). Radius margin bound (RMB) was
conceived to obtain an upper bound on the number of errors of the LOO
procedure. The number of scientific contributions that use this bound is very
significant [9,13,18,6,14]. Nonetheless, ERM is considered to be an ill-posed
problem (i.e., a slight change in the training set can entail a large change
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in the function); thus, several studies have focused on restricting the class of
functions by imposing a regularisation constraint [20,15].

Based on the concept of RMB, Vapnik and Chapelle [41] also developed
the span-rule to approximate the LOO error, which not only provides a good
functional for SVM hyperparameter selection but also reflects the error better.
However, this bound is very expensive to compute.

Another branch of the parameter estimation techniques (which will later
be used in comparisons named to as Evidence maximisation, EVID) is based
on the use of Bayesian methods [39,38] to tune the hyperparameters by max-
imising the so-called evidence and obtaining predictive class probabilities.

2.2 Algorithm-independent estimators for model selection

This subsection explores kernel optimisation techniques that do not depend
on the learning machine itself. This concept avoids the computational cost of
training the algorithm and results in a solution that could be plugged into
different learning machines. To accomplish these goals, different analytic con-
cepts are considered, such as the ideal kernel or the inter-cluster separability
in the feature space induced by the kernel function.

The notion of ideal kernel has been extensively described and studied [10],
where KTA was first proposed. This study was followed by a large amount of
scientific contributions related to this estimator [7,11,23,33,24]. KTA arises
from the definition of an ideal kernel matrix that perfectly maintains the la-
belling structure [10]. KTA focuses supporting the information that is inherent
to the data to perform the optimal mapping to the feature space (regardless
of the algorithm to be employed)1.

In [16], the notion of ideal kernel was studied by using three different mea-
sures of similarity among the matrices (KTA, the Frobenius distance and the
correlation). These measures are applied to the optimisation of a spherical ker-
nel on two different datasets. The results of comparing the traditional CV and
these three methods show that the performance is similar, but KTA requires
lower computational cost than the others.

The concept of distance metric learning has also been used for this pur-
pose [28], by searching for a suitable linear map in the feature space, which
computationally leads to a local-optima-free quadratic programming problem
for the SVM case. In [44], the inter-cluster distances in the feature space are
used to choose the kernel parameters, which involves much less computation
time than training the corresponding SVM classifiers.

2.3 Multi-scale case

Multi-scale kernels have been mainly used with evolutionary algorithms [19,
32,17] or gradient-based methods for specific applications [36,6,24]. The main

1 The KTA measure will be formally defined in Section 3.1
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problem with evolutionary approaches is the high computational cost and the
necessity of tuning a large number of parameters associated to the algorithm.

With concern for the applications, in [6], an experiment of the multi-scale
case with the radius margin bound is performed for handwritten digit recogni-
tion. The authors consider this experiment to be as a sanity check experiment
which demonstrates the feasibility of choosing multiple kernel parameters for
a SVM without leading to overfitting. This approach has been considered in
the experimental part of the paper (RMB and MSRMB methods). In [24],
the concept of KTA (non-centered) is used to derive a method for optimis-
ing multiple hyperparameters of oligo kernels to analyse biological sequence
data. Our method extends this idea by considering more robust centered KTA
and general purpose Gaussian kernels, and providing extensive experiments
and analysis of the potential advantages of this procedure. In [36], a gradient-
based optimisation of the radius margin bound was used for the diagnosis of
diffuse lung diseases. Although the performances of the SVM classifiers with
spherical and multi-scale kernel in the paper do not differ significantly, the au-
thors argue that in the absence of prior knowledge, multi-scale kernels should
be preferred. A multi-scale experiment is also performed in [16]; however it
achieved worse results than the spherical version at a much higher compu-
tational cost. The authors argue that this time increase could be due to the
formulation of the optimisation problem, which requires the inversion of a
matrix for each update of one of the hyperparameters. In our approach, the
optimisation methodology is free of this computational requirement.

The case of multi-scale kernels is also studied in [21] where an evolutionary
technique using the validation error is considered [22]. The author argues that
this method does not achieve satisfactory performance and leads to over-fitting
in contrast to the KTA measure.

3 Multi-scale centered kernel-target alignment (MSCKTA)

This section introduces the method used in this paper to optimise the parame-
ters of multi-scale kernels. The method combines the concept of centered KTA
(CKTA) with respect to the ideal kernel and a gradient ascent methodology.
We also include a discussion of the advantages of the method and present a
distance-based technique to initialise the gradient-ascent technique.

Some attempts have been made to establish learning bounds for the Gaus-
sian kernel with several parameters and the combination of kernels when con-
sidering large margin classifiers [29]. These studies suggest that the interac-
tion between the margin and the complexity measure of the kernel class is
multiplicative, thus discouraging the development of techniques for the opti-
misation of more complex and general kernels. However, recent developments
have shown that this interaction is additive [40], rather than multiplicative,
yielding then stronger bounds. Therefore, the number of patterns needed to
obtain the same estimation error with the same probability for a multi-scale
kernel compared to a spherical one grows slowly (and directly depends on the
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number of features). More specifically, the bound on the required sample size is

Õ(dφ+ ||w||/2) [40], where w is the SVM hyperplane and Õ hides logarithmic
factors in its argument, the sample size and the allowed failure probability.
Note that for the spherical kernel the pseudodimension is dφ = 1 and for the
multi-scale case dφ = d.

In this paper, the family of kernels is restricted to the well-known Gaussian
family, which is parametrised by a d-square matrix of hyperparameters Q:

k(xi,xj) = exp

(
−
1

2
(xi − xj)

⊤Q(xi − xj)

)
. (1)

For the conventional Gaussian kernel (known as spherical or uni-scale), a single
hyperparameter α is used (i.e., Q = α−2Id, and Id is the identity matrix of
size d, and α > 0), assuming that the variables are independent. However, one
hyperparameter per feature (muti-scale or ellipsoidal Gaussian kernel) can also
be used by setting Q = diag(α−2) = diag([α−2

1 , . . . , α−2
d ]), with αp > 0 for all

p in {1, . . . , d}. KTA can be used to obtain the best values for α (the uni-scale
method) or α (the multi-scale method). Hereafter, these hyperparameters will
be called kernel widths.

