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Abstract: With the increasing number of electric vehicles (EVs), the EV fast charging load will significantly10

affect the voltage quality of electricity distribution networks. On the other hand, EVs have potentials to change11

the choices of charging locations due to the incentives from the variations of charging prices, which can be12

considered as a flexible response resource for electricity distribution networks. In this paper, a charging pricing13

strategy of EV fast charging stations (FCSs) was developed to determine the pricing scheme for the voltage14

control of electricity distribution networks, which consisted of a simulation model of EV mobility and a double-15

layer optimization model. Considering the travel characteristics of users, the simulation model of EV mobility16

was developed to accurately determine the fast charging demand. Taking the total income of FCSs and the users’17

response to the pricing scheme into account, the double-layer optimization model was developed to optimize the18

charging pricing scheme and minimize the total voltage magnitude deviation of distribution networks. A test case19

was used to verify the proposed strategy. The results show that the spatial distribution of EV fast charging loads20

was reallocated by the proposed charging pricing scheme. It can also be seen that the proposed strategy can make21

full use of the response capacity from EVs to improve the voltage profiles without decreasing the income of the22

FCSs.23

The short version of the paper was presented at ICAE2017, Aug 21-24, Cardiff, UK. This paper is a substantial

extension of the short version of the conference paper.
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1. Introduction26

With the growing concerns on the energy depletion and environmental issues around the world, the large-scale27

adoption of electric vehicles (EVs) is considered as an effective way in decarbonizing the transport sector. In28

recent years, the EV industry has made considerable progress with the great promotion from governments and29

automobile enterprises [1]. As the EV supply equipment, the charging infrastructure plays a crucial role in the30

EVs promotion [2]. With respect to the emergency charging of EVs, the fast charging station (FCS) is becoming31

the mainstream solution [3]. However, from the view point of electricity distribution networks, the fast charging32

load will cause the deterioration of voltage quality due to the short charging period and high power demand [4].33

Thus, it is necessary to regulate the charging behaviors of EVs so as to improve the voltage quality of electricity34

distribution networks.35

One way to support the operation of distribution networks is the direct control of EV charging load, due to the36

EVs’ flexibility in the charging time and the vehicle-to-grid (V2G) capability [5, 6]. In [7], a hierarchical37

coordinated charging framework was proposed to generate the charging curve for each aggregator of EVs in38

order to reduce the peak load of EV charging. In [8], the capacitor, the on-load tap changer and the EV chargers39

were coordinated to control the voltage of electricity distribution networks. In [9], the on-load tap changers and40

EVs were collaborated to mitigate the voltage fluctuations caused by generation variations of distributed solar41

panels. In [10], a high efficient valley-filling strategy was proposed to determine the charging priority of EVs at42

each time slot. In [11], EV charging loads were separately scheduled by changing the charging times and43

locations. In [12] , the operation of EV charging behavior was optimized by changing the charging time. In [13],44

the EV charging scheduling strategy of an aggregator was proposed by regulating the charging power in the45

charging process. In [14], the charging EV number in a certain period was calculated with the goals of peak-46

shaving and valley-filling. In [15], a double-layer smart charging strategy was developed. The first layer aims to47

determine the shortest path for EV users to reach a suitable charger. The second level controls the charging48

process in order to reduce the charging cost.49



The above methods focus on adjusting the battery charging process of EVs. With the development of50

intelligent transportation systems [16], information and communication technology [17] and fast charging51

navigation system [18], the price mechanisms were applied to guide the EV charging behaviors.52

In [19] and [20], the modeling of the EV driver’s response to the charging price was discussed and the EV53

charging loads were shifted to the valley time period. In [21], the effect of prices on the fast charging behavior of54

EV users was analyzed. In [22], a proper charging pricing mechanism was designed to guide the EVs’ charging55

behaviors. In [23], the load balancing of FCSs was achieved through a pricing mechanism, considering the56

quality-of-service targets and the spatial-temporal distribution of EVs. In [24], the fluctuation of renewable57

energy sources was balanced by adjusting the mobility behavior of EVs with the variations of price signals. The58

variable electricity prices are calculated based on marginal generation costs. In [25] and [26], it was assumed that59

the electricity was sold at the wholesale price to the EV users, ignoring FCS interests. And the electricity prices60

were optimized at the system level considering the operation of the power system and transportation system.61

The existing researches have made good contributions to the optimization of EV fast charging load by the price62

incentives. The FCSs trend to privately-owned facilities [27, 28] and collaborate with distribution networks.63

