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Machine learning methods for binary and multiclass

classification of melanoma thickness from

dermoscopic images
Aurora Sáez, Student Member, IEEE, Javier Sánchez-Monedero, Pedro Antonio Gutiérrez, Senior Member, IEEE,

and César Hervás-Martı́nez, Senior Member, IEEE

Abstract—Thickness of the melanoma is the most important
factor associated with survival in patients with melanoma. It is
most commonly reported as a measurement of depth given in
millimeters (mm) and computed by means of pathological exam-
ination after a biopsy of the suspected lesion. In order to avoid
the use of an invasive method in the estimation of the thickness
of melanoma before surgery, we propose a computational image
analysis system from dermoscopic images. The proposed feature
extraction is based on the clinical findings that correlate certain
characteristics present in dermoscopic images and tumor depth.
Two supervised classification schemes are proposed: a binary
classification in which melanomas are classified into thin or thick,
and a three-class scheme (thin, intermediate, and thick). The
performance of several nominal classification methods, including
a recent interpretable method combining logistic regression
with artificial neural networks (Logistic regression using Initial
variables and Product Units, LIPU), is compared. For the three-
class problem, a set of ordinal classification methods (considering
ordering relation between the three classes) is included. For the
binary case, LIPU outperforms all the other methods with an
accuracy of 77.6%, while, for the second scheme, although LIPU
reports the highest overall accuracy, the ordinal classification
methods achieve a better balance between the performances of
all classes.

Index Terms—Melanoma thickness, dermoscopic image, ma-
chine learning, ordinal classification, nominal classification

I. INTRODUCTION

MELANOMA is a malignancy of melanocytes, the cells

that produce the pigment melanin that colors the skin,

hair and eyes. Melanoma that occurs on the skin, called cuta-

neous melanoma, is the most common type of melanoma. It is

well accepted that only early detection can reduce mortality,

since the prognosis of patients with melanoma depends on the

thickness of the tumor at the time of surgical treatment [1].

If the melanoma is confined to the epidermis, it is an in

situ melanoma, curable by adequate removal with surgery.

When the cancerous cells have grown through the basement

membrane into the deeper layer of the skin (the dermis), it is
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known as invasive melanoma, whose prognosis worsens with

depth of invasion.

Breslow index [2] is a method to measure the depth of

melanoma invasion by means of pathological examination after

incisional or excisional biopsy of the suspected lesion [3].

It is measured vertically in millimeters from the top of the

granular layer of the epidermis to its deepest part within the

dermis. It is a valuable tool in prognosing patients survival [3].

Moreover, it represents the main parameter used to establish

the width of surgical margins of excision [4] [5], as well as to

select patient for sentinel lymph node biopsy (SNB) [4] [6].

SNB is a surgical procedure used to determine if cancer has

spread beyond a primary tumor into the lymphatic system.

Therefore, measuring the thickness of the melanoma before

surgical excision is crucial to assess the high or low risk of

progression, to ensure adequate excision margins avoiding a

second more radical operation and to perform SNB if needed.

According to melanoma thickness, it can be classified as

indicated in Table I.

TABLE I
STAGES OF MELANOMA ACCORDING TO THICKNESS

Stage I (thin) <0.76 mm

Stage II (intermediate) 0.76 mm - 1.5 mm

Stage III (thick) >1.5 mm

However, Breslow index can be erroneous determined if the

section of the excised tumor is not made along the thickest part

of the tumor. Moreover, taking into account that melanoma has

the potential to be diagnosed through non-invasive approaches

because of its cutaneous location [7], some authors [3], [8]

suggest that determination of Breslow index by non-invasive

techniques, such as dermoscopy or ultrasonography, would

be a great advance in every day clinical management of

melanoma.

Dermoscopy is a non-invasive technique that uses light and

magnification that allows in vivo visualization of morphologic

structures in pigmented lesions correlated with specific histo-

logic architectural characteristics not otherwise visible to the

unaided eye, increasing melanoma diagnostic accuracy by up

to 35% [9], [10].

This technique has already given promising results in Bres-

low index determination [3]. Some authors have determined a

possible relation between tumor thickness and scores obtained

with diagnosis methods from dermoscopic images, such as
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ABCD [11] or seven point checklist [12]. However, most

of the works have studied the relation between dermoscopic

structures, color features, or even features of shape and the

depth of melanoma. In this sense, Argenziano et al. [13] indi-

cated that pigment network, gray-blue areas, atypical vascular

pattern, and diameter of more than 1.5 mm allowed prediction

of thickness when melanomas were categorized in two groups:

less than 0.76 mm, including in situ (thin) melanomas, and

more or equal than 0.76 mm (thick melanomas). Stante et al.

[4] fully confirmed the connection between these dermoscopic

criteria and histological thickness of melanoma. In [14], the

relationship between the observed dermatoscopic findings and

the histopathological thickness was also studied, concluding

that pigment network, light-brown color, and irregularity are

more frequent in thin melanomas (<0.76 mm) and these find-

ings gradually disappear and are replaced by vascular pattern,

gray-blue areas, and white scar-like areas in thick melanomas

(≥0.76 mm). In [15], Argenziano et al. demonstrated that the

presence of a combination of blue and black color within the

lesion is a simple dermoscopic clue to recognize pigmented

nodular melanoma, which presents a high thickness. More

recently, Silva et al. [16] described the most frequent criteria

in thin melanomas: asymmetry in two axes, 3 or more colors,

atypical dots or globules, and pigment network.