3.1 Ideal kernel

Because kernel functions allow access to the feature space only via input
samples, the pairwise inner products between the elements of a finite input
set {x1, . . . ,xN} are the only information that is available on the geome-
try of the feature space. This information is embedded in the kernel matrix
Kij = k(xi,xj), where k is the kernel function. Most often, kernel algorithms
work with this matrix rather than the kernel function itself. Gram matrices
contain information about the similarity among the patterns; thus, the ide-
alised kernel matrix K∗ derived using an ideal kernel function k∗ [10] will
submit the following structure:

k∗(xi,xj) =

{
+1 if yi = yj ,

−1 otherwise,
(2)

where yi is the target of pattern xi. In other words, K∗ = yyT. K∗ will
provide information about which patterns should be considered to be similar
when performing a learning task. Note that the ideal kernel can be defined
only on the training patterns in practice.

Therefore, the problem of finding an optimal set of hyperparameters α is
changed to the problem of finding a good approximation Kα (i.e., computed
for hyperparameters α) for the ideal kernel matrix K∗, given a family Q of
kernels (see Fig.1). This way of formulating the problem allows us to separate
kernel optimisation from kernel machine learning and to reduce the increase
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Fig. 1 The most appropriate kernel for learning is Kα (the one nearest the ideal one, K∗,
according to some measure of similarity D, being K the set of positive definite kernels).

in the computational cost of learning more complex kernels (such as multi-
scale ones), given that the kernel machine will be unaffected by this higher
complexity.

In terms of mathematical geometry, for the ideal problem presented in Fig.
1, the kernel matrix that is closest to K∗ can be found by maximising the
angle between Kα and K∗.

3.2 Notions of kernel-target alignment (KTA) and centered KTA

Previous studies have noted several issues in KTA for different pattern distri-
butions [10,34]. A recent study [7] presented a solution to this problem both
empirically and theoretically using centered kernel matrices, a method that
is based on centering the patterns in the feature space and that correlates
better with the performance than the original definition of KTA [10]. In fact,
the study in [7] shows that non-centered alignment could be even negatively
correlated with the accuracy in some casesHowever, the centered notion of
alignment shows good correlation along all datasets.

Centering a positive definite kernel function k consists on centering any
feature mapping associated to k, not depending on the mapping chosen. Any
kernel matrix K can be centered by subtracting its empirical expectation:

Kc = (Z− Z1 1
N
)⊤(Z− Z1 1

N
) = K−K1 1

N
− 1 1

N
K+ 1 1

N
K1 1

N
, (3)

where Z =
[
Φ(x1) · · · Φ(xn)

]
, Φ(·) is the mapping from the input space to the

feature space, and 1 1
N

is a matrix with all elements equal to 1
N
. Kc will also

be a positive semi-definite kernel matrix that satisfies k(x,x) ≥ 0, ∀ x ∈ X
and symmetry.

Let us suppose an ideal kernel matrix K∗ and a real kernel matrix Kα

computed for some kernel parameters α. The Frobenius inner product between
them (〈Kα,K

∗〉F =
∑N

i,j=1 k(xi,xj) · k
∗(xi,xj), where N is the number of

patterns) provides information about how ‘well’ the patterns are classified
in their category. Indeed, in this case, the product could be rewritten as the
following equation (see Eq. (2)):

〈Kα,K
∗〉F =

∑

yi=yj

k(xi,xj)−
∑

yi 6=yj

k(xi,xj), (4)



A study on multi-scale kernel optimisation via centered kernel-target alignment 9

where
∑

yi=yj
k(xi,xj) is related to the within-class distance, and

∑
yi 6=yj

k(xi,xj)
to the between-class distance.

The notion of centered alignment between two kernel matricesKα ∈ R
N×N

and K∗ ∈ R
N×N such that ||Kαc

||F 6= 0 and ||K∗
c ||F 6= 0 [10,7] is defined as:

Â(Kα,K
∗) =

〈Kαc
,K∗

c〉F√
〈Kαc

,Kαc
〉F 〈K∗

c ,K
∗
c〉F

, (5)

and this quantity is totally maximised when a kernel can reflect the discrim-
inant properties of the dataset that are used to define the ideal kernel (i.e.,
βKα = K∗, where β is a scalar). Â(Kα,K

∗) ≥ 0 because the Frobenius
product of any two centered positive semi-definite matrices Kαc

and K∗
c is

non-negative. Note that this function is convex in terms of Kα but becomes
non-convex when considering the Gaussian kernel in terms of α [7].

The concentration bound for CKTA and the proof that there exists good
alignment-based predictors both for regression and classification can be seen
in [7], as well as a risk bound for the convergence of alignment for a finite
sample (theorem 12). Specifically, the alignment for a finite sample is bounded
against the alignment expectation, and the expected risk is bounded in terms
of alignment in expectation. This risk depends on the complexity of the kernel
function and it could be derived by setting a bound on the α parameters.

3.3 Optimisation of MSCKTA

Because of the differentiability of Â with respect to the kernel width vector α,
a gradient ascent algorithm can be used to maximise the alignment between
the kernel that is constructed using α and the ideal kernel, as follows:

α
∗ = argmax

α

Â(Kα,K
∗). (6)

The corresponding gradient vector is composed of partial derivatives ▽Â =[
∂Â
∂α1

, . . . , ∂Â
∂αd

]
, where d is the data dimensionality. In this work, the iRprop+

algorithm is used to optimise the aforementioned centered KTA, because of its
proven robustness, advantages over other related methods [25] and previous use
in conjunction with KTA [24]. Each parameter αi will be updated considering

the sign of ∂Â
∂αi

but not the magnitude. Although the second partial derivatives
can also be computed and used for optimisation, they could actually make the
process more computationally costly due to the complexity of this second
derivative formula. The alignment derivative with respect to the kernel widths
α (see Eq. (5)) is:

∂Â(Kα,K
∗)

∂α
=

1

||K∗
c ||F

[〈
∂Kα

∂α
,K∗

c

〉
F

||Kαc
||F

−
〈Kα,K

∗
c〉F ·

〈
Kαc

, ∂Kα

∂α

〉
F

||Kαc
||3F

]
, (7)

where ||A||F =
√
〈A,A〉F, 〈A,B〉F = Tr

[
A⊤B

]
, and, for arbitrary matrices

K1 and K2, it is satisfied that 〈K1c ,K2c〉F = 〈K1,K2c〉F = 〈K1c ,K2〉F [7],
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which simplifies the computation. Note that the derivative for αi is computed
taking into account the other kernel parameters αj|j 6=i because Kα is included
in the formulation. The computation of the KTA takes O(N2) operations per
parameter α to optimise [21]. Because this optimisation does not involve any
additional optimisation problem, it is very fast in practice. Therefore, the
computational complexity of MSCKTA is moderated.