Although the charging pricing scheme of FCSs can be applied to improve the voltage quality of distribution64

networks, the profit of FCSs should be guaranteed when the loads are redistributed through the charging pricing65

scheme. For this reason, a charging pricing strategy of EV FCSs was proposed to minimize the total voltage66

magnitude deviation of distribution networks. The charging pricing scheme can be determined to minimize the67

total voltage magnitude deviation without decreasing the income of FCSs.68

2. Framework of the proposed charging pricing strategy69

The framework of the proposed charging pricing strategy is shown in Fig. 1, which consists of a simulation70

model of EV mobility and a double-layer optimization model.71

The simulation model of EV mobility: The travel chain method [29], graph theory [30] and the Monte Carlo72

Simulation (MCS) are used to determine the EV fast charging demand considering the travel characteristics of73

users. The demand is transferred to the lower layer.74



The lower-layer optimization model: According to the fast charging demand supplied by the simulation75

model and a given charging pricing scheme supplied by the upper layer, the selected FCS of each user is76

optimized to minimize the corresponding cost. The loads of FCSs and the EV recharging capacity of each user77

are determined and then transferred to the upper layer.78

The upper-layer optimization model: The charging pricing scheme of FCSs is generated and optimized79

based on the charging loads of FCSs and the EV recharging capacity of each user supplied by the lower layer.80

The scheme is then transferred to the lower layer.81

82

Fig. 1. The framework of the proposed charging pricing strategy83

3. The charging pricing strategy84

3.1 The simulation model of EV mobility85

The EV fast charging demand FC was predicted by the simulation model of EV mobility, considering the86

travel characteristics of users and the existing slow charging facilities in the urban area. FC was then transferred87

to the lower-layer optimization model.88



1) Transportation network model89

The extended graph is employed to describe the topology of the transportation network [30]. A graph G is an90

ordered pair, which consists of a set of vertices V connected by a set of edges E. The vertices represent the nodes91

of the transportation network, while the edges represent the arterial roads and their flow direction. It is assumed92

that FCSs are built on the arterial roads to avoid the traffic jams. The extended graph includes the virtual vertices93

representing FCSs and the corresponding edges.94

The distance matrix D is used to describe the distances between every two neighbor vertices of the extended95

graph. D is a Nv×Nv symmetric matrix and all diagonal elements are zero, where Nv is the total number of vertices96

in the extended graph and the element D(vi, vj) represents the distance from vertex vi to vertex vj.97

The impedance matrix IM is used to describe the driving time between every two neighbor vertices of the98

extended graph considering the traffic congestions. IM is determined by D and the average driving speed99

obtained from the history data of the traffic center. IM is a Q1×Nv×Nv matrix, where Q1 is the number of time100

intervals. And the element IM(t1,vi, vj) of IM represents the driving time from vertex i to j at the time interval t1.101

2) EV mobility model102

The EV mobility is closely related with the travel characteristics of users, which is well described by the trip103

chain [29]. The concept of the trip chain has been widely applied in the travel demand forecast [31][32]. A trip104

chain is a time-ordered trip sequence which consists of locations and routes of daily trips. This chain can reflect105

the rules of user’s activities in space. In this paper, only the private EVs are considered to forecast their fast106

charging demand, because other kinds of EVs (such as buses, enterprise owned vehicles, etc.) generally have the107

proprietary charging stations. Also the charging choices of these EVs used for public services are not easy to be108

changed. The activities of the private EVs are a series of movements and stops describing by the trip chain theory.109

The trip chain is composed of a spatial chain and a temporal chain.110

It is supposed that the battery capacity consumption is linearly dependent on the real driving distance [33]. An111

energy chain is developed to describe the variations of available battery capacity of EVs with the moments as112

shown in Fig. 2, based on the trip chain theory. The dotted lines represent travel behaviors and the solid lines113

indicate parking behaviors. The variables of the spatial chain, the temporal chain and the energy chain for the EV114

j are listed in Table I.115



Table I. The variables of the spatial chain, the temporal chain and the energy chain for the EV j116
The variables of the spatial chain The variables of the temporal chain The variables of the energy chain

s(0) The type of the start location of a
daily trip chain ts0j The starting time of the 1th trip RC0j

The initial capacity of the EV battery for
the 1th trip

s(k) The type of the kth stop tkj The driving time of the kth trip ∆CEkj The power consumption of the kth trip

dkj The driving distance of the kth trip takj The time arriving at the kth stop RCk,aj The left capacity of the EV battery
arriving at the kth stop

trkj The dwell time at the kth stop ∆Ckj The recharging amount of electricity at the
kth stop

tskj
The time leaving the kth stop,
namely the starting time of the
(k+1)th trip

RCkj
The available capacity of the EV battery
leaving the kth stop, namely the initial
capacity of the (k+1)th trip

