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Introduction to the Television School and Family 
Smoking Prevention and Cessation Project 
 
We will analyse data from the Television School and Family Smoking Prevention 
and Cessation Project (TVSFP) (Flay et al., 1989). The project was designed to test 
the effect of two different school-based interventions on student tobacco and 
health knowledge: (1) A social-resistance classroom curriculum (CC); and (2) A 
television-based programme. 
 
The study sample involved schools with seventh-grade students (age 12 to 13 
years) in Los Angeles and San Diego, California. Schools were randomized to one of 
the four study conditions formed by crossing the two interventions in a 2 × 2 
design. 
 

  Television-based programme (TV) 

  No Yes 

Classroom 
Curriculum (CC) 

No Neither intervention TV only 

Yes CC only CC and TV 

 
The two interventions were delivered to the seventh-grade students in these 
schools in spring 1986. Students were baselined in January 1986, completed an 
immediate postintervention questionnaire in April 1986, a one-year follow-up 
questionnaire in April 1987, and a two-year follow-up questionnaire in April 1988. 
At each time point, students’ knowledge was assessed using a tobacco and health 
knowledge scale (THKS), constructed as the number of correct answers to seven 
binary questionnaire items. 
 
The data were restudied by Hedeker et al. (1994) who used them to illustrate the 
importance of clustering in clinical and public health research and how multilevel 
models could be used to account for two-level and three-level hierarchical 
clustering structures. They concentrated on the sub sample of students who 
studied at 28 Los Angeles schools and only analysed data from the baseline and 
postintervention time points. Students who missed data at either time point were 
listwise deleted.  
 
In this Module, we will explore the three-level hierarchical structure of the data: 
students (level 1) in classrooms (level 2) in schools (level 3). We will fit three-level 
multilevel models to examine the relative importance of schools and classrooms as 
influences on student tobacco and health knowledge and we will pay particular 
attention to assessing the possible causal effects of the CC and TV interventions.  
 
There is good reason to expect both school and classroom effects on students’ 
THKS scores. While schools were randomly assigned to the four study conditions, 
implementation of the CC and TV interventions were carried out at the classroom 
level. It seems very likely that some schools and teachers would have been more 
enthused about the interventions than others and this is likely to have had a direct 
effect on the success of the interventions. We therefore expect to see both 
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between-school and within-school-between-classroom variation in students’ THKS 
scores, even after accounting for baseline differences in their tobacco and health 
knowledge. 
 
We use the Hedeker et al. sub sample of the original data. The data consist of 
1,600 students (level 1) nested within 135 classrooms (level 2) nested within 28 
schools (level 3).  
 
The response variable is students’ postintervention THKS. We shall treat this score 
as a continuous response variable in our multilevel models, though we note that 
we could equally treat this response as ordinal and therefore fit ordinal response 
multilevel models (see Module 9). The predictor variables of key interest are the 
school level binary indicators of whether each school was randomly assigned to the 
CC or TV interventions. The predictor variables also include students’ baseline 
THKS scores. We will include this predictor variable in our models to adjust for 
baseline variation in students’ tobacco and health knowledge. 
 
The dataset contains the following variables 
 

Variable name Description and codes 

schoolid School ID 

classid Class ID 

studentid Student ID 

postthks Postintervention THKS score. Scores range from 0 to 7, with a 
higher score indicating a higher tobacco and health knowledge 

prethks Baseline THKS score. Scores are measured on the same scale as 
postthks. 

cc Classroom curriculum (CC) (0 = no CC, 1 = CC) 

tv Television (TV) (0 = no TV, 1 = TV) 

ccXtv CC × TV, the interaction between CC and TV. The variable is 
constructed by multiplying the variables cc and tv. Note that 
ccXtv is also binary and 1 = both CC and TV and 0 otherwise. 

cons A column of ones. This variable will be included as an 
explanatory variable in all models and its coefficient will be the 
intercept. 
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P11.1 Examining and Describing the Data 
 
Open the worksheet ‘11.1.wsz’ 
 
From within the LEMMA Learning Environment 
 Go to Module 11: Three-Level Multilevel Models, and scroll down to MLwiN 

Datafiles 
 Click ‘11.1.wsz’ to open the worksheet 
 
The Names window will appear. 
 

 
 
The data consist of 1,600 observations on 9 variables and each variable has been 
given a variable label. We see, for example, that the response variable postthks 
ranges from 0 to 7. We shall describe a range of summary statistics for the 
response and predictor variables in P11.1.2. 
 
 

P11.1.1 Exploring the three-level data structure 
 
We start by looking in more detail at the structure of the data for the first 10 
students. 
 
 In the Names window, select all nine variables schoolid through to cons (use 

the Shift button on the keyboard to select multiple variables) 
 Under the Data toolbar of the Names window, click View 
 

 
 
We see, for example, that student 1 was taught in class 193101 within school 193. 
The student scored 1 out of 7 on the THKS at baseline (prethks) and 2 out of 7 at 
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postintervention (postthks). The variables cc and tv (and therefore ccXtv) are 
both zero and so school 193 received neither intervention. 
Next, we use the Command interface window to confirm that the number of 
schools and classrooms in the data are 28 and 135, respectively. Specifically, we 
use the UNIQ command to generate new ‘short’ versions of the school and 
classroom identifier variables which take one record per group. 
 
 From the Data Manipulation menu, select Command interface 
 Type the following into the bottom pane of the window and press Enter after 

typing each command 
UNIQ ‘schoolid’ c10 

UNIQ ‘classid’ c11 

 
The Names window should update and show the following. 
 

 
 
The new variable c10 now contains a single record for each unique school, while 
the new variable c11 contains a single record for each unique classroom. The 
number of records for each of these new variables, 28 and 135, confirms that there 
are indeed 28 schools and 135 classrooms in the data. 
 
Next, we will explore the distribution of schools, classrooms and students across 
the four study conditions outlined in our introduction to the data: (1) Neither 
intervention; (2) CC only; (3) TV only; and (4) CC and TV. 
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Tabulating cc by tv at the school level shows seven schools were assigned to each 
condition.2 The data are therefore balanced, at the school level, across conditions. 
Note, however, that balance at level 3, or any other level, is by no means a 
requirement when fitting three-level, or any other, multilevel models. 
 

  Television-based programme (TV)  

  No Yes Total 

Classroom 
Curriculum (CC) 

No 7 7 14 

Yes 7 7 14 

 Total 14 14 28 

 
Tabulating cc by tv at the classroom level shows that the number of classes 
assigned to each condition ranges from 31 to 36. The number of classes varies 
across conditions due to schools varying in size: some schools have as few as 1 
class involved in the study, other schools have as many as 13 classes involved in 
the study. 
 

  Television-based programme (TV)  

  No Yes Total 

Classroom 
Curriculum (CC) 

No 34 36 70 

Yes 34 31 65 

 Total 68 67 135 

 
Finally, tabulating cc by tv at the student level shows that the number of students 
assigned to each condition ranges from 380 and 421. The number of students varies 
across conditions due to the number of classrooms varying across schools and the 
number of students varying across classrooms. 
 

