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Abstract

In this paper we propose a novel computational system for simultaneous modelling

of rainfall occurrence and amount. The proposed system is based on a hierarchical

system of Nominal-Ordinal Support Vector Classifiers, the former to set the rainfall

occurrence, and the latter to obtain the expected rainfall amount from a set of

four different ordinal classes. In addition to the proposed model, we use a novel set

of predictive meteorological variables, which improve the classifiers performance in

this problem. We evaluate the proposed system in a real problem of rainfall forecast

at Santiago de Compostela airport, Spain, where we have shown that the system

is able to obtain an accurate prediction of occurrence and rainfall amount, and we

discuss the usefulness of the proposed system as part of the airport weather forecast

and warning system, in order to improve airport operations.
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1 Introduction1

Rainfall modelling is a very important problem that arises in many applica-2

tions such in Agriculture [1], water resources management [2,3] or facilities3

maintenance and control [4], among others [5]. Currently, numerical weather4

prediction models have improved their performance, but they are still unable5

to provide accurate models for expected precipitation amount at high spacial6

and time resolutions. Different previous works have applied Soft-Computing7

approaches to overcome this difficulty, mainly based on neural networks and8

related approaches. These approaches have several advantages over global nu-9

merical models: they are much more easy and fast to train, can be applied10

to data from a specific point of measurement, and their performance is really11

competitive compared to global techniques.12

Neural computation models for precipitation prediction started to be applied13

about twenty years ago [6–8]. Some of these first works applied multi-layer14

perceptrons to a set of predictive variables, carefully chosen to be related15

to rainfall, and with data from precipitation gauges (pluviometers) to ob-16

tain rainfall quantity [8,10,11]. The majority of these approaches considered17

short-term precipitation prediction, from 6 hours to 24 hours time-horizons,18

obtaining good results in the prediction [12]. There are other approaches fo-19

cused on long-term rainfall prediction and precipitation trends in a given zone,20

such as [13], where the rainfall trend in the southern part of Indian Peninsula21

is analyzed by using an Adaptive Basis Function Neural Network with a back-22

propagation training algorithm. In [14] a multi-layer perceptron is applied to23

a problem of long-term precipitation prediction in California. More recently,24

in [15] an artificial neural network has been applied to model and forecast25
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precipitation in Athens, Greece. In [16] a neural network was applied to fore-1

cast precipitation during the summer Monsoon station in India, using El Niño2

South Oscillation (ENSO) indices. In [17] a neural computation approach is3

applied to the short-term forecasting of thunderstorms rainfall.4

Alternative classification and regression techniques have also been applied to5

problem of rainfall prediction and modelling. In [18] a comparison of machine6

learning algorithms (decision trees (DT), neural networks (ANN) and Support7

Vector Machines (SVMs)) has been carried out for a short-term precipitation8

prediction problem in Thailand. In [19] a hybrid SVM for regression with par-9

ticle swarm optimization was applied to a problem of rainfall prediction. In10

[20] a SVM approach with different kernel functions is presented to predict11

monthly rainfall in a region of China. In [21] an novel wavelet-SVM approach12

was applied to precipitation forecasting from past data. SVMs have also been13

recently applied to precipitation related studies, such as precipitation down-14

scaling [22,23] or streamflow prediction [37].15

In spite of this huge work on rainfall prediction, there are not many papers16

focussed on the modelling and forecast of precipitation occurrence and amount17

together. There are two main articles dealing with this problem. In [24] several18

types of neural network models are applied to solve a problem of rainfall19

occurrence and amount modelling in northwest and southeast of England.20

The input data of this study are different measurement stations and also21

some large-scale climate predictors such as atmospheric circulation, thickness22

or moisture content at the surface, 850 and 500 hPa. More recently, in [25]23

a simple model for modelling rainfall occurrence and amount simultaneously24

has been proposed. It is based on a tweedy generalized linear modelling and25

the authors show that it performs well in modelling both occurrence and26
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precipitation amount in Australia. Data from over 200 measurement stations1