117

Fig. 2. Schematic diagram of the energy chain118

The TY={tym|m=1,2,…,Q2} represents the set of the stop types, where Q2 is the total number of stop types. It is119

assumed that the driving distances on the minor roads are ignored and the stops are located at the nodes of the120

transportation network. The stop type and weight of each node in the transportation network are predefined.121

The conditional probability TP is used to describe the transition probability from the stop type tyv to stop type122

tyw, which are determined by the National Household Trip Survey (NHTS) data. TP is a Q3×Q2×Q2 matrix,123

where Q3 is the number of time intervals. According to the given time interval t2, TP is depicted in (1).124
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where TP(tyv,tyw|t2) represents the probability that a user transfers from the type tyv to type tyw at the time interval126

t2. And the sum of probabilities of each row in (1) is equal to 1.127

3) Numerical implementation128

The following assumptions are adopted in this paper:129



1. The EV users, especially the risk-averse ones, reserve a safety margin RCv to hedge against running out the130

power capacity.131

2. Only fast charging and slow charging with constant power are considered in this paper for the private EV132

users. It is assumed that all the stops are equipped with enough slow chargers.133

3. The EV users will choose the fast charging mode only in emergency.134

4. It is assumed that an EV needs at most one fast charging for a day. And the status “stay at home” indicates135

the travel is finished for the whole day.136

The simulation flowchart for the EV fast charging demand is shown in Fig. 3.137

Step 1: Set n=1;138

Step 2: Set j=1;139

Step 3: NEV is the EV number. If j≤NEV, go to Step 5. Otherwise, n=n+1, go to Step 4;140

Step 4: Nd is the number of typical days. If n≤Nd, go back to Step 2. Otherwise, save and output the fast141

charging demand FC;142

Step 5: Generate and determine the initial parameters of the EV j; set k=1;143

1) Generate ts0j based on the probability distributions of ts0 determined by the NHTS data [34];144

2) Generate RCvj for the EV j;145

3) Determine the battery rated capacity Capj of EV j and the power consumption e under the urban146

dynamometer driving schedule;147

4) Determine RC0j based on the (2).148

0
j j j

iRC SOC Cap  (2)149

where SOCij is the initial state of charge for the EV j; it is assumed that the initial state of charge (SOC) varies in150

the range of [0.8, 0.9], considering the factors such as the battery safety and users’ psychology [35][36].151

Step 6: Generate s(k) based on TP, s(k-1) and tsk-1j;152

Step 7: Determine the stop, dkj, tkj and trkj;153

1) Determine the stop based on s(k) and weights of the transportation network nodes;154

2) The travel paths are determined by the modified Floyd algorithm [37] to minimize the driving time of the155

trip based on IM and tsk-1j. Thus, dkj and tkj are determined based on the travel paths and D;156



3) Determine trkj based on the probability distribution of trkj according to the NHTS data.157

Step 8: Determine ∆CEkj based on the (3);158

j j
k kCE e d   (3)159

Step 9: If RCk-1j<(∆CEkj+RCvj), update the fast charging demand FC. That is j, the stop k-1, the stop k, RCk-1j,160

and RCvj are recorded to the matrix FC. And set j=j+1 and go back to Step 5. Otherwise, go to Step 10;161

Step 10: Determine takj and tskj based on the (4) and (5).162

1 1
j j j
k k kta ts t   (4)163

j j j
k k kts ta tr  (5)164

Step 11: Determine ∆Ckj, RCk,aj and RCkj based on the (6), (7) and (8).165
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(6)166

, 1
j j j
k a k kRC RC CE   (7)167

,
j j j
k k a kRC RC C   (8)168

where δk is the binary variable; δk is 1 when the kth stop exists the slow charging facilities and the trkj is larger169

than the dwell time threshold thrd. Otherwise δk is 0; Prateslow is the rated power of slow charging facilities; η1 is170

the slow charging efficiency.171

Step 12: If s(k) is “stay at home”, set j=j+1 and go back to Step 5. Otherwise, set k=k+1 and go back to Step 6.172



173

Fig. 3. The simulation flowchart for the EV fast charging demand174

3.2 The lower-layer optimization model175

The lower-layer optimization model optimizes the selections of users and minimizes the corresponding cost176

considering the users’ response in a given charging pricing scheme from the upper-layer optimization model. The177