For the spherical Gaussian kernel, α = α ·1 and the derivative with respect
to α can be computed as:

(
∂k(xi,xj)

∂α

)
=

||xi − xj ||
2

α3
· exp

(
−
||xi − xj ||

2

2α2

)
. (8)

However, for the case of the multi-scale Gaussian kernel,

k(xi,xj) = exp

(
−

d∑

z=1

(xiz − xjz)
2

2α2
z

)
=

d∏

z=1

exp

(
−
(xiz − xjz)

2

2α2
z

)
, (9)

the derivative is the following:

(
∂k(xi,xj)

∂αh

)
=

(xih − xjh)
2

α3
h

·

d∏

z=1

exp

(
−
(xiz − xjz)

2

2α2
z

)
. (10)

The specific details and pseudo-code of the iRProp+ algorithm can be
checked in [25]. To avoid including positivity constraints in the optimisation
problem of α (note that α should vary from 0 to +∞), a logarithmic scale (base
10) is used for the parametrization, which does indeed result in a more stable
optimisation. In other words, we consider α = {10α

′

1 , . . . , 10α
′

d} and optimise
the functional with respect to α

′ = {α′
1, . . . , α

′
d}, avoiding the inclusion of any

constraint for α′.
The results obtained for KTA and CKTA in an imbalanced toy dataset

are shown in Fig. 2. In this case, it can be seen that the optimal kernel pa-
rameter (α value with maximum alignment) for KTA and CKTA are different:
approximately 102 for KTA and 10−2 for CKTA. Furthermore, in the bottom
part of the figure, where the two solutions are plotted, it can be seen that the
kernel value obtained for CKTA is more appropriate for the discrimination of
the classes (KTA tends to choose solutions that consider that all the patterns
are similar to the rest by setting α → ∞).

Finally, Fig. 3 shows two toy datasets and the corresponding alignment
optimisation surface, where it can be appreciated the necessity of the use of a
multi-scale kernel. As can be seen, the optimum values are located in regions
where α1 6= α2.

3.4 Initialisation scheme of the Gaussian kernel parameters

From the KTA definition, it follows that patterns belonging to the same class
should present a high similarity, as opposed to patterns belonging to different
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Fig. 2 Two-dimensional imbalanced toy dataset and alignment values obtained for different
α values. These values of α have been optimised via CKTA (left-bottom plot) and KTA
(right-bottom plot).
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their alignment values when using a grid of values for α1 and α2.

classes [44]. This idea could be exploited to obtain an initial value of the
parameters α of the Gaussian kernel. For example, by fitting a probability
distribution to the set of within-class distances dw.
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We assume the exponential distribution f(dw, λ) = λ exp(−λdw), where
a close relation can be found between the λ parameter of this exponential
distribution and the α parameter in the Gaussian kernel (considering now one
single parameter for the kernel). The connection can be seen analysing the
following equation and comparing it to the exponential distribution:

k(xi,xj) = exp
(
−λ · ||xi − xj ||

2
)
, λ =

1

2α2
, ||xi − xj ||

2 ∈ dw if yi = yj .

(11)
Note that the first multiplier in the exponential distribution (i.e. λ) is not
required. However, it is more realistic for real-world problems to assume a local
neighbourhood-based similarity notion (e.g. for nonlinearly separable problems
or multimodal ones), considering that each pattern should be similar to their k-
nearest neighbours of the same class. Then, denote dw = {dw+,dw−}, where:

dijw+ = ||xi − xj ||
2, yi, yj = +1, (12)

xj being one of the k-nearest neighbours of xi (k = 5 is selected for simplic-
ity). The analogous equation is used for the negative class. Note that, for the
exponential distribution, λ is estimated as the mean of dw. Then, the kernel
parameter can be determined as α =

√
λ/2. For the multi-scale case, the input

features are assumed to be independent, in such a way that λi is computed only
considering the distance of the patterns for that feature. The result obtained
by means of this procedure for the ellipsoidal ring dataset in Fig. 3 can be seen
in Fig. 4 where the result is α1 = 10−0.53 and α2 = 10−0.87 (different values
per feature). The intuition behind this technique is that kernel parameters
are selected depending on the data itself to construct local neighbourhoods of
similar patterns.

Fig. 4 Representation of the sum of multi-scale Gaussians centered in each point for the
ellipsoidal ring toy dataset. The optimal parameter values obtained by the proposed initiali-
sation scheme are α1 = 10−0.53 and α2 = 10−0.87 (note that the data has been standardised
beforehand).
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3.5 Filtering non-informative features for the construction of the kernel
matrix

An important characteristic of multi-scale kernels is that they provide the
opportunity to perform feature selection by filtering attributes with large αz

values. When the Gaussian kernel width αz → ∞, the kernel matrix computed
for that unique feature remains invariant and tends to a matrix of ones, which
can be interpreted as feature z not being used for the kernel computation (see
Eq. (9)), an omission that could be beneficial for model interpretability. In
this subsection, we show that if feature z is non-informative, αz → ∞ will be
considered as an optimum value for the gradient ascent algorithm.

Consider the case of a variable of index z that, for all values of αz:

(
Nyi

N
|{(xiz − xjz)

2 ≤ 2α2
z}|yi=yj

)
=

(
Nyj

N
|{(xiz − xjz)

2 ≤ 2α2
z}|yi 6=yj

)
,

(13)
where |{·}| denotes the cardinality of the set, and Nyi

is the number of patterns
with label equal to yi. This would mean that the number of patterns in the
neigbourhood of xiz (neighbourhood defined by 2α2

z) will belong similarly
to both yi and yj . Therefore, this variable can be said to be noisy for all
values chosen for the width of the Gaussian (i.e., the similarity does not report
information for the classification problem). If this holds for variable z, then:



∑

yi=yj

(1−mri −mcj +m) · k(xiz, xjz)


 ≃ (14)



∑

yi 6=yj

(1 +mri +mcj −m) · k(xiz, xjz)


 ,

where mri =
1
N

∑N
z=1 yi ·yz, mcj = 1

N

∑N
z=1 yj ·yz and m = 1

N2

∑N
z,h=1 yz ·yh.

