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ABSTRACT 

 

Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell 

responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T 

cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad 

array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical 

public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR 

recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-

restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in 

both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, 

emphasizing the functional advantage conferred by broad HLA class II cross-restriction 

 

 

INTRODUCTION 

 

Despite recent advances in antiretroviral therapy (ART) in controlling HIV-1 infection, HIV remains a major public 

health issue. Accordingly, there is a strong incentive to develop immunotherapeutic approaches to circumvent the 

need for lifelong ART, with the aim of achieving a functional HIV cure (1). Because HIV-1 infection is primarily 

controlled by cell-mediated adaptive immunity, understanding how T cells detect HIV-1–infected cells is key for 

developing new immunotherapies and vaccines. 

 

Most individuals succumb to HIV-1–related death in the absence of ART. However, some rare individuals, termed 

HIV controllers, spontaneously control HIV replication and avoid disease progression in the absence of ART. HIV 

controllers maintain low viral load and generally high CD4+T cell numbers (2). Human leukocyte antigen (HLA) 

genetics has been implicated in HIV-1 control, with some HLA-I alleles, including HLA-B57, HLA-B27, and HLA-

B81, being associated with protection from HIV-1 disease progression (3–6). This protection is attributable to specific 

CD8+ T cells having superior functional properties, including efficient recognition of HIV-1 escape variants (5, 7–9). 

Some protective HIV-1 CD8+ T cell responses are associated with highly biased TCR gene usage, with particular T 

cell receptor (TCR) clonotypes accounting for potent effector T cell functions characteristic of HIV-1 control in 

asymptomatic HLA-B57+ and/or HLA-B27+ individuals (5, 7). However, whether other immune mechanisms 

contribute to HIV-1 control remains unclear. 

 

CD4+ T cells also contribute to HIV-1 control (10–14), although their role in containing the virus remains poorly 

understood. Although HIV-infected CD4+ T cells are rapidly depleted in HIV progressors, they persist and maintain 

high proliferative capacity in HIV controllers. Patients treated with ART can restore CD4+ T cell levels over time, 

but only controller CD4+ T cells can maintain advanced T helper 1 (TH1) effector differentiation despite low levels of 

HIV-1 antigen (15, 16). Although some HLA-II associations with HIV-1 control have been described, they are not as 

marked as those reported for HLA-I. Nevertheless, HLA-DRB1*15:02 and HLA-DRB1*13:01 have been associated 

with delayed HIV disease progression (17–19). 

 

We reported that a high-affinity CD4+ T cell response directed against the most immunodominant HIV-1 capsid 

epitope (Gag293) was associated with HIV-1 control (10, 15). Across HIV controllers with different HLA genetic 

backgrounds, these CD4+ T cells expressed TCRs exhibiting biased TRAV24-TRBV2+ gene usage (10). These public 

TCRs were highly cross-restricted, with one TCR recognizing up to five distinct HLA-DR allomorphs (HLA-

http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-1
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-1
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-1
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-1
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-3
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-3
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-4
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-1
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-5
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-2
http://immunology.sciencemag.org/content/3/24/eaat0687/tab-article-info#aff-3
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-1
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-2
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-3
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-6
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-5
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-7
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-9
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-5
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-7
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-10
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-14
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-15
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-16
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-17
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-19
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-10
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-15
http://immunology.sciencemag.org/content/3/24/eaat0687.full#ref-10


2 
 

DRB1*01:01, HLA-DRB1*07:01, HLA-DRB1*11:01, HLA-DRB1*15:02, and HLA-DRB5*01:01, abbreviated to 

DR1, DR7, DR11, DR15, and DRB5, respectively) presenting the same Gag293 epitope. Here, we establish the 

mechanistic basis underpinning this broad cross-restriction and show that these public TCRs have cytotoxic capacity 

and kill HIV-infected cells. 

 

 

RESULTS 

 

High-affinity TCRs bind to multiple HLA-DR–Gag293 complexes 

HIV controller CD4+ T cells specific for the Gag293 epitope show a biased TRAV24-TRBV2+ TCR repertoire, with 

clonotypes cross-restricted by numerous HLA-DR molecules. Whereas the HLA-DR α chain is identical, the β 

chains are polymorphic (FIG. S1). We set out to understand how these public TCRs could exhibit such extensive 

cross-restriction. We previously characterized three TRAV24-TRBV2+ TCRs (F24, F25, and F5) isolated from HIV 

controllers, which share the same CDR3α loop but different CDR3β loops (10). F24, F25, and F5 TCRs were cross-

restricted by five, four, and two HLA-II molecules, respectively (10). To further understand the extent of this HLA 

cross-restriction, we refolded the three TCRs and measured their affinity for HLA-DR15–Gag293 complex using 

surface plasmon resonance (SPR) [TABLE 1 and FIG. S2 (10)]. 

 

The F24 TCR bound HLA-DR molecules with greater affinity than the F25 and F5 TCRs (TABLE 1). The F24 TCR 

bound HLA-DR11 with the highest affinity observed for human CD4+ TCRs [equilibrium dissociation constant 

(Kdeq) ≈ 1 μM] (20), followed by HLA-DRB5, HLA-DR15, and HLA-DR1. Similar hierarchies were observed for 

the F25 and F5 TCRs (TABLE 1), suggesting that the CDR3β loops are modulating the affinity but not the HLA-DR 

hierarchy preference. The affinity hierarchy followed that of cross-restriction, suggesting that stronger binding 

interactions promoted recognition of the Gag293 peptide in multiple HLA contexts.  