  Television-based programme (TV)  

  No Yes Total 

Classroom 
Curriculum (CC) 

No 421 416 837 

Yes 380 383 763 

 Total 801 799 1600 

 

  

                                         
2 We do not present the step-by-step instructions to replicate this or subsequent cross-tabulations 
shown in this section as they are somewhat involved. Such higher-level cross-tabulations are more 
easily carried out in standard statistical software packages such as R, SPSS or Stata. 
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P11.1.2 Summarising the response and predictor variables 
 
We start by plotting the distribution of our response variable, postintervention 
THKS scores (postthks). 
 
 From the Graphs menu, select Customised Graph(s) 
 On the Plot what? tab, select histogram from the plot type drop-down list 
 In the y drop-down list, select postthks 
 Check that the window matches that shown below and then click Apply  
 

 
 
You should see the following graph 
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We can make this graph more readable by altering the labelling of the y-axis and 
x-axis scales.  
 
 Left click anywhere on the graph to open the Graph options window 
 On the Scale tab, in the Y axis options, select the user defined scale radio 

button, change y max to 450 and n ticks to 5 
 In the X axis options, select the user defined scale radio button, change the x 

max to 7.5 and n ticks to 8 
 Check that the window matches that shown below and then click Apply 
 

 
 
You should see the following graph 
 

 
 
The graph shows that postthks is approximately normally distributed. Remember 
though, that in single-level and multilevel models it is the residuals that are 
assumed to be normal, not the response; we will check this assumption in P11.2.4.  
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Next, we calculate student level means for the postintervention scores, separately 
for each condition. We shall also store these statistics in the column c12 so that 
we can graph them later. These statistics replicate those presented in Table 1 of 
Hedeker et al. (1994).  
 
 From the Basic statistics menu, select Tabulate 
 Select Means as the Output Mode 
 Select postthks in the Variate column drop-down list 
 Select tv in the Columns drop-down list 
 Tick the Rows checkbox 
 Select cc in the Rows drop-down list 
 Tick the Store in checkbox 
 Select c12 from the Store in drop-down list 
 Check that the window matches that shown below and then click Tabulate  
 

 
 
You should see the following output 
 

 
 
As schools were randomised to the four conditions, it seems reasonable to expect 
that there should be no baseline differences in THKS scores across conditions and 
that we should therefore be able to interpret the mean differences seen here as 
the causal effects of CC and TV. However, we should and can check this 
assumption by additionally calculating the baseline means separately for each 
condition.  



Module 11 (MLwiN Practical): Three-Level Multilevel Models 

Centre for Multilevel Modelling, 2013 11 

The baseline means for each condition can be calculated (and stored in column 
c13) as follows. 
 
 Select prethks in the Variate column drop-down list 
 Select c13 from the Store in drop-down list 
 Check that the window matches that shown below and then click Tabulate 
 

 
 
You should see the following output. 
 

 
 
Interestingly, we see that the baseline means do vary somewhat across the four 
conditions. Perhaps this is not surprising given that there are only 7 schools in each 
condition. Had 70 schools instead been randomly assigned to each condition, we 
would expect the baseline means to be considerably more similar than they are 
here. 
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It is often easier to examine descriptive statistics such as those calculated above 
visually. We shall do this here by plotting a bar chart of the baseline and 
postintervention means across conditions. First, we examine the columns where 
we have stored these means. 
 
 In the Names window, select the columns c12, c13 and c14 
 In the Names window toolbar, under Data, click View to open the Data window 

shown below 
 

 
 
The mean preintervention and postintervention scores are stored in columns c13 
and c12, respectively. Column c14 is currently empty. The four rows index the 
four study conditions: (1) Neither intervention; (2) CC only; (3) TV only; and (4) CC 
and TV. However, they are not in the expected order: the means for the CC only 
and TV only conditions are presented in rows 3 and 2, rather than the other way 
around. To clarify matters, we generate a new variable in the empty column c14 
to index the four conditions. 
 
 Type the values 1, 3, 2 and 4 into the first four rows of c14 so that the Data 

window matches that shown below. 
 

 
 
Column c14 now indexes the four study conditions: 1 = Neither intervention; 2 = 

CC only; 3 = TV only; 4 = CC and TV.  
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We are now ready to plot the bar chart. 
 
 From the Graphs menu, select Customised Graph(s) 
 On the plot what? tab, select bar from the plot type drop-down list 
 For the y drop-down list select c13  
 For the x drop-down list select c14 
 Select the plot style tab, change the line type drop-down list to type 4 
 Click on the second row of the table 
 Select the plot what? tab, select bar from the plot type drop-down list 
 For the y drop-down list select c12  
 For the x drop-down list select c14 
 Select the plot style tab, change the line type drop-down list to type 5 
 Change the colour drop-down list to red 
 Check that the window matches that shown below and then click Apply 
 

  
 
You should see the following graph 
 

  
 
The graph is not very easy to read as the y-axis ranges from 0 to 400 while the 
mean preintervention and postintervention scores for each condition will lie 
between the minimum and maximum scores for the test, 0 and 7 respectively. The 
reason for the strange scaling of the y-axis is that the graph has remembered the 
y-axis scaling which we specified when plotting the histogram of postintervention 
scores.  
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We can make the current graph easier to read by rescaling the y-axis. 
 
 Left click anywhere on the graph to open the Graph options window 
 On the Scale tab, in the Y axis options, select the user defined scale radio 

button, change y max to 3.6 and n ticks to 4 
 In the X axis options, select the user defined scale radio button, change the x 

max to 4.5 and n ticks to 10 
 Check that the window matches that shown below and then click Apply 
 

 
 
You should see the following graph 
 

 
 
The blue and red bars present the mean baseline and postintervention scores 
across the four conditions, respectively. Moving from left to right along the x-axis, 
the first two bars give the mean scores for the neither condition, the next two bars 
present the mean scores for the CC only condition, the fifth and sixth bars 
correspond to the TV only condition, while the final two bars relate to the CC and 
TV condition. 
 
Looking at the baseline means (plotted in blue), we see that while they vary little 
across the four conditions, the baseline mean is highest for the neither condition 
i.e. the no-treatment control group (the first blue bar). This is important as it 
means that if we fail to account for this condition having a higher mean score at 
baseline, we will understate any possible positive causal effects of CC and TV. We 
must therefore include prethks as a predictor variable in our multilevel models. 
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If we now turn our attention to the postintervention means (plotted in red), we 
see that they are higher than the baseline means for all four conditions. The fact 
that the postintervention mean is higher than the baseline mean even for the 
neither condition suggests that there is a maturation effect whereby students’ 
tobacco and health knowledge improves as they age even in absence of learning 
interventions such as CC and TV. 
 
The postintervention means also reveal a strong positive effect of the CC 
intervention that applies both to those not receiving the TV intervention (2.97 vs. 
2.36) and for those receiving the TV intervention (2.82 vs. 2.54). The TV effect, 
however, is less clear. The TV intervention appears to have a positive effect for 
those not receiving the CC intervention (2.54 vs. 2.36), but a negative effect for 
those receiving the CC intervention (2.82 vs. 2.97).  
 
To summarise, the CC intervention appears to be effective in increasing students’ 
THKS scores, irrespective of whether they receive the TV intervention. The TV 
intervention, however, appears only effective for those students who do not also 
receive the CC intervention. 
 