Note that both (1−mr−mc+m) and (1+mr+mc−m) are dependent on the
label distribution and are used as weights. Under this assumption, it holds:

〈Kαz
,K∗

c〉F ≃ 0, Â(Kαz
,K∗) ≃ 0, (15)

where Kαz
is the kernel matrix obtained by using only the variable z.

Recall that, for the multi-scale case, Kα = Kα1
◦ . . . ◦Kαd

and that align-
ment is maximised when βKα = K∗, where β is a scalar.

β(Kα1
◦ . . . ◦Kαz−1

◦Kαz+1
◦ . . . ◦Kαd

) = K∗, (16)

where ◦ represents the hadamard or entrywise product between matrices, i.e.,
for two matrices A and B of the same dimension, the hadamard product (A◦B)
is another matrix with elements given by: (A ◦B)i,j = (A)i,j · (B)i,j .

In this way, the complete kernel matrix can be decomposed as Kα = K∗ ◦
Kαz

with the informative features in K∗ and the non-informative one in Kαz
.
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To analyse how the non-informative variable of index z interferes in the kernel
matrix, note that:

〈Kαz
,K∗

c〉F < 〈Kα,K
∗
c〉F ≤ 〈K∗,K∗

c〉F , (17)

because 〈Kαz
,K∗

c〉F ≃ 0 and the addition of a non-informative feature will
never decrease the angle of the matrix with respect to the ideal one. Given that
the maximum alignment is Â(K∗,K∗) = 1 and we know that Â(Kα,K

∗) ≤
Â(K∗,K∗), the gradient of the alignment will converge to the best solution
Â(Kα,K

∗) = Â(K∗,K∗) = 1, which is true for (see Eq. (5)):

〈(K∗ ◦Kαz
)c,K

∗
c〉F =

√
〈(K∗ ◦Kαz

)c, (K∗ ◦Kαz
)c〉F 〈K∗

c ,K
∗
c〉F (18)

Tr((K∗ ◦Kαz
)c ·K

∗
c)

2 = Tr((K∗ ◦Kαz
)2c) · Tr((K

∗
c)

2), (19)

where Tr(A) corresponds to the trace of A. The only case that fulfils this is
Kαz

= 1, and this is the case when αz → ∞ (see Section 3.3), because all
the patterns are considered to be equally similar. Therefore, from Eq. (10),
∂Kα

∂αz
→ 0 and ∂Â

∂αz
→ 0. Consequently, as the derivative is equal to zero, the

case of αz → ∞ will be an optimum for the gradient-based optimisation algo-
rithm. Note that this filtering is done implicitly without including any sparsity
coefficient in the optimisation. Therefore, only non-informative features are re-
moved. However, as it is well-known, whether the gradient ascent algorithm
reaches the optimum point depends on the initialisation itself.

The remaining methods studied in this paper do not naturally perform
any type of feature selection (i.e., a sparsity coefficient could be added to
the optimisation but this step is not performed explicitly) because adding
non-informative dimensions to the problem should not damage the SVM solu-
tion. This is due to the fact that the capacity control performed by the SVM
method is equivalent to some form of regularisation, so that “denoising” is
not necessary [37]. In the case of KTA, the optimisation performed recognises
directly the variables that do not report information about the labelling or
that are very noisy. KTA applied for the purpose of deciding most informative
variables (i.e., to perform feature selection) has been only investigated in [34]
where KTA is used to optimise a weighting variable for each feature.

4 Experimental results

This section aims to provide an extensive empirical analysis of the use of
multi-scale kernels. Firstly, the goodness of this type of kernel is analysed by
plotting an approximation of the feature space that is induced by the kernel.
Secondly, several approaches to uni and multi-scale kernels are tested for com-
parison purposes for a set of 24 binary benchmark datasets, and statistical tests
are conducted to analyse whether the method previously presented improves
their performance significantly. Thirdly, the feature selection performed by the
methodology is analysed, and a deeper analysis of the situations in which a
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Table 1 Characteristics for the 24 datasets tested, ordered by the number of attributes d.

Dataset N d Dataset N d

haberman (HA) 306 3 hepatitis (HE) 155 19
listeria (LI) 539 4 bands (BA) 365 19
mammographic (MA) 830 5 heart-c (HC) 302 22
monk-2 (MO) 432 6 labor (LA) 57 29
appendicitis (AP) 106 7 sick (SI) 3772 33
pima (PI) 768 8 krvskp (KR) 3196 38
glassG2 (GL) 163 9 credit-a (CR) 690 43
saheart (SA) 462 9 specftheart (SP) 267 44
breast-w (BW) 699 9 card (CA) 690 51
heartY (HY) 270 13 sonar (SO) 156 60
breast (BR) 286 15 colic (CO) 368 60
housevotes (HO) 232 16 credit-g (CG) 1000 61

All nominal variables are transformed into binary ones

multi-scale approach is useful is presented. Finally, an analysis of the results
for different initialisations is included.

Regarding the experimental setup, a stratified 10-fold cross-validation was
applied to divide the data, using the same partitions for the methods com-
pared. For each train split, one model is fitted with the train data and eval-
uated with the test data. The results are taken as the mean and standard
deviation over each of the 10 test sets.

As stated before, the optimisation of the gradient-based methods is guar-
anteed only to find a local minimum; therefore, the quality of the solution can
be sensitive to initialisation. Two different approaches are considered in this
case. For the comparison with other methods, the initial point for all of the
methods tested was fixed at 100 (as suggested by other studies [6]). As a dif-
ferent part of the experimental study, we also compare this fixed choice (100)
with random initialisations and with the deterministic initialisation technique
proposed in subsection 3.4. The gradient norm stopping criterion was set at
10−5 and the maximum number of conjugate gradient steps at 102 [25].

Several benchmark binary datasets that have different characteristics were
tested. Table 1 shows the characteristics of these datasets, where the number
of patterns (N) and attributes (d) can be observed. These publicly available
real classification datasets were extracted from the UCI repository [2].

