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Metrics to Guide a Multi-Objective Evolutionary Algorithm for Ordinal
Classification

M. Cruz-Ramirez*, C. Hervas-Martinez, J. Sanchez-Monedero, P.A. Gutiérrez

Department of Computer Science and Numerical Analysis. University of Cordoba, Spain

Abstract

Ordinal classification or ordinal regression are classification problems in which the labels have an ordered arrangement
between them. Due to this order, alternative performance evaluation metrics are need to be used in order to consider
the magnitude of errors. This paper presents an study of the use of a multi-objective optimization approach in the
context of ordinal classification. We contribute a study of ordinal classification performance metrics, and propose
a new performance metric, the Maximum Mean Absolute Error (MMAE). MMAE considers per-class distribution
of patterns and the magnitude of the errors, both issues being crucial for ordinal regression problems. In addition
we empirically show that some of the performance metrics are competitive objectives, which justifies the use of
multi-objective optimization strategies. In our case, a multi-objective evolutionary algorithm optimizes a artificial
neural network ordinal model with different pairs of metrics combinations, and we conclude that the pair of the Mean
Absolute Error (MAE) and the proposed MMAE is the most favorable. A study of the relationship between the
metrics of this proposal is performed, and the graphical representation in the 2 dimensional space where the search
of the evolutionary algorithm takes place is analyzed. The results obtained show a good classification performance,
opening new lines of research in the evaluation and model selection of ordinal classifiers.

Keywords: mean absolute error, multi-objective evolutionary algorithm, ordinal measures, ordinal classification,
ordinal regression, proportional odds model

1. Introduction Hodge and Treiman [1], to analyze social class identifi-
cation, scored responses as follows: “Respondents iden-
tifying with the lower, working, middle, upper middle,
and upper class were assigned the scores 1, 2, 3, 4, and
5, respectively”. Though sequential numbers may be
assigned to such categories, the numbers assigned serve
only to identify the ordering of the categories. In con-
trast to regression metric problems, these ranks are fi-
nite types and the metric distances between the ranks
are not defined, in general; in contrast to classification
problems, these ranks are also different from the labels
of multiple classes due to the existence of the ordering

Ordinal classification or ordinal regression is a su-
pervised learning problem of predicting categories that
have an ordered arrangement. Although classifica-
tion and regression metric problems have been thor-
oughly investigated in the literature, the ordinal regres-
sion problems have not received as much attention as
nominal (binary or multiclass) classification. For ex-
ample, people can be classified by considering whether
they are high, medium, or low on some attribute or in
a set of categories varying from strong agreement to

strong disagreement with respect to some attitude item.
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information [2].

In the previous example, it is straightforward to think
that predicting class lower when the real class is upper
middle should be considered as a more severe error than
the one associated to a working prediction. Thereby, or-
dinal classification problems should be evaluated with
specific metrics. On a first consideration, various mea-
sures of ordinal association and product-moment cor-
relation and regression seem to rely on very different
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foundations. This is, the ordinal measures are devel-
oped from a) the notion of comparing pairs of cases, or
b) the product-moment system, which is considered in
terms of measures of individual cases.

If methodology a) is used, and there is an order-
ing of the categories but the absolute distances among
them are unknown, an ordinal categorical variable is ob-
tained. In that respect, in order to avoid the influence
of the numbers chosen to represent the classes on the
performance assessment, we should only look at the or-
der relation between “true” and “predicted” class num-
bers. The use of Spearman’s rank correlation coeffi-
cient, rs, [3] and specially Kendall’s 1, [4] is a step
forward in that direction. Moreover, other coefficients
are frequently used to describe association between or-
dinal measures as Goodman and Kruskal’s y [5], and
Somers’s d [6].

If methodology b) (product-moment system) is used,
the most common considered measures in machine
learning are the Mean Absolute Error (here denoted as
MAE) [7, 8], Root Mean Square Error (RMS E) [8], and
Mean Zero-One Error (MZE, more frequently known as
error rate) [8], being MZE = 1 — CCR, where CCR is
the Correct Classification Rate. However, these three
measures are not suitable when used to evaluate the per-
formance of classifiers on ordinal unbalanced datasets
[7]. The first contribution of this work is a newly pro-
posed metric associated to an ordinal classifier that is
the highest MAE value from MAEs measured indepen-
dently for each class (Maximum MAE or MMAE). This
metric evaluates the performance on the worst classified
class. The second contribution of this work is the analy-
sis of the state-of-the-art performance metrics. Finally,
we empirically show that some of the metric pairs can
be non-cooperative, and consequently justify the use of
a multi-objective framework to address the classifier op-
timization problem.

Figure 1 presents a motivational example for the
present work depicting three classifiers on a fourth class
ordinal classification problem. This figure illustrates
how different variations of decision thresholds can af-
fect to classification performance specially influenced
by patterns placed on the classes boundaries. More
specifically, this example raise two issues that will be
studied in the current work. Firstly, using a unique
performance measure may be not enough to evaluate
a classifier, specially in the field of ordinal regression.
Second, some of the performance metrics can result on
competitive objectives on a general optimization pro-
cess since moving a threshold on a direction can pro-
duce an improvement in one metric, but a detrimental
on a second one.

In the present paper, the aforementioned issues are
studied under a multi-objective optimization approach.
Multi-objective algorithms are algorithms that optimize
simultaneously objectives that are non-cooperative. In
many problems there are several conflicting objectives,
such as execution speed or computational cost and kind-
ness of the results. For example, in [9, 10] the authors
try to obtain optimal results in the shortest time and at
the lowest cost. In other problems, the execution speed
is not the most important and what is relevant is achiev-
ing good results in different conflicting error functions.

In the field of Artificial Neural Networks (ANNs),
classification performance and model simplicity are ob-
jectives that typically guide the training process of a
Evolutionary Multi-Objective Algorithm (MOEA) [11],
with the purpose of finding a trade-off between perfor-
mance and model readability. Other works present the
optimization of global performance versus worst clas-
sified class in a Pareto based algorithm [12] or also by
simplifying both objectives as a weighted linear combi-
nation of the functions [13].

