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Abstract Recently, a multi-objective Sensitivity-Accuracy based methodology
has been proposed for building classifiers for multi-class problems. This technique
is especially suitable for imbalanced and multi-class datasets. Moreover, the high
computational cost of multi-objective approaches is well known so more efficient
alternatives must be explored. This paper presents an efficient alternative to the
Pareto based solution when considering both Minimum Sensitivity and Accuracy
in multi-class classifiers. Alternatives are implemented by extending the Evolution-
ary Extreme Learning Machine algorithm for training artificial neural networks.
Experiments were performed to select the best option after considering alterna-
tive proposals and related methods. Based on the experiments, this methodology
is competitive in Accuracy, Minimum Sensitivity and efficiency.

Keywords Artificial Neural Networks · Extreme learning machine · Evolutionary
ELM · Multi-class · imbalanced datasets · Accuracy · Sensitivity · Differential
Evolution

1 Introduction

Global performance measures such as the Correct Classification Rate (CCR) or
Accuracy are not enough to evaluate classifiers [20]. Even in two class problems,
Accuracy reflects a one-dimensional ordering where two different types of errors
can be found. Alternative measures are especially needed in imbalanced datasets
– problems where the number of patterns in each class is significantly different –.

Martinez et. al. [18] address the problem of the one dimensional consideration
in multi-class problems. In this work, two measures are considered to evaluate
a classifier: traditionally used accuracy (C) and the minimum sensitivities of all
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classes (MS); that is, the premise assumed is that a good classifier should combine
a high correct classification rate level in the generalization set with an acceptable
accuracy level for each class. For further details about these measures please check
[18] and [13].

We consider a classification problem with Q classes and N training patterns
with g as a classifier obtaining a Q×Q contingency or confusion matrix M (g) =
{

nij ;
∑Q

i,j=1 nij = N
}

where nij represents the number of times the patterns are

predicted by classifier g to be in class j when they really belong to class i.

Two scalar measures are defined considering different points of view of the el-
ements in the confusion matrix. Let us denote the number of patterns associated
with class i by ni =

∑Q
j=1 nij , i = 1, . . . , Q. Let Si = nii/ni be the number

of patterns correctly predicted to be in class i with respect to the total number
of patterns in i (sensitivity Si for class i). Therefore, the sensitivity for class i
estimates the probability of correctly predicting a class i example. From the above
quantities, Sensitivity MS of the classifier is defined as the minimum value of the
sensitivities for each class, MS = min {Si; i = 1, . . . , Q}. The Correct Classifica-
tion Rate or Accuracy is defined as C = (1/N)

∑Q
j=1 njj , which is the rate of all

correct predictions.

These measures have recently been proposed to address evolutionary training
for multilayer perceptron (MLP) neural networks [13]. In [13] C and MS are
presented as objectives which can be competitive. This fact justifies the use of an
evolutionary multi-objective algorithm to train artificial neural networks (ANNs).
The results are presented by showing the performance, in terms of C and MS
measures of the individuals belonging to the two extremes of the Pareto front for
C and MS.

In general, a weighted combination of objective functions does not necessary
perform better (in accuracy) than a Pareto approach, performing worse in some
cases [22]. However, it is well known that they are computationally costly [9] and
weighted combination can be a more efficient alternative, specially when only two
objectives are considered. In addition, these algorithms’ output is a set of possible
solutions to the problem; thus, an expert or a decision-making system is needed to
select the proper solution belonging to the Pareto front. To overcome these issues,
this paper attempts to improve the minimum sensitivity of binary and multi-class
classifiers by using a weighted linear combination as an alternative to the Pareto
based solution. The Evolutionary Extreme Learning Machine (E-ELM) algorithm
[27] is extended with different fitness functions which are automatically adjusted
to each dataset by the proposed algorithm.

This article is a significant extension and improvement of a previous work
[23]. The fitness function design has been extended from a discrete function to a
continuous one with improved results. In addition the fitness function λ parameter
is automatically selected by the revised algorithm so that no extra parameters are
needed.

The rest of the paper is organized as follows. Section 2 briefly presents ELM,
Evolutionary ELM, and proposes different fitness functions and the Evolutionary
ELM considering C and MS (E-ELM-CS) algorithm. Section 3 shows experiments
comparing several proposed fitness functions and different related state of the art
methods. Finally, some conclusions are drawn.
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2 Proposed Method

2.1 Differential Evolution and Extreme Learning Machine

The Extreme Learning Machine (ELM) algorithm has been proposed by Huang [15,
14]. It has been successfully applied to problems such as QoS Violation detection
in multimedia transmission [8] or microarray gene expression cancer diagnosis [26].
This section briefly presents ELM algorithm and the Evolutionary ELM.

Let us consider the training set given by N samples D = {(xj ,yj) : xj ∈
RK ,yj ∈ RQ, j = 1, 2, . . . , N}, where xj is a K × 1 input vector and yj is a Q× 1
target vector.

