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Abstract

The standard ensemble data assimilation schemes often violate the dynamical balances of hydro-1

logical models, in particular, the fundamental water balance equation, which relates water storage2

and water flux changes. The present study aims at extending the recently introduced Weak Con-3

strained Ensemble Kalman Filter (WCEnKF) to a more general framework, namely unsupervised4

WCEnKF (UWCEnKF), in which the covariance of the water balance model is no longer known,5

thus requiring its estimation along with the model state variables. This extension is introduced6

because WCEnKF was found to be strongly sensitive to the (manual) choice of this covariance. The7

proposed UWCEnKF, on the other hand, provides a more general unsupervised framework that8

does not impose any (manual, thus heuristic) value of this covariance, but suggests an estimation9

of it, from the observations, along with the state. The new approach is tested based on numerical10

experiments of assimilating Terrestrial Water Storage (TWS) from Gravity Recovery and Climate11

Experiment (GRACE) and remotely sensed soil moisture data into a hydrological model. The12

experiments are conducted over different river basins, comparing WCEnKF, UWCEnKF, and the13

standard EnKF. In this setup, the UWCEnKF constrains the system state variables with TWS14

changes, precipitation, evaporation, and discharge data to balance the summation of water storage15

simulations. In-situ groundwater and soil moisture measurements are used to validate the results of16

the UWCEnKF and to evaluate its performances against the EnKF. Our numerical results clearly17

suggest that the proposed framework provides more accurate estimates of groundwater storage18

changes and soil moisture than WCEnKF and EnKF over the different studied basins.19

Keywords: Constrained data assimilation, Ensemble Kalman Filter (EnKF), Unsupervised Weak

Constrained Ensemble Kalman Filter (UWCEnKF), Water budget closure, Hydrological modeling.

Email address: Mehdi.Khaki@postgrad.curtin.edu.au (M. Khaki)
1Contact details: Department of Spatial Sciences, Curtin University, Perth, Australia, Email:

Mehdi.Khaki@postgrad.curtin.edu.au, Tel: 0061410620379



1. Introduction20

Hydrological models play important roles in environmental studies and are crucial for hy-21

drological applications. Due to a variety of factors, such as model structural errors, data deficiency,22

and uncertainty in inputs and parameters, the outputs of these models can be far from perfect.23

Data assimilation techniques offer a framework to improve the models simulations by constraining24

their outputs to the observations. However, the application of assimilation schemes could intro-25

duce an imbalance between water fluxes, namely precipitation p, evaporation e, discharge q, and26

changes in water storage, ∆s, through the water balance equation ∆s = p − e − q. The water27

balance equation is applied in land hydrological models to describe the relationships between these28

fluxes (Sokolov and Chapman, 1974). The model structure governs variations in the water state29

changes due to the incoming and outgoing hydrological water fluxes. Data assimilation of any wa-30

ter storages, e.g., soil moisture and/or terrestrial water storage (TWS), breaks the existing balance31

because the assimilated state does not satisfy the water balance property (Khaki et al., 2017a).32

Existing data assimilation methodologies under water budget enforcement rely on a “perfect33

observations” assumption in the closure constraint (e.g., Pan and Wood, 2006; Sahoo et al., 2011;34

Pan et al., 2012). For example, Pan and Wood (2006) proposed a constrained ensemble Kalman35

filter (CEnKF) that imposes regional water balance constraint to improve the filtering results.36

The CEnKF involves two successive EnKF-like updates. The first update uses the observations37

to update the state forecast, following an EnKF-like step, while the second update imposes the38

balance constraint via another EnKF-like correction, yet with a different form. Other studies have39

applied data merging algorithms along with the CEnKF (see, e.g., Sahoo et al., 2011; Pan et al.,40

2012; Zhang et al., 2016) to provide the flux datasets from various resources for water balance41

control. Although these improved datasets have resulted in better state estimates over different42

river basins by incorporating more accurate information about the constraints, the assumption43

of perfect observations is still problematic. This assumption leads to a strong constraint, which44

is unrealistic and may cause various issues. Simon and Chia (2002) suggested that even though45

it does not present any theoretical problems, the assumption can result in a singular covariance46

matrix, which in practice increases the possibility of numerical issues. Furthermore, by neglecting47

errors associated with flux observations, one can expect more estimation errors because of the48

strong water budget enforcement, which could also lead to over-fitting issues (Tangdamrongsub et49

al., 2017).50
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In a recent study, Khaki et al. (2017a) proposed a new two-update ensemble Kalman-based51

scheme, a weak constrained ensemble Kalman filter (WCEnKF), that involves uncertainties in the52

water budget balance enforcement equation. Unlike previous studies (e.g., Pan and Wood, 2006;53

Sahoo et al., 2011; Pan et al., 2012; Khaki et al., 2017a), water balance uncertainty is added to54

the equality constraint formulation, which allows for a more realistic water balance control during55

filtering. This has been framed in a supervised framework, i.e., by assigning approximate error56

covariance to the water balance observations before filtering, which may not allow for an optimal57

estimation of corrections (in the second step of the filter) to be applied to results from the first step58

of the filter. The present study aims to extend the work of Khaki et al. (2017a) to the case where59

the covariance associated with flux observations is unknown, proposing an unsupervised framework60

to estimate it along with the hydrology state variable. The proposed Unsupervised WCEnKF61

(UWCEnKF) introduces an iterative scheme in the second update step of the WCEnKF.62

In order to assess the performance of the UWCEnKF, numerical experiments are carried out63

to assimilate the Gravity Recovery And Climate Experiment (GRACE) derived terrestrial wa-64

ter storage (TWS), as well as soil moisture products from the Advanced Microwave Scanning65

Radiometer-Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity (SMOS)66

into a hydrological model. Assimilating GRACE TWS data has been performed in a number of67

previous studies to constrain the mass balance of hydrological models over different river basins68

(e.g., Zaitchik et al., 2008; van Dijk et al., 2014; Eicker et al., 2014; Reager et al., 2015; Schu-69

macher et al., 2016; Khaki et al., 2018a,b). Several studies already demonstrated a great capability70

of AMSR-E and SMOS datasets to constrain model estimates through data assimilation (e.g., De71

Jeu et al., 2008; Renzullo et al., 2014; Leroux et al., 2016; Tian et al., 2017). It has also been shown72

that simultaneous assimilation of the different datasets generally leads to better results in terms of73

state estimates (e.g., Zhang et al., 2014; Renzullo et al., 2014; Han et al., 2016; Tian et al., 2017;74

Lievens et al., 2017) as compared to individual assimilation of the different datasets. This motivates75

the current study to simultaneously assimilate GRACE TWS and soil moisture observations from76

AMSR-E and SMOS. We also apply the standard EnKF to compare its results with the proposed77

UWCEnKF filter. This enables to evaluate the relevance of the proposed approach for enforcing78

the water budget closure.79

We further consider multiple observations of the water components in the water budget equation.80

This is done to achieve the best estimates of p and e over different basins (see Figure 1). Multi-81
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mission products for precipitation and evaporation are used in the data merging approach of Sahoo82

et al. (2011) to derive a single data set for each observation type (i.e., p and e). The approach83

estimates uniform datasets independently for each basin. The merged data, as well as the water84

discharge measurements from various ground stations, are then applied to constrain the water85

balance equation in the UWCEnKF’s second update. This experiment is undertaken over eight86

globally distributed basins; Amazon, Indus, Mississippi, Orange, Danube, St. Lawrence, Murray-87

Darling, and the Yangtze, to better explore the capability of the proposed filter.88

The remainder of the paper is organized as follows. We first describe the data and model in89

Section 2. The UWCEnKF algorithm and experiments set up are described in Sections 3 and 4,90

respectively. We illustrate and discuss the experiments results in Section 5 and conclude the study91

in Section 6.92

2. Model and data93

2.1. Hydrological model94

Vertical water compartments of the globally distributed World-Wide Water Resources As-95

sessment system (W3RA) model, developed in 2008 by the Commonwealth Scientific and Industrial96