In ordinal classification, it is common to use several
error functions when some of the classes have a number
of patterns much lower than the others, i.e. ordinal im-
balanced datasets. Because of this reason, we proposed
the MMAE metric measuring the performance in the
worst classified class. One real world application where
this problem can be found is in the extension of donor-
recipient allocation in liver transplants [14], where the
classifiers aims at predicting the survival of the organ
(describing this survival in three different classes, class
1: lower than 15 days, class 2: between 15 days and 3
months and, class 3: higher than 3 months). The prob-
lem is that, in real cases, the number of patterns of class
1 is much lower than that of class 2 or 3. The hospi-
tal would be interested in classifiers able to correctly
classify all classes equally, but the bad performance for
class 1 can be hidden by the fact that the number of
patterns of this class is very low (for example, a good
MAE value can be obtained when class 1 is associated
to a 5% of the patterns and the classifier never assigns
a pattern to class 1). As can be seen, both objectives
are conflicting (MAE and MMAE), because improv-
ing MMAE usually involves worsening MAE and vice
versa. In [15] another ordinal problem is solved from a
multi-objective perspective, where six different objec-
tives are considered, including MZE, MAE and four
different formulations for the expected ranking accu-
racy. In this work, several different ordinal measures
that could be combined in the context of ordinal regres-
sion are analyzed and combined in pairs for a MOEA.

The present work aims at identifying which pair of



* * * * * *
*. o o* * * *
~ A AT
+ class 1 + class 1 + class 1
® class 2 ® class 2 ® class 2
A class 3 A class 3 A class 3
* class 4 * class 4 * class 4
g g (l] g MAE = 0.5 8 (1] MAE =04 8 g 8 (1) MAE =04
Ma=| 1 ¢ o o |+ MMAE=20 Me=| o . MMAE =2.0 Mc=| 1 5 o | MMAE=30
00 13 CCR=0.7 0 0 CCR=0.7 00 0 4 CCR=038

Figure 1: An example of three classifiers decision boundaries for a four class ordinal classification problem. Decision
thresholds vary from right to left leading to three different situations regarding performance evaluation metrics. Clas-
sifiers on subfigure a) and b) have the same CCR and MMAE, whereas MAE varies and confusion matrices M, and
M3 are different. Similar comment applies when comparing b) and c) situations, but in this case MAE is kept constant
while CCR and MMAE vary. Finally, when comparing the classifiers a) and c), the CCR and MAE values improve

and the value of MMAE worsens.

ordinal classification performance metrics can be more
suitable to guide a MOEA to obtain classifiers with a
good performance (considering both the order of the
miss-classification errors and the worst classified class
errors). The most common ordinal classification perfor-
mance metrics are reviewed, and some of them are se-
lected to evaluate the performance of four nominal and
ordinal classifiers, including also the proposed metric.
Then, a correlation study is done between all the metrics
in order to find the less correlated ones. We hypothesize
that the more uncorrelated metrics are the more suit-
able for acting as optimization objectives for the MOEA
(given that all of them highlight positive aspects of the
classifiers). The selected metrics are grouped into dif-
ferent pairs that will be simultaneously optimized by the
MOEA. The base classifier considered is an ANN based
on the Proportional Odds Model (POM) [16] and it is
evolved using a differential evolution MOEA [17, 18].
Finally, the generalization performance of the models
obtained is studied with respect to the pair of metrics
considered in the evolution. Because of their perfor-
mance, the pair MMAE-MAE is taken special attention,
deriving a relationship between this pair of metrics and
studying their graphical representation.

This paper is a significant extension of a conference
paper [19]. The new contributions are the following. A
correlation analysis of the ordinal performance metrics
is done, and the confusion matrices studied are changed

and extended. In addition, the neural network model
used has been replaced by another neural network based
on the Proportional Odds Model and a local search pro-
cedure based on the iRprop* algorithm [20] has been
included in the MOEA to optimize the new model. Fi-
nally, two additional ordinal methods have been com-
pared in the experimental section, and new tables de-
scribing the experiments and statistical tests have been
included to enforce the conclusions.

The rest of paper is organized as follows: Section
2 shows a revision and an experimental comparison of
measures for ordinal classification; Section 3 details the
ordinal ANN model based on the POM model; Section
4 describes the training method employed; Section 5 de-
scribes the experimental design and the results obtained,
while conclusions and future research are outlined in
Section 6.

2. Measures of association in ordinal classification

This section presents both nominal and ordinal classi-
fication performance metrics commonly used in the lit-
erature. An empirical evaluation of the correlation be-
tween them is done in order to select the most relevant
ones.

Let’s define an ordinal classification problem as a
problem where the purpose is to learn a model able to
predict class labels, C = {C},C,...,Cy} containing J



Table 1: Confusion matrix.
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labels, for unseen patterns after a training process. What
makes the difference with nominal classification is that
the label set has an order relation C; < C, < ... < Cy
imposed on it (the symbol < denotes the ordering be-
tween different ranks). Let’s suppose an ordinal clas-
sification problem with J classes and n patterns with a
classifier g obtaining a J X J contingency or confusion
matrix. Table 1 shows the confusion matrix, where 7
represents the number of times the patterns are predicted
by classifier g to be in class k when they really belong to
class j, nj, is the number of patterns belonging to class
J» neg 18 the number of patterns predicted in class k and
n is the total number of patterns.

Let D = {(x;,y:), i = 1,--- ,n} be the set of training
patterns, denote by {y,y2,...,y,} the set of labels of
a given dataset, and let {y],y3,...,y,} be the predicted
labels by the evaluated classifier g, where y; € C and
yi €C,and C = {Cy,Cs,...,Cy}, 1 <i < n. In general,
the predictions of the classifiers will be categories but,
for some metrics, these categories will be turned into
integer values by using the function O(y;) which estab-
lishes the position on the ordinal scale of the predicted
label, being O(C;) = j and if y; = C; them O(y;) = j,
I<j<J.

Many ordinal measures have been proposed to de-
termine the efficiency of the classifier g, but not all
pairs formed by these metrics might be valid to guide
a MOEA. Before describing the ordinal metrics, accu-
racy and minimum sensitivity are also presented, since
they have been proved to be non-cooperative objectives
[12] and they are commonly used (especially the CCR)
in classification problems:

e CCR: The Correct Classification Rate or accuracy
is the percentage of correctly classified patterns:

J

CCR = %Zn,-,,

j=1
where CCR values range from 0 to 1.

e MS: The Minimum Sensitivity is the lowest per-
centage of patterns correctly predicted as belong-

ing to each class, with respect to the total number
of examples in the corresponding class:

. njj . .
MS = min{§; = s j=1,..,J}
Nje
where S ; is the sensitivity of the j-th class and MS
values range from O to 1.