In the following section we shall fit a series of three-level multilevel models to 
examine whether these effects remain after adjusting for baseline variation in 
tobacco and health knowledge and, importantly, to also examine whether any such 
effects are statistically significant.  
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P11.2 A Three-Level Model of THKS 
 
Open the worksheet ‘11.2.wsz’ 
 
From within the LEMMA Learning Environment 
 Go to Module 11: Three-Level Multilevel Models, and scroll down to MLwiN 

Datafiles 
 Click ‘11.2.wsz’ to open the worksheet 
 
 

P11.2.1 Specifying and fitting the three-level model 
 
We start by specifying and fitting a three-level variance components model to 
students’ postintervention THKS scores. This model includes only an intercept, 
school and classroom random effects, and a student level residual error term; the 
model makes no adjustments for predictor variables. The model simply 
decomposes the total variance in students’ postintervention THKS scores into 
separate school, classroom and student variance components. 
 
The model is written as 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 
𝑢𝑗𝑘~N(0, 𝜎𝑢

2) 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 

where 𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 is the observed postintervention THKS score for student 𝑖 (𝑖 =

1, … ,1600) in classroom 𝑗 (𝑗 = 1,… ,135) in school 𝑘 (𝑘 = 1,… ,28), 𝛽0 is the mean 

score across all schools, 𝑣𝑘 is the effect of school 𝑘, 𝑢𝑗𝑘 is the effect of classroom 

𝑗, and 𝑒𝑖𝑗𝑘 is the student level residual error term. The school, classroom effects 

and the student level residual errors are assumed independent and normal 
distributed with zero means and constant variances. 
 
We will now specify the above three-level model in MLwiN. 
 
 From the Model menu, select Equations 
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First, specify the response variable, and the three levels of the model. 
 
 Click on the red 𝒚 to open the Y variable window 
 In the y drop-down list, select postthks 
 In the N levels drop-down list, select 3-ijk 
 In the level 3(k) drop-down list, select schoolid 
 In the level 2(j) drop-down list, select classid 
 In the level 1(i) drop-down list, select studentid 
 Check that the window matches that shown below and then click done 
 

 
 
The Equations window should update to show postthks as the response variable. 
 

 
 
Next, we specify the constant: the variable associated with the intercept 
coefficient. 
 
 Click on the red 𝜷𝟎𝒙𝟎 term to open the X variable window  
 From the drop-down list, select cons 
 Check k(schoolid), j(classid) and i(studentid) 
 Check that the window matches that shown below and then click Done 
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The Equations window should update to show that the variable 𝐜𝐨𝐧𝐬 is associated 
with the coefficient 𝛽0. 
 

 
 
The random effects and distributional assumptions are currently hidden and so 
next we reveal the full model specification. 
 
 In the Equations window toolbar, click Estimates once 

 

 
 
The four parameters to be estimated are highlighted in blue. The first parameter is 
the intercept, the second parameter is the between-school variance, the third 
parameter is the within-school-between-classroom variance, and the fourth 
parameter is the within-classroom-between-student variance. 
 
We now fit the three-level model. 
 
 Click Start 
 In the Equations window toolbar, click Estimates once 
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You should see the following model results. The parameter estimates and standard 
errors (reported in parentheses) are presented in green (as opposed to the default 
colouring of blue used when specifying the model) to indicate that the model has 
successfully converged. 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model1’ into the box 
 Click OK 
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Before we interpret the model results, we shall check that the three-level 
hierarchy assumed by the model matches that found in the data. We can do this by 
examining the output of the Hierarchy viewer window. 
 
 From the Model menu, select Hierarchy viewer 

 

 
 
The Summary section of the window shows that the model correctly identifies that 
there are 28 schools, 135 classes and 1600 students. The Details section of the 
window reports the number of classes and the number of students per school. We 

see, for example, that the school 193 (L3 ID: 193) has only one class (N2 1) and 

that 26 students (N1 26) attend that class. 
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Where schools have multiple classrooms, we can also check the number of students 
per class. 
 
 In the Hierarchy viewer window, click the Options… button 
 Select 2:classid from the display at level drop-down list 
 Click Done 
 

  
 

We see, for example, that in school 194 (L3 ID: 194) there are 11 students in 

the first class (L2 ID: 194101 and N1 11) and 10 students in the second class 

(L2 ID: 194102 and N1 10). 

  



Module 11 (MLwiN Practical): Three-Level Multilevel Models 

Centre for Multilevel Modelling, 2013 22 

P11.2.2 Interpretation of the model output 
 
The only coefficient in the fixed part of the model is the intercept and this is 
estimated to be 2.663, with a standard error or 0.078. Thus, at postintervention, 
the mean student is predicted to score 2.663 out of 7 on the THKS scale. The z-
ratio for this parameter estimate could be calculated (by dividing the parameter 
estimate by the standard error), however, as the THKS scale ranges from 0 to 7, it 
is of no interest to test whether the intercept is significantly different from zero. 
 
Below the fixed part of the model are the estimates for the variance components. 
The between-school variance is estimated as 0.110, the within-school-between-
classroom variance is estimated as 0.085, while and the within-classroom-between-
student variance is estimate as 1.724. We shall interpret the relative magnitude of 
these variances in P11.2.3. 
 
Note that although standard errors are reported for these variances, they should 
not be used to assess the significance of these parameters (for example, by 
calculating z-ratios and p-values). The reason for this is that Wald tests on 
variance parameters are approximate as they assume that the sampling 
distributions of these parameters are asymptotically normal when in fact they are 
positively skewed (i.e. they have long right-hand tails). Likelihood ratio (LR) tests, 
which do not rely on the assumption of asymptotic normal sampling distributions, 
should therefore be used to test the significance of variance parameters, not Wald 
tests.  
 
The final line of output in the Equations window reports the deviance statistic (D = 
5501.982, calculated as minus two times the log-likelihood). The difference in 
deviances between two nested models gives the likelihood ratio test statistic for 
comparing the fit of the two models. For example, the deviance of a simpler 
single-level model with no school effects and no classroom effects (output not 
shown) is D = 5577.054. The LR test statistic and associated p-value for testing 

whether the three-level model is preferred to the single-level model are then: 𝜒2
2 = 

75.07, p < 0.001. The p-value is effectively zero and so the three-level model 
offers a significantly better fit to the data than the single-level model. We can 
therefore conclude that the 1,600 students do not act as 1,600 independent 
observations; rather, students are clustered by classrooms and schools. LR tests 
(output not reported), which compare this three-level model to the simpler two-

level students-within-schools model (𝜒1
2 = 11.67, p < 0.001) and the two-level 

students-within-classrooms model (𝜒1
2 = 19.89, p < 0.001), confirm that both the 

school variance and the classroom variance are separately significant. Students 
from the same school are therefore significantly more alike than students from 
different schools. Similarly, students taught in the same classroom are significantly 
more homogenous than schoolmates taught in two different classrooms. Put 
differently, the postintervention THKS scores vary significantly across schools and 
across classrooms. A multilevel approach to analyse the data is clearly favoured 
over a single-level approach and also over carrying out either of the potential two-
level analyses of these data. 
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P11.2.3 Calculating coverage intervals, variance partition 
coefficients (VPCs) and intraclass correlation coefficients 
(ICCs) 

 
There are several approaches to interpreting variance components in multilevel 
models and we shall consider three of these here: (1) coverage intervals; (2) 
variance partition coefficients (VPCs); and (3) intraclass correlation coefficients 
(ICCs). A complete introduction to these approaches is given in C11.2.4. 
 