spread all over Austria are used are inputs to the model. The use of joint2

models for simultaneous modelling of rainfall occurrence and amount is a hot3

topic in hydrology, since it provides information that can then be used in4

agriculture production systems and other applications.5

In this paper we propose a novel system for simultaneous modelling of rain-6

fall occurrence and amount, based on a hierarchical classifier, composed of a7

nominal and ordinal SVM classifier. First, a nominal SVM is used to set the8

rainfall occurrence model. A second ordinal SVM is then hybridized with the9

previous nominal classifier, in order to obtain the expected rainfall amount10

from a set of four different ordinal classes. In addition to the proposed model,11

we use a novel set of predictive variables, which improve the classifiers perfor-12

mance in this problem. First, we consider significant meteorological variables13

from atmospheric soundings. We also include as predictive variable the synop-14

tic configuration of the atmosphere (synoptic situation using Hess-Brezowsky15

classification), that, to our knowledge, has not been either considered in pre-16

cipitation prediction studies with machine learning techniques, in spite of its17

significance to establish precipitation regimes in mid-latitude regions [26]. We18

also evaluate the importance of other predictive variables such as humidity19

and Equivalent Potential Temperature (both measured in vertical soundings),20

and groups of these variables in the proposed hierarchical SVM performance.21

Regarding the objective variables, real rainfall data from a measurement sta-22

tion at Santiago de Compostela (Airport), Spain, are considered to establish23

the performance of the proposed system.24

The rest of this paper is structured as follows: next section presents a re-25

view of the main predictive variables and precipitation data used in the study.26
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We also estate the exact modelling carried out, which includes the estima-1

tion/forecasting of rainfall occurrence and amount in the next 12 hours. Sec-2

tion 4 presents the proposed nominal and ordinal SVM bank for rainfall mod-3

elling. Section 5 presents the experimental part of the paper. Finally, we give4

some concluding remarks for closing the paper in Section 6.5

2 Predictive and objective variables used6

Rainfall requires the existence of adequate clouds to produce precipitation.7

Therefore in order for precipitation to occur, three basic factors should be com-8

bined in an adequate way: condensation nuclei, enough water vapor (moist)9

and vertical movements (updrafts and downdrafts as well as the atmospheric10

stability). As a consequence, data selection should cover all these three ele-11

ments so as to obtain a robust group of predictive meteorological variables12

related to the physical processes involved in the production of precipitation.13

Fortunately, an adequate number of condensation nuclei (such as smoke from14

industrial, particles of salt, etc.) on which water vapor undergoes condensation15

to form water droplets or deposition to form ice crystals are almost always16

present in the atmosphere. Then, it is only necessary to select meteorological17

variables related to the presence of enough water vapor and vertical move-18

ments.19

As has been shown in some studies [8,10], it is difficult to determine the cri-20

teria that should be followed to select the best set of meteorological variables21

to use in machine learning classifiers, based solely on an understanding of22

the physical mechanism of precipitation. Moreover, because precipitation is23

highly dependent on small-scale processes and local geography [27] a stan-24
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dardized pool of meteorological variables to forecast precipitation would be1

difficult to set. Nevertheless, considering the satisfactory results obtained in2

[8] using neural networks and those obtained in [10] using a neural approach3

with back-propagation training, it is possible to choose a reasonable group of4

meteorological variables following similar criteria.5

In our study we combine observed variables, taken from an upper air sound-6

ing station, and meteorological variables derived from a numerical weather7

prediction model, plus the observed precipitation.8

As mentioned before, observed precipitation (target variable) data was ob-9

tained from Santiago de Compostela Airport ground automatic station (lat-10

itude: 42.89; longitude: -8.41; altitude: 370 m). We chose this target area11

because Santiago de Compostela is located in one of the rainiest area of the12

Iberian Peninsula, without a dry season and with an average annual precipi-13

tation of 1886 mm [9]. This station is part of the State Meteorological Agency14

of Spain (AEMET) surface observing network and reports all meteorological15

data every 10 min (it calculates the average value for each meteorological vari-16

able every 10 min). Although the data are available on a ten-minute basis, we17

consider the rainfall prediction in a time horizon of 6 hours. Thus, the pre-18

cipitation data’s temporal resolution selected for this study is 6 hours. The19

meteorological data and variables employed for this study span the dates from20

1st September 2009 to 31st August 2010, i.e., this study covers the 2009-201021

hydrological year.22

We have used different predictive variables in order to predict precipitation23

occurrence and amount. Data from La Coruña (latitude: 43.36; longitude: -24

8.41; altitude: 67 m) radiosonde station, which is the nearest upperair station25
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to our study area. This station belongs to AEMET and its data are freely1

