

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/113457/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

 $\label{eq:constraint} \begin{array}{l} \mbox{Marquart, Wijnand, Morgan, David J. , Hutchings, Graham J. , Claeys, Michael and Fischer, Nico 2018. \\ \mbox{Oxygenate formation over K/} \beta-Mo2C \mbox{ catalysts in the Fischer-Tropsch synthesis. Catalysis Science and } \\ \mbox{Technology 8 (15) , pp. 3806-3817. 10.1039/C8CY01181H} \end{array}$

Publishers page: http://dx.doi.org/10.1039/C8CY01181H

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Oxygenate formation over K/β-Mo₂C catalyst in the Fischer-Tropsch synthesis

Wijnand Marquart^a, David J. Morgan^b, Graham J. Hutchings^b, Michael Claeys^a and Nico Fischer^a*

^a Catalysis Institute and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, Cape Town, South Africa. ^b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, United Kingdom. * nico.fischer@uct.ac.za

Figure S 1: TPH profile of sample prepared at 760°C. Red line is the temperature program and the grey line is the formation of CH_4 indicated with the area obtained from the GC-TCD. T_{final} = 800°C, ramp rate <550°C = 10°C/min; >550°C = 1°C/min, H₂SV ~ 9 L/h/g_{cat}.

Figure S 2: TPH profile of sample prepared at 1000°C. Red line is the temperature program and the grey line is the formation of CH₄ indicated with the area obtained from the GC-TCD. $T_{final} = 800^{\circ}$ C, ramp rate = 1°C/min, H₂SV ~ 9 L/h/g_{cat}.

Figure S 3: Chain growth probability as a function of CO conversion towards linear olefins for promoted (red circles) and unpromoted (grey squares) samples.

Figure S 4: Chain growth probability as a function of CO conversion towards linear paraffins for promoted (red circles) and unpromoted (grey squares) samples.

Table S 1: GC-TCD operating settings

Model: GC-Model Varian CP-4900

	Channel 1	Channel 2	Channel 3
Column	molesieve (MS5A)	PorapakQ	molesieve (MS5A)
Column length	20 m	10 m	10 m
Carrier gas	H2	H2	Ar
Injection time	350 ms	350 ms	350 ms
Injector temperature	-	80°C	-
Column oven temperature	80°C	60°C	`
Column pressure	1.5 bar	1 bar	1.5 bar
Stabilization time		5 s	
Sampling time		35 s	

Table S 2: GC-FID operating settings

Model: GC-Model Varia	in 3900		
Detector	Flame	ionization d	etector (FID)
Detector temperature			200°C
Injector temperature			200°C
Split ratio			7
Column			
Column pressure			1.72 bar
Flame gas	H2		30 ml/min
Makeup gas	N2		25 ml/min
Air flow			300 ml/min
Temperature program	Ramp (°C/min)	Step (°C)	Time (min)
	-	-55	1.5
	9	0	0
	4	100	1
	4	200	2
	10	280	5
	20	150	-
Total time			80 min
Coolant			CO2 (liquid)