EV recharging capacity for each user and the charging loads of FCSs are determined and then transferred to the178

upper-layer optimization model.179

1) The detour to charge the EV battery180

An EV user is assumed to make a detour for a charge when the EV battery runs out of power before reaching181

the next stop or the destination. For example, when an EV j needs the fast charging from the (k-1)th stop to the kth182

stop, it will make a detour to the FCS i, as shown in Fig. 4. The stop k-1, the stop k, RCk-1j, and RCvj were183

obtained from FC.184



In Fig. 4, tk-1i is the driving time from the (k-1)th stop to the FCS i; tik is the driving time from the FCS i to the185

kth stop; dk-1i is the driving distance from the (k-1)th stop to the FCS i; dik is the driving distance from the FCS i to186

the kth stop; tk-1i, tik, dk-1i and dik are determined by D, IM and the modified Floyd algorithm.187

188

Fig. 4. The chains’ diagram of the trip when an EV j needs the fast charging between the (k-1)th stop and the kth stop189

trij is the dwell time at the FCS i, as depicted in (9). taij is the time arriving at the FCS i, as depicted in (10). tsij190

is the time leaving the FCS i, as depicted in (11). tk-1k is the total travel time of the trip from the (k-1)th stop to the191

kth stop, as depicted in (12).192

j j j
i i itr tw tc  (9)193

1 1
j j i
i k kta ts t   (10)194

j j j j
i i i its ta tc tw   (11)195

1 1
k i k j
k k i it t t tr    (12)196

For the EV j, tcij is the charging time at the FCS i, as depicted in (13). It is assumed that the available capacity197

after fast charging is RC0j. And ∆FCij is the recharging capacity at the FCS i, as depicted in (14). η2 is the fast198

charging efficiency. Pratefcs is the rated power of the fast charger.199

2/ ( )j j fcs
i i ratetc FC P   (13)200

0 1 1- )j j j i
i k kFC RC RC d e    （ (14)201

2) Determine the waiting time202

The activities of the EV j at the FCS are shown in Fig. 5. It is assumed that the EVs are served based on a first-203



come first-served rule. The arrival and departure of the EVs at the FCS are shown in Fig. 6 which is taken as an204

example. Before the time m1, the accumulated amounts of EV arrival and departure are 4 and 1, respectively. If205

there are only 2 chargers available at the FCS, the EV j1 is queuing to wait for charging. At the time l1, the206

accumulated amount of EV departure is 3. So no EVs are queuing before the EV j1 and there is an idle charger at207

the time l1. The EV j1 will start to charge at the time l1 and its waiting time is l1-m1.208

Based on the chronological order, the two sets (A and B) are used to record the arrival and departure time of209

the EVs at the FCS, respectively. size(A(t)) and size(B(t)) are the accumulated amounts of EV arrival and210

departure at the FCS before the time t. nev(i,t) is the existing EV number at the FCS i at the time t, which is211

depicted in (15). When nev(i,taij) is less than the charger number Ci of the FCS i, the waiting time twij for the EV j212

at the FCS i is equal to 0. Otherwise, twij is the minimum time t satisfying the constraint, as depicted in (16).213

( , ) ( ( )) ( ( ))nev i t Size t Size t A B (15)214

( ( )) ( ( ))    ( )j j j
i i i iSize ta t C Size ta ta t    B A B (16)215

216

Fig. 5. The activities of the EV j at the FCS217

218

Fig. 6. The arrival and departure of the EVs at the FCS219

3) Determine the selections for electric vehicle users220

Ωc is the set of optional FCSs for the EV j, as depicted in (17), based on the fast charging demand obtained by221

the simulation model of EV mobility. The EV j can reach the optional FCS i supported by RCk-1j. And twij is less222

than the threshold thrt at the optional FCS i.223

1, 1{ | & & , }j j j j
c k i v k i ti CE RC RC tw thr i      Ω Ω (17)224

where Ω is the set of the FCS serial numbers, namely Ω={1,2,3...,Nfcs}; Nfcs is the total number of FCSs.225



When the EV needs a fast charging, the corresponding user selects the FCS due to different cost priorities. To226

highlight these priorities, the following three types for the EV j are introduced.227

Type I: Selection with the minimum charging cost (fcij), as depicted in (18).228

Type II: Selection with the minimum total travel time cost (ftij), as depicted in (19).229

Type III: Selection with the minimum total cost (fcij), as depicted in (20).230

min , j j
i i i cfc FC cp i   Ω (18)231

min ,  j k
i k cft t dc i  Ω (19)232

min ,  j j j
i i i cf fc ft i  Ω (20)233

where cpi is the fast charging price of the FCS i obtained by the upper-layer optimization model.234

The selection is optimized to minimize the corresponding cost solved by the traversal method in the Ωc.235