On the other hand, there are other product-moment
ordinal metrics specifically used in ordinal classifica-
tion:

e MAE: The Mean Absolute Error is the average ab-
solute deviation of the predicted class from the true
class (i.e. average absolute deviation in number of
categories of the ordinal scale) [7]:

J n
1 . 1
MAE = - E lj—klnp = - ;:1 e(X;),

k=1

where e(x;) = |0(y;)) — O(y})| is the distance be-
tween the true (y;) and the predicted (y}) ranks, and
O(C;) = jis the position of a label in the ordinal
rank. Then, MAE values range from O to J — 1.

o AMAE: The Average MAE is the mean of the
MAE classification errors across classes and was
proposed by Baccianella et al. [7] to mitigate the
effect of imbalanced class distributions. Let MAE;
be the MAE for a given j-th class:

je

1O 1 .
MAE; = le—klnjkzFZej(xi),lﬁjsj,
k=1 e

Nje i=1

in such a way that:

M-

1
MAE = - nj.MAEj.
n

J=1

AMAE is defined in the following way:

J
1
AMAE = 5 ; MAE;,
where AMAE values range from O to J — 1.
o MMAE: The Maximum MAE value of all the
classes is proposed in this paper as an ordinal re-
gression metric alternative. MMAE is the MAE

value of the class with higher distance from the true
values to the predicted ones:

MMAE = max{MAE;; j=1,..,J},



where MAE; is the MAE value for the j-th class.
MMAE values range from 0 to J — 1 and it is a nat-
ural extension of MS to ordinal regression prob-
lems.

Finally association metrics are presented, which are
also used in ordinal classification:

e rs: The Spearman’s rank correlation coefficient is
a non-parametric measure of statistical dependence
between two variables [3]:

o Zie1 (O0) — 0NOGT) — OG))
N )
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where O(y) and O(y*) are the average of O(y;) and
O(y}),i=1,...,n,respectively. Recall that O(C;) =
Jj. rs values range from -1 to 1.

e 7. The Kendall’s 7 is a statistic used to measure
the association between two measured quantities.
Specifically, it is a measure of rank correlation [4]:

n S
Zi,j:l CijCij

&)@ a)

where cl’.‘j is +1if O(y;) > O(y;'.), 0ifO@y;) = O(y;'.),
and -1if O(y}) < O(y’;) fori, j =1,...,n, and simi-
lar for ¢;;. The 1y, values range from -1 to 1.

o WKappa: The Weighted Kappa is a modified ver-
sion of the Kappa statistic calculated to allow as-
signing different weights to different levels of ag-
gregation between two variables [21]:

po(w) - pe(w)

WKappa =
L = Peqw)
where
1 LS
Pow) = ; Z Z ijn]k,
j=1 k=1
and
1 J J
N = 5 Wik jeMef
Pe(w) 2 ]Z:;; JkItj k

where the weight wj = |j— k| quantifies the degree
of discrepancy between the true (j) and the pre-
dicted (k) categories, and WKappa values range
from -1 to 1.

While the rg and 7, measures are independent on the
values chosen for the ranks that represent the classes,
MAE, MMAE and AMAE depend on the distance be-
tween ranking of two consecutive classes.

2.1. Correlations between metrics

To study the relationships between the different met-
rics, a correlation matrix comparing them will be an-
alyzed. This matrix is generated from the results ob-
tained by four algorithms from the literature in the ten
datasets used in this paper. The information about these
datasets can be seen in Section 5. The experimental
setup was a stratified 30-holdout in which the training
set had approximately 75% of the patterns, and the gen-
eralization set had the remaining ones.

The analysis was done for each of the four meth-
ods separately in order to take into account the effect
of the classifier in the results (Table 2). These matri-
ces were generated in the following way: firstly, since
all the methods are deterministic each split of a dataset
was run once for each method. So, for each method
and dataset, 30 generalization models were available.
The correlation between each pair of metrics through
the 30 models was calculated leading to a total of 10
correlation matrices (8 X 8 dimensional matrices). Then,
if the correlation value for a given pair of metrics was
greater than 0.75, one point was summed to the corre-
sponding pair. Finally, the total points of each pair was
divided by the number of comparison (10) to obtain the
percentage of times this pair of metrics exhibited a cor-
relation higher than 0.75. When one of the two com-
pared metrics (or both) was constant for the 30 models,
the corresponding comparison was ignored, given that
correlations could not be obtained. For example, the
correlation between CCR and MS with the results of
the SVM method is 16.67 due to one comparison was
greater than 0.75 and four comparison could not be ob-
tained (1/6 = 0.1667 = 16.67%).

This process was repeated for each method, as can be
seen in Table 2. A summary of the four studies has been
included in Table 3. This matrix was generated taking
into account the comparison of the four methods jointly.
As can be seen, the conclusions from the five matrices
of both tables are very similar.

The four algorithms are widely used and have been
chosen because they usually exhibit good performance.
The first one, SVM, is nominal, while others are specific
to ordinal regression:

e SVM: Support Vector Machines (SVM) are well
known and a robust classification method. In
this paper, we use the LibSVM software for the
optimization of SVM [22]. This library con-
tains a script for automatically adjusting the hyper-
parameters associated to this kind of models, in-
cluding the cost parameter and the width of the
Gaussian kernels. The LibSVM grid search cross-



Table 2: Correlation matrices obtained by the different
methods. Each element of each matrix is equal to the
percentage of times (from a total of 10 comparison) the
correlation was higher that 0.75.

SVM method
CCR MS MAE AMAE MMAE rs 7 WKappa
CCR 100.00 16.67 80.00 30.00 10.00 40.00 60.00 80.00

MS - 100.00 16.67 33.33 33.33 16.67 16.67 16.67
MAE - - 100.00 30.00 10.00 80.00 80.00 80.00
AMAE - - - 100.00 50.00 50.00 50.00 60.00
MMAE - - - - 100.00 20.00 10.00 10.00
rs - - - - - 100.00 100.00  90.00

T - - - - - - 100.00 100.00
WKappa - - - - - - - 100.00

SVMRank method
CCR MS MAE AMAE MMAE rs ™, WKappa
CCR 100.00  * 77.78 33.33 * 3333 4444 7178

MSs - 100.00 * 16.67 33.33 * g *
MAE - - 100.00 22.22 * 88.89 88.89  88.89
AMAE - - - 100.00 5556 3333 3333 44.44
MMAE - - - - 100.00 11.11 1111 11.11
rs - - - - - 100.00 100.00 77.78
T - - - - - - 100.00 77.78
WKappa - - - - - - - 100.00

SVOR-EX method
CCR MS MAE AMAE MMAE rs 7, WKappa
CCR 100.00 40.00 90.00 40.00 20.00 40.00 50.00 80.00

MS - 100.00 40.00 40.00 80.00 40.00 40.00 40.00
MAE - - 100.00 40.00 20.00 80.00 90.00 80.00
AMAE - - - 100.00 60.00 30.00 50.00 60.00
MMAE - - - - 100.00 20.00 20.00 20.00
rs - - - - - 100.00 100.00 100.00

T - - - - - - 100.00 100.00
WKappa - - - - 100.00

SVOR-IM method
CCR MS MAE AMAE MMAE rg 7, WKappa
CCR 100.00 40.00 90.00 40.00 20.00 40.00 50.00 80.00

MS - 100.00 40.00 40.00 80.00 40.00 40.00 40.00
MAE - - 100.00 40.00 20.00 80.00 90.00 100.00
AMAE - - - 100.00 60.00 50.00 50.00 60.00
MMAE - - - - 100.00 20.00 20.00  20.00
rs - - - - - 100.00 100.00  90.00

T - - - - - - 100.00 90.00
WKappa - - - - - - - 100.00

*: means that one of the two compared metrics (or both) was constant for all

comparisons and, therefore, the correlation could not be obtained.