In recent decades, computerized dermoscopy image anal-

ysis systems have been proposed to assist the diagnosis of

pigmented lesions [17]. Most of the works found in the liter-

ature have focused on distinguishing melanomas from benign

lesions [18], [19]. However, the problem of characterization

of the different types of melanoma according its thickness

by image analysis poses a great challenge for its automatic

implementation. To the best of our knowledge, only a work

[20] has addressed this problem, classifying tumors into two

classes: thin and thick melanomas. The authors classified the

melanoma depth by a commercial software using 49 features

related to color, geometry, and texture integrated therein. 141

images from a private database, extracted by the hardware

system property of the own company, were used.

In this work, we propose a computational image anal-

ysis system to estimate the thickness of melanoma from

dermoscopic images based on above mentioned the clinical

findings. The dermoscopic images were extracted from the

Interactive Atlas of Dermoscopy, published by Edra Medical

Publishing New Media [21]. A feature extraction is performed

inspired by the clinical findings, selecting a set of features

correlated with melanoma thickness. The main motivation

of the proposal is to classify melanoma thickness without

using invasive methods. Considering that melanoma thickness

is a continuous variable correlated with prognosis (and thus

with patient survival), different classification options can be

explored. We first explore the performance in the binary case,

and then we address the challenge of a finer patient prognosis

task with three stages of depth. In this way, the objective of

the binary classification is to distinguish between melanomas

<0.76 mm, including in situ ones, and those with ≥0.76 mm

of thickness. The three-class scheme, which, to the authors

knowledge, has not been previously studied in the literature,

approaches the classification of melanomas considering three

stages of depth: <0.76 mm, 0.76 mm – 1.5 mm and >1.5

mm, i.e. thin, intermediate, and thick, respectively, according

the classification proposed in [13].

The classification performance of several machine learning

methods is compared, considering three performance metrics

and the interpretation possibilities of the obtained models.

A recent model combining logistic regression with artificial

neural networks (Logistic regression using Initial variables

and Product Units, LIPU) is applied to the problem. Its main

advantage is that it leads to interpretable probabilistic models,

maintaining a considerable level of accuracy. Moreover, we

select a set of ordinal classification methods for the three-

class problem, which are machine learning algorithms that

achieve better performance in multi-class tasks when there is

an ordering relationship between the classes, gaining recent

attention [22], [23]. Our results show that LIPU model obtains

accurate results both for the binary and three-class versions

of the problem, while ordinal classification methods achieve

a better balance between the accuracies obtained for all

classes in the three-class problem, this dealing to more robust

behaviour in patient diagnosis.

II. DATABASE

The image database used is constituted by 250 dermoscopic

images of melanomas: 167 melanomas <0.76 mm, including

64 in situ melanomas, 54 melanomas 0.76-1.5 mm and 29

melanomas >1.5 mm. As clinical experts in melanoma diag-

nosis have reported in their works [4], [13], melanomas in

situ are included in the first class, because they are considered

thin melanomas. Moreover, a specific study of these lesions

[1] concluded that dermoscopic criteria for in situ melanomas

are similar to those for <0.76 mm of thickness. All images

were extracted from the Interactive Atlas of Dermoscopy,

published by Edra Medical Publishing New Media [21], which

is a multimedia project for medical education with images of

pigmented skin lesions from different hospitals. All lesions

were biopsied and diagnosed histopathologically.

The images, which have the same resolution (768x512

pixels), were segmented using the automatic segmentation

algorithm proposed in [24], in which an edge based level-

set technique is applied together a perceptually adapted color

gradient [25]. Some examples of segmented melanomas are

shown in Fig. 1. An image normalization process was not

performed due to lack of information about the procedure of

image acquisition and camera calibration. However, a selection

of images was carried out discarding, those in which the lesion

did not fit entirely within the image frame and presented too

many artifact types.

III. FEATURE EXTRACTION

In this section, the features used to characterize the

melanomas are described. The extraction is inspired by the

findings derived from clinical studies regarding the correlation

between certain characteristics seen in dermoscopic images

and melanoma thickness. These findings mainly involve der-

moscopic structures and color features. A total of 81 descrip-

tors (x1-x81) based on shape, color and texture are extracted.
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(a) (b)

Fig. 1. Examples of segmented melanomas: (a) melanoma <0.76 mm, (b)
melanoma ≥0.76 mm

A. Shape features

Argenziano et al. [13] indicated that a diameter of more

than 15 mm was more frequent in melanomas with >0.76

mm of thickness, and Silva et al. [16] that one of the most

frequent criterion in thin melanomas was asymmetry in two

axes. To calculate these criteria, we compute area (x1), as

number of pixels inside the lesion border, eccentricity (x2),

as circularity measure, perimeter (x3), and major axis of the

lesion (x4). Eccentricity is computed as

√
1− b2

a2 , were a and

b are the major and the minor axes of the ellipse that has the

same second-moments as the region resulting from the lesion

segmentation. A ellipse whose eccentricity is zero is a circle.

Eccentricity can be considered a special case of asymmetry

[14].

B. Color features

The main dermoscopic structures which are more discrim-

inative in the melanoma thickness estimation are: pigment

network, blue-gray veil, vascular pattern and white scar-like

areas. These structures are associated with different colors:

pigment network is associated with black and brown, vascular

pattern with red color, as the name suggests, blue-gray veil

with blue and gray colors, and white scar-like areas with white.

Moreover, Lorentzen et al. [14] indicated that light brown color

was more frequent in thin melanomas (<0.76 mm), as well

as Argenziano et al. [15] established a relationship between

a combination of blue and black color within the lesion with

melanomas with high thickness. Therefore, color features play

an important role in the estimation of depth of the melanoma.