 
Coverage intervals 
 
Coverage intervals enable us to interpret the absolute magnitude of variance 
components in the metric of the response variable. For example, the model 
implied 95% range in school effects is calculated as 
 

(−1.96𝜎𝑣, +1.96𝜎𝑣) = (−1.96√0.110, +1.96√0.110) = (−0.650,+0.650) 
 
where the use of ±1.96 reflects the fact that 95 per cent of the probability mass of 
a normal distribution lies within approximately ±1.96 standard deviations of the 
mean.3 Thus, the derivation of coverage intervals is based on the model 
assumption that the random effects are normally distributed. We see that schools 
at the 97.5th percentile are estimated to score 1.300 (= 2 × 0.650) of a standard 
deviation higher than schools at the 2.5th percentile. 
 
 
Variance partition coefficients (VPCs) 
 
Variance partition coefficients (VPCs) report the proportion of the observed 
response variation that lies at each level of the model hierarchy.4 They therefore 
allow us to establish the relative importance of schools, classrooms and students as 
sources of variation of students’ postintervention THKS scores. 
 
The school level VPC is calculated as 
 

VPC𝑣 =
𝜎𝑣
2

𝜎𝑣2 + 𝜎𝑢2 + 𝜎𝑒2
=

0.110

0.110 + 0.085 + 1.724
= 0.057 

 
The classroom level VPC is calculated as 
 

VPC𝑢 =
𝜎𝑢
2

𝜎𝑣2 + 𝜎𝑢2 + 𝜎𝑒2
=

0.085

0.110 + 0.085 + 1.724
= 0.044 

                                         
3 In conditional models, coverage intervals are based on the residual rather than the observed 
responses. Coverage intervals based on conditional models therefore measure the expected range 
in adjusted outcomes. 
4 In conditional models, VPCs are based on the residual rather than the observed responses. VPCs 
based on conditional models therefore measure the proportion of outcome variation unexplained by 
the predictor variables that lies at each level of the model hierarchy. 
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The student level VPC is calculated as 
 

VPC𝑒 =
𝜎𝑒
2

𝜎𝑣2 + 𝜎𝑢2 + 𝜎𝑒2
=

1.724

0.110 + 0.085 + 1.724
= 0.898 

 
We see that 5.7% of the variation in postintervention THKS scores lies between 
schools, 4.4% lies within schools between classrooms and 89.8% lies within 
classrooms between students. Thus, there is only modest variation in students’ 
mean tobacco and health knowledge across schools and classrooms; most of the 
variation in students’ knowledge is seen within their classrooms. 
 
 
Intraclass correlation coefficients (ICCs) 
 
Intraclass correlation coefficients (ICCs) measure the model implied correlation 
(i.e. similarity or homogeneity) of the observed responses within a given cluster.5 
 
The school level ICC is calculated as the correlation between two students 𝑖 and 𝑖′ 
within the same school 𝑘, but different classrooms 𝑗 and 𝑗′ 
 

𝜌𝑣 = corr(𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 , 𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖′𝑗′𝑘) =
𝜎𝑣
2

𝜎𝑣2 + 𝜎𝑢2 + 𝜎𝑒2
 

=
0.110

0.110 + 0.085 + 1.724
= 0.057 

 
Thus, for this model, the school level ICC coincides with the school level VPC. 
However, this equivalence will not hold in more complex models, such as those 
including random coefficients. 
 
The classroom level ICC is calculated as the correlation between two students 𝑖 
and 𝑖′ within the same classroom 𝑗 and therefore the same school 𝑘 
 

𝜌𝑣𝑢 = corr(𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 , 𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖′𝑗𝑘) =
𝜎𝑣
2 + 𝜎𝑢

2

𝜎𝑣2 + 𝜎𝑢2 + 𝜎𝑒2
 

=
0.110 + 0.085

0.110 + 0.085 + 1.724
= 0.102 

 
Here we see that the classroom level ICC does not coincide with the classroom 

level VPC. The between-school variance 𝜎𝑣
2 appears on the numerator of the 

expression for the classroom level ICC, but does not appear on the numerator of 
the expression for classroom level VPC. 
 
  

                                         
5 In conditional models, ICCs are based on the residual rather than the observed responses. ICCs in 
conditional models therefore measure the similarity in outcomes having adjusted for the predictor 
variables; that is, the similarity in unexplained outcomes. ICCs based on conditional models are 
sometimes referred to as adjusted ICCs. 
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The correlation between two students 𝑖 and 𝑖′ from different schools 𝑘 and 𝑘′ and 
therefore from different classrooms is assumed zero 
 

𝜌𝑣𝑢𝑒 = corr(𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 , 𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖′𝑗′𝑘′) = 0 

 
We see that the school ICC is 0.057, while the classroom ICC is 0.102. Thus, scores 
on students in the same school are slightly correlated, while scores on students 
within the same classroom have a somewhat higher correlation. Put differently, 
students from the same school, or even the same classroom, are not especially 
similar in their postintervention THKS scores. 
 
In summary, the VPCs and ICCs show that there is a relatively low degree of 
clustering in the data. We only see relatively small school level differences in 
postintervention THKS scores. As we are yet to account for the interventions in our 
model, this interestingly suggests that the CC and TV interventions do not have 
particularly strong effects. It is also interesting to note that even with this low 
degree of clustering the three-level model was significantly preferred to the 
single-level model and each of its two-level counterparts (See P11.2.2).  
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P11.2.4 Predicting and examining school and classroom effects 
 
Having fitted the model, we can predict posterior estimates of the school and 
classroom effects together with their associated standard errors. We can examine 
these predictions to check whether the random effects at each level are normally 
distributed. We can also examine them in order to make inferences about specific 
schools or classrooms. 

 
We can predict the random effects and associated standard errors at both the 
school- and classroom-level using the Residuals window. We start by predicting the 
school-level residuals. 
 
 From the Model menu, select Residuals 
 In the level drop-down list, select 3:schoolid 
 In the box to the left of SD(comparative) of residual to, change the number 

from 1.0 to 1.96, so that we obtain the 95% confidence intervals 
 Check that the window matches that shown below and then click Calc 
 

 
 
If you look in the Names window at this point, you will see that nine new variables 
have been created in columns c300 through c308. 
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We first plot a quantile-quantile plot to check whether the school-level random 
effects are normally distributed. 
 
 Click on the Plots tab in the Residuals window 
 Select standardised residual x normal scores 
 Click Apply 
 

 
 
If the random effects are normally distributed, all the data will be plotted along 
the 45 degree line. While the schools do not lie on the line, they all lie close to the 
line suggesting that the predicted effects are approximately normally distributed. 
 
Next we examine the magnitudes of the school effects and we will count how 
many schools differ significantly from the average school. We will do this by 
plotting a ‘caterpillar plot’ of the school effects. 
 
 Return to the Plots tab of the Residuals window 
 Select residual +/-1.96 sd x rank 
 Click Apply 
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You should see the following plot. 

 

 
 
This graph is interactive. By clicking on the points we can identify which schools 
they refer to. So, for example, clicking on the highest ranked school residual in the 
plot produces the following window 
 

 
 
which shows that the highest scoring school is school 415. 
 