Table 3: Matrix summarizing all the correlation matri-
ces of the study. Each element is equal to the percentage
of times (from a total of 40 comparison) the correlation
was higher that 0.75.

CCR MS MAE AMAE MMAE rs ™, WKappa
CCR 100.00 22.73 84.62 3590 12.82 3846 5128 79.49

MS - 100.00 22.73 31.82 5455 2273 22773 2273
MAE - - 100.00 33.33 12.82 82.05 87.18 87.18
AMAE - - - 100.00 56.41 41.03 46.15 5641
MMAE - - - - 100.00 17.95 15.38 15.38
rs - - - - - 100.00 100.00 89.74

T - - - - - - 100.00 9231
WKappa - - - - - - - 100.00

validation procedure has been modified to use
MAE as the hyper-parameters selection criteria.

e SVMRank: It applies the Extended Binary Clas-
sification (EBC) method [23] to SVM. The EBC
method can be summarized in the following three
steps. First, transform all training samples into ex-
tended samples weighting these samples by using
the absolute cost matrix. Second, all the extended
examples are jointly learned by a binary classifier
with confidence outputs, aiming at a low weighted
0/1 loss. Last step is used to convert the binary
outputs to a rank.

e SVOR-EX and SVOR-IM: Support Vector Ordi-
nal Regression (SVOR) by Chu and Keerthi [24]
proposes two new support vector approaches for
ordinal regression. Here, multiple thresholds are
optimized in order to define parallel discrimi-
nant hyperplanes for the ordinal scales. The first
approach includes explicit inequality constraints
on the thresholds (SVOR-EX). In the second ap-
proach, the samples in all the categories are al-
lowed to contribute errors for each threshold,
therefore there is no need of including the inequal-
ity constraints in the problem. This approach is
named a SVOR with implicit constraints (SVOR-
M).

According to Table 3, the pairs of measures that are
less correlated (with a value lower than 20%) are CCR-
MMAE, MAE-MMAE, MMAE-rs, MMAE-t, and
MMAE-WKappa. Of these five pairs, the last three are
very similar, because the metrics rs, 7, and WKappa
are highly correlated (values higher than 90%). There-
fore, in our study will use the pair formed by MMAE
and 1,. The choice of 1, is due to it is one of the most
used metrics in ordinal regression besides providing an
intuitive view of the results.

Logically, the three selected pairs (CCR-MMAE,
MAE-MMAE and MMAE-1,) would be ideal objec-
tives to guide the evolution of a multi-objective algo-
rithm, since they have low linear correlations and may
implicitly be non-cooperative objectives. In the rest of
the paper we will focus on determining which of them
presents the most promising results. Note the goal of us-
ing MOEA is to optimize objectives which can be non-
cooperative in the solution design.

2.2. Comparison of the ordinal metrics

For the metric pairs selected, a study of their be-
haviour is done by using 6 confusion matrices shown
in Table 4. These matrices are designed to cover differ-
ent extreme possible situations. The last two matrices
represent situations where the 50 percent of patterns of



Table 5: Results obtained by the selected metrics.

M, M, M3 My Ms Mg

CCR 0.0 0.5 0.9 0.0 0.5 0.5

MAE 1.0 0.8 0.3 1.0 0.5 1.0

MMAE 1.0 2.0 3.0 1.0 0.5 1.0
T, 0.1972 0.8280 0.6375 0.4140 0.6669 0.1667

each class are correctly classified. The other patterns
are miss-classified in adjacent classes (Ms) or with a
classification error of two classes (Mg). All matrices
follow the same distribution of patterns per class. The
behaviour of the different metrics over other matrices
can be seen in [19, 25].

Table 5 shows the results obtained after applying the
selected metrics to the confusion matrices. These results
show that M| and M4 have similar performance in CCR,
MAE and MMAE, but not with respect to 1,. This in-
dicates that 1}, is able to reflect the better performance
of My with respect to M; (although there the errors are
the same, M, keeps better the relative order of the pat-
terns, given that patterns of class C; are positioned be-
fore patterns of class C, and patterns of class C3 before
those of class C4). Analyzing the last two matrices is
noted that an increase in the distance of errors produces
a degradation of performance of MAE, MMAE and Ty,
In addition, whenever the MAE values of all classes are
equal, MAE and MMAE values are identical.

Next, the three selected metric pairs (hereafter re-
ferred to as proposals) will be analyzed in order to verify
the relationship between the metric of each pair:

e Proposal 1 (CCR-MMAE): M3 has a good value of
CCR and a low value of MMAE. However, M; or
M, get a CCR = 0, but substantially better values
of MMAE. This indicates that these measures may
be non-cooperative.

e Proposal 2 (MAE-MMAE): M, and Mj obtain
a very acceptable value of MAE, while values of
MAE in M, and M, are worse. This indicates, as
in the previous case, that these metrics may be non-
cooperative, because in different situations, one of
them improves and the other one worsens.

e Proposal 3 (1,-MMAE): Analysing this proposal,
we see that M, gets a great value for 7,, whereas
M; and My are not getting so good ones. How-
ever, M; and M, obtained better MMAE values
than those obtained by M,. This points out that the
measures are non-cooperative.

3. Ordinal model

One main issue of ordinal classification is that there is
no notion of the precise distance between classes. The
samples are labeled by a set of ranks with different cat-
egories and an order. In this paper, the classical Propor-
tional Odds Model (POM) [16] adapted to ANNs [26]
is considered. The POM model works based on two el-
ements: the first one is a linear layer with only one node
(see Figure 2) whose inputs are stamped onto a line, to
give them an order which facilitates ordinal classifica-
tion. After this one node linear layer, an output layer is
included with one bias for each class whose objective
is to classify the patterns into their corresponding class.
In general, this kind of models are named to as latent
variable models or threshold models [27]. The classifi-
cation rule can be represented in the following general
form:

Cy, if f(x,0) <B}
Co, ifBl < f(x,0) <f3

C(x) = (D

Cy, if f(x,0) >

where the set of biases or thresholds (B =
{By, - --.By "} satisfy the following ordinal constraint:
By <B§ < -+ <py~". xis the input pattern to be classi-
fied, f(x, 0) is a ranking function and © is the vector of
parameters of the model. Indeed, the analysis of Equa-
tion (1) reveals the general idea previously presented:
patterns, X, are projected to a real line by using the rank-
ing function, f(x, 0), and the ordered biases or thresh-
olds, ﬁ{), separate the ordered classes.

