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Abstract 

Schwannomatosis and neurofibromatosis type 2 (NF2) are both characterized by the 

development of multiple schwannomas but represent different genetic entities. Whereas NF2 

is caused by mutations of the NF2 gene, schwannomatosis is associated with germline 

mutations of SMARCB1 or LZTR1. Here, we studied 15 sporadic patients with multiple non-

intradermal schwannomas, but lacking vestibular schwannomas and ophthalmological 

abnormalities, who fulfilled the clinical diagnostic criteria for schwannomatosis. None of 

them harboured germline NF2 or SMARCB1 mutations as determined by the analysis of blood 

samples but seven had germline LZTR1 variants predicted to be pathogenic. At least two 

independent schwannomas from each patient were subjected to NF2 mutation testing. In five 

of the 15 patients, identical somatic NF2 mutations were identified (33%). If only those 

patients without germline LZTR1 variants are considered (n=8), three of them (37.5%) had 

mosaic NF2 as concluded from identical NF2 mutations identified in independent 

schwannomas from the same patient. These findings imply that a sizeable proportion of 

patients who fulfil the diagnostic criteria for schwannomatosis, are actually examples of 

mosaic NF2. Hence, the molecular characterization of tumours in patients with a clinical 

diagnosis of schwannomatosis is very important. Remarkably, two of the patients with 

germline LZTR1 variants also had identical NF2 mutations in independent schwannomas from 

each patient which renders differential diagnosis of LZTR1-associated schwannomatosis 

versus mosaic NF2 in these patients very difficult.  
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Introduction 

Schwannomatosis and neurofibromatosis type 2 (NF2) are tumour suppressor syndromes that 

follow an autosomal dominant pattern of inheritance and predispose affected individuals to 

multiple schwannomas. Nevertheless, both disorders have been considered to be separate 

entities. Whereas NF2 is caused by mutations of the NF2 gene on chromosome 22q12.2 

(Rouleau et al. 1993; Trofatter et al. 1993), patients with schwannomatosis lack germline NF2 

mutations (Jacoby et al. 1997; MacCollin et al. 2003). Instead, schwannomatosis patients have 

been shown to harbour germline mutations within SMARCB1 or LZTR1, both of which are 

also located on 22q (Hulsebos et al. 2007; Boyd et al. 2008; Hadfield et al. 2008; Sestini et al. 

2008; Rousseau et al. 2011; Smith et al. 2012, 2015; Hutter et al. 2014; Piotrowski et al. 2014; 

Paganini et al. 2015; Asai et al. 2015). However, 50-60% of sporadic patients with 

schwannomatosis and 15-30% of those patients with a family history of schwannomatosis, do 

not harbour identifiable germline mutations within either SMARCB1 or LZTR1 (reviewed by 

Kehrer-Sawatzki et al. 2017). Hence, further schwannomatosis-causing genes may well exist 

but as yet they have not been identified. Even though patients with schwannomatosis lack 

germline NF2 mutations, the tumours of these patients frequently show somatic, tumour-

specific NF2 mutations and the loss of the second NF2 allele (Boyd et al. 2008; Sestini et al. 

2008; Hadfield et al. 2008, 2010; Piotrowski et al. 2014; Paganini et al. 2015; Smith et al. 

2017). According to the 4-hit/3-step model of tumorigenesis, in schwannomas from patients 

harbouring LZTR1 (or SMARCB1) germline mutations, the chromosome 22 is retained that 

harbours the germline LZTR1 mutation and an NF2 allele with a somatically acquired tumour-

specific mutation. The other copy of chromosome 22 is lost or partially deleted, including the 

wildtype alleles of LZTR1 (or SMARCB1) and NF2 (Figure 1). These observations indicate 

that NF2 inactivation is important for schwannoma growth in patients with NF2 as well as in 

patients with schwannomatosis. 