Let us consider the MLP with M nodes in the hidden layer given by f (x,θ) =
(f1(x, θ1), f2(x, θ2), . . . , fQ(x, θQ)):

fl(x, θl) = βl
0 +

∑M
j=1 β

l
jσj(x,wj), l = 1, 2, . . . , Q, (1)

where θ = (θ1, . . . , θQ)T is the transpose matrix containing all the neural net
weights, θl = (βl,w1, . . . ,wM ) is the vector of weights of the l output node,
βl = βl

0, β
l
1, . . . , β

l
M is the vector of weights of the connections between the hidden

layer and the lth output node, wj = (w1j , . . . , wKj) is the vector of weights of the
connections between the input layer and the jth hidden node, Q is the number
of classes in the problem, M is the number of sigmoidal units in the hidden layer
and σj (x,wj) the sigmoidal function:

σj (x,wj) =
1

1 + exp
(

−
(

w0j +
∑K

i=1 wijxi

)) , (2)

where w0j is the bias of the jth hidden node. Suppose that a MLP is being trained
with M -nodes in the hidden layer to learn the N samples of set D. The linear
system f(xj) = yj , j = 1, 2, . . . , N , can be written in a more compact format as
Hβ = Y, where H is the hidden layer output matrix of the network:

H (x1, . . . ,xN ,w1, . . . ,wM ) =







σ (w1 · x1) · · · σ (wM · x1)
...

. . .
...

σ (w1 · xN ) · · · σ (wM · xN )







N×M

,

β =







β1

...
βM







M×Q

and Y =







y1
...

yN







N×Q

The ELM algorithm randomly selects the wj = (w1j , . . . , wKj), j = 1, . . . ,M ,
weights and biases for hidden nodes, and analytically determines the output weights
βl
0, β

l
1, . . ., β

l
M for l = 1 . . . Q by finding the least square solution to the given lin-

ear system. The minimum norm least-square solution (LS) to the linear system is
β̂ = H†Y, where H† is the Moore-Penrose (MP) generalized inverse of matrix H.
The minimum norm LS solution is unique and has the smallest norm among all
the LS solutions.

The Evolutionary Extreme Learning Machine (E-ELM) [27] improves the orig-
inal ELM by using a Differential Evolution (DE) algorithm. Differential Evolution
was proposed by Storn and Price [24] and it is known as one of the most efficient
evolutionary algorithms which many applications such as artificial neural networks
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training [17]. The E-ELM uses DE to select the input weights between input and
hidden layers and the Moore-Penrose generalized inverse to analytically determine
the output weights between hidden and output layers.

2.2 Fitness function design

As mentioned at the introduction, our approach tries to build classifiers with simul-
taneously optimized C and MS. Since these objectives are not always cooperative
[13,18], an evolutionary multi-objective approach could be used.

In this work, a linear combination of these objectives is used to obtain the
maximization of objectives C and MS. This option is a good alternative to proper
multi-objective evolutionary algorithms when there are two objectives and when
the first Pareto front has a very small number of models. In addition, its compu-
tational cost is noticeably lower.

Weighted linear combination proves to be very efficient in practice for cer-
tain types of problems, for example in combinatorial multi-objective optimization.
Some of the applications of this technique are to schedule evaluation of a resource
scheduler or to design multiplierless infinite impulse response (IIR) filters [9].

We assume we do not have a priori information about the proper weighting of C
and MS for each dataset. Thus, both measures are considered equally important.
Thereby, we deal with this problem by adapting the algorithm to each dataset
through a nested cross-validation procedure. Our purpose is to design a fitness
function able to weight up both C and MS objectives in the algorithm.

There is no rule for establishing priorities between C and MS. Thus, we include
a parameter for weighing the two objectives. The underlying idea is to have an
automatically adjustable fitness function which could be optimized for each dataset
via this parameter, called λ, ranging between [0, 1]. In this work, three fitness
functions are proposed to try to balance the two objectives.

The first fitness function is based on C and MS. This function evaluates the
performance of a classifier depending on a weighted Accuracy level and a weighted
Sensitivity. It is defined by:

FλCS = (1− λ)C + λMS, (3)

According to [4,5], in general terms, the use of continuous function for training
neural networks for classification problems makes the convergence of the algorithm
more robust. By using the root mean square error (RMSE) or the cross-entropy
error [4] the fitness function is turned into a continuous function.

In order to properly calculate the RMSE and the cross-entropy error, the neural
network outputs need to be interpreted as probabilities pl, thereby, they must
satisfy the following constraints [4]:

Q
∑

l=1

pl(x, θl) = 1, (4)

0 ≤ pl(x, θl) ≤ 1. (5)

The first constraint also ensures that the distribution is correctly normalized,
so that

∫

p(y|x)dy = 1. These constraints can be satisfied by choosing a pl output
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to be related to corresponding network outputs fl by a softmax function [6]. Then,
the softmax activation function is added to standard ELM model outputs:

pl = pl(x, θl) =
exp(fl(x, θl))

∑Q
i=1 exp(fi(x, θi))

,1 ≤ l ≤ Q, (6)

where fl are the ELM outputs defined in Eq. 1 and pl is the posterior probability
that a pattern x has of belonging to class l. A pattern will belong to the class with
the greatest membership probability, this is:

C(θl,x) = argmax
l

pl(x, θl),1 ≤ l ≤ Q. (7)

Then, once a probabilistic function from the ELM output is determined, a
fitness function based on RMSE is proposed:

FλR (θ) = (1− λ)
1

1 + 1
N

∑Q
l=1(nlRl (θ))

+ λ
1

1 + max {Rl (θ) , l = 1, . . . , Q}
, (8)

where nl =
∑Q

l=1 nil,i = 1, . . . , Q is the number of patterns associated with class
l. Rl (θ) is the RMSE per class in the problem, defined by:

Rl (θ) =

√

∑N
i=1

∑Q
l=1

(

yli − pli (xi,θ)
)

)2

nlQ
, (9)

where N is the number of patterns, yli is the target value for class l of pattern xi

(yli will be equal to 1, in terms of probability, if the pattern xi belongs to class l
and 0 otherwise), pli is the probability pattern xi has of belonging to class l, and
nl is the number of patterns associated with class l.