4.1 Analysis of the empirical feature space

This subsection explores the notion of empirical feature space to analyse the
behaviour of multi-scale kernels by performing a graphical experiment. The
empirical feature space is defined as an Euclidean space that preserves the dot
product information of H contained in K. It is possible to verify that the ker-
nel matrix of the training images obtained by this transformation corresponds
to K, when considering the standard dot product [35,45]. An approximation
of H can be obtained by limiting the dimensionality of the space. To do so,
we have to compute the eigendecomposition of K and choose the r domi-
nant eigenvalues (and their associated eigenvectors) to project the data while
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approximating the structure of H. We use this method to represent the em-
bedding space induced by CKTA and MSCKTA for several datasets (see Fig.
5). It can be appreciated from Fig. 5 that, for a multi-scale kernel (right plot
of each dataset), the class separation appears to be easier (thus leading to
simpler decision functions). Fig. 5 also includes information of the eigenvalues
of both matrices (i.e., the matrix induced by CKTA and the matrix induced by
MSCKTA). This information is represented by a γ value, that corresponds to
λ1+λ2∑

N
i=1

λi
, where λi is the i-th eigenvalue for a given matrix ordered in descend-

ing order. From these values, it can be observed that the normalised sum of the
first two eigenvalues is higher for the kernel matrix computed by MSCKTA,
indicating this that these two dimensions incorporate more information about
the kernel matrix we are diagonalising. In this sense, previous studies in the
literature [4] have demonstrated that, if a kernel present a higher normalised
sum of the first eigenvalues than other kernel (applying kernel principal com-
ponent analysis), it means that the first kernel suited the underlying problem
better. In our case, because we are not applying kernel principal components
analysis, but a reduction of the empirical kernel map instead, this γ value
does not represent the total of data variance covered, but rather the total
information represented of the original kernel matrix.
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Fig. 5 Graphic showing the 2-dimensional approximation of the empirical feature space
induced by CKTA (left plot for each dataset) and by MSCKTA (right plot for each dataset).

4.2 Experimental setup

The following methods were compared in the experimentation because they
can be considered to be very representative methods in kernel optimisation:

– Cross-validation (CV) using a stratified nested 5-fold cross-validation on
the training sets with a single kernel parameter and the C parameter of
SVM selected within the values {10−3, 10−2, . . . , 103}.
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– CKTA for optimisating a convex combination of kernels through multiple
kernel learning (AMKL) [7]. The kernels used for the optimisation are the
ones associated to the kernel width values {10−3, 10−2, . . . , 103}. Once the
kernel width is adjusted, the regularisation parameter C of SVM is tuned
by minimising the classification error estimated by a stratified nested 5-
fold cross-validation on the training sets (with the parameter C within the
values {10−3, 10−2, . . . , 103}). This two stage optimisation method is also
referred in the literature as second-order method [5].

– Smoothed span of support vectors (SSV) optimised using a gradient-based
methodology [6]. A spherical kernel is used.

– Evidence maximisation (EVID) and its multi-scale version (MSEVID), op-
timised through a gradient-based methodology [39].

– Smoothed radius margin bound (RMB) and its multi-scale version (MSRMB),
optimised using a gradient-based methodology [6].

– CKTA and MSCKTA, optimised using a gradient ascent methodology.
Once the kernel width is adjusted, the regularisation parameter C of SVM
is tuned by minimising the classification error estimated by a stratified
nested 5-fold cross-validation on the training sets (with the parameter C
within the values {10−3, 10−2, . . . , 103}), as in other studies [24].

For SSV, EVID and RMB, the optimisation of C is made together with the
kernel parameter. Each benchmark dataset was appropriately standardised
(note that this is a very important previous step for our method, specially if
the final kernel parameters are to be analysed). As suggested in [6], for SSV,
EVID, MSEVID, RMB and MSRMB, a modified version of the Polack-Ribiere
flavour of conjugate gradients was used to compute the search directions; a line
search using quadratic and cubic polynomial approximations and the Wolfe-
Powell stopping criteria were used together with the slope ratio method to
determine the initial step sizes. The first and second derivatives were used
for the optimisation. For CKTA and MSCKTA, the iRprop+ method [25] has
been selected because of its good behaviour in alignment optimisation [24].
All algorithms were tested with the L2 Support Vector Classification (SVC)
paradigm (in order to fairly compare with [6]). All datasets, partitions and
results are available (in terms of mean and standard deviation) on the website
associated with this paper2. SSV, EVID, MSEVID, RMB and MSRMB have
been tested using the publicy available Matlab code3.

4.3 Comparisons to other methodologies

Table 2 shows the test mean result of each method for each dataset in terms
of Acc. Table 3 shows the test mean rankings (1 for the best method and
9 for the worst) and the mean test performance along all of the 24 datasets
in terms of the accuracy (Acc), the number of support vectors (SVs), and

2 http://www.uco.es/grupos/ayrna/gbmskta
3 http://olivier.chapelle.cc/ams/
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the centered alignment for training (Atr) and testing sets (Ats). The number
of support vectors has been reported because it was noticed that the value
chosen for the cost parameter C decreases when KTA was used. This cost
parameter controls the trade-off between allowing training errors and forcing
rigid margins, in such a way that when C → ∞ the SVM leads to the hard-
margin approach. Therefore, if C is too large, we would have a high penalty for
non-separable points and could store too many support vectors, which could
lead to overfitting [1].

Table 2 Mean test values obtained for all the methods and datasets tested in terms of Acc.

Dataset CV AMKL SSV EVID MSEVID RMB MSRMB CKTA MSCKTA
haberman 72.86 71.25 72.87 73.52 73.19 74.51 73.17 73.86 73.51
listeria 92.40 69.57 71.93 70.77 72.54 64.06 67.91 65.54 72.18

mammographic 82.29 82.17 81.81 81.93 82.41 81.20 84.34 82.41 84.70
monk-2 96.98 96.99 97.22 96.99 100.00 96.75 100.00 100.00 100.00

appendicitis 86.73 85.82 86.82 87.82 86.82 87.73 88.64 86.82 87.73
pima 76.69 78.12 74.23 73.83 74.74 77.86 75.91 77.86 77.73

glassG2 81.54 78.46 82.13 80.29 81.51 79.08 85.85 76.58 80.33
saheart 73.38 73.39 70.34 66.22 66.22 72.30 70.12 72.53 74.69
breast-w 96.71 96.56 96.13 96.86 96.56 96.86 96.28 96.57 96.71