 

Public TCRs promote efficient mature immunological synapses 

Next, we evaluated the capacity of the public TCRs to form immunological synapses with different HLA-DR 

molecules. We used a flow cytometry–based approach to quantify conjugate formation between TCR-expressing 

carboxyfluorescein diacetate succinimidyl ester (CFSE)–labelled J76 T cells and Gag293-pulsed antigen-presenting 

cells (APCs) (FIG. S3, A and B) (21). The frequency of conjugates was evaluated by counting the percentage of 

double positive CFSE+–HLA-DR+ events (FIG. S3B). Quantification of conjugate formation revealed a clear 

hierarchy (F24 > F25 > F5), with a similar trend observed when HLA-DR1, HLA-DR11, and HLA-DR15/DRB5 

were the restricting molecules, whereas essentially no conjugates were detected with HLA-DR7 APCs (FIG. 1A). 

The functional hierarchy observed for conjugate formation correlated well to the binding affinities of the three TCRs 

toward different HLA-DR molecules (r = −0.86, P = 0.003; FIG. 1B), indicating that intrinsic TCR affinity is a 

major determinant of T cell–APC interactions. 

 

We next compared qualitative features of mature immunological synapse (mIS) formation in the cocultures using 

imaging flow cytometry to examine CD3-TCR relocalization and actin rearrangements (FIG. 1, C and D) (22, 23). mIS 

formation between J76-F24 and HLA-DR11–expressing B-EBV (Epstein-Barr virus-transformed B cells) pulsed 

with Gag293 was observed, whereas mere cell juxtaposition was seen in the absence of the Gag293 peptide (FIG. 

1C). To quantify the mIS parameters, we restricted the analysis to CD3+ HLA-DRhi doublets (FIG. S3C). We then 

measured the CD3 and F-actin intensities in the synapse area (“IS mask”) and in the total T cell area (“T cell mask”) 

(FIG. S3D). Conjugates with a CD3 intensity ratio of >1.1 were considered as forming a mIS. Cocultures of J76-F24 

cells with HLA-DR11 APC exhibited a significantly higher proportion of mIS compared with cocultures with J76-

F25 (P = 0.008) and J76-F5 (P = 0.02) cells (FIG. 1D). In addition, the efficiency of actin relocalization at the mIS 

followed the hierarchy of TCR affinities (FIG. 1E). This suggests that high-affinity TCRs confer an increased 

capacity to form mIS, which could lead to superior effector functions. 

 

Public TCRs confer cytotoxic potential to CD4+ and CD8+ T cells 

We next examined whether the expression of the three public TCRs led to the acquisition of a cytotoxic phenotype in 

vitro. We expressed the F24, F25, and F5 TCRs in primary T cells obtained from HLA-DR1+ healthy individuals 

(FIG. S4) and stimulated these cells with Gag293-loaded autologous monocyte-derived dendritic cells (DCs) using 

the expression of CD107a LAMP1 and granzyme B (GrB) as indicators of cytotoxic differentiation. After Gag293 

stimulation, the fraction of CD107a+/GrB+ CD4+ T cells showed that a significantly higher proportion of F24-

transduced CD4+ T cells expressed both cytotoxic markers, followed by F25-transduced cells and then by F5-

transduced cells (FIG. 2, A and E). These observations also extended to perforin expression, because 
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CD107a+/perforin+ cells were also enriched in Gag293-stimulated CD4+ T cells expressing F24 compared with F25 

and F5 TCRs (FIG. 2, B and F). 

 

HLA-II–restricted TCRs can function in CD8+ T cells (24), which could be advantageous in TCR transfer applications. 

F24-transduced primary CD8+ T cells responded to Gag293 stimulation, as indicated by an increased proportion of 

CD107a+/GrB+ (FIG. 2, C and G) and CD107a+/perforin+cells (FIG. 2, D and H). However, in the context of 

CD8+ T cells, responses of F25 and F5 were minimal possibly due to stronger co-receptor dependency (FIG. 2, G 

and H). These findings show that only the high-affinity F24 TCR could confer a cytotoxic phenotype in both 

CD4+ and CD8+ T cells. 

 

Public TCRs efficiently suppress HIV replication 

We next tested whether cytolytic differentiation conferred by the public TCRs could translate into direct cytotoxic 

effector function. We established a coculture system consisting of HIV-infected monocyte-derived DCs and TCR-

transduced primary CD4+ T cells (FIG. 3, A and B, and FIG. S5A). CD4+ T cells transduced with the F24, F25, and 

F5 TCRs eliminated HIV-infected DCs in the context of multiple HLA-DR–restricting molecules in an effector to 

target (E:T) ratio–dependent manner (FIG. 3, C to E). 

 

The viral suppression mediated by CD4+ T cells was highly efficient, being detected at a low E:T ratio of 0.5:1 

across all HLA-DR molecules tested. Functional differences between the three TCRs were observed for HLA-DR1 

(FIG. 3C), and a similar hierarchical trend (F24 ≈ F25 > F5) was visible in cocultures from HLA-

DR15/DRB5+ donors (FIG. 3E). In cocultures from HLA-DR11+ donors, the magnitude of viral suppression was 

comparable among the three TCRs at all E:T ratios tested (FIG. 3D). Thus, HIV controller–derived TCR transfer 

was sufficient to confer efficient HIV-suppressive capacities to heterologous CD4+ T cells across multiple HLA-DR 

restrictions. Viral suppression correlated with TCR affinity (r = −0.69, P = 0.039; FIG. 3I) and with conjugate 

formation (r = 0.70, P= 0.036; FIG. 3J), suggesting that stable APC/CD4+ T cell interactions are prerequisite for 

efficient cytotoxic function. 