Notice that the confidence intervals around the predicted effects vary greatly in 
their length; smaller schools (e.g. school 411, ranked 22, which has 18 students) 
will have longer intervals than larger schools (e.g. school 515, ranked 3, which has 
137 students). 
 
The plot shows that only six out of the 28 schools differ significantly from the 
average school. Four schools (506, 513, 515 and 507) score significantly lower than 
average, two schools (510 and 415) score significantly higher than average.  
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Note that because we have not yet accounted for baseline THKS scores, we cannot 
interpret these predicted effects in any sense as the effects of schools on 
students’ tobacco and health knowledge. The effects plotted here are very likely 
to reflect not just school effects, but to also reflect school differences in students’ 
tobacco and health knowledge that were present at baseline and persist through to 
postintervention (i.e. selection effects). 
 
Next, we rank schools by the magnitude of their predicted effects. First, we use 
the UNIQ command to generate a new ‘short’ version of the school identifier 
variable which takes one record per school. The new variable will then appear in 
the Names window. 
 
 From the Data Manipulation menu, select Command interface 
 Type the following command into the bottom pane of the window and then press Enter 

UNIQ ‘schoolid’ c299 

 
Next, we use the Sort window to sort the data by the residual rank variable (which 
was created with the residuals and is found in c305), storing the newly ordered 
variables in columns c310-c313. 
 
 From the Data Manipulation menu, select Sort 
 From the Key code columns drop down list, select c305 
 From the input columns variable list, select c299, c300, c301 and c305 
 From the output columns variable list, select columns c310-c313 
 Click Add to action list 

 Check that the window matches that shown below and then click Execute 
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Finally, view the ranked school effects 
 
 In the Names window, tick the Used columns checkbox 
 Select columns c310 to c313 
 From the Data toolbar in the Names window, click View 

 

 
 
From these values we see that school 506, with a score of -0.537, is predicted to 
be the lowest scoring school while school 415, with a score of 0.486, is predicted 
to be the highest scoring school. The difference between the highest and the 
lowest scoring schools is just over 1 point, which is fairly sizeable given that the 
THKS scale ranges from 0 to 7. 
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We can also view the classroom level random effects using a similar approach to 
that used for the school level random effects. We start by predicting the classroom 
level residuals. 
 
 From the Model menu, select Residuals 
 In the Residuals window, select the Settings tab if not already selected 
 Change the level drop-down list from 3:schoolid to 2:classid 
 In the start output at box, type ‘400’, so as not to overwrite the level 3 

residuals and associated terms 
 In the box to the left of SD(comparative) of residual to, change the number 

from 1.0 to 1.96 
 Click Calc 
 
We generate a quantile-quantile plot to check whether the classroom level 
residuals are normally distributed. 
 
 Click on the Plots tab in the Residuals window 
 Select standardised residual x normal scores 
 Click Apply 
 

 
 
The quantile-quantile plot for the classroom effects shows that these effects are 
also approximately normal, although there is some indication that the distribution 
of effects has slightly heavier tails than would be expected from a normal 
distribution. 
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Finally, we generate the caterpillar plot of the classroom level residuals 
 
 Return to the Plots tab of the Residuals window 
 Select residual +/-1.96 sd x rank 
 Click Apply 
 

 
 
We see that the vast majority of classrooms cannot be distinguished from the 
overall average. 
 
Note that the classroom effects calculated and examined above are net of the 
effects of the schools in which classrooms are located. In many ways it may be 
more interesting to calculate and examine the combined school and classroom 
effect and to consider how many of these differ from the overall average. We 
leave this as an exercise for the reader. 

  



Module 11 (MLwiN Practical): Three-Level Multilevel Models 

Centre for Multilevel Modelling, 2013 33 

P11.3 Adding Predictor Variables 
 
Open the worksheet ‘11.3.wsz’ 
 
From within the LEMMA Learning Environment 
 Go to Module 11: Three-Level Multilevel Models, and scroll down to MLwiN 

Datafiles 
 Click ‘11.3.wsz’ to open the worksheet 
 
In this lesson, we shall introduce student and school level predictor variables into 
the three-level model.  
 
 

P11.3.1 Adding student level predictor variables 
 
We begin by including students’ baseline THKS scores (prethks). Our exploratory 
analyses (P11.1.2) revealed that baseline THKS scores vary across the four 
conditions and so it is essential to adjust for this variable when we come to 
examine the effects of CC and TV on students’ tobacco and health knowledge. 
 
The model is written as 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 
𝑢𝑗𝑘~N(0, 𝜎𝑢

2) 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 
Specify and fit the model. 
 
 From the Model menu, select Equations 
 In the Equations window, click Add Term  
 Select prethks from the variable drop-down list and click Done 
 Click Start 
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You should obtain the following results 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model2’ into the box 
 Click OK 
 
The coefficient on prethks is 0.300 and so students who score one point higher at 
baseline are predicted to score 0.300 points higher postintervention. This effect is 
highly statistically significant with a z-ratio of 11.54, calculated as the estimate 
divided by the standard error (11.54 = 0.300/0.026). 
 
Adjusting for baseline THKS scores reduces the three variance parameters. The 
school level variance drops from 0.110 in the unconditional model to 0.087 in this 
model, a drop of 20%. The classroom level variance drops from 0.085 to 0.070, a 
drop of 18%. The student level variance drops from 1.724 to 1.599, a drop of 7%. 
The large decline in the classroom level variance and in particular the school level 
variance shows that there are large baseline differences in students’ tobacco and 
health knowledge between classrooms and between schools. 
 
The deviance statistic for this model is D = 5374.027. LR tests (output not shown) 
confirm that the three-level model is still preferred to its single-level counterpart 

(𝜒2
2 = 63.77, p < 0.001), its two-level students-within-schools counterpart (𝜒1

2 = 

10.02, p = 0.002), and its students-within-classes counterpart (𝜒1
2 = 18.75, p = 

0.001). Thus, it is important to retain the school and classroom random effects in 
the model, even after adjusting for students’ baseline scores. 
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P11.3.2 Adding school level predictor variables 
 
Next we model the effects of the CC and TV interventions. Recall that the two 
interventions led to four study conditions. 
 

(1) Neither intervention (a no-treatment control group); 
(2) CC only; 
(3) TV only; 
(4) CC and TV. 

 
We will model the effects of these two interventions by including binary indicator 
variables for CC and TV (cc and tv) along with their interaction (ccXtv). The model 
is written as 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽2𝐜𝐜𝑘 + 𝛽3𝐭𝐯𝑘 + 𝛽4𝐜𝐜𝐗𝐭𝐯𝑘 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 
𝑢𝑗𝑘~N(0, 𝜎𝑢

2) 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 
It is helpful to write out the fixed part of the model separately for the four 
conditions 
 

Neither intervention: 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 
 

CC only: 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽2𝐜𝐜𝑘 
 

TV only: 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽2𝐜𝐜𝑘 + 𝛽3𝐭𝐯𝑘 
 

CC and TV: 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽2𝐜𝐜𝑘 + 𝛽3𝐭𝐯𝑘 + 𝛽4𝐜𝐜𝐗𝐭𝐯𝑘 
 
The following table summarises four effects of interest and how they are obtained 
from the model parameters. 
 