heartY 84.44 83.70 83.33 82.96 72.96 83.70 72.96 85.56 84.44

breast 71.33 68.89 66.48 69.25 65.42 71.33 69.21 70.30 71.34
housevotes 96.54 96.54 95.24 94.82 83.54 96.12 81.54 92.63 96.96
hepatitis 85.21 85.13 79.38 82.50 79.38 85.13 79.38 85.88 84.54
bands 69.31 72.31 63.55 67.39 64.38 67.64 64.38 65.71 69.54

heart-c 84.40 84.74 85.06 83.75 65.55 80.23 65.55 82.76 84.40
labor 90.33 92.33 64.67 64.67 64.67 64.67 64.67 64.67 94.33
sick 96.71 96.69 96.77 96.58 97.77 96.74 96.77 97.30 97.99

krvskp 99.31 98.72 99.34 99.22 89.99 99.28 89.99 99.41 99.34

credit-a 84.49 85.07 85.94 85.94 68.84 81.59 68.84 84.78 85.51

spectfheart 80.56 82.05 79.42 80.94 79.42 80.16 79.42 80.19 81.71

card 85.80 86.52 87.12 76.96 65.51 67.97 65.51 85.94 86.52

sonar 75.79 77.67 75.04 55.17 55.17 55.17 55.17 80.88 77.71

colic 83.15 82.60 65.23 65.23 65.23 65.23 65.23 65.50 85.03
credit-g 77.10 77.50 70.10 70.10 70.10 70.10 70.10 74.10 77.70

The best method is in bold face and the second one in italics.

Table 3 Mean test values and rankings obtained for all the methods tested and the following
metrics: Accuracy (Acc), number of support vectors (SVs), training alignment (Atr) and
testing alignment (Ats).

Methodology CV AMKL SSV EVID MSEVID RMB MSRMB CKTA MSCKTA
Average Acc 84.33 84.21 81.11 80.04 76.62 79.92 77.15 82.28 85.21

Average ranking 4.19 4.56 5.69 5.75 6.64 5.50 6.37 3.94 2.35

Average SVs 292.15 379.71 370.01 407.27 489.63 417.68 498.34 292.61 289.62

Average ranking 2.08 5.12 3.98 5.56 6.41 6.35 7.48 4.18 3.81

Average Atr 0.221 0.231 0.184 0.195 0.138 0.201 0.151 0.227 0.379

Average ranking 5.29 3.33 6.56 6.92 6.79 5.89 5.91 3.29 1.00

Average Ats 0.211 0.218 0.161 0.175 0.110 0.180 0.125 0.212 0.352

Average ranking 4.42 3.58 6.81 6.75 6.79 5.73 5.92 3.92 1.08

The best method is in bold face and the second one in italics.

From these results, several conclusions can be drawn. First, the good per-
formance of the MSCKTA method can be observed by analysing the mean Acc
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ranking, since it outperforms the other methods, especially the other multi-
scale approaches (i.e., MSEVID and MSRMB). Indeed, all of the methods
based on KTA (i.e., AMKL, CKTA and MSCKTA) appear to achieve accept-
able results when compared to the rest of estimators. Specifically, the goodness
of the gradient ascent methodology can be observed when using the multi-scale
version. The poor performance of the other multi-scale approaches (compared
to the uni-scale versions) could be due to two different reasons: first, the dif-
ficulty of optimising the parameters in such a high-dimensional search space
(because there could be more directions to move to undesired local optima
[21]), and second, the nature of the estimator because, for example, SSV and
RMB are considered to be loose bounds on the generalisation errors (this
problem has been previously noted in the literature [14]).

Furthermore, despite the use of a more complex kernel, it can be noted that
the models obtained using MSCKTA are simpler (i.e., sparser models in terms
of the number of support vectors) than the models obtained using the other
kernel optimisation methods. This simplicity could result from using a more
complex map, which therefore leads to a more ’ideal’ transformation of the
input space, using the term ’ideal’ in the sense of the kernel mapping leading
to a perfectly linearly separable set in the feature space.

Finally, when analysing the alignment results (Atr and Ats), several state-
ments in the literature can be validated. First, the use of the multi-scale ap-
proach leads to a far better alignment. Indeed, using this type of kernel achieves
even better alignment values than a combination of kernels (AMKL). More-
over, similar alignment values were reported for CV (0.221 and 0.211) and
CKTA (0.227 and 0.212), which shows the relationship between alignment
optimisation (CKTA) and accuracy optimisation (CV).

Although the necessity of using an ellipsoidal or multi-scale kernel is in-
herent to the nature of the features of the problem, the probability that the
dataset presents attributes that have very different scales is higher as the num-
ber of features grows. This hypothesis can be observed in Fig. 6, where the
mean accuracies for each dataset are represented for CKTA and MSCKTA,
and the datasets have been ordered according to the number of features. As
observed, when the number of features is high, the differences between the
methodologies grow and the importance of using multiple hyperparameters is
thus demonstrated.

To analyse the value of the results, the non-parametric Friedman’s test
[12] (with α = 0.05) has been applied to the mean Acc rankings, rejecting
the null-hypothesis that all of the algorithms perform similarly in mean. The
confidence interval was C0 = (0, F(α=0.05) = 1.99), and the corresponding F-
value was 7.28 /∈ C0. The Holm test for multiple comparisons was also applied
(see Table 4), and the test concluded that there were statistically significant
differences in mean Acc ranking for α = 0.05 when the MSCKTA was selected
as the control method for all of the methods considered.

Table 5 includes the mean runtime values used to optimise all of the pa-
rameters for the SVM method for all of the optimisation methods considered.
This time includes the seconds needed to adjust all the hyperparameters (by
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Fig. 6 Accuracy values for CKTA and MSCKTA.

Table 4 Comparison in mean Acc ranking of the different algorithms using the Holm
procedure with MSCKTA as the control algorithm.

i Algorithm z p-value Adjusted alpha
1 MSEVID 5.42857 0.00000∗ 0.00625
2 MSRMB 5.08599 0.00000∗ 0.00714
3 EVID 4.29542 0.00002∗ 0.00833
4 SSV 4.21637 0.00002∗ 0.01000
5 RMB 3.97920 0.00007∗ 0.01250
6 AMKL 2.79334 0.00522∗ 0.01667
7 CV 2.31900 0.02040∗ 0.02500
8 CKTA 2.00277 0.04520∗ 0.05000

∗: statistically significant differences for α = 0.05.

cross-validation or by gradient-descent depending on the parameter and the
method), but not the time needed for training and testing the model after-
wards. It can be seen that the methods based on CKTA optimising a spherical
kernel are computationally efficient (AMKL and CKTA) and present a com-
putational complexity similar to CV, resulting then in a suitable optimisation
technique for kernel learning purposes. Furthermore, MSCKTA also obtains
reasonable time results (note for example the case of the sonar dataset where
there were 60 parameters to optimise but only took 142 secs because of the low
number of patterns). Observe that, from all the multi-scale methods, MSCKTA
reports an average computational time. The computational time for MSRMB
is lower but at the cost of serious performance degradation (see Table 3).

