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Abstract

We propose a novel linear model of pedestrian safety in urban areas with re-
spect to road traffic crashes that considers a single independent variable of
pedestrian path safety. This variable is estimated for a given urban area by
sampling pedestrian paths from the population of such paths in that area and
in turn estimating the mean safety of these paths. We argue that this indepen-
dent variable directly models the factors contributing to pedestrian safety. This
contrasts previous approaches, which, by considering multiple independent vari-
ables describing the environment, traffic and pedestrians themselves, indirectly
model these factors. Using data about 15 UK cities, we demonstrate that the
proposed model accurately estimates numbers of pedestrian casualties.

Keywords: Pedestrian safety, Modelling, Road traffic crashes, Pedestrian
paths, Pavement network.

1. Introduction

Each year about 1.24 million deaths worldwide result from road traffic crashes
making this the eighth leading cause of death globally [1]. According to the UK
Department for Transport, pedestrians accounted for 24% of all road deaths in
Great Britain in 2015 [2]. Given this, modeling pedestrian safety with respect
to road traffic crashes is an important research objective. In this work we only
consider safety with respect to road traffic crashes and ignore other influences
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such as crime [3, 4]. An accurate model of pedestrian safety has many potential
uses. It may be used to identify a set of factors affecting pedestrian safety and
in turn facilitate the improvement of safety. It may also be used in simulation
experiments to evaluate the consequences to pedestrian safety under proposed
changes to the environment such as the introduction of an increased speed limit
[5]. Finally, it may be used as a recommender of safer pedestrian paths.

Typically, models of pedestrian safety consider the number of pedestrian ca-
sualties or crashes as a single dependent variable and a set of potential factors
affecting pedestrian safety as independent variables. Existing models of pedes-
trian safety consider independent variables describing the environment (e.g. the
number of pedestrian crossings), the traffic (e.g. the volume of heavy vehicles)
and the pedestrians themselves (e.g. mean pedestrian age). In this article we
propose a novel linear model that considers a single independent variable of
pedestrian path safety. This variable is estimated by sampling pedestrian paths
from the population of such paths and in turn estimating the mean safety of
these paths. Relative to those independent variables considered by existing mod-
els, we argue that this independent variable more directly models the factors
affecting pedestrian safety.

The remainder of this paper is organised as follows. In Section 2 we review
related models of pedestrian safety. In Section 3 we describe the proposed
model of pedestrian safety for a given urban area. In Section 4, we evaluate the
accuracy of this model against data on pedestrians casualties in 15 UK cities.
Finally in Section 5 we draw some conclusions from this study.

2. Related Work

To date, a number of models of pedestrian safety have been proposed; these
are summarised in Table 1 and described below. Typically, these studies analyse
historic data on pedestrians crashes to identify risk factors or assess likelihoods
of crash related events such as injury severity or fatality. These analyses are
supported by standard statistical methods, most commonly logistic regression.
The independent variables or features considered can be classified as temporal,
spatial, demographic and socio-economic. The types of crash locations consid-
ered are usually generic, but some studies focus on specific location types, e.g.
unsignalised zebra crossings [3] or intersections [6], or the road network or road
pattern [7, 8, 9] surrounding the crash location. Others aggregate the statistical
findings at level of a borough [10] or a buffer of given size [11]. Even though
the sidewalk network is found to be negatively associated with the pedestrian-
vehicle crashes [12], some studies explicitly ignore crosswalks and sidewalks, e.g.
[11]. Here we provide more details into individual studies.

Sze et al. [13] used a binary logistic regression model to identify factors con-
tributing to pedestrian crashes in Hong Kong including pedestrian behaviour
and traffic congestion. Similarly, Olszewski, et al. [5] used a binary logis-
tic regression model to identify factors contributing to pedestrian crashes at
unsignalised zebra crossings in Poland including darkness and non built-up area.
Pulugurtha et al. [11] used a generalised linear model with a negative binomial
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Study Pedestrian Country Number Entity Independent Model Output
safety type of cities variables type

[3, 4] Crime USA 2 Path Crime activity Density Safest path
spatial density estimation