In terms of their clinical manifestations, overlap is apparent between schwannomatosis and 

NF2 (Supp. Tables S1 and S2). Peripheral nerve schwannomas are common in both disorders, 

although more prevalent in schwannomatosis than in NF2. Non-vestibular intracranial 

schwannomas are also associated with both disorders but occur less commonly in 

schwannomatosis as compared with NF2 (reviewed by Kehrer-Sawatzki et al. 2017). By 

contrast, bilateral vestibular schwannomas in patients younger than 70 are pathognomonic for 

NF2 and have never been observed in patients with schwannomatosis as yet. Unilateral 

vestibular schwannomas (UVS) are common in patients with NF2 and approximately 40% of 

patients with UVS and NF2 develop a contralateral tumour later in life (Smith et al. 2017). 

Patients with UVS and two non-intradermal schwannomas fulfil the clinical diagnostic 

criteria for NF2 (Supp. Table S2). Smith et al. (2017) showed that among 50 patients with 

UVS and two non-intradermal schwannomas who did not develop a contralateral vestibular 

schwannoma, nine (18%) had NF2 due to a germline NF2 mutation whilst three (6%) of the 

50 patients had mosaic NF2. Remarkably, five (10%) of the 50 patients had germline LZTR1 

mutations (Smith et al. 2017). Indeed, other studies confirmed that UVS in combination with 

two or more intradermal schwannomas are observed in patients with schwannomatosis and 

LZTR1 germline mutations (Mehta et al. 2016; Gripp et al. 2017). Even though UVS is much 

less common in the context of schwannomatosis than in NF2, these findings are clearly 

indicative of a degree of clinical overlap between schwannomatosis and NF2. However, the 

extent of this overlap between these disorders, in particular between schwannomatosis and 

mosaic NF2, has not yet been fully investigated. Patients with multiple non-intradermal 

schwannomas in the absence of bilateral vestibular schwannoma may be affected either by 
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schwannomatosis or by mosaic NF2. Somatic mosaicism in NF2 is not uncommon since it has 

been detected in 33% of sporadic NF2 cases with bilateral vestibular schwannomas (BVS) 

and in up to 60% of patients with UVS (Moyhuddin et al. 2003; Evans et al. 2007; Halliday et 

al. 2017). Patients with mosaic NF2 often present with a mild clinical phenotype (Halliday et 

al. 2017). In patients with mosaic NF2, the ‘first-hit’ NF2 gene mutation may be present at a 

low level in blood cells or is only detected in tumour tissue but not in blood cells (Evans et al. 

1998a, 2007; Kluwe and Mautner, 1998; Kluwe et al. 2003; Paganini et al. 2014; Spyra et al. 

2015; Smith et al. 2017). To distinguish between schwannomatosis and mosaic NF2 confined 

to tumour tissue and not detectable in blood, NF2 mutation testing is recommended to be 

performed in more than one tumour from a given patient. If an identical NF2 mutation (first-

hit) is observed in two independent schwannomas from a given patient in addition to tumour-

specific (second-hit) inactivation of the other NF2 allele, mosaic NF2 is assumed to be the 

underlying cause of the disease. Indeed, by means of this approach, Castellanos et al. (2015) 

identified mosaic NF2 in a patient considered to have segmental schwannomatosis but 

without either an LZTR1 or a SMARCB1 germline mutation. 

The aim of the study presented here was to investigate the overlap between mosaic NF2 and 

schwannomatosis in patients without vestibular schwannomas but with spinal and peripheral 

nerve schwannomas. To this end, we analysed 15 patients who fulfilled the clinical diagnostic 

criteria for schwannomatosis and in whom two locally distinct, independent schwannomas 

could be analysed for the presence of an identical NF2 gene mutation, that would imply 

mosaic NF2. All 15 patients were negative for germline mutations in NF2 and SMARCB1 but 

seven of them exhibited germline LZTR1 mutations. Remarkably, five (33%) of the 15 

patients initially diagnosed with schwannomatosis harboured identical NF2 mutations in 

independent schwannomas indicative of a considerable overlap between mosaic NF2 and 

schwannomatosis.  