4.4 Feature selection

Not only can MSCKTA be useful in many real-world applications that present
very different attributes, but it also appears to outperform uni-scale approaches
(in accuracy) and obtain sparser models than other methods in the literature.
Moreover, as stated above, another advantage is that it provides us with the
opportunity to perform feature selection by filtering attributes with large αi

values. Table 6 shows the percentage of selected features (in terms of the mean
and standard deviation) for all of the selected datasets. From this Table, it can
be appreciated that the whole set of variables is used in most cases for datasets
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Table 5 Mean runtime values (sec) to optimise the parameters with the different methods
considered.

Dataset CV AMKL SSV EVID MSEVID RMB MSRMB CKTA MSCKTA
haberman 11.05 6.30 10.48 27.42 30.89 6.55 8.91 5.84 11.82
listeria 20.28 24.55 49.06 141.60 171.55 42.89 36.01 6.86 71.12

mammographic 48.83 42.14 127.54 392.15 287.56 82.35 126.17 30.19 108.69
monk-2 16.54 17.82 36.88 86.12 139.76 38.50 28.40 6.49 25.04

appendicitis 6.52 2.45 6.31 7.93 7.54 3.87 3.41 1.54 9.21
pima 40.45 48.22 234.89 120.15 220.94 81.76 217.29 25.56 132.94

glassG2 8.20 3.19 12.81 11.05 24.78 2.79 18.26 2.28 15.29
saheart 19.02 24.00 66.14 27.39 51.17 21.54 49.92 11.38 122.60
breast-w 32.86 14.79 68.49 173.00 533.76 73.22 24.78 14.42 71.61
heartY 11.15 4.62 15.94 20.90 12.63 26.36 4.59 3.73 46.25
breast 12.52 5.71 14.37 25.35 12.08 6.52 20.67 4.66 39.05

housevotes 10.13 4.24 10.72 14.14 7.58 14.72 4.07 2.91 34.71
hepatitis 8.34 5.20 3.67 6.39 6.69 6.87 1.97 2.38 40.27
bands 17.05 5.78 25.33 44.12 21.75 25.93 11.53 5.66 79.81
heart-c 14.43 6.64 23.09 29.44 22.10 30.17 5.97 5.01 115.16
labor 7.06 5.09 1.40 1.83 1.78 1.35 1.54 1.89 30.87
sick 1385.19 1425.50 1676.19 5987.80 37008.14 2766.37 3869.13 1180.89 9137.40

krvskp 1172.12 636.69 1238.80 7801.57 11973.69 1795.19 1821.03 1004.08 10010.25
credit-a 63.51 58.81 198.65 188.06 239.42 100.87 64.42 36.69 569.15

spectfheart 16.16 12.75 8.42 29.47 31.15 7.74 12.85 7.43 178.93
card 70.96 60.51 209.00 99.27 233.04 40.22 76.28 37.16 802.58
sonar 10.95 12.89 11.79 3.75 17.36 1.89 7.41 3.93 142.61
colic 28.22 11.44 17.67 15.93 66.79 6.16 22.24 7.54 360.12

credit-g 163.56 172.97 177.30 140.42 710.80 31.91 199 72.08 1952.35
Mean 133.13 108.84 176.87 641.47 2159.71 217.32 276.49 103.36 1004.49

that have few variables, which indicates that there are no trivial variables for
the classification and that MSCKTA is not performing an arbitrary selection.
However, as the number of attributes grows, the proportion of attributes se-
lected tends to decrease (note that in 6 of the datasets, the number of selected
features is lower than a 50%).

Table 6 Percentage of features used for each dataset with MSCKTA and number of at-
tributes for each dataset (a).

Dataset d Perc. of features Dataset d Perc. of features
haberman 3 100.00 ± 0.00 hepatitis 19 68.42 ± 47.76
listeria 4 100.00 ± 0.00 bands 19 52.63 ± 51.30

mammographic 5 100.00 ± 0.00 heart-c 22 59.09 ± 50.32
monk-2 6 100.00 ± 0.00 labor 29 27.59 ± 45.49

appendicitis 7 85.71 ± 37.80 sick 33 80.65 ± 40.16
pima 8 62.50 ± 51.75 krvskp 38 44.74 ± 50.39

glassG2 9 88.89 ± 33.33 credit-a 43 57.14 ± 50.09
saheart 9 77.78 ± 44.10 specftheart 44 47.73 ± 50.53
breast-w 9 100.00 ± 0.00 card 51 55.10 ± 50.25
heartY 13 84.62 ± 37.55 sonar 60 36.67 ± 48.60
breast 15 80.00 ± 41.40 colic 60 38.33 ± 49.03

housevotes 16 50.00 ± 51.64 credit-g 61 47.46 ± 50.36

Note that the rest of algorithm-dependent estimators do not naturally per-
form feature selection due to the capacity control of SVM methods. However,
for unregularised methods, this could be an important characteristic to con-
sider.
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4.5 Analysis of different initialisation methods

As said, several random or even fixed initial points for α can be considered.
For simplicity, the same initial point has been used for this optimisation in
some previous works [6] (the initial point considered for all members of α is
100, because it corresponds to the standard deviation of all of the variables
in the dataset4). For the experiments previously presented in this paper, we
thus considered αi = 100 in order to fairly compare to other methodologies.
However, the suitable choice of these initial points is crucial for the algorithm.
In order to analyse the stability of the algorithm with respect to this choice, we
compare the results obtained from different initialisations (one initialisation
per training/test set was used):

– Fixed initialisation with αi = 100, i = 1, . . . , d.
– Random initialisation with αi = 10ri , i = 1, . . . , d, ri ∈ [−1, 1].
– Random initialisation with αi = 10ri , i = 1, . . . , d, ri ∈ [−3, 3].
– Deterministic distance-based initialisation proposed in subsection 3.4.