According to the (14) and (15), ∆FCij and nev(i,t) are determined and transferred to the upper-layer optimization236

model. Pi,tfcs is the average fast charging load of the FCS i at the time interval t as depicted in (21), which is237

transferred to the upper-layer optimization model.238

,

1 ( , )     ( , )

1              ( , )

fcs
rate i d

dfcs
i t
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i rate i d
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N
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   


(21)239

3.3 The upper-layer optimization model240

The voltage magnitude deviation index developed in [38] was utilized and depicted in (22). NVDn,t represents241

the voltage magnitude deviation of the node n at the time interval t. Un,t is the voltage magnitude of the node n at242

the time interval t due to fast charging load. Un,p is the voltage standard value of the node n.243

, , ,n t n p n tNVD U U  (22)244

It is supposed that FCSs collaborate with distribution networks and the charging prices of FCSs are fixed for a245

day. The initial charging prices of FCSs are cp0 and the same. Thus, the fast charging prices of FCSs are246

optimized to minimize the total voltage magnitude deviation of the distribution networks (TNVD), as depicted in247



(23). Meanwhile, the total income of the FCSs remains unchanged before and after the optimization as depicted248

in (24).249

,
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where ND is the node number in the distribution networks; T is the number of time intervals for a day; Ω(i,cpi)252

and Ω(i,cp0) are the sets of the users selecting the FCS i with the charging price cpi and the cp0, respectively.253

In the model, the following constraints are considered:254

1) Upper and lower boundary constraints of the cpi255

To ensure the profit of the FCS, the lower boundary of the charging price should be larger than the electricity256

price cpmin of the distribution network and the upper boundary of the charging price should be less than the fuel257

cost converted to the same mileage cpmax. The constraints are depicted in (25).258

min maxicp cp cp  (25)259

2) Voltage constraints260

,min , ,maxn n t nU U U  (26)261

where Un,min and Un,max are the minimum and maximum voltage magnitudes at node n, respectively.262

3) Current constraints of lines263

,min , ,max    L
l l t lI I I l  Ω (27)264

where Il,t is the current of the line l at the time interval t; Il,min and Il,max are the minimum and maximum current265

values of the line l, respectively; ΩL is the set of lines.266

4) Power flow constraints267
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where Pn,tD and Qn,tD are the values of active and reactive power of the node n in the distribution network at the271

time interval t without fast charging loads from FCSs, respectively; Ωn is the set of FCSs connected to the node n272

of the distribution network.273

4. Test case274

4.1 Test system and simulation parameters275

EVs: four types of private EVs are considered in this case based on the top proportions in the Chinese market276

on the 2016 as listed in Table II [39]. Based on the NHTS data from US Department of Transportation [34], 6277

types of the stops are considered, which are “home”, “work” (ty2), “shopping” (ty3), “recreation” (ty4), “pick up278

somebody” (ty5) and “meal” (ty6), respectively. The “home” is further classified into two statuses: “temporary279

stay at home” (ty1) and “stay at home” (ty7) for the stop. TP is obtained in [40], which is 24×6×7 matrix. TP at280

7:00-8:00 and 17:00-18:00 are shown in Fig. 7. The probability distribution of ts0j and the dwell time for different281

types of stops can be found in [40].282

Transportation network: A real transportation network in the urban core of Hangzhou, China is selected as283

the test system as shown in Fig. 8, which consists of 116 edges and 42 vertices. The 42 vertices include 31 nodes284

of the transportation network and 11 FCSs corresponding to 32-41 vertices. In each FCS, there are 8 chargers.285

The distribution of different stop types is shown in Fig. 8. D of the 42 vertices is listed in Table III. IM is286

obtained from the traffic center [41]. Weights of various stop types for nodes in the transportation network are287

listed in Table IV.288

Electricity distribution network: In China, most FCSs are connected to 10-kV feeder [42]. Each FCS is taken289

as a centralized load of the 10-kV distribution network. The structures of four 10-kV distribution networks are290

configured based on the IEEE 33 standard distribution network [43] as shown in Fig. 9. The peak load of each291

node in the distribution networks is listed in Table V. The load profile is obtained from [44].292

Other simulation parameters are listed in Table VI.293



Table II The main EVs in the Chinese market [45]294
EV Manufacturer EV type Proportion The rated capacity of the battery (kWh) e (kWh/km)