 

Patients and methods 

Fifteen sporadic patients who fulfilled the current clinical diagnostic criteria for 

schwannomatosis but not NF2 were analysed. The current diagnostic criteria for NF2 and 

schwannomatosis are listed in Supp. Tables S1 and S2. None of the 15 patients had unilateral 

vestibular schwannomas as determined by MRI and none of them had ocular anomalies such 

as subcapsular cataracts or retinal hamartomas as determined by ophthalmological 

investigation. The patients provided written informed consent and the study was approved by 

the ethics committee of the Ärztekammer Hamburg.  

 

Mutation analysis 

The presence of germline mutations of SMARCB1, LZTR1 and NF2 in these patients was 

investigated by Sanger sequencing using DNA isolated from blood samples. DNA derived 

from at least two different schwannomas from each of the 15 patients was subjected to NF2 

mutation testing by Sanger sequencing. The tumour DNA samples were also analysed by 

multiplex ligation-dependent probe amplification (MLPA) to detect loss of heterozygosity 

(LOH) of the NF2 gene using the SALSA MLPA P044 NF2 probemix (MRC Holland, The 

Netherlands). The LZTR1 variants identified in the blood of patients 4075 and 3617 were also 

detected in the schwannomas of these patients by means of PCR and sequence analysis using 

the primers listed in Supp. Table S3. The SALSA MLPA probemix P455-A1 LZTR1 ((MRC 

Holland, The Netherlands) was used to analyse the tumours of patients 4075 and 3617. 
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Evaluation of variants detected  

The allele frequencies of the LZTR1 variants identified were extracted from the Exome 

Aggregation Consortium and the genome Aggregation Database (ExAC/gnomAD) (Lek et al. 

2016). The latter includes all variants identified in 126,216 exomes and 15,136 whole-genome 

sequences analysed as part of various disease-specific and population genetic studies. 

Individuals known to be affected by severe pediatric disease and their first-degree relatives 

were removed from the database. According to Lek et al. (2016), most ExAC individuals 

were ascertained for biomedically important disease; however, the inclusion of both cases and 

controls for several known polygenic disorders indicates that the database is likely to contain 

some disease-associated variants. It nevertheless represents the most comprehensive database 

available for the assessment of variant frequencies. Allele frequencies were also evaluated by 

the analysis of the NHLBI Exome Sequencing Project (ESP) Exome Variant Server 

(http://evs.gs.washington.edu/EVS). 

Combined Annotation Dependent Depletion (CADD) analysis was performed in order to 

assess the potentially deleterious character of missense variants 

(http://cadd.gs.washington.edu/score) (Kircher et al. 2014). The likely impact of missense 

variants was separately evaluated by means of PolyPhen-2 (Adzhubei et al. 2010), SIFT (Ng 

and Henikoff, 2003) and MutationTaster2 (Schwarz et al. 2014). Intronic splice site variants 

were evaluated by means of the Human Splicing Finder (HSF 3.1) tool which combines 12 

different algorithms to identify and predict a given mutations’ effect on splicing-relevant 

motifs (Desmet et al. 2009). 

 

Results 

Germline SMARCB1 or NF2 gene mutations were not detected in the blood of any of the 15 

patients analysed, who fulfilled the clinical diagnostic criteria for schwannomatosis, and from 

whom two different schwannomas could be analysed in order to investigate the occurrence of 

identical NF2 mutations.  

 

Germline LZTR1 mutations  

Seven of the 15 patients exhibited germline LZTR1 variants (Figure 2). Five of the seven 

variants were protein truncating (Table 1). In the following, the features of two of these 

germline LZTR1 variants are presented in greater detail since the patients harbouring these 

variants also exhibited identical NF2 mutations in independent schwannomas and hence the 

nature of these germline LZTR1 variants are of particular interest. Importantly, the LZTR1 

variants in patients 3617 and 4075 were detected in blood and in the tumour samples of the 

patients implying that these variants were constitutional (Supp. Figures S1 and S2).  