Research Organisation (CSIRO; Australia), are used to simulate water storages. W3RA is a one-97

dimensional system that simulates landscape water stored in the vegetation and soil systems (van98

Dijk, 2010). Here, we use the 1◦×1◦ version of the model to represent the water balance of the99

soil, groundwater and surface water storage, in which each cell is modeled independently from100

its neighbors (van Dijk, 2010). Groundwater dynamics in the model includes recharge from deep101

drainage, capillary rise (estimated with a linear diffusion equation), evaporation from groundwa-102

ter saturated areas, and discharge. The model assumes that redistribution between grid cells can103

be ignored. Groundwater and river water dynamics are simulated at grid cell level and hence104

parameters are equal across the grid cell. Meteorological data sets of minimum and maximum105

temperature, downwelling short-wave radiation, and precipitation products provided by Princeton106

University (http://hydrology.princeton.edu) are used to force the W3RA model between 2003 and107

2013. The model state is composed of the top, shallow and deep root soil water, snow, vegetation,108

groundwater, and surface water storage.109
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2.2. Assimilated observations110

Observations are assimilated in two steps. The first step assimilates GRACE TWS and111

satellite soil moisture observations, which are used to update the forecast state, while the second112

step enforces the water balance constraints, based on water flux observations.113

2.2.1. Data used in the first update114

GRACE level 2 (L2) gravity field data provided by the ITSG-Grace2016 (Mayer-Gürr et al.,115

2014) is used to compute monthly TWS after applying a few standard corrections. These include116

replacing degree 1 (C10, C11, S11) and degree 2 (C20) coefficients by more accurate coefficients117

from Swenson et al. (2008) and the Satellite Laser Ranging solutions (Cheng and Tapley, 2004),118

respectively. The gravity fields are then converted to 3◦×3◦ TWS fields (Wahr et al., 1998). Khaki119

et al. (2017b) showed that implementing GRACE TWS with this spatial resolution exploits better120

impacts of GRACE TWS mainly because of larger correlation errors in the higher spatial resolution121

fields, which can be problematic during assimilation (see also Eicker et al., 2014; Schumacher et al.,122

2016). Colored/correlated noise and leakage errors are reduced using the Kernel Fourier Integration123

(KeFIn) filter, as proposed by Khaki et al. (2018c). The KeFIn filter works through a two-step124

post-processing algorithm: in the first step it mitigates the measurement noise and the aliasing of125

unmodelled high-frequency mass variations, and in the second step it decreases the leakage errors.126

Note that, here, rather using model outputs, fixed signal to noise ratio is applied during the KeFIn127

filtering (see Khaki et al., 2018c, for details). The application of the KeFIn filter was shown in128

Khaki et al. (2018c) to outperform a number of existing GRACE filtering techniques, e.g., land-129

grid-scaling method applied in Mass Concentration blocks (Mascons) products justifying its use in130

the current study.131

Furthermore, soil moisture products from the Advanced Microwave Scanning Radiometer for132

EOS (AMSR-E) and ESA’s Soil Moisture Ocean Salinity (SMOS) Earth Explorer mission are133

used to update soil storage variations. AMSR-E measures surface brightness temperature that134

corresponds to surface soil moisture content of 2 cm depth (Njoku et al., 2003). SMOS, on the135

other hand, measures microwave emissions from Earth’s surface at about 5 cm depth. Here we136

use descending passes (see, e.g., De Jeu and Owe, 2003) of gridded Level-3 land surface product137

AMSR-E (Njoku, 2004) between 2003 and 2011, and Level 3 CATDS (Centre Aval de Traitement138

des Donnees SMOS) on ascending passes (see, e.g., Draper et al., 2009) for the period of 2011139
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to 2013. These passes are selected due to their higher agreement with in-situ measurements (see140

also Jackson and Bindlish, 2012; Su et al., 2013). Both data products are rescaled to a monthly141

1◦×1◦ scale for the present study. Cumulative distribution function (CDF) matching (Reichle142

and Koster, 2004; Drusch et al., 2005) is applied to rescale the observations and remove the bias143

between the model simulations and observations. These measurements are mainly used to constrain144

the model variability, and not its absolute values. CDF matching relies on the assumption that145

the difference between observed soil moisture and that of the model is stationary and guarantees146

that the statistical distribution of both time series is the same (Draper et al., 2009; Renzullo et al.,147

2014).148

2.2.2. Data used in the second update149

Multiple data sets are used for flux net observations. Details of these products are outlined150

in Table 1. For precipitation, we use the Tropical Rainfall Measuring Mission (TRMM-3B43;151

Huffman et al., 2007), NOAA CPC Morphing Technique (CMORPH; Joyce et al., 2004) , the Global152

Precipitation Climatology Project (GPCP) Version 2.3 (Adler et al., 2003), Global Precipitation153

Climatology Centre (GPCC; Schneider et al., 2008), and CPC unified gauge dataset (Chen et al.,154

2002). TRMM-3B43, CMORPH, and GPCP are used to generate the merged precipitation for155

data assimilation, while GPCC and CPC are applied for uncertainty analysis (cf. Section 4.1).156

Evaporation data are collected from MODIS Global Evapotranspiration Project (MOD16; Mu et157

al., 2007), Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al., 2011), ERA-158

interim (Simmons et al., 2007), and Variable Infiltration Capacity (VIC) land surface model (Liang159

et al., 1994). Similar to precipitation, an uncertainty analysis is undertaken for evaporation with160

respect to ERA-interim and VIC products. All of these products are rescaled into a monthly 1◦×1◦161

spatial resolution. Various data sources are considered for discharge (see Table 1) to achieve the162

maximum amount of coverage within the basins of Amazon, Indus, Mississippi, Orange, Danube,163

St. Lawrence, Murray-Darling, and Yangtze (Figure 1).164

FIGURE 1
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2.3. In-situ measurements165

Monthly in-situ groundwater and soil moisture measurements are used to validate the results.166

The groundwater stations are located in the Mississippi, St. Lawrence, and Murray-Darling basins.167

Specific yield values provided by the literature (e.g., Gutentag et al., 1984; Strassberg et al., 2007;168

Seoane et al., 2013; Khaki et al., 2017a) are used to convert well measurements into groundwater169

storage anomalies. We further use in-situ soil moisture measurements over the Mississippi, St.170

Lawrence, Danube, Yangtze, and Murray-Darling basins to assess the estimated soil moisture.171

These data are collected from the International Soil Moisture Network (ISMN) and the moisture-172

monitoring network. It is worth mentioning that the temporal averages from the in-situ time173

series are removed before using them to validate the assimilation results. The distribution of both174

groundwater and soil moisture in-situ products are displayed in Figure 1. Details of the datasets175

are outlined in Table 1.176

TABLE 1

3. Methodology177

3.1. Problem formulation178

Our discrete-time state-space system is represented as,179 xt = Mt−1(xt−1) + νt,

yt = Htxt + wt,
(1)

where xt ∈ Rnx and yt ∈ Rny stand for the system state and the observation at time t and of sizes180

nx and ny, respectively. In system (1),Mt−1(.) is a nonlinear operator integrating the system state181

from time t− 1 to t, and Ht is the observational (design) operator at time t, which is linear in our182

application. Note, however, that the proposed scheme can be easily extended to the nonlinear case183

(Liu and Xue, 2002). The model process noise, ν = {νt}Tt=0, and the observation process noise,184

w = {wt}Tt=0, are assumed to be independent in time, jointly independent, and independent of the185

initial state, shown by x0. Furthermore, νt and wt are assumed to be Gaussian with zero means186

and covariances Qt and Rt, respectively. The model time step, t, is considered to be equal to the187
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assimilation time step. More details about the state-space formulation (i.e., about the structures188

of xt, yt, Mt and Ht) of our application can be found in Khaki et al. (2017a).189

The ensemble Kalman filter update step does not constrain the water fluxes and this likely190

distorts their balance (∆s = p− e− q). This was enforced by Khaki et al. (2017a), up to a weak191

constraint:192

dt = −xt + xt−1 + pt − et − qt + ξt, (2)

accounting for the uncertainty in the different water fluxes data through a noise term ξt, which we193

assume here to be Gaussian with zero mean and covariance, Σ, and independent of ξt′ 6=t, {νt}Tt=0,194