We compute two sets of color features: the first one related

to the six colors assessed in the pigmented lesions, and

the second one related to statistics computed over the color

of the whole lesion. Regarding the first color feature set,

it is important to note that there are six main colors that

a pigmented lesion can present: black, dark brown, light

brown, blue-gray, red, and white [26]. These colors seen in

dermoscopy depend to some extent on the depth of the lesion,

since the different colors appear depending on how deeply

in the skin the melanina is located [27]: melanin appears

black when it is located in the stratum corneum and upper

epidermis. Deeper in the epidermis, it appears brown. In the

dermis, melanin appears either gray or blue. Red is associated

with dilation of blood vessels and white with regression and/or

scaring. Thus, we propose to segment each lesion into their

constituting colors.

In order to achieve this, a similar approach to that proposed

by Seidenari et al. [28] was followed. We developed a color

palette comprising the six color groups. The palette is formed

by 144 patches or samples (24 patches per color), 40 × 40
pixels, manually extracted by an expert in pigmented lesion

diagnosis from 60 lesion images, different from the 250

melanoma images used for our study. Each patch presents

unequivocally one of the six possible colors (white, blue-gray,

dark brown, light brown, black and red). Fig. 2 shows some

examples of patches belonging to each color class.

Fig. 2. Sample of the color palette used for color group attribution. The
colored square at the beginning of the column corresponds to the false color
attributed to the pixels belonging to that color group.

The palette was used to extract the color regions of the

lesions from the patches according to a nearest neighbor

approach. In [28], each pixel of the image was assigned

to the color patch that minimized its Euclidean distance

in the RGB color space. In this paper, CIE L∗a∗b∗ color

space, developed by International Commission on Illumination

(CIE), is used, because, unlike RGB, it is a approximately

perceptually uniform color space. In Fig. 3, it can be seen the

color area identification in the melanomas shown in Fig. 1.

(a) (b)

Fig. 3. Example of color area identification in the melanomas shown in Fig.
1. a) <0.76 mm, b) ≥0.76 mm

From this color identification, seven features are extracted.

Six descriptors (x5-x10) that represent the percentage of the

lesion area classified as these colors. And one more (x11)

that represents the number of colors that each lesion presents,

criterion established by Silva et al. [16], taking into account

in this case that a color must cover at least 1% of the lesion

to be counted.
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Moreover, color of whole lesions were quantified by four

statistics (mean, standard deviation, SD, kurtosis, Ku, and

skewness, Sk) over the three channels of two color spaces:

RGB and CIE L∗a∗b∗, i.e. R, G, B, L∗, a∗, and b∗ (obtaining

24 additional color features, x12-x35).

C. Pigment network features

Many authors have found a relation between the depth of

melanoma and certain dermoscopic structures. Among them,

the pigment network seems to be the most cited discriminative

feature [4], [13], [14], [16]. Its occurrence inversely correlates

with melanoma thickness [21]. Due to its importance, we

propose to extract specific features derived from pigment

network detection.

A pigment network is defined as a regular grid of brownish

lines over a diffuse light-brown background [21]. Our aim

is to seek the ‘holes’ of the network. The first step is to

apply a top hat filter over the channel of lightness (L∗) of

CIE L∗a∗b∗ color space. Top hat transform extracts objects

brighter than their surroundings. After a thresholding by Otsu’s

method [29], a binary image with areas that could possibly

belong to a pigment network is obtained. In order to remove

those wrongly detected areas, we apply the two conditions

relative to area size and color proposed in the work presented

by Sadeghi et al. [30], which uses images extracted from the

same Atlas [21]. To visualize the detected pigment network, a

graph, whose nodes are centers of the detected holes belonging

to the pigment network, is created. Nodes within a maximum

distance threshold, set to 2.5 times the average diameter of

holes, are connected together. Fig. 4 show an example of

pigment network detection.

(a) (b)

Fig. 4. (a) Original image (b) Pigment network detection

To decide if a lesion presents pigment network, the density

ratio proposed in [30] is computed:

Density =
|E|

|V | log(LesionSize)
, (1)

where E is the number of edges in the graph, V is the number

of nodes of the graph, and LesionSize is the size of the area

of the lesion, as number of pixels, used to normalize the ratio

|E|/|V |.
From this pigment network detection, 3 features are ex-

tracted: density ratio (x36), number of nodes (x37) and number

of links or edges (x38).

D. Texture features

Besides pigment network, other dermoscopic structures have

been found to have relation with the depth of melanoma,

such as vascular pattern [4], [13] , blue-gray veil [4], [13],

white scar-like areas [14], and dots or globules [16]. These

structures are usually associated with texture features. For

example, vascular pattern is associated to the presence of a

vascular vessel with line shape, and gray-blue areas and white

scar-like areas are found as homogeneous areas [14].