The fitness function defined in Eq. 8 introduces an alternative for considering
C and MS. The first term represents the global accuracy error for all the classes
while the second term represents the isolated error of the worst classified class as
defined in Eq. 9. The maximum error is selected because it is the equivalent to
consider sensitivity, which is the minimum accuracy for each class.

The third fitness function proposed is based on cross-entropy error in a similar
way to FλR defined in Eq. 8:

FλE = (1− λ)
1

1 + 1
N

∑Q
l=1(nlEl)

+ λ
1

1 + max {El, l = 1, . . . , Q}
, (10)

where El is the cross-entropy error per class in the problem, defined by:

El =
−
∑N

i=1

∑Q
l=1(y

l
i ln(pl(xi, θl))

nl

, (11)

This error function is also known as the negative log likelihood and, when it is
minimized, maximum likelihood estimates (pl (xi, θl)) are obtained for the event
observed.
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Require: E-ELM-CS (P (Training Patterns), T (Training Tags), F (Fitness Function), λ)

1: λ̂← Calculate optimal λ for F and (P,T)
2: Create a random initial population θ = [w1, . . . ,wk, b1, . . . , bk] of size N

3: for each individual do
4: β̂ ← ELM output(w, P, T ) {Calculate output weights}

5: fitness ← getFitness(w, β̂, F, λ̂, P, T ) {Evaluate individual}
6: end for

7: Select best individual of initial population
8: while Stop condition is not met do

9: Mutate random individuals and apply crossover as described in [27]
10: for each individual in the new population do

11: β̂ ← ELM output(w, P, T ) {Calculate output weights}

12: fitness ← getFitness(w, β̂, F, λ̂, P, T ) {Evaluate model}
13: Select new individuals for replacing individuals in old population
14: end for

15: Select the best model in the generation
16: end while

17: return Best ELM model

18: function β̂ = ELM output(w, P, T )
19: Calculate the hidden layer output matrix H
20: Calculate the output weight β̂ = H†Y

21: return β̂

22: function Fλ = getF itness(w,β, F, λ, P, T )
23: if FλCS then

24: Build training confusion matrix M

25: Calculate C and S from M

26: Get classifier fitness with Eq. (3)
27: else if FλR or FλE then

28: Add softmax layer to the ELM model (w, β̂)
29: if FλR then

30: Get classifier fitness with Eq. (8)
31: else

32: Get classifier fitness with Eq. (10)
33: end if

34: end if

35: return Individual fitness

Fig. 1: E-ELM-CS algorithm pseudocode.

2.3 The E-ELM-CS Algorithm

Our proposed method is implemented by using the Evolutionary ELM (E-
ELM)[27]. E-ELM for classification problems only considers the misclassification
rate of the classifier. Further details about the algorithm can be consulted in [27].
The E-ELM has been extended in two ways. First, the three fitness functions
designed in Section 2.2 are added, including the addition of the softmax layer to
the model. Secondly, a 10-fold cross-validation is applied, using exclusively the
training data, which aims to optimally configure the λ parameter of the fitness
function. Note that after several experiments with different λ values no generic
optimal value for λ is found to maximize both C and MS, that is, λ depends on
the data set. Therefore, a cross-validation process is mandatory for each different
dataset. Then, the algorithm extension is called E-ELM-CS (Evolutionary ELM
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Table 1: Datasets used for the experiments

Dataset Size #Input #Classes Distribution p∗

Two classes
BreastC-W 699 9 2 (458,241) 0.3448

Card 690 51 2 (307,383) 0.4449
Hepatitis 155 19 2 (32,123) 0.2069

Multi-class
Balance 625 4 3 (288,49,288) 0.0784
Gene 3175 120 3 (762,765,1648) 0.2400
Iris 150 4 3 (50,50,50) 0.3333

Lymph 148 38 4 (2,81,61,4) 0.0135
Anneal 898 59 5 (8,99,684,67,40) 0.0089
Glass 214 9 6 (70,76,17,13,9,29) 0.0421
Zoo 101 16 7 (41,20,5,13,4,8,10) 0.0396

considering C and MS). The E-ELM-CS algorithm pseudocode is shown in Fig. 1.
Mutation, crossover and selection operators work as described in [27].