 

LZTR1 missense variant c.1792T>C in patient 3617 

The LZTR1 missense variant c.1792T>C (p.Cys598Arg) was detected in the blood of patient 

3617. This missense variant was predicted to be ‘probably damaging’ with a score of 1.00 

according to PolyPhen-2, as ‘deleterious’ by SIFT (Score: 0.02) and as ‘disease-causing’ by 

MutationTaster2 (score: 0.999). The LZTR1 variant c.1792T>C has a combined annotation‐
dependent depletion (CADD) score of 27.1 (Kircher et al. 2014) indicating that the missense 

variant is among the top 1% of variants in the human genome in terms of its likelihood of 

being deleterious. The LZTR1 variant c.1792T>C identified in patient 3617 is not listed in the 

gnomAD database. Nor has it been reported as a variant by the NHLBI Exome Sequencing 

Project (ESP) or in previously studied patients with schwannomatosis or Noonan syndrome 

http://evs.gs.washington.edu/EVS
http://cadd.gs.washington.edu/score
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(Yamamoto et al. 2015; Johnston et al. 2017). The gnomAD database does however report a 

missense variant, c.1793G>A (p.Cys598Tyr), which affects the same amino acid as the 

variant observed in patient 3617, namely the cysteine at position 598 of the LZTR1 protein. 

This variant (c.1793G>A) is very rare since it has only been observed once among 245,892 

alleles investigated.  

 

LZTR1 truncating variant c.628C>T in patient 4075 

The protein truncating LZTR1 variant identified in patient 4075 (c.628C>T; p.R210*) has 

been reported previously in a patient with schwannomatosis (Paganini et al. 2015) and in the 

father of four children with autosomal recessive Noonan syndrome (Johnston et al. 2017). The 

father has been investigated by contrast spinal MRI and schwannomas or meningiomas were 

not identified. However, non-contrast whole body MRI identified a possible schwannoma at 

the base of the neck/upper chest region, near the brachial plexus (Johnston et al. 2017). 

LZTR1 variant c.628C>T; p.R210* has an allele frequency of 6.88e-5 (observed 19-times 

among 276,182 alleles investigated) according to the gnomAD database (Table 1). This 

CG>TG transition may result from recurrent mutation as a consequence of methylation-

mediated deamination of 5mC.  

 

NF2 mutation analysis of schwannomas 

Remarkably, patient 4075 with the protein truncating LZTR1 variant c.628C>T (p.R210*) 

exhibited an identical NF2 mutation (c.586delC; p.R196Efs*13) in two independent 

schwannomas (Table 1). One of these schwannomas was located in the abdominal wall 

around the navel; it was well circumscribed and 2-3cm in diameter. The other tumour was an 

intraspinal, intradural schwannoma in the region of the seventh and eighth thoracic vertebrae. 

The tumours were clearly independent and not part of a single internal tumorous mass.  

This proved not to be an isolated case since patient 3617, with the LZTR1 missense variant 

c.1792T>C (p.Cys598Arg), also had an identical NF2 mutation (c.169C>T; p.R57*) in three 

independent schwannomas which derived from different anatomical locations. One 

schwannoma was an intraspinal tumour, and the other two were located in the plexus 

brachialis and the elbow, respectively (Table 3). The truncating NF2 mutation p.R57* has 

been identified in many previous studies as a recurrent NF2 germline variant (Bourn et al. 

1994; MacCollin et al. 1994; Evans et al. 1998b; Kluwe et al. 1996; Parry et al. 1996; Baser et 

al. 2006; Piotrowski et al. 2014) and as a somatic mutation in the blood of a patient with 

mosaic NF2, as a tumour-specific variant in NF2 patients (Irving et al. 1994; Moyhuddin et al. 

2002; Piotrowski et al. 2014) and in a sporadic UVS (Lee et al. 2012). Hence, this CG>TG 

transition is likely to result from methylation-mediated deamination of 5mC leading to 

recurrent mutation.  

In contrast to these two patients, the other five patients with germline LZTR1 mutations 

exhibited different NF2 mutations (or no detectable NF2 mutation) in at least two 

schwannomas of each patient.  