In attempt to identify different structures present in a lesion,

we propose to extract three sets of texture features from three

different approaches, detailed below.
1) Gray level co-occurrence matrix (GLCM): The gray

level co-occurrence matrix is considered, given its effective-

ness in pigmented lesion classification [19], [31], [32]. It

counts how often a pixel with gray intensity of i occurs

adjacent to a pixel with gray intensity of j. Therefore,

it is necessary to convert the original RGB image into a

grayscale image. We select the color channel of the RGB

image with the highest entropy [31]. The images are uniformly

quantized to 64 gray levels, as previously proposed [19],

and the GLCM is computed for four different orientations

of {0◦, 45◦, 90◦, 135◦}. Finally, the statistics calculated from

these matrices were averaged. For each orientation, 19 sta-

tistical texture descriptors were extracted and then averaged

(x39-x57); 12 proposed by Haralick et al. [33]: Contrast,

Correlation, Entropy, Variance, Sum average, Sum variance,

Sum entropy, Difference variance, Difference entropy, In-

formation measure of correlation 1, Information measure of

correlation 2, and Inverse difference moment; 4 proposed in

[34]: Autocorrelation, Dissimilarity, Energy, and Maximum

probability; and 3 proposed in [35]: Inverse difference, Inverse

difference normalized, Inverse difference moment normalized.
2) Markov random fields (MRF): A model based on

Markov random fields is used to extract texture features that

allow to identify different dermoscopic structures, as was

proposed in [24]. These models assume that the intensity at

each pixel in the image depends on the intensities of the

neighboring pixels. The idea is to model a dermoscopic image

in L∗a∗b∗ color space, and to treat the estimated parameters

of the model as texture features. The texture features are

constituted by the following parameters: µs, σ̂
2
s , θ̂s,t : t ∈ ηg ,

where ηg = {t1, t2, t3, t4} = {(0, 1), (1, 0), (1, 1), (−1, 1)} is

a set of shift vectors, µs is the mean of the color pixels, σ̂2
s is

the estimation of the noise variance, and the other four com-

ponents, θ̂s,t, are the estimation of the correlation coefficients.

As these features are computed from the three components

of the L∗a∗b∗ color space, finally, we obtain 18 parameters

(x58-x75). These parameters are estimated by the least-squares

method proposed by Manjunath and Chellappa [36] (see [24]

for details of the model and parameter calculation).
3) Local binary pattern (LBP): Just as GLCM, the local

binary pattern (LBP) histograms [37] have been widely ap-

plied to the characterization of texture in pigmented lesions

[38], [39]. This technique labels the pixels of an image by

thresholding the neighborhood of each pixel based on its value

(neighbor pixels with value higher or equal to the center pixel

value assume 1 and 0 otherwise) and generates a number to
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quantify the local texture. A histogram is used to describe

the texture information of the whole lesion. We compute LBP

features over the same channel that was computed the GLCM,

using eight sampling points on a circle of radius R = 2 and

R = 10 pixels (see [37] for more details). Three statistics

(SD, Ku and Sk) over the two LBP histograms are extracted

(x76-x81).

IV. CLASSIFICATION METHODS

Our purpose is to study the classification performance in

two variants of the dataset. The binary case try to distinguish

between thin melanomas, including in situ ones, and the rest

of melanomas (Stage I vs. Stages II and III, see Table I),

having 167 and 83 patterns of each class respectively. A second

approach to the melanoma thickness detection is proposed

in a three-class scheme: class one (C1) corresponds to thin

melanoma; class two (C2) is the intermediate melanoma; and

class three (C3) are thick melanomas (see Table I). The classes

distribution here is 167, 54 and 29. Since we can assume a

natural ordering between melanoma types (C1 ≺ C2 ≺ C3), for

the second approach we select a set of ordinal classification

methods (see Section IV-B). In addition to the data ordering,

the dataset is an imbalanced datataset: this is, the distribution

of patterns per class varies significantly so that learning

algorithms tend to bias the model performance towards the

majority classes [40]. For this reason we include several

performance metrics [40], [41] to perform a more robust

evaluation (see Section V-A).

A. Logistic regression using Initial variables and Product

Units (LIPU)

Let D = {(xn,yn);n = 1, 2, ..., N} be a training dataset,

where xn = (x1n, ..., xkn) is the vector of input variables

(feature vector) taking values in Ω ⊂ R
k, and yn is the label

of the n-th individual, where a “1-of-J”, J is the number

of classes, encoding vector is used, y =
(
y(1), y(2), ..., y(J)

)
,

such that y(l) = 1 if x corresponds to an image belonging to

class Cl, and y(l) = 0 otherwise.

The LIPU model [42], [43] is a combination of a logistic

regression model with basis functions obtained from Product

Unit Neural Networks (PUNN). The basis function of the

hidden neurons of PUNN is the Product Unit (PU) function,

where the output of the neuron is the product of their inputs

raised to real valued weights. They are an alternative to

sigmoidal neural networks, based on multiplicative nodes

instead of additive ones. They have the ability to express strong

interactions between input variables, providing big variations

at the output from small variations at the inputs [44]. In this

way, the predictor function includes a standard linear model

in the input variables and a nonlinear model constructed with

PU variables, which captures interactions in the input space.

The general expression of the predictor function is given by:

fl(x,θl) = βl
0 +

k∑

i=1

βl
ixi +

k+m∑

j=k+1

(
βl
j

(
k∏

i=1

x
wji

i

))
, (2)

where l = 1, 2, ..., J − 1, k is number of input variables, m
is number of PU nonlinear transformations, θl = (βl,W) is

the vector of parameters for each predictor function, β
l =(

βl
0, β

l
1, ...., β

l
k+m

)
are the coefficients of the multilogistic

regression model, W = (w1,w2, ..., wm) are the parameters

of the PU nonlinear transformations, and wj = (wj1, ..., wjk)
includes the parameters of the j-th PU transformation, where

each weight wji is an exponent applied to the i-th input value.

As can be observed, the model corresponds to a standard

logistic regression model extended with PU transformations,

where each PU is Bj(x,wj) =
(∏k

i=1 x
wji

i

)
.