{wt}Tt=0 and x0. Considering Eq. (2), one can see that changes in the water storage at two195

successive time steps is equal to the difference between precipitation and summation of evaporation196

and discharge up to uncertainties in the involved data. The constraint in Eq. (2) can be rewritten197

as another observation equation in the state-space formulation, Eq. (3), which also involves the198

state at the previous time,199

zt = Gxt + Lxt−1 + ξt, (3)

where zt
def
= dt − pt + et + qt plays the role of a “pseudo-observation”, L is an nz × nx identity200

matrix, and G = −L (here, nz = nx). Define rt = [yTt , z
T
t ]T and r0:t = {r0, r1, · · · , rt}. In the201

state-space system (1)-(3), a generic filtering algorithm has been recently introduced by Khaki202

et al. (2017a), recursively computing the analysis pdf of the state xt from the history of the203

augmented observations, r0:t, p(xt|r0:t). The computation of p(xt|r0:t) from p(xt−1|r0:t−1) proceeds204

in a succession of a forecast step and two Bayesian update steps. The forecast step consists of moving205

from p(xt−1|r0:t−1) to the forecast pdf, p(xt|r0:t−1), based on the state transition pdf p(xt|xt−1)206

(which is described by the state model). The resulting forecast pdf is then updated, based on the207

likelihood of the observations, p(yt|xt) (which is represented by the observation model), resulting208

in an unconstrained analysis pdf2, p(xt|r0:t−1,yt). The latter is, in turn, updated in the second209

Bayesian step, based on the likelihood of the pseudo-observation, p(zt|xt−1,t) (which is represented210

by the constraint Eq. (3)), leading to the desirable analysis pdf at the current time t, p(xt|r0:t).211

Details about these steps can be found in (Khaki et al., 2017a).212

In a supervised framework, where the parameters of the constrained state-space system (includ-213

2The term unconstrained comes from the fact that these pdfs are not based on the pseudo-observation, zt, that
“represents” the equality constraint.
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ing Σ) are known, the above generic algorithm was implemented by Khaki et al. (2017a) through214

Monte Carlo approximation of the posterior mean (PM) estimate of the state and its covariance,215

which led to the ensemble Kalman-type WCEnKF. Khaki et al. (2017a) noticed that the WCEnKF216

is sensitive to the choice of Σ, which can strongly affect the filter behaviors. Here, we design a217

more general unsupervised framework in which Σ is an unknown diagonal covariance matrix, which218

thereby needs to be estimated concurrently with the state.219

3.2. The Unsupervised Weak Constrained Ensemble Kalman Filter (UWCEnKF)220

3.2.1. The generic algorithm221

The UWCEnKF shares the same forecast and first update steps as the WCEnKF, but222

computes the posterior distribution of both state and pseudo-observation noise covariance in the223

second update step, instead of only that of the state. In a Bayesian framework, this consists in224

viewing the covariance, Σ, as another random variable with a given prior pdf; the goal is then225

to compute its posterior pdf jointly with the state3, p(xt−1,xt,Σ|r0:t). However, the statistical226

dependencies between the states, xt−1:t, and the covariance, Σ, makes its computation quite tricky.227

One way to overcome this difficulty is to resort to the variational Bayesian (VB) approach and228

approximate p(xt−1,xt,Σ|r0:t) with a separable pdf q(xt−1,xt,Σ|r0:t) = q(xt−1,xt|r0:t)q(Σ|r0:t),229

under the Kullback-Leibler divergence (KLD) minimization criteria (Jaakkola and Jordan, 2000;230

Smidl and Quinn, 2008; Ait-El-Fquih and Hoteit, 2015, 2016). This reads,231

q(xt−1,xt,Σ|r0:t) = argmin
φ(xt−1,xt,Σ|r0:t)

KLD (φ(xt−1,xt,Σ|r0:t)||p(xt−1,xt,Σ|r0:t)) ,

= argmin
φ(xt−1,xt,Σ|r0:t)

Eφ(xt−1,xt,Σ|r0:t)

[
ln

(
φ(xt−1,xt,Σ|r0:t)
p(xt−1,xt,Σ|r0:t)

)]
, (4)

where Eφ(u)[f(u)] denotes the expected value of f(u) with respect to (w.r.t.) the pdf φ(u). The232

solution of Eq. (4) can be obtained from (the proof can be found for instance in Smidl and Quinn,233

2006, pages 28-31):234

q(xt−1,xt|r0:t) ∝ exp
(
Eq(Σ|r0:t) [ln (p(xt−1,xt,Σ, r0:t))]

)
, (5)

q(Σ|r0:t) ∝ exp
(
Eq(xt−1,xt|r0:t) [ln (p(xt−1,xt,Σ, r0:t))]

)
. (6)

3For the sake of clarity, the inclusion of both xt and xt−1 in the joint posterior pdf of interest is due to the fact
that both these states appear in the pseudo-observation model Eq. (3), which necessitates estimating both of them.
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According to Eqs. (5) and (6), the independence that is inserted between the marginal posteriors,235

q(xt−1,xt|r0:t) and q(Σ|r0:t), is partially compensated by the fact that each of these pdfs remains236

dependent on the expected value of ln (p(xt−1,xt,Σ, r0:t)) w.r.t. the other. However, this property237

of “cyclic” dependence between q(xt−1,xt|r0:t) and q(Σ|r0:t) makes it impossible to exactly evaluate238

these pdfs, or any of their statistics, such as for instance their means, which are taken as the PM239

estimates of the states and the covariance, Σ, respectively. A standard approximation is to proceed240

with cyclic iterations between (5) and (6), evaluating one pdf after the other, until convergence is241

reached (Smidl and Quinn, 2008; Sato, 2001; Massoud et al., 2018). Based on the factorization,242

p(xt−1,xt,Σ, r0:t) ∝ p(zt|xt−1,xt,Σ)p(xt−1,xt|r0:t−1,yt)q(Σ|r0:t−1), (7)

which stems from the conditional independence properties of the state-space system (1)-(3), the243

iterative form of Eqs. (5)-(6) becomes,244

q(`)(xt−1,xt|r0:t)∝exp
(
Eq(`−1)(Σ|r0:t)

[
ln
(
p(`−1)(zt|xt−1,xt,Σ)

)])
p(xt−1,xt|r0:t−1,yt), (8)

q(`)(Σ|r0:t)∝exp
(
Eq(`)(xt−1,xt|r0:t)

[
ln
(
p(`−1)(zt|xt−1,xt,Σ)

)])
q(Σ|r0:t−1), (9)

where p(`)(.) and q(`)(.) respectively denote the pdfs p(.) and q(.) at iteration `. As can be seen below245

(cf. Section 3.2.2), iterating over the pdfs Eqs. (8)-(9) amounts in practice to iterate over their246

(approximate) parameters, thereby leading to an unsupervised ensemble-based filtering scheme,247

which iterates in its second step over the PM estimates of the states and the pseudo-observation248

noise covariance.249

3.2.2. Practical implementation250

For the sake of simplicity, we first focus on the case of a homogeneous noise with a covariance251

matrix,252

Σ = λ× Inz , (10)

where λ is the variance value and Inz denotes the nz × nz identity matrix. The more general253

inhomogeneous case will be discussed later. The prior probability distribution p(λ) is chosen as an254

inverse-Gamma distribution (as a natural choice for variances), with shape and scale parameters255