In five of the eight patients without germline LZTR1, SMARCB1 and NF2 mutation, the 

analysis of at least two independent tumours did not indicate an identical NF2 mutation 

rendering mosaic NF2 in these patients unlikely. However, in three of the eight patients 

without germline LZTR1, SMARCB1 and NF2 mutation, an identical NF2 mutation was 

identified in independent tumours of each patient indicating that these patients had mosaic 

NF2 instead of schwannomatosis (Table 2).  
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Taken together, NF2 mutation analysis of at least two independent tumours from each patient 

suggested mosaic NF2 in five (33%) of the 15 patients investigated. The clinical features 

observed in these five patients and tumour locations are summarized in Table 3. Mosaic NF2 

could be unambiguously diagnosed in three of the eight patients, who did not exhibit LZTR1 

germline variants (Table 2). By contrast, a clear and unambiguous distinction between mosaic 

NF2 and LZTR1-associated schwannomatosis is difficult to make in the remaining two 

patients (3617 and 4075), since they harboured germline LZTR1 variants that were predicted 

to be pathogenic in addition to identical somatic NF2 mutations identified in independent 

schwannomas (Figure 2).  

 

Analysis of the 4-hit/3-step model of tumorigenesis in schwannomas of patients 3617 and 

4075 

The 4-hit/3-step model of tumorigenesis in patients with germline LZTR1 mutations implies 

that the LZTR1 germline mutation (first hit) is retained in the schwannoma and the wildtype 

allele is inactivated by somatic loss of heterozygosity (LOH) as the second mutational hit 

(Figure 1). LOH is commonly caused by a large deletion or mitotic recombination event, 

which also encompasses one copy of NF2 located approximately 8-Mb distal to LZTR1. This 

loss of one NF2 allele represents the third mutational hit. According to this model, the second 

NF2 allele is inactivated by a somatic, intragenic NF2 mutation which represents the fourth 

hit (Figure 1). These four mutational hits are mediated by three steps, since the large deletion 

or mitotic recombination event causes the loss of LZTR1 and NF2. To investigate whether this 

model of tumorigenesis applies to the schwannomas of patients 3617 and 4075, LZTR1 

mutation analysis and MLPA for LZTR1 and NF2 was performed. We observed that the 

germline LZTR1 variants identified in blood of patients 3617 and 4075 were retained in the 

respective schwannoma samples. Sequence analysis of LZTR1 exon 7 amplified by PCR from 

schwannomas T2568,1 and T2716 of patient 4075 with the LZTR1 variant c.628C>T 

indicated a much higher allele peak size of the mutant allele (T) than the wildtype allele (C) 

(Supp. Figure S1) which implies the loss of the wildtype allele in the majority of tumour cells 

in both schwannomas as confirmed by MLPA. In both tumours, MLPA analysis also 

indicated the loss of one copy of NF2 in addition to the mutation of the other NF2 allele 

(summarized in Table 1). These findings indicate that the 4-hit/3-step model of tumorigenesis, 

characterized by biallelic inactivation of LZTR1 and NF2, is applicable to the schwannomas 

of patient 4075.The germline LZTR1 variant c.1792T>C was detected in all three 

schwannomas of patient 3617 analysed. In tumours T2396 and T2718 of this patient, analysis 

of the allele peak size at position c.1792 indicated low amounts of the wildtype LZTR1 allele 

suggestive of its loss in the majority of tumour cells and hence biallelic inactivation of LZTR1 

(Supp. Figure S2). Taken together with the biallelic inactivation of the NF2 gene observed in 

these tumours (Table 1), we conclude that the 4-hit/3-step model of tumorigenesis is also 

applicable to these schwannomas.  