To estimate the parameters θ, one possibility is the

minimization of the negative log-likelihood function L(θ) =
1
N

∑N

n=1

[
−
∑J−1

l=1 y
(l)
n fl(xn,θl) + log

∑J−1
l=1 exp fl(xn,θl)

]
,

where θl = (βl,W) and fl(xn,θl) corresponds to the LIPU

model defined in (2). The use of gradient-based methods

to maximize this function is not recommended, because of

the nonlinearity of the model with respect to the parameters

wji of W and the indefinite character of the associated

Hessian matrix of L(θ). Moreover, the optimal number of

PU transformations of the model (m) is unknown. Thus, the

estimation of the vector parameter θ̂ is carried out by means

of the hybrid procedure described below.

The methodology considered [45] is based on the combi-

nation of a global explorer (an Evolutionary Programming,

EP, algorithm), and a local exploiter (maximum likelihood

optimization). Firstly, the EP algorithm designs the structure

and trains the weights of a PUNN, obtaining the number of

PUs in the model, m, and the corresponding sparse weight

matrix W = (w1,w2, ...,wm). The details of the evolutionary

operators used can be consulted in [45]: a parametric mutation

applies changes in the weights, and a structural mutation

adds or removes hidden nodes or connections. The nonlinear

transformations given by the PUs of the best PUNN in the

final generation of the EP algorithm are used to extend the

input space and apply a maximum likelihood optimization.

Secondly, we consider that the classification problem can be

now linearly solved in the space formed by these new variables

and the initial ones [45]. The remaining coefficient vector β

is calculated by maximum likelihood optimization. We use

the the SimpleLogistic method [46], which builds multinomial

logistic regression models by using the LogitBoost algorithm.

The algorithm uses simple regression functions (of only one

variable) for a committee of functions, in a stagewise fitting.

Using simple regression instead of multiple ones basically

results in slowing down the process, but, if stopped before con-

vergence, an automatic variable selection is done. In this way,

the SimpleLogistic algorithm is based on applying LogitBoost

with simple regression functions and determining the optimum

number of iterations by cross-validation. Further details about

the algorithm can be found in [46]. The motivation behind

using SimpleLogistic is that it is able to eliminate those

variables which do not contribute too much to the classification

model or those which cause overfitting, simplifying the final

equation of the model and allowing better interpretation.

In this way, the experiments of this paper justify the use

of the hybrid LIPU model (with both logistic regression

and PU functions) comparing its performance to the its two
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main components: the original PUNN1 and the SimpleLogistic

algorithm (logistic regression, LR)2.

B. Ordinal classification

Ordinal classification, also known as ordinal regression,

deals with classification problems in which there is an ordering

between classes. Though these problems can be tackled with

nominal classifiers, specific methods have been developed

to take advantage of the ordering information in the label

space and to minimize the magnitude of the errors in the

prediction phase [48]. For example, in our three-class problem,

wrongly classifying a thick melanoma as a thin one is an error

that should be penalized more than misclassifying it as an

intermediate one.

For comparing the performance of nominal methods (not

considering ordering relation) and ordinal ones, the battery of

experiments includes five nominal methods and three ordinal

ones. The three methods presented in previous subsections

are nominal (LIPU, PUNN and LR) and we complement

this set with Kernel Discriminat Analysis (KDA) and Support

Vector Machine for Classification (SVC) [49]. For the ordinal

methods, we have chosen Support Vector Ordinal Regression

with implicit constraints (SVORIM) [50], RED-SVM [22],

which applies the reduction from cost-sensitive ordinal ranking

to weighted binary classification (RED) framework to SVM,

and Kernel Discriminant Learning for Ordinal Regression

(KDLOR) [23]3. For additional information about these meth-

ods, please refer to the provided references and to a recent

survey on ordinal regression [48].

V. EXPERIMENTS

A. Performance evaluation and experimental design

Performance evaluation of classification tasks is a multi-

dimensional issue, and model behaviour assessment depends

on the specific problem requirements. In our case, we have

selected the following classification performance metrics based

on the application purpose:

• Accuracy (Acc) is the rate of correctly classified patterns

and represents the global performance of the classification

task: Acc = 1
N

∑N

i=1Jŷi = yiK, where JcK is the indicator

function, being equal to 1 if c is true, and to 0 otherwise.

Acc values range is [0, 1].
• Minimum Sensitivity (MS) is proposed to measure im-

balanced multi-class models performance [40], and it

is defined as the minimum per class Sensitivity (Si):

MS = min {Si; i = 1, . . . , J} , where J is the number

of classes, and Si is the accuracy taking into account only

patterns from class Ci.
• Mean Absolute Error (MAE) is the average devia-

tion in absolute value of the predicted class from the

true class. For imbalanced datasets, this measure should

be modified to consider the relative frequency of the

1LIPU and PUNN source code is available at http://www.uco.es/grupos/
ayrna/en/partitions-and-datasets/#paguitierrez2011ieeetnn

2For SimpleLogistic, we used the implementation available at Weka [47]
3For SVC, SVORIM, RED-SVM and KDLOR we have used the ORCA

tool https://github.com/ayrna/orca

classes, deriving in the Average MAE (AMAE) [51]:

AMAE = 1
J

∑J

j=1 MAEj = 1
J

∑J

q=1
1
nq

∑nq

i=1 e(xi),

where e(xi) = |O(yi) − O(ŷi)| is the distance between

the true and the predicted ranks, O(Cq) = q is the position

of the q-th label, nq is the number of patterns of class

Cq , and AMAE values range from 0 to J − 1. For the

binary case, AMAE can be seen as a Weighted Accuracy

(WAcc), because the errors (e(xi)) will be 0 or 1.

Experiments are performed using a 10-fold cross-validation.