 

We next investigated whether the three TCRs mediated clearance of HIV-infected DCs when transferred to CD8+ T 

cells (FIG. S5B). F24-, F25-, and F5-transduced CD8+ T cells all exerted viral suppression at equivalent levels in 

autologous HLA-DR11–expressing DCs (FIG. 3G). In contrast, F24 was the sole TCR that can efficiently inhibit 

HIV infection in DCs expressing HLA-DR1 (FIG. 3F) or HLA-DR15/DRB5 (FIG. 3H). HIV-suppressive capacity 

correlated with TCR affinity (r = 0.72, P = 0.03; FIG. 3K). However, the slope of the correlation was steeper for 

CD8+ than CD4+ T cells (s = −35.26 versus s = −9.25, respectively), suggesting that affinity requirements were more 

marked in the absence of co-receptor. Granzyme/CD107a induction correlated with viral suppression (r = 0.79, P = 

0.002; FIG. S6), suggesting direct lysis of HIV-infected targets (FIG. S7). These findings highlighted the 

requirement for high-affinity TCR interactions to confer cytotoxicity against HIV-infected target cells. 

 

Public TCRs recognize a minimal Gag293 core epitope 

The Gag293 epitope is a 20-mer-long peptide located in the most conserved region of HIV-1 capsid. Because the 

Gag293 peptide contains four aromatic residues (anchor residues), we determined the minimal core epitope 

recognized by these public TCRs. We measured CD69 up-regulation in J76-F24, J76-F25, and J76-F5 cell lines in 

response to truncated versions of the Gag293 peptide (RE14, RQ13, or RS12; FIG. 4A and TABLE S1). With HLA-

DR11+ APCs, CD69 induction in J76-F24 cells was similar for the RE14, RQ13, and Gag293 peptides, but 

suboptimal for the 12-mer RS12 (FIG. 4A). The three TCR cell lines responded similarly to high doses of the 

Gag293 and RQ13 peptides presented by HLA-DR11 and HLA-DRB5 APCs (FIG. 4, B and C). However, with 

HLA-DR1, Gag293 was more efficiently recognized than RQ13 (FIG. 4D). Our findings indicate that the RQ13 

peptide (299RFYKTLRAEQASQ311) represents the minimal core region of the Gag293 epitope recognized by the 

public TCRs when bound to the HLA-DR1, HLA-DR11, and HLA-DRB5 molecules (FIG. 4). 

 

HLA-DR polymorphisms do not affect Gag293 presentation 

Next, we determined the binary structures of the HLA-DR11 molecule presenting Gag293 and the RQ13 peptides, 

and the structures of HLA-DR1 and HLA-DR15 molecules in complex with the RQ13 peptide (TABLE S2 and FIG. 

S8). The Gag293 and RQ13 peptides adopted the same register when binding to HLA-DR11, and their structures 

overlaid closely [root mean square deviation (RMSD) of the peptide, 0.18 Å]. Tyr301 (termed P1-Tyr) bound into the 

P1 pocket for both epitopes (FIG. 4, E and F), consistent with the RQ13 peptide representing the minimal epitope of 

Gag293 (FIG. 4, A to D). 
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Despite the large number of polymorphic residues across the HLA β chains (FIG. S1), the peptide bound in a similar 

conformation in all three peptide–HLA-II (pHLA-II) complexes (FIG. 4, F to H, and FIG. S9A). However, 

differences in the conformation of the HLA β chain were observed that were attributable to the polymorphisms 

between these HLA-DR molecules (FIG. S9). These polymorphisms result in reduced contacts between the peptide 

and the HLA β helix, thereby causing an opening of the hinge region of the HLA-DR15 β-chain helix (residues 63 to 

73), with an RMSD of 0.7 Å compared with HLA-DR11 (FIG. 4I). The HLA-DR1–RQ13 complex exhibits a larger 

opening of the hinge region with an RMSD of 1.6 Å, which is attributable to the polymorphic residue Leu67β and 

polymorphisms at the base of the cleft, namely, Phe13β and Leu26β (Ser13β and Phe26β in HLA-DR11) (FIG. S9, E and 

F), which has a combined effect of pushing the β helix away to avoid steric clashes with the peptide (FIG. 4J). 

Accordingly, although the conformation of the RQ13 peptide remains similar, polymorphisms between the HLA-DR 

molecules alter the HLA-DR β-chain substructure itself. 

 

The TCR β chain dominates interactions with HLA-DR11 

We determined the structure of the F24 TCR–HLA-DR11–RQ13 complex (TABLE S3). The F24 TCR was 

positioned above the N-terminal region of the peptide (FIG. 5), adopting a docking angle of 64° across the antigen-

binding cleft with a total buried surface area (BSA) upon complexation of 1830 Å2, values that fall within the range 

observed for TCR–pMHC-II (peptide–major histocompatibility complex class II) complexes (20). The peptide made 

an unusually high contribution to the interface, amounting to 45% of the pHLA BSA, which is the highest value 

observed for any TCR–pMHC-II complex described so far (20). 