Let us formally define the model for each class as
fi(x,0,8) = f(x,0)-B), 1 < j < J-1, where the pro-
jection function f(x, 0) is estimated using S sigmoidal
basis functions, f(x,0) = Zle a;B(x, W), replacing
By(x, wy) by the sigmoidal equations:

1
BS(Xs WS) =

1 +exp (_WsO - Zle wsix,-)

where [ is the number of inputs.
By using the POM model [16], this projection can be
used to obtain cumulative probabilities:

PY<j)=P¥=1)+---+P¥=j),1<j<J-1,
PY<J)y=1,
cumulative odds:

P <)) I1<j<J-1

odds(Y < j) = m, <



Table 4: Confusion matrices evaluated in the study.

0 10 0 0 0 0 0 0 0 0 0 10
20 0 0 0 20 0 0 0 0 20 0 0
M=% 030] M’_30000] Ms=l o o 30 0]
0 0 40 0 0 0 0 40 0 0 0 40
0 10 0 0 5 5 0 0 5 0 5 0
0 0 20 0 0 10 10 0 0 10 0 10
M4:[0 30 0 0 MS:[O 5 15 0 Me=| 15 o 15 0]
0 0 40 0 0 0 20 20 0 20 0 20
91(,0,B) 92(x,0,8) 9,-1(x,0,8) 9,(x,0,B) where y = 1 if pattern n belongs to class j and 0 oth-
_ _ T erwise, and the final probability model can be expressed
( Ordinal Transformation ]
as:
1
gi(x,0,B) = e (2)
1 + exp(fi(x, 6,85,))
1
- ——. l<j<U-1,
1 +exp(fi-1(x, 0,8, ))
1
g/x,0,B)=1- —— =
1 +exp(f/-1(x,0,8,7"))
o exp(frm1(x,0,571)
1 +exp(fr-1(x,0,8,71)
4. Method

Figure 2: Neural network model for ordinal regression.

and cumulative logits:

) o PO<p )
logit(Y < j) = 1n(m) =
= f(x,0) - B) = f;(x,0.5)),
1 B 1
L +exp(f(x,0) =) 1 +exp(fi(x.0.5))

where 1 < j < J -1, P(Y = j) is the probability a
pattern x has of belonging to j-th class, P(Y < j) is the
probability a pattern x has of belonging to classes 1 to j
and the logit is modeled by using the ranking function,
f(x,0), and the corresponding bias, ﬁ(’). We can come
back to P(Y = j) from P(Y < j):

P(Y <)) =

POY = 11x,0,B) = P(Y = j) = g;(x,0,B) =

=PY<j)-PY<j-1), j=1,...,1J

To see how the selected metrics behave, this paper
uses the MOEA described in [28]. The algorithm used is
the Memetic Pareto Differential Evolution Neural Net-
work (MPDENN) algorithm developed by R. Storn and
K. Price in [17] and modified by H. Abbass to train
neural networks [18]. MPDENN is adapted according
to the trade-off between the CCR and MS analyzed in
[12, 29]. The fundamental bases of this algorithm are
Differential Evolution (DE) and the concept of Pareto
dominance. DE has often been used to train neural net-
works in the context of both single-objective [30, 31]
and multi-objective [13, 32] optimization.

The main feature of the MPDENN algorithm is the
inclusion of a crossover operator together with a muta-
tion one. The crossover operator is based on the random
choice of three parents, where one of them (main parent)
is modified using the weighted difference of the other
two (secondary parents). The child generated by the
crossover and mutation operators is included in the pop-
ulation if it dominates its main parent, if it has no rela-
tionship with him or if it is the best child of the rejected
children. A generation of the evolutionary process ends
when the population has been completed. At the be-
ginning of each generation, dominated individuals are
eliminated from the population. The ordinal metrics are
used as fitness functions of the DE algorithm without



Table 6: Characteristics of the datasets.

Dataset #Patterns #Attributes #Classes Class distribution
Automobile 205 71 6 (3,22,67,54,32,27)
Balance-scale 625 4 3 (288,49,288)
Bondrate 57 37 5 (6,33,12,5,1)
ERA 1000 4 9 (92,142,181,172,158,118,88,31,18)
ESL 488 4 9 (2,12,38,100,116,135,62,19,4)
Eucalyptus 736 91 5 (180,107,130,214,105)
LEV 1000 4 5 (93,280,403,197,27)
SWD 1000 10 4 (32,352,399,217)
Toy 300 2 5 (35,87,79,68,31)
Winequality-red 1599 11 6 (10,53,681,638,199,18)

requiring any change in the evolutionary process. Fur-
ther details can be found in [28], specially those related
to the local optimization procedure included in the DE
algorithm. In this paper, the improved Resilient Back-
propagation (iRprop*) algorithm [20] is used as the lo-
cal search procedure. Since the ordinal classification
metrics are non-derivable functions, we have selected
the cross-entropy error function (E) as a metric to guide
the iRprop* optimization. This metric is proved to be
a robust optimization metric for classification problems
[33]. The E function is given by:

1 N J .
E@©.B) =~ D > v logg;(x..0.p).
n=1 j=1

where g;(x,, 0, 3) is the function defined at Equation
(2). In the experiments, the local search procedure is
applied every five generations.

5. Experimental study

To verify the efficiency of the three proposals, ten or-
dinal datasets have been used. Nine of them are bench-
mark datasets' and the other (Toy) has been generated
following the guidelines in [34]. Table 6 shows the char-
acteristics of the datasets used, including the number
of patterns, the number of attributes (after transform-
ing nominal attributes into binary ones), the number of
classes and the class distribution (number of patterns for
each class).

Due to the fact that the MOEA used is non-
deterministic, we perform a stratified 30-holdout, where
approximately 75% of the instances are used for the
training set and the remaining 25% for the test or gen-
eralization set (maintaining the original distribution of
classes).

!Datasets are available in http://weka.wikispaces.com/
Datasets and http://mldata.org/.

The essential parameters of the algorithm (popula-
tion size, number of generations and number of nodes
in hidden layer) were obtained using a 5-fold cross-
validation process on the training set. A grid search
was performed using {10,25,50} for the population
size, {100, 150,200} for the number of generations, and
{5, 10, 20, 30} for the number of nodes in hidden layer.
The criterion to select the best parameter combination
was the MAE metric, due to it is one of the most com-
monly used ordinal metrics in previous works.