α̂0 and β̂0, respectively (Smidl and Quinn, 2006). In the case of non-informative priors, one could256

take α̂0 = β̂0 relatively small. At each iteration (` − 1) → (`), inserting in Eqs. (8) and (9) the257
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Gaussian pdf,258

p(`−1)(zt|xt−1,xt,Σ) = Nzt(Gxt + Lxt−1,Σ
(`−1)),

one obtains a posterior q(`)(λ|r0:t) that is also an inverse-Gamma distribution with parameters, α̂t259

and β̂
(`)
t , given in Eqs. (17)-(18) below. Likewise, q(`)(xt−1,xt|r0:r) is Gaussian with an ensemble260

representation given in Eqs. (14)-(16).261

The UWCEnKF. Starting at time t − 1 from an analysis ensemble, {xa,(i)t−1 }
m

i−1, and shape and262

scale parameters (α̂t−1, β̂t−1) of the inverse-Gamma posterior pdf p(λ|r0:t−1), these at the next263

time t can be computed following a succession of a forecast and two update steps. The forecast264

step, which computes the forecast ensemble, {xf,(i)t }
m

i−1, and the first update step (with yt), which265

computes the unconstrained analysis and smoothing ensembles, {x̃a,(i)t }
m

i−1 and {x̃s,(i)t−1 }
m

i−1, are266

identical to those in Khaki et al. (2017a), namely,267

x
f,(i)
t = Mt−1(x

a,(i)
t−1 ) + ν(i), (11)

x̃
a,(i)
t = x

f,(i)
t + P

xf
t
HT [HP

xf
t
HT + Rt]

−1[yt + ε(i) −Hx
f,(i)
t ]︸ ︷︷ ︸

µ
(i)
t

, (12)

x̃
s,(i)
t−1 = x

a,(i)
t−1 + P

xa
t−1,x

f
t
HT × µ(i)t , (13)

where P
xf
t

is the sample forecast error covariance and P
xa
t−1,x

f
t

represents the sample cross-covariance268

between the previous analysis and current forecast errors, ν(i) ∼ N (0,Qt), and ε(i) ∼ N (0,Rt).269

As for the second update step (with zt), which applies the adjustment to enforce the water270

budget balance constraint, it involves iterations to compute Eqs. (8)-(9). Let α̂t = α̂t−1 + nz
2 ,271

the iteration begins with the initialization λ̂
(0)
t = β̂t−1

α̂t
and correspondingly Σ̂

(0)
t = λ̂

(0)
t × Inz . For272

` = 0 · · ·L, the state members are first updated as,273

z
f,(i,`)
t = Gx̃

a,(i)
t + Lx̃

s,(i)
t−1 + ξ

(i,`)
t ; ξ

(i,`)
t ∼ N (0, Σ̂

(`)
t ), i = 1, · · · ,m, (14)

x
a,(i,`)
t = x̃

a,(i)
t + P

x̃a
t ,z

f,`
t

[MPηtM
T + Σ̂

(`)
t ]−1[zt − z

f,(i,`)
t ]︸ ︷︷ ︸

ν
(i,`)
t

, i = 1, · · · ,m, (15)

x
s,(i,`)
t−1 = x̃

s,(i)
t−1 + P

x̃s
t−1,z

f,`
t
× ν(i,`)t , i = 1, · · · ,m, (16)

where M
def
= [G,L]; P

x̃a
t ,z

f,`
t

and P
x̃s
t−1,z

f,`
t

are the sample cross-covariances computed using the274
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ensembles {x̃a,(i)t }
m

i=1, {x̃
s,(i)
t−1 }

m

i=1
and {zf,(i,`)t }

m

i=1; and Pηt is the sample covariance of the ensemble275

{η(i)
t }

m

i=1 with η
(i)
t

def
= [(x̃

a,(i)
t )T , (x̃

s,(i)
t−1 )T ]T . Based on the resulting ensembles, the observation noise276

variance is then updated as,277

β̂
(`+1)
t = β̂t−1 +

1

2
[||zt −Gx̂

a,(`)
t − Lx̂

s,(`)
t−1 ||

2 + Trace(MPγ`
t
MT )], (17)

λ̂
(`+1)
t = β̂

(`+1)
t /α̂t, (18)

Σ̂
(`+1)
t = λ̂

(`+1)
t × Inz , (19)

where x̂
a,(`)
t and x̂

s,(`)
t−1 are the (empirical) means of the ensembles {xa,(i,`)t }

m

i=1 and {xs,(i,`)t−1 }
m

i=1
, re-278

spectively; and Pγ`
t

is the sample covariance of the ensemble {γ(i,`)
t }

m

i=1 with γ
(i,`)
t

def
= [(x

a,(i,`)
t )T , (x

s,(i,`)
t−1 )T ]T .279

The Σ̂
(L)
t and {xa,(i,L)t }

m

i=1 are then considered as the analysis covariance and state estimates, re-280

spectively, that will be used in the next assimilation cycle. In our numerical experiments, only few281

iterations (less than 10) were needed to reach convergence based on the variance estimate. Note282

that instead of pre-setting the number of iterations, L, on may use an alternative stopping crite-283

ria based, for instance, on the relative squared error norm (RSEN) of the estimated state and/or284

variance(s), or the evidence lower bound (ELB), defined as (Blei et al. , 2017),285

E1 = Eq(ξt,Σ|r0:t)[ln (p(vt,Σ, rt|r0:t−1))]− Eq(ξt,Σ|r0:t)[ln (q(vt,Σ|r0:t))] , (20)

with vt = [xTt ,xt−1]
T . Note that it is not possible to use the KLD as this requires the knowledge286

of the target pdf, p(vt,Σ|r0:t), which, indeed, is not known. Furthermore, minimizing the KLD287

amounts to maximizing the ELB (Blei et al. , 2017). However, a problem occurs in practice with288

ELB (20) in case of large dimensional systems (i.e., when nx > m). In such a case, the covariance289

Pγt , whose inverse is involved in the expression of the (assumed Gaussian) pdf, q(vt|r0:t), is a290

low-rank matrix, and thus not invertible. To overcome this limitation, we propose to remove the291

variable, vt, from the ELB, by rather using pdfs that are conditional on this variable (i.e., for292

which vt is a fixed known value). Since the iterations’ process occurs in the second update step293

(i.e., which uses zt), we assign to vt the mean η̂t of {η(i)
t }

m

i=1, which, indeed, is an approximation294

of Eq(ξt|r0:t−1,yt)[vt] (i.e., the unconstrained analysis mean of vt). The resulting ELB reads,295

E2 = Eq(Σ|r0:t)[ln (p(Σ, rt|r0:t−1, η̂t))]− Eq(Σ|r0:t)[ln (q(Σ|r0:t))] ,

≈ cte+Eq(Σ|r0:t)[ln (p(zt|Σ, η̂t))]+Eq(Σ|r0:t)[ln (q(Σ|r0:t−1))]−Eq(Σ|r0:t)[ln (q(Σ|r0:t))] , (21)
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where the term “cte” encompasses all the terms that do not depend on Σ. This suggests that the296

convergence of the proposed scheme can be monitored based either on the change in E2 only, the297

change in RSEN of the state only, the change in E2 and RSEN of the state, or, as stated above,298

the change in RSEN of both state and Σ. Finally, based on the Gaussian expression of p(zt|Σ, η̂t)299

and the inverse-Gamma expression of q(Σ|r0:t−1) and q(Σ|r0:t), one readily shows that Eq. (21) at300

iteration (`)→ (`+ 1) is given as,301

E(`)2 ≈ cte +
α̂t

β̂
(`+1)
t

[
β̂
(`+1)
t − β̂t−1 − ‖zt −Mη̂t‖2/2

]
− ln(β̂

(`+1)
t ), (22)

where cte gathers the terms that do not vary with iterations (i.e., independent of (`)).302

The adaptation of the algorithm above to the case of an inhomogeneous noise with a covariance303

is straightforward,304

Σ = diag
(
λ1, · · · , λnz

)
, (23)

where diag(v) denotes a diagonal matrix with diagonal v. More specifically, Eqs. (11)-(16) that305

compute the state ensembles are kept unchanged, and only those related to the noise variance306

will be updated (i.e., Eqs. (17)-(19) for each λj). Each variance λj , j = 1, · · · , nz, is estimated307

separately from the others, λk, k 6= j, by a direct application of Eqs. (17)-(19) and (22), which,308

correspond to the nz × 1 vectorial model (3), on the scalar (marginal) model,309

zt,j = G(j, :)xt + L(j, :)xt−1 + ξt,j , (24)

where zt,j and ξt,j respectively denote the jth component of zt and ξt (i.e., ξt,j ∼ N (0, λj)), and310