available on the Internet [28]. The second set is formed by data from the2

medium-range global prediction model GFS (Global Forecast System) main-3

tained by the National Center for Environmental Prediction (USA) [29]. In4

this case, the variables were taken at the grid point closest to the ground sta-5

tion used in this study. Likewise, the reason for using this numerical weather6

model is that data from GFS are freely available on the Internet. In addition,7

in this study we have used a novel predictive variable, trying to get better re-8

sults in the forecast precipitation model proposed: the synoptic situation. As9

it is well known, some atmospheric circulation patterns promote precipitation10

whereas others make it difficult. In fact, some recent studies have been de-11

voted to determine the more probable weather patterns that cause rainfall as12

well as the possible changing influence of the atmospheric circulation on sur-13

face precipitation [30,31]. In line with this idea, we have selected the subjective14

Hess-Brezowsky classification [32] of large scale circulation patterns as another15

predictive variable. This classification has shown its ability to improve the skill16

of a predictive model in a problem of daily maximum temperature prediction17

using a support vector regression algorithm [33]. In order to take into account18

water vapor content in the atmosphere, we have selected as predictors the19

meteorological variables shown in Table 1, whereas the meteorological vari-20

ables chosen to determine updrafts and downdrafts as well as the atmospheric21

stability are shown in Table 2.22

The target variable is the observed precipitation, which in this work is consid-23

ered as a continuous variable describing the amount of rainfall in mm within a24

6 hours interval. This variable has been discretized in four classes in order to25

transform the problem into an ordinal classification problem. It can be argued26

8



that the problem can be tackled as a standard regression problem, however the1

large amount of rain values equal to zero is a handicap for applying a regres-2

sor algorithm. The rainfall amount is mapped to different classes according to3

Table 3.4

Briefly, an ordinal classification problem, also known as ordinal regression,5

is a supervised classification problem in which there is an order arrangement6

between categories. That order is often induced by the problem nature, as it is7

the case since {C1 ≺ C2 ≺ C3 ≺ C4} (see Table 3). Ordinal classifiers exploit8

this relationship of the data with the goal of improving performance. However,9

this performance cannot be measured as in nominal classification tasks, here,10

in addition to the error rate, the magnitude of the error should be considered.11

For instance, if we have a new unseen pattern of class C3, an error classifying12

it as C1 is more severe than classifying the pattern as C4. For this reason13

specific performance metrics should be used (see Experimental Section).14

3 Background15

This section briefly introduces computational intelligence methods that are16

necessary to understand the paper proposal.17

3.1 Support Vector Machine for Nominal Classification18

The SVM [35,36] is perhaps the most common kernel learning method for19

statistical pattern recognition. The basic idea behind SVMs is to find a hyper-20

plane that separates two different classes – positive and negative classes. This21

hyperplane, b+w · x, is specified by its normal vector w and the bias b. The22
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SVMs overcome the limitations of the linear models by working with the pat-1

terns via a mapping function ϕ which transforms the patterns representation2

in the attributes or input space X to a high dimensional Reproducing Kernel3

Hilbert Space (RKHS). The reproducing kernel function is used, defined as4

k(x,x′) = ⟨ϕ(x) · ϕ(x′)⟩, where ⟨·⟩ denotes inner product in the RKHS.5

Then, the hyperplane can be given as ⟨w · ϕ(x)⟩ + b = 0, what yields the

corresponding decision function:

f(x) = y∗ = sgn (⟨w · ϕ(x)⟩+ b) , (1)

where y∗ = +1 if x belongs to the corresponding class and y∗ = −1 otherwise.6

SVMs are linear models, based on a linear combination of a kernel function7

evaluated at the training data points. The solution to the problem of finding8

the maximum separating hyperplane is proven to be a convex optimization9

problem with a single global optimum. This optimization process implicitly10

selects a subset of patterns for building the model, which are know as sup-11

port vectors. The initial formulation of SVMs is known as the hard-margin12

approach, which tends to suffer overfitting. Latter approaches included the13

concept of softmargin in order to better genereralize in the presence of noise,14

outliers or pre-labeling errors, which are common in real world problems. The15

soft margin is achieved with the inclusion of slack-variables ξi in the optimiza-16

tion process [36].17

As Vapnik [36] shows, the optimal separating hyperplane is the one which

maximizes the distance between the hyperplane and the nearest points of

both classes (called margin) and results in the best prediction for unseen data.