5.1. Comparison methods

The results obtain by a MOEA using the three pro-
posals were compared with the two following related
ordinal methods.

e Proportional Odds Model (POM) [16]: this method
is a cumulative link model, specifically designed
for ordinal regression. This model is inspired by
the latent variable motivation which provides a
solid probabilistic interpretation. In this work, the
POM algorithm is used with the logit link function,
the most extended one. More details of this method
have been seen in Section 3.

e Neural Network based on Proportional Odds
Model (NNPOM) [35]: this model is a non-linear
version of the POM model, which combines neu-
ral networks with a cumulative link model. In this
method, the output of a neural network is used as
latent variable for the POM model. This type of
model can be optimized by maximum likelihood
optimization. In this work, the model is optimized
using the same local search procedure employed
by the MPDENN algorithm, iRprop*. The corre-
sponding parameters have been cross-validated us-
ing the MAE metric and the same ranges.

5.2. Results

Table 7 shows the CCR results obtained after guiding
the MOEA with the three proposals. They correspond



to the averages and the standard deviations of the gen-
eralization results for the 30 models which are Pareto
front extremes generated in 30 runs (one Pareto front
for each run is obtained and then the two extremes of
the front, in training, are extracted. See Figure 3 to lo-
cate these models). In addition, the two ordinal methods
are included for comparison. The last part of the Table
7 includes the ranking over all the datasets. The ranking
is obtained in the usual manner (for each dataset, a 1 is
assigned to the best method, and a 8 to worst one) [36].
Similarly, Tables 8, 9 and 10 show the results obtained
for the metrics MAE, MMAE and Ty, respectively.

From a descriptive point of view, for CCR, the best
ranking is obtained by the proposal 2, model 1, and
the second by the proposal 1, model 1 (Table 7). For
MAE (Table 8), the best rankings obtained are similar
to those obtained for CCR. For MMAE (Table 9), the
best ranking is obtained by the proposal 3, model 2, and
the second by the model 1 of the same proposal. For 7,
(Table 10), the best ranking is obtained by the proposal
1, model 1, and the second by the proposal 2, model 1.
These results show that the best proposal is the second
one (MAE-MMAE pair), because the trained classifiers
has better performance on two metrics (CCR and MAE)
and the second best ones on 7y,. It should be pointed
out that, according to the experiments, T, is not a suit-
able fitness function since the best and second best mean
ranking in 7y, are not achieved by the proposal optimiz-
ing 1, (see Table 10). In addition, the three proposals
presented competitive results compared with the refer-
ence ordinal methods (POM and NNPOM).

A common feature of the three proposals is that the
MMAE models do not perform well for global classifi-
cation metrics (CCR, MAE and t},). The reason for this
behavior is that these models are focused on the clas-
sification of the worst classified class. However, these
models obtain the best results in MMAE, minimizing
the maximum error across all the classes. In addition,
during the evolutionary process, these models help to
the opposite extreme models to improve their perfor-
mance in the worst classified class because they incor-
porate diversity within the individuals population.

In order to determine the statistical significance of the
rank differences observed for each method in the dif-
ferent datasets, a Friedman tests [37] have been carried
out with a significance level of @ = 0.05. When there
are significant differences, the Bonferroni-Dunn’s test
is used to compare all methods to each other. This test
considers that the performance of any two methods is
deemed to be significantly different if their mean ranks
differ by at least the critical difference (CD):

10

KK + 1)
P=aN"ep

where K is the number of classifiers, D the number of
datasets and the g value can be computed as suggested
in [38]. We chose the best performing method (for each
metric) as the control one for comparison with the rest.
The ranks with significant differences for @ = 0.05 are
marked with an = in Tables 7, 8, 9 and 10 and for « =
0.10 with a e.

In general, the NNPOM method is the worst one with
a significantly worse value for all metrics (with @ = 0.05
for MAE, MMAE and 1, and @ = 0.10 for CCR), when
compared with the best method in each case. The POM
method is significantly worse in MMAE and 7}, (both
with @ = 0.05) and the proposal 3-, model 2 (MMAE
extreme of the 1,-MMAE pair) is worse in 7, (with
a = 0.10). The greatest differences were found in the
MMAE results. The reason for these differences may
be due to the classical ordinal methods do not consider
the performance for the worst classified class.

5.3. Study of the relationship between the MMAE and
MAE metrics

In accordance with the results presented in the pre-
vious section, a good pair for guiding a multi-objective
algorithm could be formed by the MAE and MMAE
metrics. The analysis of these metrics is intended to
further understand how they guide the DE algorithm.
To analyse their relationship we propose the following
procedure.

Proposition 5.1. Let us consider a J-class classifica-
tion problem. Let MAE and MMAE be respectively
the two measures associated with an ordinal classifier
g. Without loss of generality, denote the class with max-
imum MAE; by j = J (MAEj). Then:

P MMAE < MAE < MMAE, 3)

where p’ is the estimated prior probability of the J-th

class:
* nje
p;=

n

Proof We begin by proving the upper bound. In gen-

eral:
0<MAE; < MMAE < J -1,
So: ;
mag = 22 MAES
n
_ I’ll.MAEl + }’lz.MAEz + ...+ nJ.MAEJ <

n



Table 7: Results obtained in generalization for the metric CCR: mean and standard deviation (Meansp) and mean
ranking (Rccg)-

Proposal 1 (CCR-MMAE) Proposal 2 (MAE-MMAE) Proposal 3 (t,-MMAE)

Dataset Model 1 (CCR) Model 2 (MMAE) Model 1 (MAE) Model 2 (MMAE) Model 1 () Model 2 (MMAE) POM  NNPOM
Automobile 60.007 03 60.007 03 59.42¢ 51 59.29¢.55 60.135 5> 59.816.03 46.6719.42 45.06624
Balance 97.241_19 97.241_19 97.311_0(, 97-311.06 97.181_55 97.181_55 90-551.86 92-319.96
Bondrate 5].33/3_45 5143313.46 53-118.66 50.89]3_]5 46.44]2_(,8 46,2212_74 34,441(,_()5 43.11 13.42
ERA 272754 25.053.00 27.55:6 25.56704 2744 55 26.64 59 256111 2773236
ESL 70.96,.81 61.1717.12 70.053.03 68.143 53 71.69334 68.775.42 70.55336 65.6612.85
Eucalyptus 5931316 5931316 57.61350 57.61350 59.643 59 59.643 59 14.93157 54.044389
LEV 62.80, 55 4545787 62.88; 55 47.056.92 62.842.3; 4545652 62.3380 62.04254
SWD 57. 193_29 47,657_(,2 57.633.04 48.527_] 1 57.323_34 47.655.74 56.792_95 55. 123_42
Toy 957853 957853 95.605.60 9560540 95.515; 95.51,; 2893555 93.60333
Winequality-red 59.05271 42.32y577 59.94; 49 45.73 158 58.256.43 32.0611.01 59.72154  59.49;55

Recr 2.95 5.15 2.55 5.15 315 5.55 5.80° 5.70°

The best result in CCR is in bold face and the second best result in italics
+ and e stand for significant differences with the Bonferroni-Dunn’s test when considering @ = 0.05 and & = 0.10, respectlvely

Table 8: _Results obtained in generalization for the metric MAE: mean and standard deviation (Meangp) and mean
ranking (RyAEg).