Table 7 shows the results of these initialisation procedures for 10 datasets (us-
ing the same experimental procedure than before), where it can be seen that
the proposed distance-based strategy presents the most competitive perfor-
mance (although close to the one obtained for αi = 100). From these results,
it can be stated that both a random initialisation between [−1, 1] or just ini-
tialising all αi = 100 result in a stable and robust optimisation performance
(as opposed to initialise the random numbers between [−3, 3], i.e. the cross-
validation grid used). These results also show the possibility of initialising
the problem in a more intelligent way, to further improve the results in those
cases where the best possible performance is required. Note that the remaining
methods shown in previous subsections could also benefit from this initialisa-
tion.

Table 7 Results obtained from the different initialisations considered.

Dataset αi = 100 ri ∈ [−1, 1] ri ∈ [−3, 3] Distance-based
mammographic 84 .70 ± 2 .90 84 .70 ± 2 .90 83.25 ± 3.70 84.82 ± 2.73

pima 77.73 ± 3.05 77 .86 ± 3 .30 64.85 ± 0.73 77.87 ± 3.29
glassG2 80.33 ± 10.68 80 .96 ± 12 .41 53.38 ± 2.74 82.72 ± 11.02
saheart 74.69 ± 7.19 70.34 ± 8.09 65.37 ± 0.31 72 .07 ± 7 .55
breast-w 96.71 ± 2.34 96 .42 ± 2 .15 94.71 ± 2.94 96 .42 ± 2 .15
heartY 84.44 ± 7.15 80 .74 ± 11 .01 55.55 ± 0.00 84.44 ± 7.45
breast 71 .34 ± 3 .50 70.28 ± 2.35 68.53 ± 3.65 72.39 ± 3.69
sick 97 .99 ± 1 .20 97.75 ± 1.01 97.69 ± 0.74 98.06 ± 1.22

credit-a 85.51 ± 4.21 85 .80 ± 3 .79 67.83 ± 9.03 86.09 ± 4.28
colic 85.03 ± 5.82 83.99 ± 7.11 63.87 ± 2.06 84 .48 ± 6 .35

4 Note that a data standardisation procedure is applied before optimisation
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4.6 Graphical analysis of the usefulness of MSCKTA

Several advantages of MSCKTA can be identified: algorithm independence,
data distribution independence, simple optimisation, inherent feature selec-
tion, sparser SVM models, easy extension to other paradigms, to different
kernel functions and when only pattern similarities are available.

This last subsection is intended to provide a deeper analysis of the situa-
tions in which a multi-scale approach is useful. To provide this analysis, some
scenarios in the benchmark datasets that were used are shown in Fig. 7, 8,
9, 10 and 11. For each figure, two of the original input dimensions have been
selected and are represented together with the class labelling. Furthermore,
the kernel width that is associated with each dimension is included in the cor-
responding axis. These figures have been altered through the use of a random
jitter methodology to better visualise the number of patterns per point. It
is important to note how MSCKTA assigns equal α values to features with
similar class geometry and α → ∞ values to non-relevant features.

Fig. 7 represents the case of a dataset that has two dimensions significant
for classification (i.e., that have not been excluded by setting the associated
kernel width to infinity); however these two dimensions present different ker-
nel widths. Fig. 8 and 9 represent the case of a dataset with two significant
dimensions for classification, which also presents similar widths. Fig. 10 shows
the case in which one of the variables includes significant information and the
other does not (i.e., the associated kernel value tends to infinity). Finally, Fig.
11 represents the case in which none of the variables contains useful informa-
tion about the labelling structure. A discussion of each case is included in the
different figure captions.
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Fig. 7 Two-dimensional plot of the mammographic dataset (the first and second dimen-
sions). In this case, the chosen kernel parameters for each data dimension vary significantly,
which clarifies when a multi-scale kernel could be useful. Indeed, MSCKTA achieved better
performance for this dataset (84.70%) than CKTA (82.41%).

Although it is difficult to acquire a clear understanding about when to use
multi-scale kernels, a general idea can be inferred from the previous results
and figures. It is clear that multi-scale kernels should be preferred to spherical
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Fig. 8 Two-dimensional plot of the breast-w dataset (the first and second dimensions).
Specifically, for this dataset almost the same kernel widths have been chosen for all of
the dimensions. In this case, the performances of the CKTA and MSCKTA were similar
(96.57% vs 96.71%, respectively). The graphical representation shows that the patterns can
be differentiated by the use of a spherical kernel.
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Fig. 9 Two-dimensional plot of the card dataset (8th and 20th dimensions). This figure
represents the case of two dimensions used for the kernel computation, i.e., that contain
useful information about the labelling structure of the data. Although these dimensions do
not allow us to perfectly classify the data (note that the actual dimensionality of the dataset
is 51), they give some useful discrimination knowledge about the patterns.
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Fig. 10 Two-dimensional plot of the card dataset (4th and 41th dimensions). In this case,
the plot represents one significant dimension and one that does not report useful information
for classification.
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Fig. 11 Two-dimensional plot of the card dataset (first and 40th dimensions). This plot
represents the case of two non-significant dimensions for the card dataset, where neither of
the variables contains useful information about the labelling structure.

ones in cases where the computational time is not a requirement, since multi-
scale kernels are more general and can lead to the same solution. Moreover,
they can be helpful in the presence of heterogeneous attributes, e.g. when the
class-variance of the data varies differently per attribute (see Fig. 7). Finally,
multi-scale kernels can also be useful for analysing the most relevant features
for the data discrimination, as seen in Fig. 10 and 11.

Conclusions

This paper uses the CKTA concept to optimise a multi-scale kernel using a
gradient ascent algorithm. The optimisation of the kernel width is usually
done by cross-validation, which is computationally unaffordable for multiple
kernel widths. The results obtained show that CKTA is highly correlated with
performance, and that the optimisation of a multi-scale kernel with this tech-
nique leads inherently to a better determined feature space, to feature se-
lection, to significantly better results and to simpler models at a reasonable
computational complexity. Moreover, a distance-based initilisation technique
is presented which is able to further improve the results for the majority of
the datasets considered. Our results encourage the development of a hybrid
metaheuristic approach with the gradient ascent method to explore the whole
search space and obtain better results. Another direction of future work is a
study of the multi-class and regression cases to analyse whether the statements
made in this paper are also valid for these learning paradigms.
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