All the features were properly standardized using mean and

variance of the training data of each fold. The parameter values

for LIPU and PUNN algorithms can be found in [45]. To adjust

the hyper-parameters of the rest of methods, a nested cross-

validation is applied to the training data, with a grid search for

the different values. The criteria for selecting the parameters

is AMAE or WAcc. Hyper-parameter values considered are

the same as those used in [48].

B. Experimental results

Experimental results are presented in terms of generalization

performance of the models in Table II. The different metrics

are obtained from the sum of the 10 unseen predictions done

by each method in the 10-fold setup. We provide a public

website with the dataset and 10 partitions together with links to

implementations of all the methods used in the experiments, as

well as supplementary matherial4. In addition, Table III shows

generalization confusion matrices for LIPU and KDA/KDLOR

to complement performance analysis. The matrices for the

remaining methods are included as supplementary data in

the website associated to this paper. For the binary case, the

LIPU has the best performance in Acc and AMAE, and the

second best performance in MS. For the ordinal classification

problem, LIPU has the best Acc; however, the performance in

MS and AMAE decays. On the other hand, KDLOR has the

best performance in MS and AMAE for the ordinal problem,

achieving a 55.2% of accuracy for the worst classified class

(C3), with a mean error magnitude below 0.5 of distance (in

number of categories) between the true and predicted class.

Note the performance of the LR and PUNN is improved by

LIPU model in all the cases. Finally, observe that the nominal

methods have the worst performance if we consider AMAE.

VI. INTERPRETABILITY OF THE LIPU MODEL

Since the LIPU methodology proposed presented the best

results in Acc, it seems logical to analyze one of the models

obtained using this methodology in order to understand better

the cause and effect relationship between the features used as

inputs and the probability estimated by the model. We focus

on the binary case.

According to the model obtained for the first fold, which

is selected because of its interpretability, the logit of the

4http://www.uco.es/grupos/ayrna/ieeetmi2015
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TABLE II
EXPERIMENTAL RESULTS IN MEAN CONSIDERING THREE CLASSIFICATION

PERFORMANCE METRICS.

Binary problem

Method Acc MS WAcc

LIPU 0.776 0.602 0.268

LR 0.752 0.530 0.304
PUNN 0.720 0.494 0.337
KDA 0.712 0.663 0.300
SVC 0.764 0.518 0.298

Three-class problem

Method Acc MS AMAE

LIPU 0.684 0.185 0.656
LR 0.632 0.069 0.813

PUNN 0.648 0.148 0.759
KDLOR 0.644 0.552 0.446

SVC 0.664 0.259 0.675
RED-SVM 0.624 0.345 0.583
SVORIM 0.636 0.345 0.579

TABLE III
CONFUSION MATRICES FOR THE BEST MODELS: LIPU AND KDA/KDLOR

IN THE BINARY AND ORDINAL DATABASES.

Binary problem

LIPU KDA

insitu insitu insitu insitu
rest 144 23 rest 123 44
rest 33 50 rest 28 55

Three-class problem

LIPU KDLOR

thin interm. thick thin interm. thick
thin 154 12 1 thin 115 47 5

interm. 40 10 4 interm. 19 30 5
thick 9 13 7 thick 3 10 16

probability that an image x belongs to C1, logit(p(x ∈ C1)),
is:

f(x|β,W) = ln
(

p(x∈C1)
1−p(x∈C1)

)
= 14.12 + 1.308x9 + (3)

+3.346x17 − 4.040x23 − 4.981x45 − 2.006x52 −

−3.54x77 + 4.248B1(x,w1)− 3.219B2(x,w2)

being:

B1(x,w1) = (x6)
−5.26(x9)

2.83(x13)
5.9(x20)

2.15

(x21)
−1.49(x22)

−6.48(x24)
−0.47(x26)

−1.13(x32)
4.83

(x35)
−2.31(x38)

3.80(x50)
1.11(x51)

−4.33(x53)
2.44

(x54)
0.89(x55)

−3.15(x56)
−0.81(x59)

−3.47(x73)
0.40

(x76)
−2.47,

(4)

B2(x,w2) = (x2)
−5.43(x14)

−3.62(x15)
2.95(x19)

−0.75

(x20)
3.63(x21)

−2.99(x22)
−1.62(x24)

−0.51(x26)
0.55

(x27)
1.21(x34)

1.99(x38)
−3.03(x39)

3.25(x42)
−5.45

(x43)
3.91(x44)

−0.03(x45)
1.32(x46)

0.64(x48)
3.91

(x49)
1.08(x58)

1.60(x61)
2.20(x64)

−1.31(x65)
−4.08

(x66)
3.57(x68)

−1.87(x69)
−3.66(x70)

−3.70(x71)
−2.19

(x74)
4.16,

(5)

where the variables xi are normalized in the range [1, 2]. For

the sake of clarity, all the variables of the problem are included

in Table IV, marking those used in the linear part of the model

(I) or in the nonlinear one (B1 or B2).

Regarding the performance metrics, this model obtained

values of Acc = 0.800, MS = 0.625 and AMAE = 0.225
for the test set. It should be noted that the model of the tenth

fold resulted in values of Acc = 0.840, MS = 0.775 and

AMAE = 0.174.

The sign of the β coefficients in (3) indicates the direction

of the change in the probability; positive coefficients increase

the probability of belonging to C1. In this way, the following

variables increase the probability of belonging to C1 when

their value is increased: area of black, mean b∗ and the B1

basis function. While the inverse effect (increase the proba-

bility associated to C2) is observed for: SD b∗, homogeneity,

difference entropy, kurtosis LBP2 and the B2 basis function.