 

The TRBV2+ β chain contributed 60% of the TCR BSA to the interface, where the CDR3β and CDR2β loops were 

the principal contributors to this interaction, with 34 and 14% BSA, respectively (FIG. 5A). The CDR2β loop sat 

above the HLA-DR α chain, with Tyr57β wedged against the peptide, and made a series of interactions with HLA 

residues Ala64α, Val65α, and Ala68α (FIG. 6A and TABLE S4). This interaction was extended by neighboring 

contacts from the framework TCR β chain, with Ser66β and Glu67β hydrogen bonding to Gln57α from the HLA-DR 

α chain (FIG. 6A). The TCR β chain was characterized by predominant usage of the TRBJ2-1 and TRBD2 gene 

segments within the CDR3β loop (10). This loop contacted the hinge of the HLA-DR11 β helix, where Leu109β and 

Met113β positioned between the P7-Glu residue and the HLA-DR11 β helix (FIG. 6B), whereas Arg108β and 

Asp114β contacted Tyr60β and Asp66β from HLA-DR11, respectively. In addition, Leu109β and Ala110β bridged 

across the HLA-DR11 cleft and contacted residues from both HLA α and β chains (FIG. 6B and TABLE S4). 

Together, the large footprint of the F24 TCR β chain provides a molecular basis for biased TCR β-chain usage. 

 

Within the TRAV24+ TCR α chain, the CDR1α loop (23% BSA) was the main contributor to the interaction (mostly 

via contacts with the peptide), followed by the CDR3α loop (12% BSA) (FIG. 5A). Here, Asn29α from the CDR1α 

loop hydrogen-bonded to Glu55α from HLA-DR11, which abutted by the conserved TRAJ17-

encoded 108AAG110 motif of the CDR3α loop (FIG. 6C). Thus, there was a limited role of the TCR α chain in the 

interaction with HLA-DR11. 

 

The public TCR extensively contacts the RQ13 epitope 

Of the 140 contacts made by the F24 TCR to the HLA-DR11–RQ13 complex, 63% were directed toward the peptide, 

indicating peptide-centric recognition (FIG. 5A and TABLE S4). The contacts were evenly distributed between the 

TCR α and β chains with almost all CDR loops involved in peptide contact, with the following contribution 

hierarchy: CDR1α (55%) > CDR3β (25%) > CDR1β (10%) > CDR2β = CDR3α (5%) (FIG. 5A). The unusually 

high contribution of the germline-encoded CDR1α loop to the TCR-peptide interactions provided a molecular basis 

for the TRAV24 bias. The CDR1α loop contacted P-1-Phe, P2-Lys, and P3-Thr (FIG. 6D). Here, Asn29α packed 

against P-1-Phe, whereas Tyr31α lodged between the P2-Lys and P5-Arg, directly interacting with the P2-Lys and the 

main chain of P3-Thr. P5-Arg was “boxed in” by two CDR3 loops, and by Tyr31α and Tyr31β from both CDR1 loops 

(FIG. 6, D and E). Residues within the CDR3 loops interacting with the P5-Arg involved 109AGN111 from the 

TRAJ17 region and 110AG111 region from the TRBD2 segment (FIG. 6E and TABLE S4). In addition, the CDR3β 

loop wrapped itself around P7-Glu, forming a salt bridge with Arg108β, whereas the P8-Gln was contacted by the 

CDR1β and CDR2β loops via Leu30β and Tyr57β, respectively (FIG. 6F and TABLE S4). Together, the germline-

encoded TCR segments contacted the entire length of the core peptide, explaining the highly biased nature of the 

Gag293-specific TCR repertoire. 

 

Although the F24 TCR differs from the F5 TCR by a single residue in the CDR3β loop (Arg108β→Gly108β), there is a 

12-fold difference in affinity for the HLA-DR11–RQ13 complex between these two TCRs (TABLE 1). The 

structure of the F24 and F5 TCRs in complex with HLA-DR11–RQ13 (TABLE S3 and FIG. S10) revealed that a 
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lack of contact between Gly108β and P7-Glu underpins the large affinity reduction of the F5 TCR for HLA-DR11–

RQ13 (FIGs. 1 and 3 and TABLE 1). Thus, a single CDR3β residue substitution can markedly decrease the extent 

of T cell cross-restriction by decreasing the TCR affinity. 

 

HLA-DR cross-restriction is underpinned by an induced-fit mechanism 

The F24 TCR contacted 11 residues on HLA-DR11: 6 from the HLA-DR α chain and 5 from the HLA-DR β chain 

(TABLE S4). Of these contact points, two residues (Gln64β and Asp66β) within the β chain are conserved across the 

five cross-restricted HLA-DR molecules, whereas the other three positions (60β, 67β, and 73β) are polymorphic 

(FIG. S1). Accordingly, it was unclear whether the F24 TCR would adopt different docking modes on the other 

HLA-DR molecules. 

 

We determined the structures of the F24 TCR in complex with HLA-DR15–RQ13 and HLA-DR1–RQ13 (FIGs. 