[5] Crash Poland N/A Unsignalised Spatial, Logistic Fatality
zebra crossing temporal, regression risk factors

demographic

[13] Crash Hong 1 Crash Temporal, Logistic Risk factors
Kong location spatial, regression

demographic

[11] Crash USA 1 Buffer Temporal, Statistical Risk factors
spatial, tests

demographic
socio-economic

[6] Crash USA N/A Intersection Temporal, Log-linear Injury severity
spatial, model likelihood

demographic

[14] Crash Australia 1 N/A Socio-economic Boosted Risk
regression tree factors

[15] Crash South N/A Crash Temporal, Multinomial Severity
Korea location spatial, logit factors

demographic

[16] Crash Canada 1 Crash Temporal, Kernel density Temporal, spatial
location spatial, estimation crash patterns

demographic

[7] Crash Hong 1 Road Temporal, Bayesian Pedestrian
Kong network spatial, (MCMC) crash likelihood

demographic

[10] Crash USA 1 Borough Temporal, Random Pedestrian-vehicle
spatial, parameter crash severity

demographic

[8] Crash Canada 1 Road Temporal, Multinomial Likelihood of
network spatial, logit model injury and fatality

demographic

[9] Crash Canada 1 Road Temporal, Generalized ordered Likelihood of
network spatial, logit model injury and fatality

demographic

[12] Crash Canada 1 Crash Road network Generalized Macro-level
location characteristics linear model crash prediction

[17] Crime USA 1 Path Historical crime Path planning Safest path
data

[18] Crash Canada 1 Crash Pedestrian action, Logistic Injury severity
location crossing location regression

[19] Crash USA 24 Road Spatial Linear Likelihood of
network regression injury and fatality

This Crash UK 15 Path Path Linear Number of
study safety regression casualties

Table 1: This table summarises related models of pedestrian safety. For each model we present
the type of safety considered, the country for which the model is developed, the number of
cities it is applied to, the entity for which safety is modelled, the independent variables used
by the model, the type of model and finally the output of the model.
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distribution to identify factors contributing to pedestrian crashes at signalised
intersections in Charlotte North Carolina including the number of transit stops
and approaches at an intersection. Lee et al. [6] used a log-linear model to
identify factors contributing to pedestrian crashes at intersections in Florida
including undivided roads with a greater number of lanes. Pour et al. [14] used
a boosted decision tree model to identify socio-economic factors contributing to
pedestrian crashes in Melbourne Australia. Tay et al. [15] used a multinomial
logistic regression model to identify factors contributing to pedestrian crashes in
South Korea including heavy vehicles, drivers who were drunk, male or under
the age of 65. Pour et al. [16] performed a spatial and temporal analysis of
pedestrian crashes in Melbourne Australia toward identifying hotspots and hot
times respectively.

Recently a number of models of pedestrian safety have been proposed to
identify those road network characteristics or features which contribute to pedes-
trian casualties or crashes. Marshall et al. [19] used a linear model to identify a
number of road network characteristics contributing to pedestrian crashes in 24
California cities including low road density with low intersection counts. Guo et
al. [7] used a Bayesian model to identify a number of topological road network
characteristics contributing to pedestrian crashes in Hong Kong including con-
nectivity. Aziz et al. [10] used a multinomial logistic regression model to identify
a number of road network characteristics contributing to pedestrian crashes in
New York City including the number of lanes and road surface. Rifaat et al.
[8] and Rifaat et al. [9] used a multinomial logistic regression model and a par-
tially constrained generalized ordered logistic regression model respectively to
identify a number of high level road network patterns contributing to pedestrian
crashes in Calgary Canada including loops and lollipops designs. Osama [12]
used a generalised linear model to identify a number of road network character-
istics contributing to pedestrian crashes in Vancouver Canada including lower
continuity, linearity, coverage, and slope of road pavements.

The majority of the above outlined studies focus on a single city, thus making
it virtually impossible to generalise the findings. In addition, in terms of traffic
characteristics, the countries considered, i.e. USA, Canada, Poland, South Ko-
rea, Hong Kong and Australia, differ significantly from the UK. For example,
the Hong Kong traffic system follows closely that of the UK, including driving on
the left side of the road. However, its highly sophisticated infrastructure makes
the traffic itself differ significantly from that of the UK. For example, at 90%,
Hong Kong has got the highest use of public transport for daily journeys [20].
Furthermore, the high density population implies that the overcrowded roads
pose greater risk to pedestrian safety. Therefore, the findings presented in these
studies cannot be readily applied to the UK. We, therefore, focus specifically on
the UK data. To make the findings generalisable within the UK, we focus on
15 cities in contrast to a great majority of the reviewed studies who focus on a
single city.