We analyze the effect on the probability for each variable

considering the minimum value of each variable (1 for the

normalized variable) and setting all the other variables to 0
(i.e., eliminating its influence). The estimated probability is:

p(x ∈ C1|β,W) =
1

1 + e−f(x|β,W)
, (6)

The odds ratio is defined as:

odds(xi) =

(
p(x ∈ C1)

1− p(x ∈ C1)

∣∣∣∣xi = 1, xj = 0, ∀j 6= i

)
. (7)

When the odds ratio is higher than 1 indicate, the variable

influences positively in the probability of belonging to C1;

while those lower than 1 indicate a negative effect. Thus,

according to logit p terms in (3), the values of the estimated

probability and the odds ratio are: for x9 (black area), p =
0.787 and odds = 2.51; for x17 (mean b∗), p = 0.966 and

odds = 28.41; for x23, (SD b∗), p = 0.017 and odds = 0.018;

for x45 (homogeneity), p = 0.007 and odds = 0.007; for

x52 (diff. entropy), p = 0.119 and odds = 0.135; for the

first product unit (B1(x,w1)), p = 0.986 and odds = 69.92;

and for the second product unit (B2(x,w2)), p = 0.038 and

odds = 0.04.

Note that the variable with higher influence on being an im-

age of C1 is x17 (mean of b∗ component). Taking into account

that negative values in the b∗ component indicate blue color

and positive values yellow color, a high value of the mean of

b∗ in a lesion means a low level of blue color. Therefore, those

images with a low level of blue color have more probability

of belonging to C1 than C2. What makes sense, because

the blue color is associated with gray-blue areas, structure

highly suggestive of melanomas with thickness ≥0.76 mm

(C2). On the contrary, the variable that more increases the

probability of belonging to C2 is x45 (GLCM homogeneity).

This means that a lesion with a homogeneous texture has

more probability of belonging to C2 than C1. This conclusion

is justified since structures predominant in thick melanomas

(C2), such as gray-blue areas and white scar-like areas, are

found as homogeneous areas [14]. However, structures such as

pigment network or globules, predominant in thin melanomas

(C1), present lower values in GLCM homogeneity, although

they can show repetitive structures.
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Moreover, the interactions between some features were

considerably important. This fact can be observed by the

analysis of the two basis functions, B1 and B2. Regarding B1,

we can say that the blue component of the RGB color space,

the number of links in a pigment network and several texture

features extracted from the GLCM show a strong interaction.

Related to B2, features extracted from the color channels of

both RGB and CIE L∗a∗b∗ color spaces, number of links in

a pigment network and texture features extracted from the

GLCM and MRF models mainly compose its structure.

Finally, the study of the most frequent features in the

linear part of the ten models (from the 10 folds) is especially

important. They correspond to the area of black color (x9),

mean and standard deviation of b∗ (x17, x23), density ratio of

pigment network (x36), homogeneity (x45), inverse difference

moment normalized (x57), parameter θ4L∗ of the MRF model

(x62) and kurtosis of LBP2 histogram (x77). Therefore, the set

of characteristics more relevant is the set of the color features.

On the contrary, the shape features do not have relevance

in the linear part, but they do when interacting with others,

especially the eccentricity, since it is the descriptor with the

highest frequency of appearance in the PUs of all models. The

remaining sets of features are also present in the lineal part

with at least one variable belonging to each one. It is the case

of network density inside the network feature set and three

features related to the three sets of texture features.

The fact that features related to blue color, black color, and

network density, associated with the dermoscopic structures

of gray-blue areas and pigment network, appear in the models

confirms what most of authors have shown in their works [13],

[4], [14]: these structures allow prediction of thickness when

melanomas are categorized in two groups.

VII. SUMMARY AND CONCLUSION

This paper proposes a computerized system to estimate the

melanoma thickness from dermocospic images. The main mo-

tivation is to ensure the correct surgical margins that are made

when the lesion is excised (by estimation of melanoma thick-

ness), employing a non-invasive technique and thus avoiding

its determination by a biopsy. The prognosis of a patient with

melanoma depends on the thickness of the tumor, hence the

importance in its degree estimation.

For this purpose, a supervised classification approach is

proposed. The feature extraction step is inspired by the find-

ings derived from clinical studies, which correlate certain

characteristics seen in dermoscopic images with the depth

of the tumor. It is worth mentioning the extraction process

of certain characteristics: features related to the six colors

assessed in the pigmented lesions by a segmentation of each

lesion into their constituting colors; features related to the

dermoscopic structure of pigment network, extracted from

a pigment network detection method; and texture features

extracted from a Markov random field model proposed for

the global pattern detection in pigmented lesions.

The classification performance has been studied in two

variants of the database. Firstly, a binary case, to distinguish

between melanomas with thickness <0.76 mm, and those

with thickness ≥0.76 mm, is studied. Three performance

metrics (Accuracy, Acc, Minimum Sensitivity, MS, and Av-

erage Mean Absolute Error, AMAE) are used, and the LIPU

model shows the best performance Acc and AMAE in mean,

obtaining a 77.6% and 0.268, respectively, and the second best

performance in MS with a value of 60.2%.

A recent study of Rubegni et. al [20] presents a melanoma

thickness detection system, reporting accuracy of 86.5%. How-

ever, a direct comparison to this study is not possible for two

reasons. First, the dataset used in that study is private, with a

smaller number of patterns and with a different threshold to

distinguish between thin and thick melanomas. Secondly, the

experimental design of the previous work is a leave-one-out

procedure, which is, in general, more expensive in computation

time. In this paper, we use a 10-fold cross-validation on a

public dataset with more patterns and different thresholds

for determining the melanoma stages. The accuracy of the

best model is 84%. Although the two studies are not directly

comparable, we can state that their performances are of the

same order of magnitude. In addition, we provide a more

extensive evaluation of the proposal in terms of experiments,

performance metrics and complexity of the problem (we

address the three-class problem).