Proposal 1 (CCR-MMAE) Proposal 2 (MAE-MMAE) Proposal 3 (t,-MMAE)

Dataset Model 1 (CCR) Model 2 (MMAE) Model 1 (MAE) Model 2 (MMAE) Model 1 (t) Model 2 (MMAE)  POM NNPOM
Automobile 0.52120_]153 0.5212()_]153 0.52630_1()74 0.52690_]()73 0.51860_0914 0-51990.0928 0-95320.6869 0.85130_1501
Balance 0.0299()_(]/24 0.02990_()/24 0.02970_0129 0.02970_0129 0.03010_0]74 0.03010_0174 0.1068(1[)2()9 0.10530_]375
Bondrate 0.6022()_158() 0.6022()'1580 0.60110‘0961 0.64670'1312 0.66670']706 0.66670_]724 0.94670.32()6 0.79780_2[33
ERA  1.2508 0566 1.35630.1256 1.24890.0497 1.34190.1076 1.26570.0622 1.32520 0869 1.218490501 1259300622
ESL  0.30490.0299 0.45570.2669 0.31310.0332 0.33930.1115 0.2964¢ 0365 0.33250.1113 0.31040,0380 0.45570.6274
Eucalyptus 0.46650_0376 0446650_0376 0.49310_()519 0.49310_0519 0.46610_0462 0.46610_0452 1.93880,2537 0.57500_()753
LEV  0.408100265 0.66640.1323 0.40739.0271 0.62870.1031  0.40850 025 0.653300073  0.40930.0304 0.41650 0285
SWD 045190353 0.60670,.1266 0.4455¢,0327 0.593301071  0.4489.0367 0.6049% 1016 0.450100304 0.4789,0384
Toy  0.0422 0230 0.0422¢ 0230 0.04400.0260 0.04400 0260 0.04490 0261 0.04490.0261 0.98099.0389 0.06400,0333
Winequality-red  0.4444¢ 5> 0.8046¢ 3415 0.43930.0150 0.7274¢ 3365 0.4622¢ 1072 0.9439¢ 2096 0.43519.0171 0.44680 0253

Ryae 2.85 5.25 2.65 5.15 3.50 5.30 5.20 6.10"

The best result in MAE is in bold face and the second best result in italics
+ and e stand for significant differences with the Bonferroni-Dunn’s test when considering @ = 0.05 and @ = 0.10, respectlvely

Table 9: Results obtained in generalization for the metric MMAE: mean and standard deviation (Meansp) and mean
ranking (Rymag)-

Proposal 1 (CCR-MMAE) Proposal 2 (MAE-MMAE) Proposal 3 (t,-MMAE)
Dataset Model 1 (CCR) Model 2 (MMAE) Model 1 (MAE) Model 2 (MMAE) Model 1 (r,) Model 2 (MMAE) POM NNPOM
Automobile 1.03 19[)_31 19 1.03 190_3] 19 1 .02820_2935 1.0282()_293(, 0.991 40.2363 0.97200_2290 1.8937 1.6795 2.01 350_7245
Balance 0.081 3[)_0503 0.081 30,0608 0-07100‘0467 007100,0467 0.0777()'0754 0.0777()_07(,4 0. 14280.[)349 0.27850_374()
Bondrate  1.9833 6628 1.9833 6628 2.1667¢ 6477 2.18890.6170 2.05000 4614 2.05000 4614 2.083307888 2.59580.7426
ERA  2.1045¢2s85 2.04530.2400 2.14780.2677 2.07190.2046 2.14580.2009 1.9985¢ 2640 2.13390.2903 2.2021¢5536
ESL  1.211104057 1.279503970 1.1156¢ 3596 1.16680 3566 1.19330.4118 1.15150.4047 0.99940.3890 1.52891.1577
Eucalyplus 0.6886{)_[()55 0.6886{)_1065 0.70850_ 1063 0.70850_ 1063 0.66990_0331 0.66990_0831 3.6963(]‘(,(,39 0.85020_ 1489
LEV 1.2294 243 1.02600 2359 1.2302¢ 2389 1.0082 2581 1.23780.2306 0.9906 249> 1.311102433 1.30950.2070
SWD  0.9117.1108 0.86200.1397 0.95000,0843 0.8581¢.1663 0.93750.0715 0.88340.2120 1.12080.1011 1.10830.1729
Toy  0.122790635 0.12279.0635 0.12340,0639 0.12340,0639 0.11680 0591 0.11680 0591 2.09010.2287 0.1584¢.0723
Winequality»red 2.04670_2578 ]~92990.4558 2.1 1330_3315 2.05830_5272 1.94970_3389 1.74940_5190 2.161 10,22()9 2.23060_2523
Rumae 4.15 3.55 4.80 3.80 3.70 2.00 6.40" 7.60"

The best result in MMAE is in bold face and the second best result in italics
* and e stand for significant differences with the Bonferroni-Dunn’s test when considering @ = 0.05 and @ = 0.10, respectlvely

neMMAE + nye MMAE + ... + nys,MMAE njeMAE; nj,MMAE .
< = > = = pyMMAE,
n n n
"y .
- MMAE(ZEL) - MMAE. since
n
On the other hand, the lower bound can be obtained: nieMAE| + ... + nj-1ye MAE;_; > 0.