Another aspect that makes our study different is the type of entities con-
sidered. The referenced studies focus on modelling the safety of a single point
or a buffer surrounding it, whereas our study focuses on the safety of paths.
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While there are other studies also focusing on the same problem [3, 17] our
focus is on specifically on pedestrian road safety, i.e. pedestrian safety with re-
spect to pedestrian-vehicle crashes. The other two studies focus on pedestrian
safety with respect to crime. Our approaches are similar in terms of posing the
problem as that of finding the least weight path in a graph, but differ in the
type of graph considered and way in which weights are assigned to edges in the
graph. Both Galbrun et al. [3] and Keler et al. [17] used crime statistics to
estimate spatial density for crime activity and use its values to assign weights
to edges in a graph representation of the road network. In our approach, we use
classification of pedestrian crossings to stratify their risk and assign weights to
edges in a graph representation of the pavement network.

3. Model of Pedestrian Safety

In this section, we propose a new model of pedestrian safety in urban areas
which is based on the principle of utility maximisation from the theory of multi-
criteria decision making [21]. In our decision making scenario, the pedestrian
chooses a path that maximises its utility in terms of two criteria: overall length
and risk of a road crash incident. We assume that the pedestrian will always
attempt to minimise both length and risk. In other words, the pedestrian will
chose a Pareto optimal solution in terms of length and risk. Taking into account
the complexity of finding an optimal path, a pedestrian is assumed to construct
a simplified model of decision making and behave rationally or optimally with
respect to this model. We model this behaviour by creating a model of the
pedestrian pavement network and selecting a path in this network which min-
imize a weighted sum of path length and risk. We in turn use this value as a
measure of the safety of the path in question. The use of this as a measure
is motivated by the fact that the probability of a pedestrian crash occurring
along a path is proportional to both its length and risk. Note that, there is a
positive correlation between distance walked and probability of being involved
in a pedestrian crash.

Given the above model of pedestrian behaviour, the pedestrian safety of
a given urban area is modelled in four steps. First, a pavement network is
constructed. Next, an edge weighting function is defined which maps each edge
in the pavement network to a weighted sum of corresponding risk and length.
We assume that a pedestrian follows a path which minimizes the sum of edges
with respect to this edge weighting function and that this value is a measure of
the safety of the path in question. The pedestrian safety for a given urban area
is then estimated as the mean safety of pedestrian paths in that area. Finally,
a linear regression model of this variable is used to estimate the corresponding
number of pedestrians casualties. These steps are described in turn in the
following subsections.

3.1. Pavement Network Construction

Given the fact that pedestrians mainly walk on pavements we consider a
network representation of the pavement structure, which we refer to as a pave-
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ment network. To facilitate the construction of this network we used data from
OpenStreetMap (OSM) which is a crowdsourced project that provides free geo-
graphic data such as road maps [22]. For most regions in the UK, OSM provides
an accurate road network but not necessarily an accurate pavement network. It
is important to note that the Ordnance Survey, which is the national mapping
agency for the UK, also does not provide an accurate pavement network. To
compensate for this, we automatically construct a pavement network from the
corresponding road network based on two assumptions regarding the relation-
ship between the roads and pavements. This is known as a network buffering
approach to the construction of a pavement network [23]. The pavement net-
work construction comprises a set of steps which are now described.

First, a road network Gs = (V s, Es) with two vertex- and one edge-labelling
function is constructed. Here, each vertex from V s corresponds to a designated
pedestrian crossing, road intersection, or dead-end. Whereas each edge from Es

is undirected and corresponds to a road segment connecting the corresponding
vertices. The first vertex-labelling function ξ : V s → {0, 1} maps each v ∈ V s

to a value in the set {0, 1} indicating if the vertex in question is a designated
pedestrian crossing. The second vertex-labelling function λ : V s → Z+ maps
each v ∈ V s to a unique positive integer; this value is used to uniquely identify
the vertex in question when constructing the pavement network. Finally, the
edge-labelling function µ : Es → (R+,String) maps each (v, v′) ∈ Es to a tuple
containing a positive real number equalling the length of the corresponding
road segment and a string equalling its type (e.g. ‘primary’, ‘residential’, etc.).
Figure 1(a) illustrates a toy road network Gs which will be used as a running
example throughout this paper.