The cross-validation is performed by testing a range of λ values for the chosen
fitness function in E-ELM-CS and a given configuration for the remaining param-
eters. The training set is stratified into 10 sets so 10 validation configurations can
be formed. Each one of the 10 validation tests consists of different combinations of
9 sets for training and a different one for validation. Note that generalization data
is never used during this cross-validation procedure so that the final algorithm
performance will be measured only with unseen data. For each λ value to validate,
the E-ELM-CS algorithm is run three times with the same data partition. There-
fore the total number of executions over the training data is 30. The λ considered
as optimal is the one shown in the following equation:

λ̂ = argmax
λi

Cλi
+MSλi

2
, (12)

where Cλi
is the mean C and MSλi

is the mean MS obtained by the algorithm
in the different validation folds using λi for the fitness function.

The parameters related to the evolutionary algorithm are the same for the
whole cross-validation process with the exception of the parameter related to the
number of generations, which is reduced to 1/5 of the final number of generations
because, experimentally, it is not necessary to go further in the number of gener-
ations in order to find the best λ. The λ values to be tested are selected from the
range [0, 1] in intervals of 0.25. Previous experiments confirmed that there were
no significant differences if the cross-validation was performed with more values.
So, considering a few λ values and reducing the number of generations in the
algorithm, the cross-validation process time is drastically reduced.

3 Experiments

The purpose of the experiments is to evaluate which fitness function is more suit-
able for E-ELM-CS with the purpose of simultaneous optimization of C and MS.
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Computational cost, in terms of training time T , is also considered. Results are
compared with related state of the art methods.

There were ten UCI repository datasets with different features under study [3]
(see Table 1). The experimental design was conducted using a stratified holdout
procedure with 30 runs, where approximately 75% of the patterns were randomly
selected for the training set and the remaining 25% for the generalization set. All
the data have been standardized and the experiments have been conducted using
Matlab R2009a running on a Ubuntu Server (x86 64 architecture) on a Intel Xeon
at 2.00GHz with 8 Gb RAM.

3.1 Machine learning methods used for comparison purposes

The experimental section compares two basically different methodologies with dif-
ferent extensions for training MLP neural networks. The first group of classifiers
are variations of the Evolutionary ELM (results are also compared to the original
ELM and OPELM [19]):

– EELM. This method is set up with two fitness functions: CCR (EELM(C))
and MS (EELM(S)).

– EELMCS. This algorithm is set up with the three fitness functions proposed in
Section 2.2: FλCS (EELMCS(CS)), FλR (EELMCS(R)) and FλE (EELMCS(E)).

The second type of neural network training algorithm is the Memetic Pareto
Differential Evolution Neural Network (MPDENN) presented in [11]. MPDENN
is a Multi-Objective Evolutionary Algorithm (MOEA) based on the Pareto Differ-
ential Evolution algorithm (PDE) presented by [2,1]. The MPDENN trains ANNs
considering C and MS as conflicting objectives which should be simultaneously
optimized. In addition, the MPDENN applies a local search procedure to some
individuals in the population. The local search algorithm used is the improved Re-
silient Backpropagation (iRprop+) algorithm [16]. Moreover, local search can im-
prove classification performance although it is computationally costly. MPDENN
can be used without local search; when doing so, we will refer to it to as PDENN.

In addition, the experiments include two additional popular learning algo-
rithms: a standard MLP trained with Resilient backpropagation (Rprop) algo-
rithm [21] and the Support Vector Machine (SVM) [10,25]. The Rprop Matlab’s
implementation is used for the former algorithm, while Cost Support Vector Clas-
sificacion (SVC) available in libSVM 3.0 [7] is used as the SVM classifier imple-
mentation.

All the ELM-based methods were trained with different algorithms (ELM,
OPELM, EELM and EELMCS) using the Sigmoid function as the basis function.
For ELM and OPELM, the number of hidden nodes gradually increases in inter-
vals of 5 within the interval [5, 200] and the nearly optimal number of nodes for
ELM and OPELM are then selected based on the 10-fold cross-validation method
using the training set. For the E-ELM-CS(R), the range of the interval has been
reduced for cross-validation of the number of hidden nodes to [5, 20]. PDENN
and MPDENN automatically prune nodes, so a range of maximum and minimum
numbers of hidden nodes must be provided. We have used the range [1, 6] accord-
ing to the author’s recommendations. Regarding Rprop, a nested cross-validation
was also performed using a range of hidden nodes of [1, 30] with an interval of
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one. The radial basis kernel was used with the SVC method. For the selection of
SVC hyperparameters (regularization parameter, C, and width of the Gaussian
functions, γ), a grid search was performed with a 10-fold cross-validation, using
the following ranges: C ∈ {102, 101, . . . , 10−1} and γ ∈ {102, 100, . . . , 10−8}. For
all the methods, except PDENN and MPDENN, the optimal hyperparameters θ̂

cross-validation criteria was the following:

θ̂ = argmax
θi

Cθi
+MSθi

2
. (13)

3.2 Statistical results

Tables 4 and 5 in Appendix A present results in values of the mean and the
standard deviation (SD) for %CG, %MSG and T (in seconds) for 30 runs. Subindex
G in %CG and %MSG indicates that results belongs to the generalization dataset.
For these tables and Table 2 the best result is in bold face and the second best
result is in italics.