5 to 7 and TABLE S3). Relative to the F24 TCR–HLA-DR11–RQ13 ternary complex, the F24 TCR bound HLA-

DR15–RQ13 and HLA-DR1–RQ13 similarly (FIG. 5, B and C, and TABLES S5 and S6). Accordingly, TCR 

cross-restriction was not attributable to diverse TCR docking modes across the distinct HLA-DR allomorphs. 

 

To understand how the F24 TCR might accommodate the HLA-DR conformational differences, we determined the 

structure of the unliganded F24 TCR (TABLE S7). The CDR3β loop changed conformation (FIG. S11) to avoid 

steric clashes with the hinge of the HLA-DR11 β-chain helix. Although there was no structural alteration in the 

HLA-DR11 molecule upon F24 TCR binding (FIG. 7A), the antigen-binding clefts of HLA-DR15 and HLA-DR1 

were molded upon F24 TCR binding (FIG. 7, B and C). Namely, the hinge of the HLA β chain of both HLA-DR1 

and HLA-DR15 was shifted by 1 and 0.7 Å (residues 63 to 73β), respectively, upon TCR binding (FIG. 7, B and C). 

This movement resulted in a closing of the HLA-DR1 and HLA-DR15 antigen-binding clefts, resulting in the two 

HLA molecules becoming more similar to the HLA-DR11 structure upon TCR engagement. Accordingly, structural 

rearrangement occurred upon TCR binding that modulated the affinity toward the different HLA-DR molecules. The 

HLA-DR β-chain polymorphism could be accommodated, thereby favoring the broad cross-restriction observed by 

the public TCR. 

 

Public TCR recognition is driven by the HIV peptide 

It was unclear whether the conserved features of the HLA-DR residues or the RQ13 peptide were responsible for the 

conserved F24 TCR docking. To clarify this, we performed mutagenesis of the HLA-DR11 residues contacted by the 

F24 TCR, and determined their energetic contributions by SPR (FIG. 7, D to F; FIG. S12; and TABLE S8). We 

produced nine single-site HLA-DR11 mutants, targeting the conserved and the polymorphic HLA-DR residues 

(TABLE S4), the impact of which was tested against the F24, F25, and F5 TCRs. The mutants exhibited a similar 

pattern of binding across all three TCRs, indicating a common docking modality (FIG. 7, D to F, and TABLE S8). 

Strikingly, the TCR affinities were not decreased by any of the HLA-DR11 β-chain mutants. 

 

The three TCRs were not affected by mutations at Ala64α, Val65α, and Gln57α, whereas the Ala68αLeu and Glu55αAla 

mutations decreased the affinity of the interaction by more than fivefold (TABLE S8). The CDR2β Tyr57β contacted 

the HLA-DR11 Ala68α, and the Ala→Leu mutation would be sterically disfavored (FIG. 6A). Glu55α is hydrogen-

bonded to Asn29α from the CDR1α loop and formed van der Waals contacts with the CDR3α loop of the F24 TCR 

(FIG. 6C). In summary, from the HLA molecule itself, only residues shared across all HLA-DR (Glu55α and Ala68α) 

were energetically important for public TCR recognition. 

 

We next performed alanine scanning mutagenesis of the RQ13 peptide by mutating five solvent-exposed residues 

contacted by the F24 TCR (FIG. 4). P2, P5, and P7 mutants abrogated F24 responses to HLA-DR11+ APCs (FIGs. 

4B and 7D), whereas all five positions were crucial for HLA-DR1+ APCs (FIGs. 4B and 7H). Furthermore, all five 

mutations markedly reduced F5 and F25 responses to HLA-DR11 APCs (FIGs. 4B and 7, E and F). In the context 

of HLA-DRB5+ APCs, all five residues abrogated the F24 TCR response (FIGs. 4C and 7G). Thus, alongside two 

residues within the HLA-DR α chain, the RQ13 determinants represent the critical energetic hotspot underpinning 

public TCR recognition across multiple HLA-DR allomorphs. 

 

Public TCR usage is optimized to engage the Gag293 peptide 

Next, we undertook an alanine scanning mutagenesis approach on the F24 TCR residues that contacted the HLA-

DR11–RQ13 complex (TABLE S9), and tested, via SPR, each F24 TCR mutant against the HLA-DR11, HLA-DR1, 

HLA-DR15, and HLA-DRB5 molecules presenting the RQ13 peptide. Six F24 TCR α-chain mutants and eight F24 
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TCR β-chain mutants were generated (TABLE S9). The Thr22αAla mutant, which was not involved in the 

interaction, was used as control and did not affect the affinity of the F24 TCR (TABLE S9). 

 

The F24 TCR mutations affected recognition of the four HLA-DR–RQ13 complexes similarly. Here, only two TCR 

mutants (Leu58α and Ser66β), both of which contacted the HLA molecule solely, did not decrease the affinity of the 

F24 TCR for any of the HLA-DR molecules tested. In contrast, mutations of the other F24 TCR residues decreased 

the affinity of the interaction by more than ninefold for all the HLA-DR molecules tested (TABLE S9). Here, five 

F24 TCR residues (Tyr31α, Lys107α, Asn111α, Leu30β, and Tyr31β) solely contacted the HIV epitope, whereas six 

residues co-recognized the RQ13 peptide and the HLA molecule. However, on the basis of the HLA mutagenesis 

(above), only two residues (Asn29α and Tyr57β) were considered to make energetically important contributions toward 

contacting the HLA molecule itself, whereas the impact of the remaining four mutants (Glu67β, Arg108β, Leu109β, and 

Met113β) was more attributable to peptide-mediated contacts. 