Next, given a road network Gs, a corresponding pavement network Gp =
(V p, Ep) with one edge-labelling function is constructed. This construction is
based on two assumptions. First, each road segment is assumed to have a
pavement on both sides. All road networks considered in this work correspond
to urban areas in the UK and this assumption is a close approximation to
reality in this case. Second, each road segment is assumed to have a designated
or non-designated (jaywalking) pedestrian crossing at each end. A designated
crossing is determined to exist at the end of a given road segment if such a
crossing exists at that location in the corresponding road network. Otherwise
a non-designated (jaywalking) crossing is determined to exist at the location in
question. The placement of pedestrian crossings at the end of road segments
is based on the fact that pedestrians generally do not perform crossings in the
interior of road segments unless there is a designated crossing present at such
locations.

Each vertex from V p corresponds to a pavement segment endpoint and/or a
designated pedestrian crossing endpoint. Each edge from Ep is undirected and
corresponds to a pedestrian path connecting the corresponding vertices. The
edge-labelling function δ : Ep → (R+,String) maps each (v, v′) ∈ Ep to a tu-
ple containing a positive real number equalling the length of the corresponding
pavement segment/pedestrian crossing and a string equalling its type (e.g. ‘pri-
mary pavement’, ‘residential pavement’, ‘primary designated pedestrian cross-
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(a)

(b)

Figure 1: A toy road network Gs = (V s, Es) is illustrated in (a). Each vertex in V s is
represented using blue and red dots indicating if the vertex in question is respectively a desig-
nated pedestrian crossing or not. Each edge in Es is a road segment connecting two vertices.
The corresponding pavement network Gp = (V p, Ep) is illustrated in (b). Each vertex in
V p is represented using blue and red dots indicating if the vertex in question is respectively
a designated pedestrian crossing endpoint or a pavement segment endpoint. Note that, this
pavement network contains a single designated pedestrian crossing; all other pedestrian cross-
ings are non-designated (jaywalk).
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Figure 2: The result of iterating over and performing the actions specified in Algorithm 1
with respect to the vertices of the road network Gs in Figure 1(a) is illustrated.

ing’, ‘residential non-designated (jaywalk) pedestrian crossing’). Figure 1(b)
illustrates the pavement network constructed from the toy road network shown
in Figure 1(a).

The pavement network is constructed using Algorithm 1. Internally, this
algorithm uses three functions which we now define. The function ρ : V s → Z+

maps each v ∈ V s to a positive integer equalling its degree. The function
CyclicOrder : Es → Z+ maps each (v, v′) ∈ Es to a positive integer in the
range [1, ρ(v)] equalling the position of (v, v′) in the circular ordering of edges
incident to vertex v. Such a circular ordering exists because the graph Gs is
embedded in R2 [24]. The function τ : V p → (Z+,Z+) is an invertible function
which maps each v ∈ V p to a unique tuple. Invertibility follows from the
uniqueness property.

Algorithm 1 initially iterates over the vertices in V s (lines 3 to 15). Recall
that, each of these vertices corresponds to a pedestrian crossing, road intersec-
tion, or dead-end. For each, v ∈ V s the following actions are performed. If the
degree of v is one (line 4), which happens when v corresponds to a dead-end,
two copies of v are added to V p (lines 5 and 6). An edge is subsequently inserted
between these vertices (line 7). This edge corresponds to a pedestrian crossing
at the dead-end of a road segment. If the degree of v is greater than one (line
8), ρ(v) copies of v are added to V p (line 10). Edges are subsequently inserted
between these vertices to form a ring topology (line 13). Each of these edges
corresponds to a pedestrian crossing. Figure 2 illustrates the result of iterating
over, and performing the above actions with respect to, the vertices of the toy
road network Gs in Figure 1(a).

Next, the algorithm iterates over the edges in Es. Recall that, each of these
edges corresponds to a road segment. For each e ∈ Es, the pavement segments
on both sides of the road segment in question are added (lines 19 and 20). Here
the circular ordering of edges is used to ensure that the correct pairs of pavement
segment endpoints are connected (lines 17 and 18). Figure 1(b) illustrates the
result of iterating over, and performing the above actions with respect to, the
edges of the toy road network Gs in Figure 1(a). Finally the algorithm returns
the network Gp (line 22). Figure 3 illustrates both the road network Gs and
pavement network Gp corresponding to a subset of the city of York.
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Algorithm 1: Pavement network construction.