Parameter Interpretation 

 𝛽2 effect of CC on non-TV students 

 𝛽2 + 𝛽4 effect of CC on TV students 

 𝛽3 effect of TV on non-CC students 

 𝛽3 + 𝛽4 effect of TV on CC students 

 
The interaction coefficient 𝛽4 can be interpreted in two ways. First, it can be 
interpreted as the difference between the effect of CC on TV students and the 
effect of CC on non-TV students. Second, it can be interpreted as the difference 
between the effect of TV on CC students and the effect of TV on non-CC students.  
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Specify and fit the model. 
 
 In the Equations window, click Add Term and select cc from the variable drop-

down list, then click Done 
 Repeat this process to add tv and then ccXtv to the model 
 Click Start 
 
You should obtain the following results. 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model3’ into the box 
 Click OK 
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We can perform an LR test to confirm that the additional predictors significantly 
improve the fit of the model. 
 
 From the Model menu, select Manage stored models 
 Select both model2 and model3 
 Click Compare 
 

 
 
The Results Table reports a deviance statistic of 5374.027 for Model 2 and a 
deviance statistic of 5357.359 for Model 3. The LR test statistic (difference in 
deviances) is 16.67. We can calculate the p-value associated with this test statistic 
using the Tail Areas window. 
 
 From the Basic Statistics menu, select Tail Areas 
 Select Chi Squared 
 Type ‘16.67’ next to Value 

 Type ‘3’ next to Degrees of freedom 
 Check that the window matches that shown below and then click Calculate 
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You should see the following output 
 

 
 

The p-value is effectively zero (𝜒3
2 = 16.67, p < 0.001). The LR test therefore 

confirms that that the additional predictors significantly improve the fit of the 
model. 
 
Note that we could have instead used a Wald test to confirm the joint significance 
of the three school level variables.6 
 
 From the Model menu, select Intervals and tests 
 Select the fixed radio button 
 Type 3 next to # of functions 
 Replace the 0 with 1 in the fixed: cc row of the #1 column 
 Replace the 0 with 1 in the fixed: tv row of the #2 column 
 Replace the 0 with 1 in the fixed: cc*tv row of the #3 column 
 Check that the window matches that shown below and then click Calc 
 

 
 
  

                                         
6 Whether one uses LR or Wald tests to test fixed part parameters is largely a matter of personal 
preference. The two tests are asymptotically equivalent to one another, although they may 
produce different conclusions in small samples. Note though that LR tests of fixed part parameters 
cannot be based on RIGLS estimates. 
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You should obtain the following results. 
 

 
 

The parameters cc, tv and ccXtv are jointly significant (𝜒3
2 = 23.84, p < 0.001). 

 
Adjusting for the CC and TV main effects and their interaction reduces the 
between-school variance from 0.087 to 0.026, a drop of 70%. Thus, 70% of the 
variation in tobacco and health knowledge between schools, having accounted for 
baseline differences in students’ knowledge, is attributable to the implementation 
of the CC and TV interventions. Interestingly, the fact that 30% of the between-
school variation is not explained by the implementation of the interventions 
suggests that there are other unaccounted for school level factors which are 
leading to differences between schools in students’ knowledge.  
 
Adjusting for the CC and TV main effects and their interaction has minimal impact 
on the magnitude of the classroom level and student level variances and this is to 
be expected as cc, tv and ccXtv are school level predictors. 
 
We now turn our attention to the four effects of interest. 
 

Parameter Interpretation Estimate 

 𝛽2 effect of CC on non-TV students 0.639 

 𝛽2 + 𝛽4 effect of CC on TV students 0.319 = 0.639 -0.320 

 𝛽3 effect of TV on non-CC students 0.178 

 𝛽3 + 𝛽4 effect of TV on CC students -0.142 = 0.178 -0.320 

 
The results suggest that the CC intervention has a positive effect on students, 
irrespective of whether they receive the TV intervention (0.319) or not (0.639). 
The effect of the TV intervention, however, is less clear. The results suggest that 
the TV intervention has a positive effect on students who do not receive the CC 
intervention (0.178), but a negative effect on students who received the CC 
intervention (-0.142). These results agree with those seen in P11.1.2. 
 
Importantly, before we draw any firm conclusions, we must check the separate 
significance of these four inferences. That is, while the above joint significance 
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test reveals that the four conditions have significantly different effects from one 
another, we must additionally employ separate significance tests to establish 
whether each of the four effects of interest are individually significant. We can 
use the Intervals and Tests window to formally test the individual significance of 
these effects. For the first and third effects which each involve only one 
parameter, we have already calculated individual Wald test statistics as part of 
the previous joint Wald test reported above. The effect of CC on non-TV students 

was calculated as (𝛽2 = 0.639, 𝜒1
2 = 18.856, p < 0.001), while the effect of TV on 

non-CC students was calculated as (𝛽3 = 0.178, 𝜒1
2 = 1.538, p < 0.215). However, in 

order to calculate the effect of CC on TV students (𝛽2 + 𝛽4) and the effect of TV on 
CC students (𝛽3 + 𝛽4) we must conduct two further tests.  
 
First, consider the effect of CC on TV students. 
 
 From the Model menu, select Intervals and tests 
 Select the fixed radio button 
 Type 1 next to # of functions 
 Replace the 0 with 1 in the fixed: cc row of the #1 column 
 Replace the 0 with 1 in the fixed: ccXtv row of the #1 column 
 Click Calc 
 
You should obtain the results shown below. 
 

 
 

As expected, the combination of cc and ccXtv (𝛽2 + 𝛽4 = 0.319) is significant (𝜒2
2 = 

4.939, p = 0.026). We can repeat the above steps to test the effect of TV on CC 

students and doing this shows this effect (𝛽3 + 𝛽4 = -0.142) to be not significant (𝜒2
2 

= 0.937, p = 0.333). 
 
In sum, the results reveal that both CC effects are significant and that both TV 
effects are not significant. Thus, the CC intervention appears to be an effective 
means of improving students’ tobacco and health knowledge. The TV intervention, 
on the other hand, has no discernible effect. 
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What happens if we fail to account for baseline THKS scores? 
Earlier we stressed the importance of adjusting for baseline differences in THKS 
scores. It is interesting to consider what we would have concluded had we failed to 
do so. We therefore refit the previous model excluding prethks. 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐜𝐜𝑘 + 𝛽2𝐭𝐯𝑘 + 𝛽3𝐜𝐜𝐗𝐭𝐯𝑘 + 𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 
𝑢𝑗𝑘~N(0, 𝜎𝑢

2) 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 
Fit the model. 
 