G(j, :) and L(j, :) are the jth rows of G and L, respectively. A schematic illustration of this311

algorithm is presented in Figure 2.312

FIGURE 2

13



4. Experimental setup313

4.1. Data merging314

A single product for each water flux term of precipitation (p) and evaporation (e) is required315

to close the water balance in the second update step of UWCEnKF. One can use only one data316

product for each flux components, e.g., only TRMM-3B43 for p for the filtering process. However,317

this may introduce errors because various products are subject to a different rate of uncertainty318

over different areas. Alternatively, the different data products for each component can be merged319

into a unique p and e to better represent the water balance over the globally distributed basins320

(Sahoo et al., 2011). Here, we merge various datasets of precipitation and evaporation prior to321

data assimilation. To this end, we follow Sahoo et al. (2011) and merge the data considering their322

relative error levels w.r.t. non-satellite products. This combination is done in a way that satellite-323

based products are merged to be used in data assimilation while other products are only applied324

for the merging objective. For p, the average of GPCC and CPC unified gauge over each basin325

is assumed as the truth and is used to estimate the error level of each satellite-based product,326

i.e, TRMM-3B43, CMORPH, and GPCP. A similar strategy is applied for evaporation, where327

ERA-interim and VIC products are used to quantify the error level associated with the data of328

MOD16 and GLEAM outputs that are based on satellite products (Miralles et al., 2011). It is329

worth mentioning that a more robust merging process can be achieved by involving ground-based330

measurements as a reference rather than ERA-interim and VIC. Obtaining and analyzing such an331

enhanced evaporation dataset from in-situ stations over all tested basins is however very difficult332

and is out of the scope of this study. Therefore, we use these model outputs to merge satellite-based333

datasets into a single e. Once the references are calculated, we use a multiplicative error model to334

estimate the offset, scale parameter, and error variance for each data product. These variances are335

then used to compute the observations weights as,336

wi =
1

σ2i
/

np∑
k=1

1

σ2k
. (25)

For each data product (i), using the error variances of that specific product σ2i and all products337

(σ2k) in the same data type (with the total number of np), weight wi can be calculated. Eq. (25) is338

applied for both precipitation and evaporation to provide merged data with reduced error (Luo et339

al., 2007; Sahoo et al., 2011). Note that the above approach is applied only to merge the various340
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data products and to obtain uniform precipitation and evaporation datasets prior to assimilation.341

The estimated errors (e.g., σ2i in Eq. (25)) are used only for this objective and are not related to342

the water flux error covariance calculation in the filtering procedure (cf. Section 3.2).343

4.2. Data assimilation344

To start the assimilation process, the initial ensemble is generated by perturbing the forcing345

fields. To this end, we use Monte Carlo sampling to perturb the precipitation, shortwave radiation,346

and temperature field considering a Gaussian multiplicative error of 30% for precipitation, an347

additive Gaussian error of 50Wm−2 for the shortwave radiation, and a Gaussian additive error of348

2◦C for temperature (Jones et al., 2007). The system state includes top soil, shallow soil, deep soil349

water, snow, vegetation, surface, and groundwater storages. Except for groundwater and surface350

storage, all the other components are simulated with two hydrological response units (HRU) of tall,351

e.g., deep-rooted vegetation and short, e.g., shallow-rooted vegetation. This leads to a state vector352

of dimension (2× 5 + 1 + 1)× 1695 (corresponding to 1695 grid points over all basins).353

All observations, including GRACE TWS, satellite soil moisture data, and water fluxes are354

assimilated monthly. The monthly increment is then be added to each day of the current month,355

which guarantees that the update of the monthly mean is identical to the monthly mean of the daily356

updates. Here, the differences between the predictions and the updated state variables are added357

as offsets to the state variables at the last day of each month to generate the ensembles for the358

next month assimilation step (see Eicker et al., 2014, for more details). The observation operator359

aggregates different water storages at each grid point to update with GRACE TWS and scales the360

top-layer soil storage by the field capacity value to provide a relative wetness for updating with the361

soil moisture products of AMSR-E and SMOS (Renzullo et al., 2014).362

In addition, observation error covariances for the first update step are required. Full error363

information about the Stokes’ coefficients are used to construct the TWS error covariance matrix.364

This is done by converting GRACE spherical harmonic error coefficients to TWS error covariances365

following Khaki et al. (2017c). Since such an information is not available for soil moisture products,366

we assume their error covariances to be uncorrelated with standard deviations of 0.04 m3m−3 for367

SMOS (as suggested by Leroux et al., 2016) and 0.05 m3m−3 for AMSR-E (as suggested by De Jeu368

et al., 2008). We further apply two common auxiliary techniques of ensemble variance inflation and369

covariance localization to mitigate for the ensemble spread collapse and rank deficiency (Anderson370
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et al., 2001; Houtekamer and Mitchell, 2001). These include an ensemble inflation with a coefficient371

factor of 1.12 and Local Analysis (LA) with a localization length scale of 5◦ (see Khaki et al., 2017b,372

for more details).373

5. Results374

The results are discussed in three parts. UWCEnKF implementation is first presented and375

discussed in Section 5.1.1. The validation of the proposed approach against in-situ groundwater and376

soil moisture measurements is then presented in Section 5.2. The relevance of the second update377

step in UWCEnKF and its overall effects on the assimilation system performance is finally analyzed378

in Section 5.3. UWCEnKF estimates are also compared with the results of WCEnKF and EnKF.379

UWCEnKF is tested with both constant (Structure in Eq. (10), indicated by UWCEnKF-1) and380

spatially varying (Structure in Eq. (23), indicated by UWCEnKF-2) error variances for the water381

balance equation. While UWCEnKF-1 assigns a fixed error variance to water fluxes at all points,382

different values for individual points are calculated by UWCEnKF-2.383

5.1. Implementation results384

5.1.1. Iteration impacts385

We first study the sensitivity of UWCEnKF-1, and UWCEnKF-2 to the iteration procedure.386

As mentioned, in contrast with WCEnKF, which assumes that these uncertainties are known,387

UWCEnKF estimates the error covariance through an iteration process. To show how this iteration388

works, we compare the convergence of UWCEnKF-1 and UWCEnKF-2, based on Eq. (22), in389

Figure 3. The average evolutions of E(`+1)
2 − E(`)2 (the difference between Eq. (22) in each two390

successive iterations) from both filters for ` = 0 · · · 10 are shown in this figure. After few iterations,391

generally less than 8, both UWCEnKF-1 and UWCEnKF-2 converge. Faster convergence and lower392

differences E(`+1)
2 −E(`)2 are also generally achieved by UWCEnKF-2 compared to UWCEnKF-1. It393

can be seen that after 5 iterations, UWCEnKF-2 decreases to a value below the selected arbitrary394

threshold of E(`+1)
2 − E(`)2 = 10mm. This is due to the fact that UWCEnKF-2 enables more degree395

of freedom in the optimization process by using different error variance for each grid point as396

compared to UWCEnKF-1, which tries to fit a single value for the entire domain.397

FIGURE 3
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In order to demonstrate the relevance of the UWCEnKF, we compare its results against those398

of the WCEnKF wit hvarious preselected values of error variances. The sensitivity of the WCEnKF399

to the choice of Σ can be seen in Figures 4. The various implementations of the WCEnKF result400

in different performances in terms of imbalance and the Root-Mean-Squared Error (RMSE), which401

is calculated based on the assimilation results and groundwater in-situ measurements over the402

Murray-Darling Basin. The estimated groundwater time series from the WCEnKF and UWCEnKF403

are spatially interpolated to the nearest gauge stations. The difference between in-situ and filtered404

time series are then used to calculate the RMSE.405

FIGURE 4

Each circle in Figures 4 refers to the average results of an independent implementation of406