Input: A road network graph Gs = (V s, Es) and labelling functions
λ : V s → Z+, ξ : V s → {0, 1} and µ : Es → (R+,String).

Output: A pavement network Gp = (V p, Ep).

1 begin
2 Initialize sets V p, Ep = ∅
3 for v ∈ V s do
4 if ρ(v) == 1 then
5 V p = V p ∪ {v : τ(v) = (λ(v), 1)}
6 V p = V p ∪ {v : τ(v) = (λ(v), 2)}
7 Ep = Ep ∪ {(τ−1(λ(v), 1), τ−1(λ(v), 2))}
8 else if ρ(v) > 1 then
9 for i← 1 to ρ(v) do

10 V p = V p ∪ {v : τ(v) = (λ(v), i)}
11 end
12 for i← 1 to ρ(v) do
13 Ep = Ep ∪ {(τ−1(λ(v), i), τ−1(λ(v), i+ 1 mod ρ(v)))}
14 end

15 end
16 for (v1, v2) ∈ Es do
17 i = CyclicOrder(v1, v2)
18 j = CyclicOrder(v2, v1)
19 Ep = Ep ∪ {(τ−1(λ(v1), i), τ−1(λ(v2), j + 1 mod ρ(v2)))}
20 Ep = Ep ∪ {(τ−1(λ(v1), i+ 1 mod ρ(v1)), τ−1(λ(v2), j))}
21 end
22 return Gp

23 end
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(a) (b)

Figure 3: The road network Gs and pavement network Gp corresponding to a subset of the
city of York are illustrated in (a) and (b) respectively. To simplify the visualisation process,
the edges of Gp are drawn with straight line segments.

3.2. Computing Edge Safety

We assume that a pedestrian follows a path in the pavement network Gp

which minimises the weighted sum of the length and risk of the corresponding
edges. We assume this value is a measure of the safety of the path in question
and therefore refer to this value as the safety of the path in question. To
model this formally, for a given pavement network Gp, we construct an edge
weighting function S : Ep → R+. This function is defined in Equation 1 and
maps each edge in Ep to the weighted sum of its length and risk as defined by
the functions L : Ep → R+ and R : Ep → R+ respectively. The weighting in
question is controlled by the parameter α ∈ R+. We now describe each of these
functions in turn.

S(e) = L(e) + αR(e) (1)

The function L assigns a length value to each edge in Ep. The set of edges in
Ep can be partitioned into two subsets corresponding to pavement segments and
pedestrian crossings. For example, the subset of edges in the pavement network
of Figure 1(b) corresponding to pedestrian crossings are illustrated in Figure
2. If an edge in Ep corresponds to a pavement segment, then the function L
returns a value equal to the length of the corresponding road segment. On the
other hand, if an edge in Ep corresponds to a pedestrian crossings, then the
function L returns a value equal to the width of the road crossed.

The function R assigns a risk value to each edge in Ep where smaller val-
ues indicate less risk. The set of edges Ep can be partitioned into four subsets
corresponding to designated pedestrian crossings, dead-end pedestrian cross-
ings, non-designated (jaywalk) pedestrian crossings and pavement segments.
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Pedestrian Risk value
crossing type

Light controlled 4
Pelican 4
Zebra 3

Human controlled 2
Dead-end 1

Table 2: Safety values assigned to designated and dead-end pedestrian crossings.

Although edges corresponding to pedestrian crossings are assigned the highest
risk values, non-zero risk values are also assigned to pavement segments. This
is motivated by the fact that a pedestrian is subject to a number of significant
risks while walking on a pavement. In the year 2015, pedestrian impaired by
alcohol was the fifth most frequently reported contributory factor to pedestrian
casualties in the UK [2]. The Queensland Department of Transport and Main
Roads identified stumbling from the pavement into the adjacent road as being
a major risk to intoxicated pedestrians [25]. A pedestrian walking on the pave-
ment is also subject to the risk of a vehicle leaving the road and entering the
adjacent pavement. In the year 2015, vehicle travelling along pavement was a
reported contributory factor to 277 pedestrian casualties in the UK [2].