 

These energetically critical residues of the F24 TCR formed a stretch that travelled across the length of the RQ13 

peptide (FIG. 7I). Thus, public TRAV24-TRBV2+ TCR usage and extensive HLA-II cross-restriction are, to a large 

extent, attributable to peptide-centric recognition. 

 

 

DISCUSSION 

 

A key factor in the public TCR recognition of the HLA-DR–Gag293 complexes is engagement of the HIV epitope 

itself, thereby providing a basis for the extensive HLA-DR cross-restriction. Furthermore, the high-affinity public 

TCRs conferred anti-HIV cytotoxic activity to heterologous CD4+ and CD8+ T cells across multiple HLA-DR 

molecules. Because the TCR affinity directly correlated with the cytotoxic capacity of the TCR-transduced T cells, 

our results emphasize the importance of TCR structural determinants in defining a protective outcome. 

 

Given the predominance of high-affinity Gag293-specific TCRs in HIV controllers (10, 15), our findings suggest that 

CD4+ T cells expressing such TCRs directly contribute to HIV control. The emergence of cytotoxic CD4+ T cells in 

acute HIV infection is associated with a more efficient control of HIV replication in the post-acute stage (13), 

suggesting that CD4-dependent cytotoxic activity may act very early. The broad HLA-DR cross-restriction is likely 

to confer a protective advantage in HIV infection because it increases the chance of epitope detection in a single 

individual expressing multiple restricting HLA-DR alleles. Broad HLA restriction also explains the high frequency of 

public TCR sharing among genetically diverse HIV controllers. The high frequency of high-affinity Gag-specific 

TCRs in HIV controller CD4+ T cells may translate to a more efficient curtailing of HIV dissemination at an early 

stage, accounting for the very low viral reservoir characteristic of controlled HIV infection (25). Our findings support 

a contribution of CD4+ cytotoxic T cells, in addition to cytotoxic CD8+ T cells (3, 5, 7) and natural killer cells (26, 27), to 

HIV control. Thus, the cooperation of multiple arms of the cellular response may be required to efficiently contain 

the population of HIV-infected target cells. 

 

TCR affinity is known to condition the capacity of CD4+ T cells to proliferate, survive as long-term memory cells, 

and show polyfunctional cytokine secretion (4, 10), which define a series of properties characteristic of HIV controller 

CD4+ T cells (14, 17, 28). We show here that TCR affinity is also a key determinant of CD4+ T cell cytotoxic function, 

which has major implications for understanding the basis of HIV control. Recent findings suggest that cellular 

factors independent of TCR affinity may also contribute to the efficient cytolytic capacity of HIV controller CD8+ T 

cells (29). A limitation of our study is that we did not assess TCR-independent factors, such as the expression of 

costimulatory receptors. Nevertheless, we have shown that transfer of a high-affinity TCR was sufficient to confer 

efficient lysis of HIV-infected target cells, which may be harnessed for immunotherapeutic purposes. 

 

The ability of the public TCRs to recognize multiple HLA-DR allomorphs is noteworthy. The extensive HLA cross-

restriction was attributable to the promiscuous Gag293 peptide binding of HLA-DR molecules and peptide-centric 

nature of the interaction, where multiple residues along the entire length of the RQ13 peptide and two invariant 

HLA-DRα residues were essential for the interaction. Moreover, whereas the conformation of the HIV epitope was 

conserved upon TCR engagement and across the HLA-DR molecules, the conformation of some of the HLA 

molecules was pliable upon TCR engagement, indicating that an induced-fit molecular mimicry mechanism 

underpinned the observed hierarchy of TCR cross-restriction. 
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We provide detailed molecular insight into CD4+ T cell–mediated recognition of HIV-1 in controller individuals, 

which has broad therapeutic implications. In particular, HLA cross-restricted public TCRs could represent valuable 

tools for immunotherapeutic applications aimed at a functional HIV cure, because TCR transfer could be considered 

in patients with diverse genetic backgrounds. In addition, the capacity of the high-affinity public TCRs to confer 

cytotoxic capacity to both CD4+ and CD8+ T cells would be an asset, by harnessing both arms of the T cell response 

for the elimination of HIV-1–infected target cells. 

 

 

MATERIALS AND METHODS 

 

Study design 

The aim of the study was to determine the basis of TCR HLA cross-restriction, HIV peptide recognition by CD4+ T 

cells, and HIV inhibition and cytotoxic capability of HIV-specific CD4+ T cells. To enable this, we undertook 

experiments centered on cellular immunology, imaging flow cytometry, protein chemistry, SPR binding studies, and 

protein x-ray crystallography. The number of independent experiments is outlined in the figure legends, where 

appropriate. 
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FIG 1 

 

Immunological synapse formation by public TCR-transduced cells. 