WCEnKF. It can be seen that the results of this filter largely vary depending on the selection of407

the error variance. Overall, lower imbalance and RMSE are obtained by assuming 20 to 30 mm2.408

UWCEnKF-1 and UWCEnKF-2, on the other hand, achieve better results, shown by the triangle409

and cross, respectively, in a single implementation. The optimization algorithms used in UWCEnKF410

cause this independence of the error variance choice. It can also be seen that WCEnKF can achieve411

comparable results to that of UWCEnKF-1 in few cases. UWCEnKF-2, however, generally leads412

to the minimum RMSE and imbalance.413

5.1.2. Spatial and temporal balance error variance414

The performance of the proposed UWCEnKF in estimating water balance error variance415

and their effects on the imbalance between water fluxes are discussed in this section and is further416

compared with WCEnKF results. Both spatial and temporal variabilities are examined. Figure417

5 shows the temporally averaged error variances assigned to the observations for WCEnKF, as418

well as those estimated by UWCEnKF-1 and UWCEnKF-2 over the Amazon Basin. It can be419

seen that UWCEnKF-1 and UWCEnKF-2 estimate different errors at each iteration. The error420

variance maps in WCEnKF, on the other hand, is fixed to what has been assigned prior to data421

assimilation. After eight iterations, it is observed that the error estimated by UWCEnKF-1 is422

closer to the average of UWCEnKF-2 results (34.70 mm2), i.e., 41.19 mm2 for UWCEnKF-1 and,423

in comparison to 68.74 mm2 for WCEnKF. This indicates that both UWCEnKF-1 and UWCEnKF-424

2 result in uncertainties with close magnitude for water balances and the implemented algorithms425
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allow for such an adjustment during iteration steps. Furthermore, Figure 5 depicts the spatial426

variability characteristics of error variances estimated by UWCEnKF-2. This property allows for427

more flexibility for error adjustment in UWCEnKF-2. These flexibilities in the UWCEnKF filtering428

method, as illustrated in Figure 6, result in a smaller imbalance.429

FIGURE 5
430

FIGURE 6

The better performances of UWCEnKF-1 and UWCEnKF-2 compared to WCEnKF in min-431

imizing imbalance errors are clear in Figure 6, where each map shows the estimated imbalance432

corresponding to Figure 5 setups. Figure 6 shows that the iteration algorithm effectively reduces im-433

balance errors, even after only few iterations (e.g., four). In addition, it can be seen that the applied434

algorithm in UWCEnKF provides the opportunity for error variances to be adjusted with no super-435

vision as in WCEnKF. UWCEnKF-2, with more flexibility for such adjustment than UWCEnKF-1436

(cf. Figure 5), leads to the smaller imbalance, that is ∼6 mm (absolute average of all values)437

against ∼13 mm (on average) for UWCEnKF-1. This larger improvement for UWCEnKF-2 results438

is achieved by estimating different error variance values over each grid point, and correspondingly439

applying different rate of adjustments (based on the estimated water balance uncertainty) from the440

equality constraint to the points.441

An example of the abovementioned spatially varying error variance in UWCEnKF-2 can be442

seen in Figure 7. Figure 7a depicts the average imbalance over Murray-Darling basin after jointly443

assimilating GRACE TWS and satellite soil moisture in the first analysis step of UWCEnKF. It is444

worth mentioning that we find larger impacts of GRACE TWS data (approximately 7.5 times for445

all the basins) on the imbalance between fluxes compared to the satellite soil moisture products,446

which could be explained by the fact that contrary to the soil moisture assimilation, GRACE447

data influences all compartments. The temporally averaged estimated variances are displayed in448

Figure 7b. It can be seen that both estimated maps exhibit similar spatial patterns in some areas.449

One can also see in Figure 7b that, in general, a larger variance is estimated over the areas with450

larger imbalance. Figure 7c shows the average applied increments in the second analysis step of451

UWCEnKF-2 to account for the above imbalances. It is clear that larger increments are applied452

over the areas with larger imbalances, e.g., the north, southeast, and southwest parts of the basin.453

18



The areas such as the central parts, which display smaller imbalance in Figure 7a, are also assigned454

smaller increments as shown in Figure 7c.455

FIGURE 7

Similar flexibilities for error variance estimation in UWCEnKF can also be seen from the tem-456

poral variabilities of error variances as demonstrated in Figure 8. The water balance error variances457

at each assimilation step are estimated from UWCEnKF-1 for the entire Orange Basin and from458

UWCEnKF-2 for each grid point (green shaded area) of the basin. The figure also plots that of459

UWCEnKF-2 derived spatially averaged values, as well as errors used in WCEnKF. Again, it is460

clear from Figure 8 that UWCEnKF-1 and UWCEnKF-2 allow for larger variations in error es-461

timations than WCEnKF. It can also be seen that errors at each point can vary independently462

in UWCEnKF-2, which results in a better uncertainty adjustment. This can help for optimal463

imbalance minimization in the filter.464

FIGURE 8
465

FIGURE 9

Both spatial and temporal variabilities of error variances are summarized in Figure 9 over all466

basins, which shows variation ranges of water balance covariance in time (vertical lines) and space467

(horizontal lines) for WCEnKF, UWCEnKF-1, and UWCEnKF-2. In contrast to WCEnKF and468

UWCEnKF-1, spatial variabilities can be observed in UWCEnKF-2 results. As discussed, this helps469

for a better error adjustment during the filtering process. In terms of temporal variations, both470

UWCEnKF-1 and UWCEnKF-2 perform comparably well representing a larger range of changes471

than WCEnKF over all basins. The unsupervised error estimation algorithm in UWCEnKF enables472

to estimate an “optimal” water balance error calculation, which as it will be shown in Section 5.3473

(cf. Figure 15) leads to smaller imbalance errors. In cases where assigned error to WCEnKF is474

close to what is calculated by UWCEnKF, e.g., Indus Basin, the final achieved imbalance from the475

filters are also close. In other cases with larger differences between assigned and estimated errors,476

there are larger discrepancies in imbalances.477
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5.2. Validations with in-situ measurements478

The performances of the EnKF and UWCEnKF are compared with in-situ measurements.479

UWCEnKF was tested with both constant (UWCEnKF-1) and spatially varying (UWCEnKF-2)480

error variances for the water balance equation. Figure 10 shows the average groundwater time481

series over the Mississippi, Murray-Darling and the St. Lawrence basins, estimated by the open-482

loop run (without assimilation), EnKF, WCEnKF, UWCEnKF-1, and UWCEnKF-2. Remarkable483

improvement can be seen from the different filters compared to the open-loop time series. In this484

regard, WCEnKF and UWCEnKF generally perform better than EnKF. This is more evident when485

a considerable trend exists in the time series, e.g., within the Murray-Darling basin after 2009 and486

St. Lawrence between 2010 and 2012. It can also be seen that UWCEnKF groundwater time series487

in most of the times better match to those of in-situs. A clear example of this can be found in488

Murray-Darling basin 2011–2013. Furthermore, comparing UWCEnKF-1 and UWCEnKF-2, better489

agreements between in-situ and estimated groundwater changes are achieved for UWCEnKF-2 over490

all three basins, particularly in the Mississippi basin.491

FIGURE 10

To better monitor how UWCEnKF improves the groundwater estimates, their results are com-492

pared with in-situ measurements and against those of EnKF. RMSE and standard deviation (STD)493

are calculated for groundwater error time series, i.e., the difference between in-situ and filtered494

groundwater time series, at the location of each in-situ station. Figures 11 and 12 display the495

results over the Murray-Darling and Mississippi basins, respectively.496

FIGURE 11
497

FIGURE 12

One can see that the filters successfully reduce RMSE and STD w.r.t. the open-loop run.498