Table 2: Mean statistical results and average rankings

Method CG(%) RCG
MSG(%) RMSG

T (secs.) RT

EELMCS(R) 86.19 5.50 58.86 2.45 1.42E+002 7.00
EELMCS(E) 86.87 5.50 56.52 4.95 1.46E+002 8.20
EELMCS(CS) 86.47 6.50 58.50 4.75 1.39E+002 7.00
EELM(C) 86.78 5.40 48.81 6.75 1.41E+002 7.00
EELM(MS) 84.86 8.60 57.54 5.20 1.40E+002 6.80
OPELM 85.71 7.10 42.70 10.35 3.32E+000 3.70
ELM 86.09 7.20 44.33 7.90 9.12E–002 1.70

PDE(C) 82.92 10.25 41.81 9.45 2.08E+003 10.05
PDE(MS) 82.06 10.55 51.62 7.60 2.08E+003 10.35
HPDE(C) 86.07 6.90 46.91 7.25 1.37E+006 12.25
HPDE(MS) 84.89 8.30 55.60 6.35 1.37E+006 12.35
Rprop 85.06 7.20 38.05 11.20 8.39E-001 3.30
SVC 88.60 2.00 53.97 6.80 1.44E-001 1.30

The mean rankings of CG, MSG and T are obtained to compare the different
methods (see Table 2). A Friedman’s non-parametric test for a significance level
of α = 0.1 has been carried out to determine the statistical significance of the
differences in rank in each method. The test rejected the null-hypothesis stating
that all algorithms performed equally in the mean ranking of CG, MSG and T so
a Nemenyi post-hoc test [12] (α = 0.1) was used to compare all the methods and
their variations. Figure 2 shows Critical Difference (CD) diagrams proposed in [12].
Subfigure 2a shows that there are two groups of classifiers regarding CG. SVC has
the best CG ranking mean but it does not have significant differences compared
with EELM variants but with EELM(MS). Regarding, MSG, all the methods
but Rprop, OPELM, PDE(C) and ELM have no significant differences when they
are compared to one another. Regarding T , all the non-evolutionary approaches
have similar performance, in addition, EELM methods (except EELMCS(E)) show
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(a) Nemenyi CD diagrams comparing generalization CCR mean results of different
methods.
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(b) Nemenyi CD diagrams comparing the generalization MS mean results of different
methods.
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Fig. 2: Ranking tests for CCR, MS and training time.

similar computational time. As expected, the Pareto based solutions have the
highest computational cost (especially the hybrid approaches).

Based on the robustness regarding CG and MSG, and considering compu-
tational cost, EELMCS(R) promises to be the best alternative. However, when
comparing them to each other for MSG, EELMCS(R) shows no significant dif-
ferences with EELM(C), so our proposal cannot be justified. From a statistical
point of view, this can be justified considering the effects of the results of com-
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i Algorithm z p α
′

Holm

1 Rprop 5.02398 0.00000 0.00833
2 OPELM 4.53594 0.00001 0.00909
3 PDE(C) 4.01918 0.00006 0.01000
4 ELM 3.12922 0.00175 0.01111
5 PDE(MS) 2.95697 0.00311 0.01250
6 HPDE(C) 2.75601 0.00585 0.01429
7 SVC 2.49764 0.01250 0.01667
8 EELM(C) 2.46893 0.01355 0.02000
9 HPDE(MS) 2.23926 0.02514 0.02500
10 EELM(MS) 1.57897 0.11434 0.03333
11 EELMCS(E) 1.43542 0.15117 0.05000
12 EELMCS(CS) 1.32059 0.18664 0.10000

Table 3: Table with the different algorithms compared with the EELMCS(R) (i.e.
the Control Algorithm) using the Holm procedure in terms of MSG.

petitive methods, that is, the presence of EELM related methods. Therefore, the
more powerful Holm post-hoc test is used to compare EELMCS(R) to all the other
classifiers in order to justify our proposal. The Holm test is a multiple comparison
procedure that can work with a control algorithm and compares it to the remain-
ing methods [12]. The test statistics for comparing the i-th and the j-th method
using this procedure is

z =
Ri −Rj
√

k(k+1)
6N

(14)

where k is the number of algorithms and N the number of datasets. The z value is
used to find the corresponding probability from the table of normal distribution,
which is then compared to an appropriate level of confidence α. Holm’s test adjusts
the value for α in order to compensate for multiple comparisons.

The results of the Holm tests (α = 0.1) for MSG can be seen in Table 3, using

the corresponding p and adjusted α (α
′

Holm) values. The EELMCS(R) is used
as the Control Method. The horizontal line shows the division between methods
significantly different from EELMCS(R) (in terms of MSG when p < α

′

Holm) and
methods which are not significantly different. Considering the results of these tests,
it can be concluded that the EELMCS(R) algorithm obtains a significantly higher
ranking of MSG when compared to most of the remaining methods, especially
ELM, OPELM and EELM(C). Standard methods such as Rprop or SVC are not
competitive when considering MS.

4 Conclusions

This paper presents an efficient alternative to the Pareto based approach to train
multi-class classifiers with a simultaneous improvement in C and MS.

Three different fitness functions were evaluated by extending the Evolutionary
Extreme Learning Machine algorithm for training ANNs and were compared with
different machine learning methodologies. Continuous fitness functions have proved
to be more robust and suitable for evolutionary algorithms (see results details in
Tables 4 and 5).
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Statistical tests demonstrate that experimentally the E-ELM-CS(R) method-
ology gets similar results in CCR with respect to the other methods. However,
statistical tests for MS demonstrate experimentally that it is significantly different
than most algorithms. Considering the methods with the best significant results
in CCR and MS, and considering the statistical test for training time T , we con-
clude that the weighted combination of global RMSE and the worst classified class
RMSE give competitive results.