(A) Bar graphs summarizing the conjugate formation of the F24-transduced (red), F25-transduced (blue), and F5-

transduced (green) J76 cells with Gag293-pulsed B-EBV cells (n = 3). (B) Correlation between TCR affinity (TABLE 

1) and conjugate formation capacity (n = 3). r, Pearson coefficient. (C) Representative images obtained by imaging 

flow cytometry comparing mIS formation. CD3 recruitment to the T cell–APC contact site is indicated by a white 

arrow. DAPI, 4′,6-diamidino-2-phenylindole. (D) Bar graph comparing the % mIS formed between J76 cells expressing 

F24 (red), F25 (blue), or F5 (green), and DR11-expressing B-EBV cells, with means ± SD reported (n = 4 except for 

F5, n = 3). (E) Bars depict the actin mean pixel intensity (MPI) values represented as the percentage of the maximal 

response (F24 + DR11–B-EBV), with data points reported as black symbols (n = 3 except for F5, n = 2). Statistical 

differences are computed using unpaired Student’s t test. Background was subtracted for all samples. *P < 0.05, **P < 

0.01, ***P < 0.005. 
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FIG 2 

 

 

TCR-transduced T cells express cytotoxic markers upon Gag293 stimulation. 

(A to D) Fluorescence-activated cell sorting plots depicting the expression of CD107a and GrB (A and C) or CD107a 

and perforin (B and D) by F24-transduced (left), F25-transduced (middle), or F5-transduced (right) primary CD4+ T 

cells. The % of double positive cells is highlighted in red. (E to H) Bar graphs summarizing the proportion of cytotoxic 

CD107a+GrB+ (E and G) or CD107a+ perforin+ (F and H) CD4+ T cells (E and F) or CD8+ T cells (G and H) transduced 

with F24 (red), F25 (blue), or F5 TCR (green). Data are depicted as % of the maximal response obtained with F24-

transduced T cells, with means ± SD reported for CD107+ GrB+ (n = 3) and means reported for CD107+ perforin+ (n = 

2), with data points reported as black symbols. Statistical differences are computed using the unpaired Student’s t test. 

Background was subtracted from all data points. **P < 0.01, ***P < 0.005. 
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FIG 3 

 

Viral suppression by TCR-transduced CD4+ and CD8+ T cells. 

(A) Schematic representation of the experimental system. Viral inhibition was measured by the % decrease of green 

fluorescent protein–positive (GFP+) infected DCs (iDC). (B) Representative histograms displaying the viral inhibition 

effect mediated by F24-transduced CD4+ T cells (right) compared with nontransduced CD4+ T cells (left). The % 

infected iDC is highlighted in red. (C to E) Viral inhibition activity of TCR-transduced CD4+ T cells from healthy 

donors expressing HLA-DR1 (C), HLA-DR11 (D), or HLA-DR15/DRB5 (E). E:T ratios: 5:1 (blue), 1:1 (green), and 

0.5:1 (orange). Bars depict the means obtained from two (C) or three (D and E) independent experiments. Background 

was subtracted from all data points. (F to H) Viral inhibition activity of TCR-transduced CD8+ T cells from HLA-DR1 

(F), HLA-DR11 (G), or HLA-DR15/DRB5 (H) healthy donors. Bars in (F) to (H) depict the means of two independent 

experiments. The mean % of viral inhibition obtained by TCR-transduced CD4+ T cells (I) or CD8+ T cells (K) 

coculture at a 5:1 E:T ratio is plotted in function of TCR affinities. (J) The mean % of viral inhibition obtained by TCR-

transduced CD4+ T cells is plotted in function of the mean % conjugates formed (reported in FIG. 1A). Data points are 

reported as black symbols.  
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FIG 4 

 

 

 
Mapping of the core Gag293 epitope and peptide presentation. 

(A) F24-transduced J76 cells were cocultured with APC pulsed with serial dilutions of either full-length Gag293 or 

peptide truncations. TCR activation was measured by CD69 induction, with background subtracted from all samples. 

Means ± SD are reported (n = 3). (B to D) J76 cells transduced with either F24 (red), F25 (blue), or F5 (green) were 

cocultured with HLA-DR11–expressing (B), HLA-DRB5–expressing (C), or HLA-DR1–expressing (D) L cells in the 

presence of the core-epitope RQ13 or alanine mutants. Means ± SD are reported (n= 3). (E to J) Structures of the 

peptide-HLA complexes with the Gag293 peptide (blue stick) or the RQ13 peptide (pink stick) (F to H). The β chain of 

HLA-DR11 is colored green (E, F, I, and J), HLA-DR15 is purple (G and I), HLA-DR1 is orange (H and J), and the 

HLA-DR α chain is pale gray. Structure overlay of HLA-DR11–RQ13 (green) with HLA-DR15–RQ13 (purple) (I) and 

HLA-DR15–RQ13 (orange) (J), with the peptide colored similarly to the HLA-DR β chain. The HLA-DR β chain 

residues 63, 67, and 73 Cα atoms are shown as spheres. 
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FIG 5 

 

 

F24 TCR cross-recognition of the RQ13 epitope presented by multiple HLA-DR alleles. 

Top: The F24 TCR (α chain in pale pink, and β chain in pale blue) recognizing RQ13 (black sticks) presented by HLA-

DR11 (A), HLA-DR15 (B), and HLA-DR1 (C). The HLA-DR α chain is colored pale gray, whereas the β chains of 

HLA-DR11, HLA-DR15, and HLA-DR1 are shown in green, purple, and orange, respectively. The CDR1α, CDR2α, 

and CDR3α loops are shown in teal, green, and purple, whereas the CDR1β, CDR2β, and CDR3β loops are shown in 

red, orange, and yellow, respectively. Pie charts represent the contribution of each F24 TCR segments toward the 

peptide-HLA complex (left) or toward the peptide only (right) on HLA-DR11 (A), HLA-DR15 (B), and HLA-DR1 (C) 

presenting the RQ13 epitope. Bottom panels show the footprint of the F24 TCR on the surface of each HLA-DR–RQ13 

complex. The colors correspond to each TCR segment involved in the contact according to the top panels; the magenta 

and blue spheres represent the center of mass for Vα and Vβ, respectively. 
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FIG 6 

 

 

 
The F24 TCR recognition is primarily focused on the HIV epitope. 