This indicates the relevance of assimilation for decreasing state estimate errors. The groundwa-499

ter estimate improvements are different for each filter. UWCEnKF-1 and UWCEnKF-2 suggest500

more (18% on average) error reduction than EnKF. Overall, more pronounced error reductions are501

achieved over the Mississippi basins, which could be attributed to larger model errors within the502
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basin. Slightly better performances (∼ 4%) in terms of groundwater error reduction are obtained503

with UWCEnKF-2 compared to UWCEnKF-1. We also compute the correlations (at 0.05 signifi-504

cance level) between the filtered and in-situ groundwater time series. Similarly, larger correlations505

result from the filter estimates compared to the open-loop run, namely, 14% from EnKF, 26% for506

UWCEnKF-1, and 29% for UWCEnKF-2. The correlation results also confirm that UWCEnKF507

provides better estimates of the groundwater time series.508

In-situ soil moisture measurements are also used to assess the assimilation impact on soil storage.509

To this end, similar to groundwater assessment, filtered soil moisture time series at the stations’ lo-510

cations are compared with their in-situ counterpoints at different layers. Figure 13 shows root-zone511

soil moisture variation time series as estimated by the various filters, as well as in-situ measure-512

ments over the Mississippi, Murray-Darling, St. Lawrence, Danube, and the Yangtze basins. It513

can be seen that all filters decrease the misfits between estimated and measured soil moisture vari-514

ations. In some cases, however, UWCEnKF, and to a lesser degree WCEnKF, performs better,515

e.g., Mississippi (2009), Murray-Darling (2004 and 2008), and Danube (2006). There are also var-516

ious occasions during which the WCEnKF and UWCEnKF-1 results are very close, such as St.517

Lawrence 2010–2012 and Yangtze 2005–2006. This can be explained by the fact that both methods518

use a single error variance value for water balance uncertainties, so whenever a good approximation519

is used to assign this value prior to data assimilation in WCEnKF, close to what is estimated in520

UWCEnKF-1, the corresponding state estimates seen to be also close. UWCEnKF-2, on the other521

hand, performs relatively better, being more successful in matching soil moisture estimates to the522

in-situ soil moisture variations.523

FIGURE 13

The correlation results between the monthly soil moisture estimates for all filters w.r.t. the524

monthly in-situ measurements are presented in Table 2. Note that different soil moisture estimates525

of various soil layers are compared to soil moisture measurements at corresponding layers and526

their average are reported in the table. For instance, the model top layer is compared with 0-8527

cm measurements over the Murray-Darling basin and 0-10 cm over Mississippi basin, summations528

of the model top, shallow, and a small portion of deep-root soil layers are tested against 0-30529

cm and 0-50 cm measurements over the Murray-Darling and Mississippi basins, respectively, and530
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summations of the model’s soil layers are compared to 0-90 cm (for Murray-Darling) and 0-100531

cm (for Mississippi) soil measurements. Due to a difference between the soil moisture estimates532

(i.e., column water storage measured in mm) and the in-situ measurements (i.e., volumetric soil533

moisture), only a correlation analysis is conducted. Additionally, in order to statistically assess the534

results, a significance test for the correlation coefficients is applied based on the t-distribution. The535

estimated t-value and the distribution at 0.05 significant level are used to calculate the p-value,536

which is assumed to be significant if it lies under 5%.537

TABLE 2

The results indicate that assimilation significantly improves soil storages regardless of the ap-538

plied filter. All the filters have positive effects on soil moisture estimates. UWCEnKF performs539

better than both WCEnKF and EnKF with respectively 6% and 11% higher correlations with540

the in-situ measurements. It can also be seen that in some cases, e.g., Mississippi basin, the fil-541

ters generally perform comparably, especially WCEnKF and UWCEnKF-1. This indicates that542

WCEnKF is capable of improving soil moisture estimates as UWCEnKF subject to using an ac-543

curate water balance uncertainty because this is the only difference between the two approaches.544

The largest improvement with an average 20.28% for all basins is achieved by UWCEnKF-2, better545

than UWCEnKF-1 (17.75% on average) and noticeably larger than EnKF (7.85%).546

We further examine the assimilation results against independent discharge data over different547

basins. It is worth mentioning that these discharge datasets are not assimilated. The average corre-548

lations between the estimated water discharge time series and those from the in-situ data over each549

basin are presented in Table 3. Improvements are achieved for all assimilation experiments w.r.t.550

the open-loop run. The EnKF increases the correlation by 4% (on average), while UWCEnKF-1551

and UWCEnKF-2 increase the correlation by approximately 23% and 24%, respectively. Again,552

UWCEnKF provides better results than EnKF over all basins. The largest correlation values are553

obtained for the Murray-Darling and Amazon basins, while the largest correlation improvements554

are achieved over the Orange, Amazon, and the Yangtze basins.555

TABLE 3
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5.3. Impact of the equality constraint556

To further investigate the relevance of the second analysis step of UWCEnKF, we calculate557

correlations between the filters estimates and assimilated observations at the forecast and analysis558

steps for all basins. The average correlations improvements w.r.t. the open-loop run are plotted559

in Figure 14. As expected, larger correlations are obtained in the analysis step. In general, apply-560

ing EnKF results in larger correlations between the estimates and assimilated observations (e.g.,561

GRACE TWS and AMSR-E+SMOS) because during the EnKF assimilation the full magnitude562

of the update is applied to the variables regardless of the water balance. However, the WCEnKF563

and UWCEnKF take into account the water balance in a second update, which leads to the most564

improvements regarding p, e, and q. This is due to the fact that the first update in the WCEnKF565

and UWCEnKF corrects the state variables with the observations, and the second update corrects566

the water balance. This suggests that water budget constraint slightly degrades the effects of ob-567

servations in the (second) update step in both WCEnKF and UWCEnKF filters, which is generally568

due to the observation overfitting problem, when no constraint is applied (e.g., standard EnKF) in569

data assimilation (see also Tangdamrongsub et al., 2017; Khaki et al., 2017a). Furthermore, there570

is a degree of disagreement between TWS changes and other flux observations (e.g., precipitation,571

evaporation, and discharge), which could be attributed to different sources of uncertainties in the572

observations (see, e.g., Aires, 2014; Munier et al., 2015). The water budget constraint applied to573

data assimilation (i.e., the second update of UWCEnKF) accounts for this effect by further cor-574

recting the estimated states from the first update step based on GRACE TWS. The second step575

partly removes the artifacts from data assimilation of GRACE in the first step. It can clearly be576

seen that UWCEnKF provides higher correlations to the flux observations than WCEnKF. This577

improvement is more pronounced by using UWCEnKF-2. UWCEnKF’s both variants remarkably578

increase the correlations between TWS estimates and water fluxes compared to EnKF. Overall, a579

better performance is observed for UWCEnKF-2 in comparison to UWCEnKF-1.580

FIGURE 14

The results of water budget closure resulting from each filter for every basin are shown in Figure581

15. UWCEnKF-1 and UWCEnKF-2 clearly reduce water budget imbalances for all basins compared582

to WCEnKF and especially EnKF. It can also be seen that UWCEnKF-2 better enforces the balance583
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between water components after assimilation. The absolute imbalance from UWCEnKF-2 is 15.28584

mm, 8.26% smaller than UWCEnKF-1, 17.84% smaller than WCEnKF, and 36.47% smaller than585

EnKF. Note that these average values are computed for all basins. The imbalance reductions can586

also be seen from the reported STD values for each time series in Figure 15. In all basins, the largest587

STD results from the EnKF and the least from the UWCEnKF-2. In some cases such as Indus,588

and to a lesser degree Amazon, WCEnKF performs comparably to UWCEnKF-1. UWCEnKF-2,589

on the other hand, achieves the largest water budget imbalance reduction, in terms of amplitude590

and STD, which confirms the results of Figure 14, as well as the validation results against in-situ591

measurements.592

FIGURE 15

6. Conclusions593

This study introduced an Unsupervised Weak Constrained Ensemble Kalman Filter (UW-594

CEnKF) to mitigate for water budget imbalance while accounting for uncertainties in the inputs595

of the water balance components. UWCEnKF is an extension of the previously proposed Weak596

Constrained Ensemble Kalman Filter (WCEnKF) to a more general (unsupervised) framework, in597

which the covariance associated with the water balance model is estimated along with the system598

state. Numerical experiments were carried out to assess the performance of the UWCEnKF against599