MS results in anneal, balance, glass or hepatitis datasets (see Tables 4 and
5) show that our proposal is specially suitable for problems with high number
of classes and/or with small size classes, i.e. imbalanced datasets. Experimental
results show that some methods focus only on the bigger classes.
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Table 4: Statistical results for C, MS and T

Dataset Algorithm C MS T

anneal EELMCS(R) 96.46 ± 01.75 80.43 ± 11.13 1.71E+002 ± 1.84E+000
EELMCS(E) 95.48 ± 01.93 76.76 ± 11.14 1.79E+002 ± 3.99E+000
EELMCS(CS) 98.07 ± 01.71 89.01 ± 11.49 1.62E+002 ± 2.59E+000
EELM(C) 99.11 ± 00.90 59.95 ± 47.29 1.67E+002 ± 7.36E+000
EELM(MS) 96.07 ± 02.65 83.61 ± 13.90 1.61E+002 ± 2.47E+000
OPELM 95.87 ± 01.21 51.67 ± 06.48 5.97E+000 ± 8.86E-001
ELM 96.74 ± 01.01 55.60 ± 12.83 2.26E-001 ± 9.96E-002

PDE(C) 90.24 ± 03.23 34.40 ± 27.22 3.02E+003 ± 3.92E+002
PDE(MS) 86.22 ± 06.42 53.76 ± 15.37 3.02E+003 ± 3.92E+002
HPDE(C) 92.22 ± 02.56 41.40 ± 27.91 3.01E+003 ± 4.77E+002
HPDE(MS) 87.08 ± 06.81 59.14 ± 14.01 3.01E+003 ± 4.77E+002
Rprop 95.82 ± 00.03 19.47 ± 00.37 2.24E+000 ± 8.14E-001
SVC 97.78 ± 00.00 50.00 ± 00.00 4.84E-002 ± 0.00E+000

balance EELMCS(R) 91.65 ± 00.94 87.67 ± 06.83 6.14E+001 ± 2.41E+000
EELMCS(E) 91.86 ± 00.79 87.42 ± 06.78 6.38E+001 ± 2.08E+000
EELMCS(CS) 90.92 ± 01.47 83.32 ± 10.85 6.07E+001 ± 1.29E+000
EELM(C) 91.32 ± 01.70 36.33 ± 26.46 6.10E+001 ± 1.67E+000
EELM(MS) 90.49 ± 02.00 81.86 ± 19.57 5.91E+001 ± 3.10E+000
OPELM 91.97 ± 01.61 16.33 ± 18.29 6.89E+000 ± 1.17E+000
ELM 88.55 ± 01.39 06.67 ± 06.06 3.54E-001 ± 1.07E-001

PDE(C) 90.36 ± 01.30 23.33 ± 16.68 1.03E+002 ± 1.03E+001
PDE(MS) 91.05 ± 01.15 85.15 ± 07.68 1.03E+002 ± 1.03E+001
HPDE(C) 91.24 ± 01.23 29.00 ± 11.85 1.20E+002 ± 1.34E+001
HPDE(MS) 91.22 ± 01.49 84.62 ± 06.82 1.20E+002 ± 1.34E+001
Rprop 92.56 ± 00.04 17.33 ± 00.27 8.41E-001 ± 2.89E-001
SVC 93.59 ± 00.00 80.00 ± 00.00 1.19E-002 ± 0.00E+000

breastw EELMCS(R) 96.30 ± 00.93 94.46 ± 02.07 1.77E+001 ± 3.43E-001
EELMCS(E) 96.02 ± 00.79 93.24 ± 02.11 1.88E+001 ± 4.19E-001
EELMCS(CS) 96.23 ± 00.86 93.54 ± 02.23 1.79E+001 ± 3.90E-001
EELM(C) 96.38 ± 00.77 94.42 ± 01.79 1.72E+001 ± 4.41E-001
EELM(MS) 95.70 ± 00.92 91.69 ± 02.52 1.73E+001 ± 3.60E-001
OPELM 95.92 ± 00.88 93.76 ± 01.98 1.40E+000 ± 2.97E-001
ELM 95.81 ± 00.66 92.06 ± 01.89 1.96E-002 ± 2.53E-002

PDE(C) 95.14 ± 00.99 90.22 ± 02.69 2.47E+001 ± 3.56E+000
PDE(MS) 95.18 ± 00.93 90.33 ± 02.85 2.47E+001 ± 3.56E+000
HPDE(C) 95.03 ± 00.86 89.56 ± 02.19 2.92E+001 ± 3.77E+000
HPDE(MS) 94.93 ± 00.85 89.44 ± 02.16 2.92E+001 ± 3.77E+000
Rprop 96.13 ± 00.01 93.43 ± 00.02 4.78E-001 ± 1.46E-001
SVC 96.57 ± 00.00 91.67 ± 00.00 7.26E-003 ± 0.00E+000

card EELMCS(R) 88.07 ± 01.64 86.09 ± 01.59 4.95E+001 ± 3.95E-001
EELMCS(E) 88.13 ± 01.55 85.95 ± 03.12 5.22E+001 ± 3.43E-001
EELMCS(CS) 87.15 ± 01.94 85.59 ± 02.25 4.85E+001 ± 1.59E+000
EELM(C) 86.92 ± 01.50 84.82 ± 02.50 4.74E+001 ± 8.91E-001
EELM(MS) 87.23 ± 01.62 85.02 ± 02.28 4.86E+001 ± 1.39E+000
OPELM 84.84 ± 01.84 82.93 ± 02.72 6.21E+000 ± 7.78E-001
ELM 85.53 ± 01.93 84.33 ± 02.03 5.02E-002 ± 5.34E-002