F24 TCR interactions with the HLA-DR11 chain (α chain in gray and β chain in green cartoon) (A) via the CDR2β loop 

(orange) and the F24 TCR β-chain framework (pale blue), (B) CDR3β residues (yellow), and (C) the CDR1α (teal) and 

CDR3α (purple) loops. Interactions of the RQ13 peptide (black sticks) (D) with F24 TCR CDR1α (teal), (E) the two 

CDR3 loops (α, purple; β, yellow), (F) CDR1β (red), CDR2β (orange), and CDR3β residues (yellow). The structures 

are shown in cartoon representation, interacting residues are depicted in sticks, and hydrogen bonds and van der Waals 

interactions are shown in blue dashed lines. 
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FIG 7 

 

 

Antigen-binding cleft conformational changes, and energetic footprints of the public TCRs on the RQ13 peptide, 

in the context of multiple HLA-DR alleles. 

Overlay of HLA-DR molecules in their free conformation in green, orange, and purple for HLA-DR11 (A), HLA-DR1 

(B), and HLA-DR15 (C), respectively, with their F24 TCR-bound structure in pink, yellow, and blue, respectively. The 

RQ13 epitope is colored according to the bound HLA-DR molecule and represented as loop. The black circle highlights 

the hinge of the β-chain helix that changes conformation upon F24 TCR binding in HLA-DR1 (B) and HLA-DR15 (C) 

molecules. (D to F) Energetic footprint of F24 (D), F5 (E), and F25 (F) TCRs on the HLA-DR11–RQ13 complex. 

Energetic contribution determined by SPR, and the impact of each mutation was classified as no effect (<threefold 

affinity decrease, colored black), moderate (three- to fivefold affinity reduction, orange), critical (>fivefold affinity 

decrease, red), or improving the interaction (>threefold increase in affinity, blue). (G to I) The affinity of the TCR F24 

mutants was determined by SPR. The RQ13 peptide is represented as black loop. The effect of each mutation is 

represented on the surface and colored as per the HLA-DR11 mutant in (D). 
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TABLE 1  

Affinity measurements 

Kdeq is in μM; kon is in M−1 s−1 × 104; koff is in s−1; t1/2 is in s. ND, not determined. The error is representative of the SD of the experiment performed in 

duplicate from at least two independent experiments (n ≥ 2). 

 

Kdeq DR1-Gag293* DR1-RQ13 DR11-Gag293* DR11-RQ13 DR15-Gag293 DR15-RQ13 DRB5-Gag293* DRB5-RQ13 

F24 6.97 ± 0.22 10.56 ± 2.62 0.86 ± 0.15 1.16 ± 0.48 5.09 ± 0.45 6.90 ± 0.62 2.58 ± 0.19 2.49 ± 0.80 

F25 51.50 ± 3.00 153.4 ± 10.65 3.58 ± 0.25 5.36 ± 1.41 152.0 ± 15.56 159.6 ± 29.69 16.00 ± 0.60 37.28 ± 2.02 

F5 >100 173.0 ± 9.90 11.06 ± 1.73 14.33 ± 3.18 122.0 ± 14.14 74.48 ± 13.34 74.45 ± 6.25 75.6 ± 4.53 

kon DR1-Gag293 DR1-RQ13 DR11-Gag293 DR11-RQ13 DR15-Gag293 DR15-RQ13 DRB5-Gag293 DRB5-RQ13 

F24 1.15 ± 0.54 1.28 ± 0.24 10.00 ± 0. 30 10.41 ± 0.79 4.95 ± 0.03 4.50 ± 0.05 5.29 ± 0.54 4.54 ± 0.09 

F25 ND ND 9.14 ± 1.36 5.42 ± 0.07 ND ND ND 0.21 ± 0.02 

F5 ND ND 1.51 ± 0.07 0.89 ± 0.03 ND ND ND ND 

koff DR1-Gag293 DR1-RQ13 DR11-Gag293 DR11-RQ13 DR15-Gag293 DR15-RQ13 DRB5-Gag293 DRB5-RQ13 

F24 0.418 ± 0.013 0.172 ± 0.016 0.062 ± 0.002 0.050 ± 0.001 0.142 ± 0.006 0.153 ± 0.008 0.179 ± 0.009 0.167 ± 0.003 

F25 ND ND 0.253 ± 0.005 0.113 ± 0.004 ND ND ND 0.498 ± 0.076 

F5 ND ND 0.160 ± 0.045 0.107 ± 0.001 ND ND ND ND 

t1/2 DR1-Gag293 DR1-RQ13 DR11-Gag293 DR11-RQ13 DR15-Gag293 DR15-RQ13 DRB5-Gag293 DRB5-RQ13 

F24 1.6 4.0 11.1 11.8 4.8 4.5 3.8 4.1 

F25 ND ND 2.7 6.1 ND ND ND 1.4 

F5 ND ND 4.3 6.5 ND ND ND ND 

*Kdeq values previously published (10). 