I’l].MAE] + nz.MAEz + ...+ nJ.MAEJ
MAE = = Corollary 5.2. If the dataset is completely balanced,

n
11




Table 10: Results obtained in generalization for the metric 7,: mean and standard deviation (Meangp) and mean

ranking (R, ).
Proposal 1 (CCR-MMAE) Proposal 2 (MAE-MMAE) Proposal 3 (t,-MMAE)

Dataset Model 1 (CCR) Model 2 (MMAE) Model 1 (MAE) Model 2 (MMAE) Model 1 (1,) Model 2 (MMAE) POM NNPOM
Automobile  0.67309 0369 0.67300.0869 0.67150.0796 0.67130.0795 0.66700.0721 0.6661¢.0727 0.49610.2840 0.3984¢ 1461
Balance 0.97180_0114 0.97180_0]14 0.97210_0125 0.97210_0125 0.97180_0167 0.97180_0167 0.90150_0194 0.89960_1348
Bondrate 0.42210_2021 04422101021 0.3620{)_2()84 0.349 1(]2415 043598(]‘1570 043620()‘/6/5 0.289703017 0.1 2020,2570
ERA 0.45 150'0293 0.44260.035] 0-4544().0268 0.44190.0333 0.45 150,03()3 0.44550'0350 0.47030.0309 0.44830.()3 18
ESL  0.869200168 0.84560.0460 0.86810.0159 0.86110,0310 0.8737¢.0178 0.86610.0244 0.86610.0180 0.82560.1571
Eucalyptus  0.7514.0227 0.75149.0227 0.73460 0341 0.73460 0341 0.75100.0287 0.75100.0287 0.01020,0428  0.67970.0450
LEV  0.64800.0255 0.56750.0635 0.6488, 0275 0.5848.0533 0.64770.0258 0.57680.0569 0.64800.0201  0.641500283
SWD 0.53480_0381 044442(]‘091 1 0.54440_0333 044640(]‘[)751 045404()‘0409 0~44950.0728 0.5302(]‘[)354 0.50530‘()4(,5
Toy  0.97630.0130 0.9763.0130 0.9749.0155 0.97499.0155 0.97450,0151 0.97450.0151 =0.03030.1104 0.96350.0181
Winequality-red  0.5034¢ 0309 0.41470 0995 0.5059¢ 0269 0.4234 1202 0.5055¢.0284 0.38620.0830 0.50250.0236 0.48850.0319

R 240 4.75 2.50 5.25 3.60 5.60° 5.30 6.60"

b

The best result in 7y is in bold face and the second best result in ifalics

+ and e stand for significant differences with the Bonferroni-Dunn’s test when considering @ = 0.05 and @ = 0.10, respectively.

then:
n L
Nie = N2e = ... = Njq = 7 and p;= 7
Therefore:
MMAE
7 < MAE < MMAE.

5.3.1. Graphical representation of MMAE-MAE

The MMAE-MAE point of view allows us to repre-
sent the performance of a classifier in a two dimensional
space, taking into account that this pair of measures con-
sider all the classes of the problem. Concretely, MMAE
is represented on the horizontal axis and MAE on the
vertical axis. One point in (MMAE, MAE) space domi-
nates another if it is below and to the left, i.e. it has less
MMAE and less MAE. Therefore, from the inequality
previously derived in (3), each classifier will be repre-
sented as a point in the white region in Figure 3. Several
points in (MMAE, MAE) space are important to note.
The worst classifier is located at the upper right point
(J—1,J—1) and the (0, 0) point represents the optimum
classifier. In addition, the point (J — 1, pj(J — 1)) cor-
responds to a classifier that has, at least, one class with
the worst classification possible. Note that it is possible
to find among them classifiers with a low level of MAE,
but with a higher level of MMAE, specially when the
number of classes is high. Thus, minimizing these two
error functions simultaneously produces models which
are a trade-off between average results that are accept-
able to all classes and the lowest ranked class, i.e. the
class that has patterns farthest from the corresponding
class in the ordinal ranking.

From the feasible region, the following comments
can be made. First of all, observe that a decrease in
MAE does not imply a decrease in MMAE. Recipro-
cally, a decrease in MMAE does not mean a decrease

Worst classifier
MAE = MMAE

MAE

MMAE extreme
" s MMAE = p5(J — 1

MI 7 7y )
0

J-1

Best classifier MMAE

Figure 3: Unfeasible region in the two-dimensional
(MMAE, MAE) space.

in MAE. On the other hand, it should be noted that for
a fixed value of MAE, a classifier will be better when
it corresponds to a point closer to the diagonal of the
(J = 1) x(J —1) square.

It is important to analyze if MMAE and MAE are
not cooperative in general, especially at certain high lev-
els. At the beginning of a learning process, M MAE and
MAE could be cooperative, however after some gen-
erations, objectives become non-cooperative and a de-
crease of one objective usually involves an increase in
the other one, as seen in Subsection 2.2.

Figure 4 shows the graphical results obtained with
MAE-MMAE pair for the SWD dataset. For the MAE-
MMAE space, the Pareto front for one specific run of
the 30 ones performed for each dataset is selected, con-
cretely the execution that presents the best individual
on MAE for training data. The test graphic shows
the MMAE and MAE values over the generalization
set for the individuals who are reflected in the training
graphic. Observe that the MAE-MMAE values do not
form Pareto fronts in generalization, and the individuals
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b
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Figure 4: Pareto front in training and associated values in generalization.

that in the training graphic were in the first Pareto front,
now can be located within a worst region. In general,
the structure of a Pareto front in training has not to be
maintained in generalization.

6. Conclusion

This paper contributes an analysis of different state-
of-the-art performance measures to evaluate an ordi-
nal classifier. The aim of this analysis is selecting the
best pair of metrics to guide a multi-objective evolution-
ary algorithm. In this analysis, the new MMAE met-
ric is included. This metric is the highest MAE value
from MAEs measured independently for each class,
i.e. it evaluates the performance of the worst classi-
fied class. The analysis studies the correlations between
the different metrics for 10 ordinal regression datasets
and 4 state-of-the-art methods. Three different pairs of
metrics seem to be non-cooperative and, therefore, the
most interesting (CCR-MMAE, MAE-MMAE and 1-
MMAE). In addition, these measures are studied over a
set of synthetic confusion matrices.

To assess these non-cooperative metrics pairs in 10
ordinal datasets, a multi-objective evolutionary algo-
rithm called MPDENN is guided by each of these three
combinations. The MPDENN is used to optimize a neu-
ral network based on the proportional odds model and
the results obtained by the extremes of the Pareto fronts
when considering each proposal are reported. These re-
sults are compared with those obtained for two refer-
ence ordinal methods. This comparison establishes the
second proposal (MAE-M MAE pair) as a very compet-
itive one, obtaining suitable classifiers to optimize all
the CCR, MAE and 1y, metrics when selecting the MAE
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extreme of the Pareto front, and acceptable values of
MMAE when selecting the MMAE extreme. The rea-
son of this good performance can be found in the fact
that a good ordinal classifier must not only classify well
the majority classes but also the other classes, including
the smallest ones. Finally, the paper analyses the rela-
tionship between MAE and M MAE to better understand
the 2-dimensional space where the search of the evolu-
tionary algorithm takes place. An inequality is derived,
which limits the search space, and some of the Pareto
fronts are represented both for training and generaliza-
tion sets.
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