 In the Equations window, click on the prethks term to open the X variable 

window 
 Click Delete Term 
 Click Start 
 
You should obtain the following results. 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model4’ into the box 
 Click OK 
 
We could use the Intervals and tests window to again test the significance of the 

four effects of interest: CC on  non-TV students (𝛽1 = 0.615, 𝜒1
2 = 11.365, p < 

0.001); CC on TV students  (𝛽1 + 𝛽3 = 0.264, χ2
2 = 2.211, p < 0.137); TV on non-CC 

students (𝛽2 = 0.172, 𝜒1
2 = 0.923 , p < 0.337); and TV on CC students (𝛽2 + 𝛽3 = -

0.179, χ2
2 = 0.975, p < 0.324). The magnitudes of the effects are broadly similar to 

before. This is expected since the randomisation of schools to the four study 
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conditions should mean that there is no meaningful association between the 
conditions and baseline THKS scores. However, we no longer find the effect of the 
CC intervention on students who also receive the TV intervention to be significant. 
What we can conclude from this is that failing to adjust for students’ baseline 
scores will affect our conclusions about the effectiveness of the interventions and 
this is despite the fact that students were effectively randomly assigned to the 
four different conditions. One reason why the effects in the previous model are 
less precise than the effects in the current model is because adjusting for 
students’ baseline scores reduces the residual school variation and therefore lead 
to more precise estimates of any school level variables included in the model.   
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P11.4 Adding Random Coefficients 
 
Open the worksheet ‘11.4.wsz’ 
 
From within the LEMMA Learning Environment 
 Go to Module 11: Three-Level Multilevel Models, and scroll down to MLwiN 

Datafiles 
 Click ‘11.4.wsz’ to open the worksheet 
 
In this lesson, we shall introduce classroom level random coefficients into the 
three-level model. 
 
 

P11.4.1 Adding classroom level random coefficients 
 
While it is schools which were randomly assigned to the four conditions, the 
implementation of the CC and TV interventions was carried out at the classroom 
level. Our inclusion of classroom level effects in all our models recognises that 
some classrooms may be more successful at implementing the interventions than 
others. The classroom level variance provides a measure of the extent to which 
classrooms vary in this respect. However, what all our previous models have 
implicitly assumed is that the extent to which classrooms vary is the same across 
all four conditions. There are, however, good reasons to expect this not to be the 
case. For example, one might expect it to be easier for teachers to implement the 
TV intervention in their classrooms than it is to implement the CC intervention. If 
this is the case then we might expect TV only teachers to vary less in their ability 
to implement their intervention than CC only teachers vary in their ability to 
implement their intervention. Such a scenario would likely be reflected in 
students’ scores. We would expect students in TV only classrooms to have less 
heterogeneous postintervention scores than the students in CC only classrooms. We 
can explore this hypothesis by estimating separate classroom level variances for 
each of the four conditions. 
 
First we need to generate a series of binary indicator variables for the four study 
conditions. 
 
 From the Data Manipulation menu, select Command interface 
 Type the following into the bottom pane of the window and press Enter after 

typing each command 
CALC c10 = (‘cc’==0 & ‘tv’==0) 

CALC c11 = (‘cc’==1 & ‘tv’==0) 

CALC c12 = (‘cc’==0 & ‘tv’==1) 

CALC c13 = (‘cc’==1 & ‘tv’==1) 

NAME c10 ‘neither’ 

NAME c11 ‘cc_only’ 

NAME c12 ‘tv_only’ 

NAME c13 ‘cc_and_tv’ 
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The model is written as 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽2𝐜𝐜𝑘 + 𝛽3𝐭𝐯𝑘 + 𝛽4𝐜𝐜𝐗𝐭𝐯𝑘 
 

 +𝑣𝑘 + 𝑢5𝑗𝑘𝐧𝐞𝐢𝐭𝐡𝐞𝐫𝑘 + 𝑢6𝑗𝑘𝐜𝐜_𝐨𝐧𝐥𝐲𝑘 + 𝑢7𝑗𝑘𝐭𝐯_𝐨𝐧𝐥𝐲𝑘 

 

 +𝑢8𝑗𝑘𝐜𝐜_𝐚𝐧𝐝_𝐭𝐯𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 

(

𝑢5𝑗𝑘
𝑢6𝑗𝑘
𝑢7𝑗𝑘
𝑢8𝑗𝑘

)~N

{
 
 

 
 

(

0
0
0
0

) ,

(

 
 

𝜎𝑢5
2

0 𝜎𝑢6
2

0 0 𝜎𝑢7
2

0 0 0 𝜎𝑢8
2
)

 
 

}
 
 

 
 

 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 

The four sets of classroom effects 𝑢5𝑗𝑘, 𝑢6𝑗𝑘, 𝑢7𝑗𝑘 and 𝑢8𝑗𝑘 are modelled as 

independent (the different sets of effects are not allowed to covary) as each 
classroom can only belong to one of the four study conditions. 
 
Note that we have only entered the variables neither, cc_only, tv_only and 
cc_and_tv into the level 2 random part of the model. They do not appear in the 
fixed part of the model. This is because we have already accounted for the mean 
differences between the four conditions through the inclusion of the constant and 
the variables cc, tv and ccXtv. The resulting level 2 variance function is 
 

var(𝑢5𝑗𝑘𝐧𝐞𝐢𝐭𝐡𝐞𝐫𝑘 + 𝑢6𝑗𝑘𝐜𝐜_𝐨𝐧𝐥𝐲𝑘 + 𝑢7𝑗𝑘𝐭𝐯_𝐨𝐧𝐥𝐲𝑘 + 𝑢8𝑗𝑘𝐜𝐜_𝐚𝐧𝐝_𝐭𝐯𝑘) 
 

 = 𝜎𝑢5
2 𝐧𝐞𝐢𝐭𝐡𝐞𝐫𝑘 + 𝜎𝑢6

2 𝐜𝐜_𝐨𝐧𝐥𝐲𝑘 + 𝜎𝑢7
2 𝐭𝐯_𝐨𝐧𝐥𝐲𝑘 + 𝜎𝑢8

2 𝐜𝐜_𝐚𝐧𝐝_𝐭𝐯𝑘 
 
Add the four new variables to the model 
 
 From the Model menu, select Equations 
 Click on Add Term, and select neither from the variable drop-down list and then click 

Done 
 Repeat this process to add cc_only, tv_only  and cc_and_tv to the model 
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The Equations window should now match that shown below. 
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Remove the four new variables from the fixed part of the model and enter them 
instead into the random part of the model at the classroom level. 
 
 Click on cons, uncheck the j(classid) checkbox and then click Done 
 Click on neither, uncheck the Fixed Parameter checkbox, tick the j(classid) 

checkbox and then click Done 
 Click on cc_only, uncheck the Fixed Parameter checkbox, tick the j(classid) 

checkbox and then click Done 
 Click on tv_only, uncheck the Fixed Parameter checkbox, tick the j(classid) 

checkbox and then click Done 
 Click on cc_and_tv, uncheck the Fixed Parameter checkbox, tick the j(classid) 

checkbox and then click Done 
 
The Equations window should now match that shown below. 
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Make the classroom level variance-covariance matrix diagonal so that the four 
classroom effects are modelled as independent. Then fit the model. 
 
 Click 𝛀𝑢 and then select set diagonal matrix 
 Click Start 
 
You should obtain the following results. 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model5’ into the box 
 Click OK 
 
An LR test (output not shown) comparing this model (Model 5) to one which 
assumes a constant classroom level variance across the four conditions (Model 3) 

strongly rejects the current model (𝜒3
2 = 1.14, p = 0.7678). Thus, we find no 

evidence that classroom level heterogeneity varies across the study conditions. 
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P11.4.2 Adding cross-level interactions 
 
The previous models all assumed that the CC and TV interventions have the same 
effect on all students, irrespective of the level of their prior tobacco and health 
knowledge. It may well be the case, however, that the effectiveness of each of 
these interventions is a function of students’ baseline THKS scores. That is, 
perhaps the CC intervention is relatively more effective for students with high 
prior knowledge, while the TV intervention might be relatively more effective for 
students with low prior knowledge. We can explore such hypotheses by introducing 
into our model cross-level interaction variables between the three school level 
variables cc, tv and ccXtv and the single student level variable prethks.  
 