In this way, the optimal separating hyperplane with maximal margin can be
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formulated as the following Quadratic Programming (QP) problem:

min
w∈Rn,ξ∈Rn

L(w, ξ) =
1

2
∥w∥2 + C

n∑
i=1

ξi, (2)

subject to:

yi · (⟨w · ϕ(x)⟩+ b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, · · · , n, (3)

where yi is the class of the input pattern xi.1

In order to deal with the multiclass case, a “1-versus-1” approach can be2

considered, following the recommendations of Hsu and Lin [42]. The idea is to3

construct a binary classifier per each pair of classes and joining their multiple4

responses to obtain a final prediction.5

Finally, among other specific issues, SVMs can have problems when dealing6

with imbalanced data (i.e. the number of patterns of each class significantly dif-7

fers). This can lead to models that tend to ignore minority populated classes.8

The rainfall prediction problem is a clear example of imbalanced dataset,9

where the non-rain case is much more frequent than the rain cases. For deal-10

ing with imbalanced datasets, recently, the Cost Support Vector Classifier11

(CSVC) has been proposed [41]. In this case, different missclassification costs12

are assigned to each class, so the total misclassification cost C
∑n

i=1 ξi is re-13

placed with two terms:14

C
n∑

i=1

ξi → C+

∑
i∈I+

ξi + C−
∑
i∈I−

ξi, (4)

being C+ and C− the soft-margin constants for positive and negative samples15

and I+ and I− the sets of positive and negative samples. This constants are16

set in such a way that the total penalty for each class should be equal [43],17
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this is:1

C+n+ = C−n−, (5)

where n+ and n− are the number of positive and examples.2

3.2 Support Vector Machines for Ordinal Regression (SVOR).3

The SVM formulation has been ported to the ordinal classification case (SVOR).4

In this case, classes are separated by different thresholds bj and the QP prob-5

lem is adapted [39]. In contrast to the binary case, where the class of the6

pattern is determined by the sign of the projection wT · x, the corresponding7

real line will be split into different intervals by using a threshold vector b. This8

defines a set of parallel hyperplanes with the same w and different thresholds9

bj.10

In this paper we will work with SVOR with Implicit constraints of Chu and11

Keerthi (SVORIM) [40]. In contrast to the binary case, where only a pair12

of classes contributes to the error when finding the separating hyperplane,13

SVORIM redefines the QP problem for considering errors from the samples14

of all the categories when defining each hyperplane. In this way, the ordinal15

inequalities on the thresholds are implicitly satisfied at the optimal solution.16

4 Proposed Hierarchical Nominal-Ordinal SVM17

This paper proposes to address the rainfall prediction problem as an ordi-18

nal regression problem that will be tackled by using a hierarchical classifier.19
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This hierarchical classifier is composed of a binary classifier and an ordinal1

classifier. The binary one determines whether or not rain can occur, and an2

ordinal classification model is applied to perform a finer classification of the3

predicted rain cases. We call this method BInary and ORdinal Kernel classifier4

(BIORK).5

The training process consist on simultaneously training the binary and the6

ordinal model with different subsets of the training patterns. For the binary7

model f(x), rainfall classes (C2, C3, C4) are grouped as the positive class (y =8

+1) whereas the no-rain class (C1) is the negative class (y = −1) of the binary9

problem. The ordinal model g(x) is trained only with rain classes so the model10

predicts z ∈ {1, 2, 3} with C2 = 1, C3 = 2, C4 = 3. Hyper-parameters of binary11

and ordinal models are adjusted independently with the purpose of getting a12

better fit of the models to the data. In addition, since the current data set13

is highly imbalanced regarding non-rain and rain patterns (see Table 3), we14

have selected the CSVC classifier for the binary model, where the cost C+ is15

weighted according to the criteria shown in Eq. 5.16

The prediction phase consist on first getting the binary prediction, and then17

perform a second classification of the positive class patterns with the ordinal18

model. Figure 1 shows the two models decision flow.19
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5 Experiments1