The main advantage of LIPU method is that is an in-

terpretable model, which also provides probabilistic classes

assignment and perform feature selection during the learning

phase. In this sense, a study of how the features contribute

to the classification model is presented. All features were

present in the 10 models, either in the linear part or interacting

with others in the basis functions (non-linear part of the

model). However, some of them present a greater relevance

because they are included individually in the majority of the

models. This is the case of features related to black and

blue colors, pigment network, homogeneity and some texture

features extracted from three approaches proposed. In spite of

some authors findings which indicate that shape features, red

color associated to vascular pattern and white color associated

to white scar-like areas can be relevant, in our system, these

features do not have an individual influence in the linear part,

although they do interact with others on the basis functions.

Secondly, a three-class scheme is proposed, in which

melanoma is classified into three depth stages. This second

approach is motivated by the fact that the melanoma depth

is correlated with the patients survival, and therefore, a finest

estimation of tumor thickness will lead to a more accurate

diagnosis. Due to complexity of the problem, not only nominal

clasificacion methods are applied, but also ordinal ones, which

assume the natural ordering between the melanoma types and

exploit this ordering information to improve performance and

reduce the magnitude of classification errors. To the best of

our knowledge, it is the first time that these type of methods

are applied to a pigmented lesion recognition problem. The

results obtained for this case show that an ordinal method

achieves a better balance between the performances obtained

for all classes and reduces the magnitude of the errors. The

complexity of the problem lies in the distinction between

stage II and III, but the system is able to attain more than

55% of correct classification rate in average for the worst
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TABLE IV
VARIABLES OF PROBLEM. THOSE INCLUDED IN THE LINEAR PART ARE MARKED WITH (I), THOSE IN THE FIRST PU WITH (B1) AND THOSE IN THE

SECOND WITH (B2).

Name Variable Name Variable Name Variable Name Variable

SHAPE SD B x20(B1)(B2) Contrast x40 θ3L∗ x61(B2)
Area x1 SD L∗ x21(B1)(B2) Correlation x41 θ4L∗ x62

Eccentricity x2(B2) SD a∗ x22(B1)(B2) Dissimilarity x42(B2) σ∗

L
x63

Perimeter x3 SD b∗ x23(I) Energy x43 (B2) µ∗

a x64(B2)
Major axis x4 Ku. R x24(B1)(B2) Entropy x44(B2) θ1a∗ x65(B2)

SIX COLORS Ku. G x25 Homogeneity x45(I)(B2) θ2a∗ x66(B2)

White area x5 Ku. B x26(B1)(B2)
Max. Proba-
bility

x46(B2) θ3a∗ x67

Blue area x6(B1) Ku. L∗ x27(B2) Variance x47 θ4a∗ x68 (B2)
Dark area x7 Ku. a∗ x28 Sum average x48 (B2) σ∗

a x69(B2)

Light area x8 Ku. b∗ x29

Sum
Variance

x49(B2) µ∗

b
x70 (B2)

Black area x9(I)(B1) Sk. R x30 Sum entropy x50(B1) θ1b∗ x71(B2)

Red area x10 Sk. G x31

Diff.
variance

x51(B1) θ2b∗ x72

No. colors x11 Sk. B x32(B1) Diff. entropy x52(I) θ3b∗ x73(B1)

COLOR CHANNELS Sk. L∗ x33

Measure
Corr. 1

x53(B1) θ4b∗ x74(B2)

Mean R x12 Sk. a∗ x34 (B2)
Measure
Corr. 2

x54(B1) σ∗

b
x75

Mean G x13(B1) Sk. b∗ x35(B1) Inv. Diff. x55(B1) LBP

Mean B x14(B2) PIGMENT NETWORK
Inv. Diff.
Norm.

x56(B1) SD LBP2 x76(B1)

Mean L∗ x15(B2) Density x36

Inv. Diff.
Mom. Norm.

x57 Ku. LBP2 x77(I)

Mean a∗ x16 Nodes x37 MRF Sk. LBP10 x78

Mean b∗ x17(I) Links x38(B1)(B2) µ∗

L
x58(B2) SD LBP10 x79

SD R x18 GLCM θ1L∗ x59(B1) Ku. LBP10 x80

SD G x19(B2) Autocorrelation x39(B2) θ2L∗ x60 Sk. LBP10 x81

class. Finally, in contrast to nominal classification models, the

purpose of ordinal models is to reduce the magnitude of errors

in such a way that, when patterns are misclassified, the label

predicted is as close as possible to the real label (i.e. prediction

errors are generally bounded to the neighbor classes). This

results in a more reliable prognosis system.
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[48] P. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F. Fernandez-
Navarro, and C. Hervás-Martı́nez, “Ordinal regression methods: survey
and experimental study,” IEEE Transactions on Knowledge and Data

Engineering, vol. In press, no. 99, 2015.
[49] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.
[50] W. Chu and S. S. Keerthi, “Support Vector Ordinal Regression,” Neural

Computation, vol. 19, no. 3, pp. 792–815, 2007.
[51] S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures for

ordinal regression,” in Proceedings of the Ninth International Conference

on Intelligent Systems Design and Applications (ISDA’09). San Mateo,
CA: IEEE Computer Society, 2009, pp. 283–287.