BYD E6 12.17% 57 0.14
BAIC BJEV EV160 11.11% 25.6 0.13

GEELY NEW ENERGY EV 300 10.15% 45.3 0.15
ZOTYE AUTO CLOUD100S 9.70% 18 0.12

295
(a) at 7:00-8:00 (b) at 17:00-18:00296

Fig. 7. TP of the stops297

298
Fig. 8. The transportation network299

Table III The distance of neighbor vertices300

vi vj d(vi, vj) vi vj d(vi, vj) vi vj d(vi, vj) vi vj d(vi, vj) vi vj d(vi, vj)
3 2 10 km 14 13 6 km 23 20 2 km 32 1 2 km 38 20 1 km
4 3 4 km 15 10 2 km 24 21 2 km 32 2 0.5 km 38 21 5 km
6 3 4 km 15 14 4 km 24 23 6 km 33 4 1 km 39 22 1 km
7 1 10 km 16 11 2 km 26 25 1 km 33 5 3 km 39 26 1 km
8 7 2.5 km 17 16 2 km 27 17 4 km 34 2 6 km 40 24 2 km

10 9 4 km 18 17 2 km 27 26 6 km 34 8 4 km 40 25 1 km
11 4 10 km 19 7 4 km 28 18 4 km 35 6 3 km 41 29 3 km
11 10 4 km 20 13 2 km 28 27 2 km 35 10 3 km 41 30 3 km
12 5 10 km 20 19 2.5 km 29 23 2 km 36 8 4 km 42 12 1 km
12 11 4 km 21 14 2 km 30 24 2 km 36 9 2 km 42 18 1 km
13 8 2 km 22 15 2 km 31 26 2 km 37 15 1 km
14 9 2 km 22 21 4 km 31 30 4 km 37 16 3 km



Table IV Weights for each node in the transportation network301

302
Fig. 9. The corresponding distribution networks303

Table V The peak load for each node in the corresponding distribution networks304
The distribution network with 25 nodes (MVA) The distribution network with 27 nodes (MVA)

No. Peak load No. Peak load No. Peak load No. Peak load No. Peak load No. Peak load
1 0 10 0.06+j0.02 19 0.42+j0.2 1 0 10 0.06+j0.02 19 0.42+j0.2
2 0.1+j0.6 11 0.045+j0.03 20 0.42+j0.2 2 0.1+j0.6 11 0.045+j0.03 20 0.42+j0.2
3 0.09+j0.04 12 0.06+j0.035 21 0.06+j0.025 3 0.09+j0.04 12 0.06+j0.035 21 0.06+j0.025
4 0.12+j0.08 13 0.06+j0.01 22 0.06+j0.025 4 0.12+j0.08 13 0.06+j0.01 22 0.06+j0.025
5 0.06+j0.03 14 0.09+j0.04 23 0.06+j0.02 5 0.06+j0.03 14 0.09+j0.04 23 0.06+j0.02
6 0.06+j0.02 15 0.09+j0.04 24 0.12+j0.07 6 0.06+j0.02 15 0.09+j0.04 24 0.12+j0.07
7 0.06+j0.035 16 0.09+j0.04 25 0.2+j0.6 7 0.06+j0.035 16 0.09+j0.04 25 0.2+j0.6
8 0.06+j0.02 17 0.09+j0.04 8 0.06+j0.02 17 0.09+j0.04 26 0.09+j0.04
9 0.2+j0.1 18 0.09+j0.05 9 0.2+j0.1 18 0.09+j0.05 27 0.12+j0.8

Table VI The other simulation parameters305
The parameter Value Unit The parameter Value Unit

Q1 96 - dc 17 [47] RMB/h
Q3 24 - Ud,min 0.9 -
RCvj 0,1,2 kWh cpmin 1.08 RMB/kWh
thrd 120 min cpmax 3.3 RMB/kWh
η1 90 % cp0 1.6 [45] RMB/kWh

Prateslow 3.3 kW Nd 100 day
η2 99 [48] % NEV 30000 -

Pratefcs 120 kW T 96 -
thrt 20 min Un,p 1 -

No. ty1 ty2 ty3 ty4 ty5 ty6 No. ty1 ty2 ty3 ty4 ty5 ty6

1 0.06 0.00 0.00 0.18 0.00 0.00 17 0.02 0.00 0.09 0.00 0.09 0.09
2 0.02 0.03 0.00 0.18 0.00 0.00 18 0.07 0.03 0.09 0.00 0.00 0.09
3 0.03 0.03 0.04 0.00 0.00 0.04 19 0.05 0.04 0.05 0.05 0.00 0.05
4 0.00 0.07 0.04 0.04 0.09 0.04 20 0.05 0.03 0.00 0.00 0.00 0.00
5 0.00 0.00 0.04 0.00 0.00 0.04 21 0.00 0.00 0.05 0.00 0.00 0.05
6 0.02 0.00 0.00 0.18 0.00 0.00 22 0.05 0.10 0.00 0.00 0.23 0.00
7 0.03 0.00 0.00 0.18 0.00 0.00 23 0.05 0.03 0.05 0.00 0.00 0.05
8 0.04 0.07 0.05 0.09 0.00 0.05 24 0.05 0.03 0.05 0.00 0.00 0.05
9 0.05 0.00 0.04 0.00 0.00 0.04 25 0.00 0.07 0.05 0.00 0.00 0.05