5.1 Performance evaluation metrics2

In this section experimental results are measured in terms of three metrics3

to observe different features of the models regarding classification perfor-4

mance of predicted labels {y∗1, y∗2, . . . , y∗N}, with respect to the true targets5

{y1, y2, . . . , yN}:6

• Acc: the accuracy (Acc), also known as Correct Classification Rate, is the

rate of correctly classified patterns:

Acc =
1

N

N∑
i=1

Jy∗i = yiK,
where yi is the true label, y∗i is the predicted label and JcK is the indicator7

function, being equal to 1 if c is true, and to 0 otherwise. Acc values range8

from 0 to 100 and they represent a global performance on the classification9

task being not suitable for imbalanced datasets [44].10

• GM : The geometric mean of the Sensitivity or precision for each class is

typically used to evaluate performance in imbalanced problems [45]:

GM = J

√√√√√ J∏
j=1

Sj,

where J is the number of classes and Sj is the accuracy of the classifier11

for patterns of class j. GM varies from 0 to 100. In the case GM = 0 this12

means that the classifier is not correctly labelling any pattern of one or more13

classes.14

• AMAE: This measure evaluates the mean of the Mean Absolute Error

(MAE) across classes [46]. It has been proposed as a more robust alternative
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to MAE (the most extended measure in ordinal regression) for imbalanced

datasets. AMAE is defined as:

AMAE =
1

J

J∑
j=1

MAEj =
1

J

J∑
j=1

1

nj

nj∑
i=1

e(xi),

where nj is the number of patterns in class j and MAE is defined as:

MAE =
1

N

N∑
i=1

e(xi),

where e(xi) = |O(yi)−O(y∗i)|. AMAE values range from J to J − 1.1

As previously mentioned, ordinal regression problems need specific perfor-2

mance metrics.3

5.2 Comparison methods4

A wide selection of computational intelligence methods has been done for the5

experiments including ordinal classification state-of-the-art SVMs methods6

and artificial neural network methods. The nominal SVM classifier is included7

also as a reference method.8

• BInary and ORdinal classification Kernel method (BIORK), that is the9

proposal of the paper. The method is implemented in Matlab by using Cost10

SVC available in LibSVM 3.0 [47] for the binary model and SVORIM for11

the ordinal model.12

• Evolutionary extreme learning machine for ordinal regression (EELMOR)13

[48]. This algorithm applies differential evolution to improve neural network14

models trained with the extreme learning machine algorithm.15

• Kernel Discriminant Learning for Ordinal Regression (KDLOR) [49] extends16

the Kernel Discriminant Analysis (KDA) using a rank constraint.17
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• ONN adapts the data replication method proposed in [50] to neural net-1

works.2

• The Proportional Odds Model (POM) is one of the first models specifically3

designed for ordinal regression [51], and it adapts the standard logistic re-4

gression to the ordinal case. For the POM model, the mnrfit function of5

Matlab software has been used.6

• RED-SVM 1 , by [52], applies the reduction from cost-sensitive ordinal rank-7

ing to weighted binary classification (RED) framework to SVM.8

• SVM classifier, SVC, implemented in LibSVM 3.0 [47]. The “1-versus-1”9

multiclass approach is applied 2 .10

• The SVM for ordinal regression with implicit constraints, SVORIM.11

• Pairwise Class Distances for Ordinal Classification (PCDOC) [53] with the12

epsilon Support Vector Regression (SVR) as the underlying regressor (SVR-13

PCDOC).14

5.3 Experimental results15

Regarding the experimental procedure, 30 different random splits of the dataset16

have been considered, with 75% and 25% of the instances in the training and17

generalization sets respectively. The partitions were the same for all compared18

methods. All the variables were property standardized and the SVM hyper-19

parameters have been adjusted by using a grid search in the parameters values20

space. The grid search consisted on a 5-fold validation procedure (exclusively21

using training data) with AMAE as the parameters selection criteria.22

1 Source code available at http://home.caltech.edu/htlin/program/libsvm/
2 Source code available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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All the kernel methods were configured to use the Gaussian kernel. For the sup-1