PDE(C) 85.39 ± 02.32 83.01 ± 03.08 2.98E+001 ± 7.36E+000
PDE(MS) 85.74 ± 02.06 84.08 ± 02.44 2.98E+001 ± 7.36E+000
HPDE(C) 86.55 ± 01.14 84.85 ± 02.25 5.37E+001 ± 1.10E+001
HPDE(MS) 86.51 ± 01.32 85.30 ± 01.83 5.37E+001 ± 1.10E+001
Rprop 86.19 ± 00.08 82.85 ± 00.16 6.06E-001 ± 1.49E-001
SVC 88.44 ± 00.00 85.42 ± 00.00 3.31E-002 ± 0.00E+000

gene EELMCS(R) 84.73 ± 01.15 78.96 ± 02.14 9.79E+002 ± 8.23E+001
EELMCS(E) 84.67 ± 01.16 78.20 ± 03.59 9.99E+002 ± 8.63E+001
EELMCS(CS) 83.46 ± 01.30 78.84 ± 03.80 9.42E+002 ± 8.57E+001
EELM(C) 84.50 ± 01.45 78.52 ± 03.34 9.61E+002 ± 8.95E+001
EELM(MS) 83.69 ± 01.65 79.57 ± 02.60 9.61E+002 ± 9.05E+001
OPELM 77.99 ± 01.41 62.86 ± 04.43 8.56E+000 ± 1.06E-001
ELM 80.50 ± 01.33 69.65 ± 03.23 2.37E-001 ± 2.09E-002

PDE(C) 70.37 ± 04.18 56.74 ± 09.93 1.71E+004 ± 4.38E+003
PDE(MS) 69.99 ± 04.34 65.25 ± 05.83 1.71E+004 ± 4.38E+003
HPDE(C) 82.32 ± 02.83 75.15 ± 05.43 1.37E+007 ± 2.70E+006
HPDE(MS) 82.06 ± 02.76 74.89 ± 05.47 1.37E+007 ± 2.70E+006
Rprop 84.39 ± 00.07 73.52 ± 00.23 2.17E+000 ± 5.43E-001
SVC 90.92 ± 00.00 89.32 ± 00.00 1.33E+000 ± 0.00E+000
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Table 5: Statistical results for C, MS and T

Dataset Algorithm C MS T

glass EELMCS(R) 62.83 ± 07.82 19.17 ± 16.54 7.31E+001 ± 9.53E-001
EELMCS(E) 69.62 ± 04.16 05.00 ± 12.11 7.52E+001 ± 1.05E+000
EELMCS(CS) 68.55 ± 04.41 18.61 ± 17.46 7.87E+001 ± 1.37E+000
EELM(C) 69.69 ± 05.22 07.78 ± 13.83 7.81E+001 ± 1.64E+000
EELM(MS) 66.42 ± 06.08 15.47 ± 17.16 7.74E+001 ± 1.76E+000
OPELM 71.70 ± 03.43 02.50 ± 07.63 2.88E+000 ± 4.94E-001
ELM 70.44 ± 04.86 00.00 ± 00.00 4.38E-003 ± 1.42E-002

PDE(C) 61.89 ± 08.53 01.67 ± 06.34 3.26E+002 ± 5.04E+001
PDE(MS) 57.99 ± 09.11 09.46 ± 15.06 3.26E+002 ± 5.04E+001
HPDE(C) 69.18 ± 05.23 02.50 ± 07.63 3.61E+002 ± 7.80E+001
HPDE(MS) 64.53 ± 07.41 18.43 ± 17.96 3.61E+002 ± 7.80E+001
Rprop 59.69 ± 00.11 00.00 ± 00.00 5.52E-001 ± 1.80E-001
SVC 64.15 ± 00.00 00.00 ± 00.00 8.35E-003 ± 0.00E+000

hepatitis EELMCS(R) 74.27 ± 04.23 42.92 ± 13.80 1.71E+000 ± 8.55E-002
EELMCS(E) 76.24 ± 04.26 38.75 ± 14.44 1.70E+000 ± 9.52E-003
EELMCS(CS) 77.18 ± 04.43 45.90 ± 12.95 1.67E+000 ± 1.06E-002
EELM(C) 76.41 ± 04.64 35.00 ± 15.54 1.67E+000 ± 8.34E-003
EELM(MS) 74.87 ± 04.92 41.25 ± 13.99 1.67E+000 ± 9.07E-003
OPELM 76.32 ± 03.79 30.00 ± 14.53 2.27E-001 ± 6.25E-003
ELM 76.75 ± 03.92 32.50 ± 11.65 1.53E-003 ± 3.65E-005