10 0.02 0.07 0.04 0.00 0.18 0.04 26 0.04 0.07 0.00 0.00 0.00 0.00
11 0.05 0.06 0.00 0.00 0.00 0.00 27 0.03 0.04 0.09 0.00 0.00 0.09
12 0.02 0.00 0.07 0.00 0.00 0.07 28 0.05 0.06 0.05 0.00 0.00 0.05
13 0.08 0.01 0.00 0.09 0.00 0.00 29 0.04 0.00 0.00 0.00 0.14 0.00
14 0.07 0.03 0.11 0.00 0.05 0.11 30 0.00 0.08 0.00 0.00 0.23 0.00
15 0.01 0.04 0.00 0.00 0.00 0.00 31 0.01 0.00 0.00 0.00 0.00 0.00
16 0.05 0.03 0.00 0.00 0.00 0.00



4.2 The results and analysis306

1) Optimal results and analysis307

The EV users of Type I, Type II and Type III account for 40%, 30% and 30%, respectively. The optimal308

charging pricing scheme of the FCSs is shown in Fig. 10. The results provide a pricing scheme for the FCSs to309

remain the FCS total income while the voltage profiles of the distribution networks are improved. Compared with310

the cp0 pricing scheme, the fast charging prices of the FCS 4, 7 and 10 are lower, while the fast charging prices of311

the remaining FCSs are higher.312

313
Fig. 10. The optimal charging pricing scheme of the FCSs314

The load difference between the optimal charging pricing scheme and the cp0 pricing scheme is shown in Fig.315

11. The fast charging loads are reallocated among the spatial adjacent FCSs in response to the pricing scheme.316

Because the FCS 6 price is larger than the FCS 4 price, the FCS 6 load is partially transferred to the FCS 4.317

Compared with the corresponding load under the cp0 scheme, the FCS 6 load under the optimal pricing scheme is318

decreasing, while the FCS 4 load is increasing. That is, the fast charging load at the node 2 of the distribution319

network b is partially transferred to the node 15 of the distribution network c. Similarly, because the FCS 11 price320

is larger than the prices of the FCS 4 and 8, the FCS 11 load is partially transferred to the FCS 4 and 8. Thus, the321

FCS 11 load under the optimal pricing scheme is decreasing compared with the load under the cp0 scheme.322

Because the loads are partially transferred to other nodes of other distribution networks, the voltage profiles of323

distribution network b under the optimal pricing scheme are improved as shown in Fig. 12.324



325
Fig. 11. The FCS load difference between the optimal pricing scheme and the cp0 scheme326

327
Fig. 12. The voltage magnitude difference between the optimal pricing scheme and the cp0 scheme328

2) Comparison and analysis329

In order to verify the effectiveness of the proposed strategy in this paper, three scenarios are considered for NEV330

EVs and the corresponding results are compared and analyzed.331

Scenario I: The EV users of Type I, Type II and Type III account for 20%, 50% and 30%, respectively.332

Scenario II: The EV users of Type I, Type II and Type III account for 40%, 30% and 30%, respectively.333

Scenario III: The EV users of Type I, Type II and Type III account for 50%, 20% and 30%, respectively.334

The optimal pricing schemes under different scenarios are shown in Fig. 13. Compared with the total voltage335

magnitude deviation TNVD0 of the distribution networks with the cp0 scheme, TNVD is shown in Fig. 14 under336

different scenarios. The total voltage magnitude deviations for different distribution networks under different337

scenarios are listed in Table VII. The differences between TNVD0 and TNVD under these scenarios are also listed338

in Table VII.339



340
Fig. 13. The optimal charging pricing schemes compared with the cp0 pricing scheme under different scenarios341

342
Fig. 14. TNVD compared with TNVD0 under different scenarios343

Table VII The total voltage magnitude deviations for different distribution networks under different scenarios344

Scenario The voltage magnitude
deviations

Distribution
network a

Distribution
network b

Distribution
network c

Distribution
network d

The difference between
TNVD0 andTNVD

I
Under the optimal

pricing scheme 50.2684 62.8003 49.9785 69.8459 1.1951
Under the cp0 scheme 50.7840 63.4273 50.2758 69.6011