port vector algorithms, i.e. BIORK, SVC, RED-SVM, SVORIM and ϵ-SVR2

(for SVRPCDOC), the corresponding hyper-parameters (regularization pa-3

rameter, C, and width of the Gaussian functions, γ), were adjusted using4

a grid search over each of the 30 training sets by a 5-fold nested cross-5

validation with the following ranges: C ∈ {10−3, 10−2, . . . , 103} and γ ∈6

{10−3, 10−2, . . . , 103}. Regarding ϵ-SVR, the additional ϵ parameter was ad-7

justed considering the range ϵ ∈ {100, 101, 102, 103}. For KDLOR, the width of8

the Gaussian kernel was adjusted by using the range γ ∈ {10−3, 10−2, . . . , 103},9

and the regularization parameter, u, for avoiding the singularity problem10

values were u ∈ {10−2, 10−3, . . . , 10−5}. For ONN, the number of neurons11

in the hidden layer was selected by considering the following values, M ∈12

{5, 10, 15, 20, 30, 40}. In the case of EELMOR, M value was chosen from13

the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and the number of iterations was14

fixed to 50, and the population size 40. Finally, POM does not have hyper-15

parameters.16

Table 4 shows the generalization performance of the different algorithms in17

terms of mean and standard deviation in the 30 generalization partitions. The18

results correspond to the previous explained metrics: Accuracy (Acc), geo-19

metric mean of the Sensitivities (GM) and AMAE. For each metric, the best20

result is highlighted in bold face and the second best result is highlighted in21

italics. Note that Accuracy alone is not enough to assess the performance of22

a classifier. As an illustrative example, a trivial classifier labelling all the pat-23

terns as no-rain class (C1) will obtain an Accuracy performance near 69.04%.24

Observe than EELMOR have the best Acc performance, however it is not able25

of classifying any pattern of one or more classes since GM result is zero. Re-26
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garding the proposed method, it obtained the best performance both in GM1

and AMAE, which are more suitable performance metrics for the rainfall2

problem nature.3

In order to better compare the performance of the algorithms, each pair of4

algorithms are compared by means of the Wilcoxon test [54]. A level of signif-5

icance of α = 0.05 was considered, and the corresponding correction for the6

number of comparisons was also included. The results of these tests are shown7

in Table 5.8

5.4 Discussion: system usefulness for improving airports operations9

Among other meteorological phenomena, precipitation can seriously affect air-10

port operations. When heavy or very heavy rainfall rates are expected, rain-11

drops impacting airplane windscreens can lead to a reduction of the visibility,12

and depending on the atmospheric conditions, windscreen wipers may not13

be able to fully cope with the rainfall rate. Not to mention that light, non-14

pressurised aircraft may find the heaviest rain rates allow water ingestion into15

the cabin, the cockpit or the engine compartments with subsequent risks to16

electronic equipment. On the other hand, precipitation can lead to runway17

flooding, what may directly affect take-off and landing performances.18

Aiming at getting improved meteorological information for each airport, the19

International Civil Aviation Organization, in collaboration with the World20

Meteorological Organization (WMO), regulates the provision of meteorologi-21

cal services in support of airport operations. Specifically, the Annex 3 to the22

Convention on International Civil Aviation states that it is necessary to deliver23
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specific weather forecasts and warnings to meet the needs of flight operations1

at each aerodrome. Thus, aeronautical meteorological service providers pre-2

pare and disseminate specific aeronautical weather forecasts for airports, such3

as TAF as well as Aerodrome Warnings:4

1. TAF is the name of the code for reporting weather forecast information5

(“TAF” is an acronym of Terminal Aerodrome Forecast). The TAF describes6

weather conditions that are expected to occur over a specific period of time,7

that can range from 9 up to 30 hours. The TAF is one of the most valuable8

sources for the predicted weather at a specific airport. Among others, TAF9

specifies the occurrence of precipitation.10

2. Aerodrome Warnings give concise information of meteorological conditions11

which could adversely affect aircraft on the ground, including parked air-12

craft, and the aerodrome facilities and services. An aerodrome warning is13

issued when a specific weather phenomena is observed or forecasted. Among14

others, accumulated precipitation is one of them.15

Therefore, it is clear that aeronautical meteorological services providers need16

specific tools to accurate forecast precipitation occurrence and amount at each17

specific airport in order to deliver weather forecasts and warnings appropri-18

ated to contribute towards the safety, regularity and efficiency of airport op-19