However, one schwannoma (T2687) of patient 3617 exhibited equal amounts of the wildtype 

and the germline LZTR1 variant at position c.1792 indicating that the wildtype LZTR1 allele is 

not deleted (Supp. Figure S2). Likewise, the second NF2 allele is not deleted in this tumour as 

determined by MLPA (Table 1). Nevertheless, a 4-hit mutational mechanism may also be 

underlying the growth of this schwannoma even though more than three steps would have 

been necessary to inactivate both alleles of NF2 and LZTR1.  
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Discussion 

Clinically, schwannomatosis is distinguished from NF2 by the absence of bilateral vestibular 

schwannomas and ependymomas (Merker et al. 2012; Smith et al. 2017). However, non-

intradermal schwannomas, including spinal schwannomas, are common in both disorders 

although less frequent in NF2 as compared with schwannomatosis. If patients present with 

multiple non-intradermal schwannomas, in the absence of vestibular schwannoma or multiple 

meningiomas, the differential diagnosis of mosaic NF2 versus schwannomatosis based solely 

upon clinical criteria, is not possible (Evans et al. 1997; Murray et al. 2006; Plotkin et al. 

2013).  

In the study presented here, we analysed tumour tissue from 15 patients who had multiple 

non-intradermal schwannomas and fulfilled the clinical diagnostic criteria for 

schwannomatosis. Seven of these 15 patients had germline LZTR1 mutations but none of them 

had germline mutations in NF2 or SMARCB1. The analysis of at least two independent 

schwannomas from each patient indicated that five of the 15 patients exhibited identical NF2 

mutations in independent schwannomas (33%). None of the patients had ocular anomalies 

such as subcapsular cataracts or retinal hamartomas as determined by ophthalmological 

investigation. The type and the location of the tumours of these patients are summarized in 

Table 3. Three of the five patients did not have a germline variant in LZTR1 and the finding of 

identical NF2 mutations in independent schwannomas in these cases points to a diagnosis of 

mosaic NF2 instead of schwannomatosis (Figure 2; Table 2). These findings clearly indicate 

the high value of mutation analysis of independent schwannomas in order to identify patients 

with mosaic NF2. However, two of the five patients with identical NF2 mutations in 

independent schwannomas had germline LZTR1 variants predicted to be pathogenic (patients 

3617 and 4075; Table 1). In these cases, a clear distinction between mosaic NF2 and LZTR1-

associated schwannomatosis is extremely difficult to make. LZTR1 exhibits a loss-of-function 

intolerance (pLI) factor of 0 (Lek et al. 2016) indicating that loss-of function variation is 

tolerated. Indeed, some LZTR1 variants have been shown to be associated with reduced 

penetrance; thus, to date, ten unrelated and clinically unaffected LZTR1 mutation carriers have 

been identified who had relatives harbouring the same mutation and were affected by 

schwannomatosis (Piotrowski et al. 2014; Paganini et al. 2015; Smith et al. 2015). Although 

the LZTR1 variants of patients 3617 and 4075 analysed here were not among those variants 

reported as being associated with reduced penetrance, this does not exclude the possibility 

that these variants might be of reduced penetrance. Siblings or offspring of patients 3617 and 

4075 with germline LZTR1 variants and identical NF2 mutations in schwannomas were not 

available for analysis which could have helped to distinguish between NF2 and 

schwannomatosis in these cases. In order to distinguish between mosaic NF2 and 

schwannomatosis in patients with germline LZTR1 variants, it is also important to evaluate the 

type of somatic NF2 mutation. In patient 3617 with the germline LZTR1 variant c.1792T>C 

(p.Cys598Arg), the truncating NF2 mutation c.169C>T (p.R57*) was identified in 

independent tumours. This CG>TG transition has been previously described as a recurrent 

NF2 mutation (Evans et al. 1998b; Kluwe et al. 1996; Parry et al. 1996; Lee et al. 2012; 

Piotrowski et al. 2014). It may be argued that the somatic CG>TG transition could have 

occurred independently in spatially different schwannoma precursor cells in patient 3617 and 

hence these mutations might represent independent events. However, since this mutation was 

detected in three independent schwannomas from this patient, this postulate appears unlikely.  