II
Under the optimal

pricing scheme 49.9201 62.792 50.4169 68.8859 2.1247
Under the cp0 scheme 50.977 63.5656 50.4763 69.1208

III
Under the optimal

pricing scheme 50.9933 63.2646 49.9685 68.3356 2.3737
Under the cp0 scheme 51.4274 63.411 50.6303 69.4671

TD and TD0 are the sums of dk-1j for all the EVs before and after the optimization, respectively. TD and TD0345

under different scenarios are shown in Fig. 15. Because some EV users will select relatively far FCS due to the346

optimal pricing scheme, TD is larger than TD0 under each scenario. Thus, EV users’ convenience for the fast347

charging is reduced, which indicates the voltage profiles of the distribution networks are improved at the expense348

of the EV users’ convenience on the whole.349



350
Fig. 15. TD0 and TD under different scenarios351

The difference of the sum of dk-1j before and after the optimization for different users is listed in Table VIII.352

Type I and Type III users respond to the prices, so the sum of dk-1j for these users under each scenario is different353

before and after the optimization. Type II users do not respond to the prices, so TD2 is equal to TD20. The354

distribution of EV fast charging loads is changed and the voltage profiles of distribution networks are improved.355

More users respond to the optimal pricing scheme and the difference between TNVD and TNVD0 is larger, as356

shown in Table VII.357

Table VIII The difference of the sum of dk-1j before and after the optimization for different users358

The difference between TD1 and TD10*
(km)

The difference between TD2 and TD20*
(km)

The difference between TD3 and TD30*
(km)

Scenario I 688.5 0 -185.5
Scenario II 1399.5 0 -160
Scenario III 1764 0 -224

*TD1, TD2 and TD3 are the sums of dk-1j for Type I, Type II and Type III users under the optimal pricing scheme, respectively. TD10, TD20 and359
TD30 are the sums of dk-1j for Type I, Type II and Type II users under the cp0 scheme, respectively.360

The cost difference before and after the optimization for different users is listed in Table IX. If the difference is361

positive, the corresponding cost is increased after the optimization. FC1 and F3 are decreasing under Scenario I362

and II, and FT2 is not changed after the price optimization. However, F3 is increased after the optimization under363

Scenario III. It indicates that the optimal pricing scheme will increase the total cost of Type III users with the364

proportion increase of Type I users, to some extent.365

Table IX The cost difference before and after the optimization for different users366

The difference between FC1 and FC10*
(RMB)

The difference between FT2 and FT20*
(RMB)

The difference between F3 and F30*
(RMB)

Scenario I -232.37 0 -190.66
Scenario II -231.17 0 -65.22
Scenario III -392.26 0 175.64
*FC1 and FC10 are the sums of the charging cost for Type I users under the optimal pricing scheme and cp0 scheme, respectively. FT2 and367
FT20 are the sums of the total travel time cost for Type II users under the optimal pricing scheme and cp0 scheme, respectively. F3 and F30 are368
the sums of the total cost for Type III uses under the optimal pricing scheme and cp0 scheme, respectively.369



3)The sensitivity analysis of the EV number370

The sensitivity of the EV number on the TNVD/TNVD0 is analyzed and shown in Fig. 16. TNVD and TNVD0371

grow with the EV number increasing from 10000 to 50000 at a fixed step. However, the difference between372

TNVD0 and TNVD keeps increasing. This is because more EVs will respond to the optimal pricing scheme as the373

EV number increases.374

375
Fig. 16. TNVD0 and TNVD under different EV numbers376

5. Conclusion and future work377

This paper develops a charging pricing strategy of EV FCSs for the voltage control of electricity distribution378

networks. Considering the travel characteristics of EV users, the fast charging demand is determined using an379

energy chain. Through the coordination between the upper and lower layers, the fast charging prices are380

optimized to minimize the total voltage magnitude deviation of distribution networks without decreasing the total381

income of the FCSs. A real urban transportation network with 11 FCSs is used to validate the proposed strategy.382

The results show that the voltage profiles of the test system can be significantly improved due to the383

reallocated fast charging load by the proposed strategy. This is because the users respond to the optimal charging384

pricing scheme. The strategy is to fully explore the characteristics of different type EV users, and guide these385

users to participate in the voltage control of distribution networks. Future research will enhance the EV users’386

willingness to participate in the voltage control of distribution networks. The game theory will be also introduced387

to coordinate the benefits of distribution networks, FCSs and EV users.388
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