erations. Thus, the BIORK system proposed in this paper could be useful20

as complementary system to obtain TAF reports and aerodrome warnings of21

rain occurrence and expected rainfall amount. The good performance in terms22

of accuracy and probability of error exhibited by BIORK system makes it a23

very interesting tool in rainfall prediction (which is one of the most difficult24

meteorological variables to be forecasted).25
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In future works we plan to improve the performance of the system by including1

specific predictive and objective data from convective – non-convective precip-2

itation and extreme events, with a larger range of applications in alternative3

facilities or cases.4

6 Conclusions5

In this paper we have proposed a system for simultaneous prediction of rain-6

fall occurrence and amount. The proposed system is based on a hierarchical7

system of nominal and ordinal Support Vector Classifiers, so called BInary8

and ORdinal classification Kernel method (BIORK), and we have also used a9

novel set of predictive meteorological variables, which improve the classifiers10

performance in this problem. We have evaluated the proposed system in a real11

problem of rainfall forecast at Santiago de Compostela airport, Spain, compar-12

ing the BIORK system against several alternative computational intelligence13

methods in the literature. We have shown that the BIORK approach is able14

to obtain the best results in terms of different metrics and according to the15

Wilcoxon test, these results are significant. This system can be used as part of16

the airport weather forecast and warning system, in order to improve airport17

operational performance.18
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Table 1

Variables selected to take into account the content of water vapor present in the

atmosphere.

Variable Measurement units Pressure level (hPa) Source

Total Precipitable Water mm Entire column upper air sounding

Equivalent Potential Temperature K 950, 850, 700, 500 upper air sounding

Humidity % 950, 850, 700, 500 upper air sounding
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Table 2

Variables selected to determine updrafts, downdrafts and the atmospheric stability.

Variable Measurement units Pressure level (hPa) Source

Temperature K 950, 850, 700, 500 upper air sounding

Wind Speed m/s 950, 850, 700, 500, 300 upper air sounding

Wind direction Degrees 950, 850, 700, 500, 300 upper air sounding

CAPE J/kg Entire column upper air sounding

CIN J/kg Entire column upper air sounding

ω m/s 850, 500 GFS numerical model
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Table 3

Observed rainfall in mm/6 h mapping to class labels.

Observed rainfall mm/6 h (w) Label Class number Number of patterns

w = 0.0 class C1 (no rain) 1 899

w > 0.0 and w <= 0.2 class C2 2 329

w > 0.2 and w <= 0.4 class C3 3 51

w > 0.4 class C4 4 23
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Binary Model

y=f(x)

Ordinal Model

z=g(x)y =+1*

y =-1*

z =3*

C =1q

C =4q

C =3q

C =2q

z =2*

z =1*

(a)

Fig. 1. Hierarchical classifier prediction process.
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Table 4

Mean and standard deviation (SD) of the generalization performance of the pro-

posed method and state-of-the-art methods for different performance metrics.

Method/DataSet Accuracy MeanSD GM MeanSD AMAE MeanSD

BIORK 76.5002.210 35.47020.560 0.7100.090

EELMOR 80.4401.450 0.0000.000 0.9000.040

KDLOR 73.2903.750 30.84021.620 0 .7700 .100

ONN 70.9002.450 9.31016.060 1.1700.290

POM 78.8401.450 0.0000.000 0.8900.060

REDSVM 77.9202.660 33.23019.390 0 .7700 .100

SVC 79 .2202 .120 29.96020.420 0.7800.090

SVORIM 77.9402.650 33 .33019 .470 0 .7700 .100

SVRPCDOC 75.7102.620 22.64020.490 0.8700.110
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Table 5

Wilcoxon tests over different performance metrics.

Acc GM AMAE

Method Wins Draws Loses Wins Draws Loses Wins Draws Loses

BIORK 2 3 3 4 4 0 7 1 0

EELMOR 7 1 0 0 2 6 1 2 5

KDLOR 0 2 6 3 5 0 4 4 0

ONN 0 1 7 0 3 5 0 0 8

POM 4 3 1 0 2 6 1 2 5

REDSVM 2 5 1 3 5 0 4 3 1

SVC 4 4 0 3 5 0 4 3 1

SVORIM 2 5 1 3 5 0 4 3 1

SVRPCDOC 1 4 3 2 5 1 1 2 5
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