Taken together, on the basis of what is currently known about LZTR1 and the variants 

identified in patients 3617 and 4075, it is not possible to distinguish between mosaic NF2 and 
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LZTR1-associated schwannomas in these patients. Nevertheless, the identification of mosaic 

NF2 in three patients (3730, 4474 and 4175), who were initially diagnosed with 

schwannomatosis by means of clinical criteria and who did not harbour LZTR1 germline 

variants, indicates the value of the analysis of independent tumours from the same patient.   

Two of the five patients with identical NF2 mutations in independent tumours had 

meningiomas. These two patients (patients 3730 and 4175) did not exhibit a germline LZTR1 

variant. NF2 is known to confer an increased risk of meningioma, and intracranial 

meningiomas have been reported to occur in approximately 50% of NF2 patients (Smith et al. 

2011). By contrast, meningiomas are much less common in schwannomatosis, being observed 

in only 5% of patients (Merker et al. 2012). Smith et al. (2017) reported that none of the 64 

LZTR1 mutation carriers identified by them had a meningioma. Hence, the occurrence of 

meningiomas in patients with non-intradermal schwannomas, in the absence of vestibular 

schwannomas and without germline SMARCB1, LZTR1 and NF2 mutations, could be 

suggestive of mosaic NF2 instead of schwannomatosis.  

Schwannomatosis differs from NF2 not only in terms of the much lower prevalence of 

vestibular schwannomas and meningiomas but also in terms of the frequent occurrence of 

frequent chronic and severe pain. Merker et al. (2012) investigated 87 patients with 

schwannomatosis, 50 of whom (57%) presented with pain, including 40 patients (46%) 

experiencing pain not associated with a specific tumour and 10 patients (11%) with tumour-

associated pain. Chronic neuropathic pain was the most common symptom (68%) in patients 

with schwannomatosis, and it persisted despite both surgical and medical attempts to manage 

it (Merker et al. 2012). The neuropathic pain in patients with schwannomatosis has been 

associated with tumour burden but not location, and a genetic contribution to the underlying 

pain syndrome is hypothesized (Merker et al. 2012; Jordan et al. 2018). Two of the five 

patients investigated by us, who had identical NF2 mutations in independent schwannomas, 

suffered from generalized pain (patients 4075 and 4175). Whilst patient 4075 had a germline 

LZTR1 variant, such an alteration was not identified in patient 4175. Further studies are 

needed to investigate the genetic causes underlying neuropathic pain in these patients. 

Taken together, our findings serve to emphasize the point that NF2 mutation testing of 

independent tumours from the same patient is necessary to distinguish between mosaic NF2 

and schwannomatosis in patients with multiple non-intradermal schwannomas who fulfil the 

clinical diagnostic criteria for schwannomatosis. However, even when this approach is 

applied, a differential diagnosis may still be difficult in a subgroup of patients as exemplified 

by patients 3617 and 4075 with germline LZTR1 variants predicted to be pathogenic and 

identical NF2 mutations in independent schwannomas.  
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Legends 

Figure 1: Schwannomagenesis according to the 4-hit/3-step model. This model of 

tumorigenesis in patients with germline LZTR1 mutations implies that the LZTR1 germline 

mutation (first hit; (1)) is retained in the schwannoma while the wildtype LZTR1 allele is 

inactivated by loss of heterozygosity (LOH) as the second mutational hit (2). LOH is caused 

by a large deletion or mitotic recombination event, which also encompasses one copy of NF2 

located approximately 8-Mb distal to LZTR1. This loss of one NF2 allele represents the third 

mutational hit (3). According to this model, the second NF2 allele is inactivated by an 

intragenic NF2 mutation (fourth hit; (4)). These four mutational hits are mediated by three 

steps, since the large deletion or mitotic recombination event causes the loss of both, LZTR1 

and NF2. Chr.22: chromosome 22. 

 

Figure 2: Results of the NF2 mutation testing in at least two independent schwannomas of 15 

patients who were negative for germline SMARCB1 and NF2 mutations. UVS: unilateral 

vestibular schwannoma. 

 

 

 