We assigned risk values to edges in each of the four subsets defined above
using a combination of national statistics on pedestrian casualties and heuris-
tics. The use of heuristics is a consequence of the fact that our model employs
a finer grained categorisation of edges than that for which national statistics
are available. To determine appropriate risk values for edges corresponding to
designated pedestrian crossings, we obtained the number of annual pedestrian
casualties on zebra, pelican, light controlled and human controlled crossings in
Great Britain for the years 2011 to 2015 inclusive from the UK Department for
Transport [2]. These are the four main types of designated pedestrian crossings
in the UK defined by the UK Department for Transport as in Figure 4. A Re-
peated Measures ANOVA was performed to compare the differences between the
mean number of casualties for each crossing type. These results confirmed that
human controlled is the safest crossing type, followed by zebra and finally peli-
can and light controlled are jointly the least safe. No national statistics relating
to pedestrian casualties at dead-end pedestrian crossings are available. How-
ever, due to the absence of traffic passing through the end of dead-end streets,
we determined them to be safer than other crossing types. Using this ordering
of pedestrian crossing types in terms of safety, we assigned risk values to each
type such that safer types had lower risk values. These values are displayed in
Table 2.

For edges corresponding to pedestrian jaywalk crossings and pavement seg-
ments, risk depends on the type of road which is crossed and adjacent to respec-
tively. The UK Department for Transport do provide statistics on the number
of pedestrian casualties for different road types. However, these types do not
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Figure 4: The four main types of designated pedestrian crossings in the UK defined by the
UK Department for Transport [2].

naturally map to the road types used in OpenStreetMap and the statistics do
not distinguish between casualties resulting from walking on the pavement and
jaywalking. Therefore risk values for edges corresponding to jaywalk pedestrian
crossings and pavement segments were determined by considering the level of
the corresponding road type in the OpenStreetMap road type hierarchy and as-
signing higher risk values to road types higher in the hierarchy. For example, a
pavement segment adjacent to a residential road is assigned a smaller risk value
than a pavement segment adjacent to a primary road. There is significantly
higher risk of a being involved in a pedestrian crash when jaywalking compared
to walking on the pavement. Therefore, given a particular road type we as-
signed risk values to non-designated (jaywalk) crossings that were three times
higher than those assigned to pavement segments. Table 3 summarises the risk
values assigned to edges corresponding to pavement segments and pedestrian
jaywalk crossings. Note that, a safety value of 0 was assigned to edges corre-
sponding to pavement segments adjacent to, and jaywalk crossings of, all types
of pedestrianised roads.

3.3. Pedestrian Path Safety

We model the safety of a given path in a pavement network Gp as the sum
of the weights of its constituent edges as defined by the edge weighting function
S in Equation 1. For a given origin-destination pair of locations, we assume
that a pedestrian follows that path between these locations which minimises
the corresponding sum of weights. In this work we compute such paths using
Dijkstra’s algorithm for finding the shortest path between two vertices in a given

12



OpenStreetMap Pavement segment Non-designated (jaywalk) crossing
road type risk value risk value

Trunk 7 21
Primary 7 21

Secondary 7 21
Trunk Link 6 18

Primary Link 6 18
Secondary Link 6 18

Tertiary 5 15
Tertiary Link 5 15
Residential 4 12

Service 4 12
Track 2 6

Pedestrian 0 0
Footway 0 0

Path 0 0
Steps 0 0

Table 3: Risk values assigned to edges corresponding to pavement segments and non-
designated (jaywalk) crossings.

graph [26]. To illustrate this model we compare the shortest path with the model
pedestrian path for a number of example origin-destination pairs in the city of
Cardiff Wales. Here the shortest and model pedestrian paths are obtained using
the edge weighting function S with an α value of 0 and 10 respectively.

The first example considered is illustrated in Figure 5 and requires a pedes-
trian to navigate along a tertiary road. The shortest path is indicated in Figure
5(a) and takes the pedestrian along the tertiary pavement. The model pedes-
trian path is indicated in Figure 5(b) and takes the pedestrian via a footway
through a park. With respect to geographical distance, the shortest and model
pedestrian paths have lengths of 343 and 382 meters respectively. The pedes-
trian path recommended by Google Maps is illustrated in Figure 5(c). It is
interesting to note that paths recommended by Google Maps do not state which
pavement pedestrians should use. This is a consequence of the fact that Google
Maps path planning algorithm is applied to a road network similar to Gs defined
in this work and not to a pavement network.