The model, including these interactions, is written as 
 

𝐩𝐨𝐬𝐭𝐭𝐡𝐤𝐬𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 
 

 +𝛽2𝐜𝐜𝑘 + 𝛽3𝐭𝐯𝑘 + 𝛽4𝐜𝐜𝐗𝐭𝐯𝑘 
 

 +𝛽5𝐜𝐜𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽6𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽7𝐜𝐜𝐗𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 

 

 +𝑣𝑘 + 𝑢𝑗𝑘 + 𝑒𝑖𝑗𝑘 

 
𝑣𝑘~N(0, 𝜎𝑣

2) 
 
𝑢𝑗𝑘~N(0, 𝜎𝑢

2) 

 
𝑒𝑖𝑗𝑘~N(0, 𝜎𝑒

2) 
 
The following table summarises the four effects of interest and how they are 
obtained from the model parameters. 
 

Parameter Interpretation 

𝛽2 + 𝛽5𝐜𝐜𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 effect of CC on non-TV students 

𝛽2 + 𝛽4 + 𝛽5𝐜𝐜𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽7𝐜𝐜𝐗𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 effect of CC on TV students 

𝛽3 + 𝛽6𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 effect of TV on non-CC students 

𝛽3 + 𝛽4 + 𝛽6𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 + 𝛽7𝐜𝐜𝐗𝐭𝐯𝐗𝐩𝐫𝐞𝐭𝐡𝐤𝐬𝑖𝑗𝑘 effect of TV on CC students 

 
Notice that the magnitude of each of these effects is now a function of prethks. 
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Begin to specify the model by first reverting back to a simple random intercept at 
the classroom level. 
 
 In the Equations window, click neither and then click Delete term 
 Delete the terms cc_only, tv_only and cc_and_tv in the same way 
 Click on the cons and ensure all the checkboxes are ticked then click Done 
 

 
 
Next add in the cross-level interaction between cc and prethks. 
 
 Click Add term and select 1 from the order drop-down list 
 Select cc from the first variable drop-down list 
 Select prethks from the second variable drop-down list 
 Check that the window matches that shown below and then click Done 
 

 
 
Repeat this process in order to add the remaining two cross-level interactions 
 
 Click Add term and select 1 from the order drop-down list 
 Select tv from the first variable drop-down list 
 Select prethks from the second variable drop-down list 

 Click Done 
 Click Add term and select 1 from the order drop-down list 
 Select ccXtv from the first variable drop-down list 
 Select prethks from the second variable drop-down list 
 Click Done 
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The Equations window should now look as follows. 
 

 
 
Fit the model. 
 
 Click Start 
 

 
 
Store the estimation results. 
 
 In the Equations window toolbar, click Store 
 Type ‘model6’ into the box 
 Click OK 
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An LR test (𝜒2
3 = 5.81, p = 0.1211) comparing this model (Model 6) to the model 

with no cross-level interactions (Model 3) shows  that including the three 
interaction terms does not significantly improve the fit of the model. This suggests 
that the effects of the CC and TV interventions do not actually vary by students’ 
levels of prior knowledge. However, looking at the coefficients of the cross-level 
interactions, we see that the first two coefficients (ccXprethks and tvXprethks) 
are effectively zero while the third coefficient (ccXtvXprethks), although not 
significant is fairly large. Indeed the magnitude of the third coefficient suggests 
that the relationship between baseline and postintervention scores for students 
receiving both interventions is approximately half as strong as it is for students in 
the other three conditions. 
 
We can visualise these results by calculating model predictions and then plotting 
them against students’ baseline scores. First we predict students’ scores. 
 
 From the Model menu, select Predictions 
 Click on fixed and select Include all fixed coefficients 
 In the output from prediction to drop-down list, select c18 
 Check that the window matches that shown below and then click Calc 
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We then plot the predicted postintervention scores against students’ baseline 
scores separately for the four conditions. However, first we need to generate a 
category indicator variable for the four conditions. 
 
 From the Data Manipulation menu, select Command interface 
 Type the following into the bottom pane of the window and press Enter after 

typing each command 
CALC c19 = 1 + ‘cc’ + 2*‘tv’ 

NAME c19 ‘condition’ 

 In the Names window, select the variable condition and then, under Column, 
click the Toggle Categorical button to declare the variable to be a categorical 
variable 

 Under Categories, click on View to open the Set category names window 
 Click condition_1 to highlight the value label associated with Code 1 and then 

click the Edit button and rename the value label to ‘Neither’ 
 Repeat this process to rename the value labels associated with Code 2, 3 and 4 

to ‘CC only’, ‘TV only’ and ‘CC and TV’, respectively 
 Check that the window matches that shown below and then click OK  
 

 
 
We can now proceed to plot the graph. 
 
 From the Graphs menu, select Customised Graph(s) 
 On the plot what? tab, select line from the plot type drop-down list 
 For the y drop-down list select c18  
 For the x drop-down list select prethks 
 For the group drop-down list select condition 
 Click Apply 
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You should see the following plot. 
 

 
 
We can make this plot more informative by colour coding the lines and by adding a 
legend to the graph. 
 
 In the Customised graph window, select the plot style tab 
 Next to the colour drop-down list select 16 rotate 
 On the other tab, tick the group code checkbox 
 Click Apply 
 

 
 
The plot clearly shows that the relationship between baseline and postintervention 
scores is much shallower for students receiving both interventions (CC & TV) than 
it is for students in the other three groups. The plot also suggests that receiving 
both interventions relative to receiving neither intervention is effective for 
students with low prior knowledge, but not so for students with high prior 
knowledge. For example students with a baseline score of 0 who receive both 
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interventions are predicted to score approximately two-thirds of a point higher 
than equivalent students who receive neither intervention. However, students with 
a baseline score of 6 who receive both interventions are not predicted to score any 
higher than equivalent students who receive neither intervention. 
 
Graphing the model predictions has shown us that the predicted lines for the 
Neither, CC only and TV only groups are effectively parallel, while the line for the 
CC & TV group is substantially shallower. Given this, we might choose to simplify 
the current model by forcing the slopes for the first three groups to be the same. 
This can be achieved by simply removing the variables ccXprethks and tvXprethks 
from the model. Interestingly, if we do this and refit the model we find that this 
new model with the single cross-level interaction ccXtvXprethks is preferred over 

the model with no cross-level interactions (𝜒1
2 = 5.73, p = 0.017). This suggests that 

the relationship seen for students in the CC & TV group is in fact significantly 
different from that of the other groups combined.  
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Further Reading 
 
Readers interested in the tobacco and health application analysed in this practical 
are referred to the original study by Flay et al. (1989) and the subsequent three-
level multilevel analysis by Hedeker et al. (1994) for further information. 
 
Researchers familiar with the R or Stata software packages may wish to fit three-
level and other multilevel models available in MLwiN by calling MLwiN from within 
R or Stata using the R2MLwiN (Zhang et al., 2012) and runmlwin (Leckie and 
Charlton, 2013) commands, respectively.   
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