WCEnKF, as well as the standard Ensemble Kalman Filter (EnKF). The filters’ results examina-600

tions against available in-situ measurements indicated that UWCEnKF performs best in terms of601

groundwater error reduction and soil moisture estimate improvements. In general, UWCEnKF602

reduced groundwater errors (w.r.t. groundwater in-situ measurements) by 18% (on average), and603

11% (on average) more than EnKF and WCEnKF, respectively. UWCEnKF-2 also achieved 4%604

(on average) smaller groundwater RMSE than UWCEnKF-1. Furthermore, UWCEnKF increased605

the correlation values between soil moisture estimates and those of the in-situ measurements by606

6% more than WCEnKF and 12% more than EnKF. Again, UWCEnKF-2 performed better than607

UWCEnKF-1 with larger soil moisture correlations w.r.t. the in-situ soil moisture measurements,608

i.e., 20.28% against 17.75%. UWCEnKF also achieved larger correlations to independent discharge609

datasets, e.g., respectively 6% and 11% larger correlations with the in-situ measurements than610

WCEnKF and EnKF. The experiments results also suggested that the UWCEnKF using spatially611
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varying error variances for the water balance equation provides better groundwater and soil mois-612

ture estimates than applying a constant error variance. A similar performance was also obtained613

for the water budget imbalance reduction, where the prior variant better mitigated the imbalance614

problem than the latter case.615

Overall, UWCEnKF achieved maximum correlations with the flux observations, both during616

the forecast and analysis steps. The largest imbalance reduction was also obtained using UW-617

CEnKF. More specifically, the absolute imbalance for UWCEnKF-2 is 15.28 mm, 8.26% smaller618

than UWCEnKF-1, 17.84% smaller than WCEnKF, and 36.47% smaller than EnKF. These results619

demonstrate the relevance of the new proposed unsupervised scheme, which is straightforward to620

implement and computationally not intensive. Future work will consider extending the proposed621

framework to jointly estimate the model biases with the state and the observation error variance.622
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Figure 1: The location of study basins. The figure also contains the distribution of in-situ groundwater (red) and soil
moisture (green) gauge stations.
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Figure 2: A schematic illustration of the UWCEnKF steps applied for data assimilation, as well as data merging
process.
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Figure 3: Average E(`+1)
2 −E(`)2 estimates (unit is mm) from UWCEnKF-1 and UWCEnKF-2 filters during assimilation

in each iteration (for ` = 0 · · · 10). The threshold value (10mm) is chosen arbitrary based on a trial and error procedure.
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Figure 4: Average groundwater RMSE and imbalance for various implementations of the WCEnKF filter using
different error variance assumed (circles) considering different error variance. UWCEnKF-1 and UWCEnKF-2 results
are indicated by triangle and cross, respectively.

36



Figure 5: Spatial variability of error variances estimated by WCEnKF, UWCEnKF-1, and UWCEnKF-2. The
corresponding results for different iterations are also demonstrated for WCEnKF-1 and UWCEnKF-2.
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Figure 6: Spatial variability of imbalances from WCEnKF, UWCEnKF-1, and UWCEnKF-2 corresponding to the
errors presented in Figure 5.
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Figure 7: Temporarily averaged maps of imbalances from UWCEnKF-2’s first update (a), estimated error variance
(b), and increments applied in the second analysis step of UWCEnKF-2 (c).
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Figure 8: Average water balance variances estimated by UWCEnKF-1 and UWCEnKF-2. The plots also contains
the assigned variance values for WCEnKF implementation.
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Figure 9: Variation ranges of water balance covariance in time (vertical lines) and space (horizontal lines) for
WCEnKF, UWCEnKF-1, and UWCEnKF-2.
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Figure 10: Average groundwater variation time series by the open-loop run, EnKF, WCEnKF, UWCEnKF-1, and
UWCEnKF-2 over St. Lawrence, Mississippi, and Murray-Darling basins.
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Figure 11: Average RMSE and STD of the groundwater results from the EnKF, UWCEnKF-1, and UWCEnKF-2
filters over the Murray-Darling basin regarding the in-situ groundwater measurements.
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Figure 12: Average RMSE and STD of the groundwater results from the EnKF, UWCEnKF-1, and UWCEnKF-2
filters over the Mississippi basin regarding the in-situ groundwater measurements.
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Figure 13: Average soil moisture variation time series by the open-loop run, EnKF, WCEnKF, UWCEnKF-1, and
UWCEnKF-2 over St. Lawrence, Mississippi, Danube, Yangtze, and Murray-Darling basins.
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Figure 14: Average correlation improvements of filtered TWS time series to GRACE TWS, p, e, and discharge q with
respect to open-loop run in forecast and analysis steps. For AMSR-E+SMOS correlation, filtered top soil storage
estimates are used.
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Figure 15: Average water budget imbalance time series calculated using EnKF, WCEnKF, and UWCEnKF variants
for each basin (units are mm).
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Table 1: A summary of the datasets used in this study.

Product Platform Reference

Terrestrial water storage (TWS) GRACE Mayer-Gürr et al. (2014)

Soil moisture AMSR-E Njoku (2004)

Soil moisture SMOS Draper et al. (2009)

Precipitation (p) TRMM-3B42 Huffman et al. (2007)

Precipitation (p) CMORPH Joyce et al. (2004)

Precipitation (p) GPCP Adler et al. (2003)

Precipitation (p) GPCC Schneider et al. (2008)

Precipitation (p) CPC Chen et al. (2002)

Evapotranspiration (e) MOD16 Mu et al. (2007)

Evapotranspiration (e) GLEAM Miralles et al. (2011)

Evapotranspiration (e) ERA-interim Simmons et al. (2007)

Evapotranspiration (e) VIC Liang et al. (1994)

Water discharge (q) GRDC http://www.bafg.de/GRDC/EN/Home/homepage_node.

html

Water discharge (q) http://www.hydrosciences.fr/sierem/consultation/

choixaccess.asp?lang=en

Water discharge (q) USGS https://waterdata.usgs.gov/nwis/sw

Water discharge (q) http://www.bom.gov.au/waterdata/

Water discharge (q) NRFA http://nrfa.ceh.ac.uk/data/

Water discharge (q) http://www.ore-hybam.org/

Water discharge (q) http://www.hydrology.gov.np/new/bull3/index.php/

hydrology/home/main

Hydrological model W3RA http://www.wenfo.org/wald/data-software/

Groundwater in-situ measurements NSW http://waterinfo.nsw.gov.au/pinneena/gw.shtml

Groundwater in-situ measurements USGS https://water.usgs.gov/ogw/data.html

Soil moisture in-situ measurements OzNet Smith et al. (2012)

Soil moisture in-situ measurements ISMN https://ismn.geo.tuwien.ac.at/
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Table 2: Average correlations between in-situ and soil moisture estimates from various methods. Improvements in
the assimilation results are calculated as [(assimilation - open-loop run)/open-loop run] × 100(%).

Basin Open-loop EnKF WCEnKF UWCEnKF-1 UWCEnKF-2

Danube 0.67 0.74 0.79 0.81 0.82

St. Lawrence 0.69 0.72 0.76 0.84 0.87

Mississippi 0.72 0.81 0.85 0.86 0.88

Murray-Darling 0.76 0.83 0.86 0.89 0.91

Yangtze 0.73 0.75 0.78 0.80 0.81

Improvemts (%) – 7.85 13.22 17.75 20.28
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Table 3: Average correlations between the filtered water discharge and independent observations over different basins.

Basin Open-loop EnKF UWCEnKF-1 UWCEnKF-2

Amazon 73.62 78.04 95.26 96.58

Danube 76.13 76.28 90.77 90.60

Indus 77.08 74.71 84.48 85.37

St. Lawrence 68.55 80.65 87.41 89.17

Mississippi 71.91 73.78 94.29 93.32

Murray-Darling 79.36 83.12 96.31 96.89

Orange 69.47 71.82 93.42 94.05

Yangtze 71.15 75.49 92.69 93.91
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