The second example considered is illustrated in Figure 6 and requires a
pedestrian to navigate across a primary road. The shortest path is indicated
in Figure 6(a). This path takes the pedestrian along a tertiary pavement and
across a relatively dangerous primary road jaywalk crossing. The model pedes-
trian path is indicated in Figure 6(b). This path takes the pedestrian via a
footway instead of the tertiary pavement and across three sets of traffic light
pedestrian crossings to avoid jaywalking across the primary road. With respect
to geographical distance, the shortest and model pedestrian paths have lengths
of 305 and 382 meters respectively.
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(a) (b) (c)

Figure 5: The shortest and model pedestrian paths from a location in the top to a location in
the bottom are illustrated in (a) and (b) respectively. In both figures the pavement network
is represented by a set of blue lines and the path in question is represented by a sequence of
red lines. The pedestrian path recommended by Google Maps is illustrated in (c).

(a) (b) (c)

Figure 6: The shortest and model pedestrian paths from a location in the top to a location in
the bottom are illustrated in (a) and (b) respectively. In both figures the pavement network
is represented by a set of blue lines and the path in question is represented by a sequence of
red lines. The pedestrian path recommended by Google Maps is illustrated in (c).
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(a) (b) (c)

Figure 7: The shortest and model pedestrian paths from a location in the bottom to a location
in the top are illustrated in (a) and (b) respectively. In both figures the pavement network is
represented by a set of blue lines and the path in question is represented by a sequence of red
lines. The pedestrian path recommended by Google Maps is illustrated in (c).

The final example considered is illustrated in Figure 7 and requires a pedes-
trian to navigate across a secondary road. The shortest path is indicated in
Figure 7(a) and requires the pedestrian to jaywalk across the secondary road.
The model pedestrian path is indicated in Figure 7(b) and avoids jaywalk by
using a zebra crossing beside the origin location. With respect to geographical
distance, both the shortest and model pedestrian paths have a length of 201
meters.

To estimate pedestrian path safety for a given urban area, as opposed to
a single origin-destination pair, the following approach was employed. Rejec-
tion sampling was used to generate a sample of 500 origin-destination pairs
corresponding to locations pedestrians would realistically consider walking be-
tween as opposed to using alternative means of transportation. Specifically,
two locations in the given urban area were selected randomly. If the length of
the shortest path between these locations in the pavement network was greater
than fifty meters but less than three kilometres, the pair was accepted and
added to the sample. Otherwise the pair was rejected and not added to the
sample. This was repeated until the sample was sufficiently large. Next, for
each origin-destination pair in the sample, the safety value of the model pedes-
trian path between the locations in question was calculated. Finally, pedestrian
path safety for the urban area in question is estimated as the mean of these
values. For example, Figure 8(a) illustrates the road network Gs for the centre
of Nottingham city. Figure 8(b) illustrates the corresponding pavement network
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(a) (b)

Figure 8: The road network Gs for the centre of Nottingham city is illustrated in (a). The
corresponding pavement network Gp plus the safest path between a single origin-destination
pair is illustrated in (b). The path in question is represented using a blue line.

Gp plus the safest path between a single origin-destination pair.
Given the estimated pedestrian path safety for a given urban area, we esti-

mate the number of pedestrian casualties in that area using a linear regression
model. Specifically, a linear least squares regression model is used. Many of the
models previously reviewed in the related work section consider a non-linear as
opposed to a linear model. In the context of the proposed model, we found a lin-
ear model to be of sufficient complexity to accurately fit our data and therefore
did not consider a non-linear model.

4. Results

In this section we evaluate if, given the estimated pedestrian path safety of
an urban area, the number of pedestrian casualties in that area can be accu-
rately estimated using a linear regression model. We considered 15 urban areas
corresponding to the centres of 15 UK cities. The cities in question are listed
in the first column of Table 4. In this work we define the centre of a given city
to be the area within a 2 kilometre radius of a manually defined point in the
very centre of that city. Figure 8(a) illustrates the road network Gs for the city
centre of Nottingham city.