PDE(C) 74.70 ± 04.24 33.33 ± 13.67 1.14E+001 ± 1.78E+000
PDE(MS) 74.70 ± 04.35 35.42 ± 12.32 1.14E+001 ± 1.78E+000
HPDE(C) 75.38 ± 03.34 31.67 ± 12.17 1.40E+001 ± 3.38E+000
HPDE(MS) 75.21 ± 04.11 33.33 ± 12.43 1.40E+001 ± 3.38E+000
Rprop 76.07 ± 00.04 22.08 ± 00.20 2.59E-001 ± 8.00E-002
SVC 79.49 ± 00.00 50.00 ± 00.00 1.58E-003 ± 0.00E+000

iris EELMCS(R) 96.00 ± 01.48 89.16 ± 03.29 1.76E+000 ± 2.17E-002
EELMCS(E) 95.70 ± 01.64 88.65 ± 03.08 1.82E+000 ± 1.78E-002
EELMCS(CS) 94.96 ± 01.93 87.56 ± 03.81 1.80E+000 ± 8.17E-003
EELM(C) 95.26 ± 02.16 89.09 ± 04.04 1.81E+000 ± 1.10E-002
EELM(MS) 94.74 ± 01.89 87.32 ± 03.63 1.80E+000 ± 1.07E-002
OPELM 92.89 ± 03.16 86.98 ± 07.09 8.08E-001 ± 2.09E-001
ELM 95.70 ± 02.18 90.54 ± 05.07 1.29E-002 ± 1.55E-002

PDE(C) 96.58 ± 01.82 90.26 ± 04.01 7.98E+000 ± 9.75E-001
PDE(MS) 95.81 ± 01.43 87.69 ± 04.33 7.98E+000 ± 9.75E-001
HPDE(C) 97.09 ± 00.89 91.28 ± 02.66 9.89E+000 ± 2.43E+000
HPDE(MS) 95.73 ± 01.23 87.18 ± 03.69 9.89E+000 ± 2.43E+000
Rprop 90.00 ± 00.13 71.76 ± 00.36 4.20E-001 ± 1.21E-001
SVC 97.78 ± 00.00 93.33 ± 00.00 6.18E-004 ± 0.00E+000

lymph EELMCS(R) 79.82 ± 03.74 04.83 ± 18.41 2.95E+001 ± 2.00E-001
EELMCS(E) 78.02 ± 05.35 02.33 ± 12.78 3.10E+001 ± 2.06E-001
EELMCS(CS) 77.75 ± 05.10 02.67 ± 14.61 3.11E+001 ± 3.93E-001
EELM(C) 79.01 ± 05.10 00.00 ± 00.00 3.13E+001 ± 3.64E-001
EELM(MS) 70.45 ± 06.46 06.28 ± 19.29 3.12E+001 ± 2.55E-001
OPELM 82.43 ± 04.36 00.00 ± 00.00 1.79E-001 ± 4.19E-003
ELM 79.28 ± 04.83 07.00 ± 21.36 4.85E-003 ± 1.22E-004

PDE(C) 79.46 ± 04.63 02.33 ± 12.78 9.75E+001 ± 2.67E+001
PDE(MS) 79.28 ± 04.78 02.33 ± 12.78 9.75E+001 ± 2.67E+001
HPDE(C) 80.99 ± 05.74 14.83 ± 30.44 1.21E+002 ± 2.57E+001
HPDE(MS) 80.81 ± 05.74 14.83 ± 30.44 1.21E+002 ± 2.57E+001
Rprop 80.99 ± 00.10 00.00 ± 00.00 3.21E-001 ± 1.29E-001
SVC 83.78 ± 00.00 00.00 ± 00.00 2.84E-003 ± 0.00E+000

zoo EELMCS(R) 91.73 ± 04.06 08.89 ± 18.69 3.61E+001 ± 3.84E-001
EELMCS(E) 92.93 ± 04.54 08.89 ± 27.59 3.76E+001 ± 2.98E-001
EELMCS(CS) 90.40 ± 04.15 00.00 ± 00.00 4.22E+001 ± 3.24E-001
EELM(C) 89.20 ± 03.95 02.22 ± 12.17 4.22E+001 ± 3.83E-001
EELM(MS) 88.93 ± 04.42 03.33 ± 18.26 4.23E+001 ± 4.78E-001
OPELM 87.20 ± 05.79 00.00 ± 00.00 4.60E-002 ± 7.87E-004
ELM 91.60 ± 04.74 05.00 ± 20.13 1.68E-003 ± 1.30E-004

PDE(C) 85.07 ± 06.12 02.78 ± 10.80 6.15E+001 ± 1.68E+001
PDE(MS) 84.67 ± 06.31 02.78 ± 10.80 6.15E+001 ± 1.68E+001
HPDE(C) 90.67 ± 05.49 08.89 ± 27.59 7.98E+001 ± 3.89E+001
HPDE(MS) 90.80 ± 05.37 08.89 ± 27.59 7.98E+001 ± 3.89E+001
Rprop 86.93 ± 00.12 00.00 ± 00.00 4.98E-001 ± 2.04E-001
SVC 96.00 ± 00.00 00.00 ± 00.00 1.50E-003 ± 0.00E+000