For each urban area we estimated the pedestrian path safety using the model
described in Section 3.3 and obtained the number of pedestrian casualties per
million population for the year 2015 from the UK Department for Transport [2]
(pages 220-223). These values are given in Table 4 and displayed as a scatter plot
in Figure 9. It is evident from the scatter plot that the relationship between
the estimated pedestrian safety and the number of pedestrian casualties per

16



Estimated Pedestrian Casualties
Pedestrian Safety per Million Population

Bath 2824.16 297
Bedford 3026.10 385

Blackpool 3205.25 724
Bristol 3147.62 454

Coventry 3021.24 385
Leeds 3191.08 497

Leicester 3210.84 654
Liverpool 3261.51 702

Manchester 3029.55 371
Nottingham 3176.16 706

Reading 3125.53 458
Salford 2898.63 200

Sheffield 3088.05 455
Swindon 2952.80 272

York 3043.59 387

Table 4: For 15 UK cities the corresponding estimated pedestrian path safety and number of
pedestrian casualties per million population for the year 2015 are stated.

million population is strongly linear. Using Pearson’s correlation test, the null
hypothesis that these statistics are uncorrelated is rejected with a p-value of
0.001. Furthermore, the Pearson’s correlation coefficient between the statistics is
0.893. This demonstrates that, for a given urban area, a linear regression model
of the estimated pedestrian path safety may be used to accurately estimate the
corresponding number of pedestrian casualties. In this work we consider the
linear least squares regression model. This model fitted to the entire data is
illustrated in Figure 9.

To benchmark the proposed model we compared it to an alternative linear
least squares regression model which uses the set of independent variables in
Table 5 which describe the environment, traffic and pedestrians. This set of
independent variables is similar to sets in other studies that also attempt to
estimate numbers of pedestrian casualties or crashes [19, 27]. Therefore, we
argue that their consideration represents a reasonable baseline model.

To compare the ability of both linear models to estimate the number of
pedestrian casualties in a given urban area we performed a leave-one-out cross-
validation using a mean squared error. Specifically, for each individual urban
area we fitted the linear model in question using all remaining urban areas and
subsequently used this model to estimate the number of pedestrian casualties for
the urban area in question. The error of this individual estimate was measured
as the squared difference between the estimated and actual number of pedestrian
casualties. The overall mean squared error of the model equals the mean of
these values for all urban areas. The proposed linear model, which uses a single
independent variable of pedestrian path safety achieved a mean squared error
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Figure 9: A scatter plot of the statistics contained in Table 4. Each city is represented by
an individual red dot. The linear least squares regression model fitted to all data points is
represented by a blue line.

Independent variable Description
Road density Number of edges in road network divided by

the area.
Intersection density Number of vertices in the road network with

degree greater than one (dead ends are ex-
cluded) divided by the area.

Mean clustering coefficient Mean clustering coefficient of vertices in the
road network [28].

Mean betweenness centrality Mean betweenness centrality of vertices in the
road network [28].

Mean age Mean age of residents. This data was ob-
tained from the UK Census [29].

Population density Number of persons per hectare. This data
was obtained from the UK Census [29].

Traffic congestion index Percentage of time that drivers spend in con-
gestion. This data was obtained from [30].

Table 5: The set of independent variables used in the baseline linear least squares regression
model.

18



of 8,150. The alternative linear model which uses a different set of independent
variables achieved a mean squared error of 43,923. The error of the proposed
linear model is significantly less than that of the alternative linear model. This
demonstrates the usefulness of the proposed model with respect to estimating
the number of pedestrian casualties in a given urban area.

5. Conclusions

In this article we proposed a linear model of pedestrian safety that can accu-
rately estimate the number of pedestrian casualties in a given urban area. Mod-
els of pedestrian safety proposed to date have considered independent variables
describing the environment, traffic and pedestrians themselves. The proposed
model considers a single independent variable which is an estimate of pedestrian
path safety. We argue that this independent variable more directly models the
factors contributing to pedestrian safety.

As discussed in the introduction to this article, an accurate model of pedes-
trian safety has many potential uses. One such use would be as a recommender
of pedestrian paths which are safer with respect to road traffic crashes. As dis-
cussed in the related work section of this paper, previous works have considered
pedestrian path safety with respect to crime. To the authors knowledge, this
article represents the first work which considers pedestrian path safety with re-
spect to road traffic crashes. As such, we believe the proposed model has many
potential novel applications.

Despite the good performance of the proposed model there are many ways
in which it could potentially be improved. For example, the proposed model
implicitly assumes that all locations are equally likely to be origin or destination
locations which is an approximation. Furthermore, the proposed model does
not consider pedestrian and vehicle volumes which may be good indicators of
pedestrian casualties in a given area. The authors hope to investigate such
potential improvements to the model in future work.
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