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On the mechanism of gold NHC compounds binding to DNA G- 
quadruplexes elucidated by combined metadynamics and 
biophysical methods 

Darren Wragg,+[a] Andreia de Almeida,+[a] Riccardo Bonsignore,+[a] Fritz E. Kühn,[b] Stefano Leoni*[a] 

and Angela Casini*[a,c]  

 

Abstract: The binding modes and free-energy landscape of two 

Au(I) N-heterocyclic carbene complexes interacting with G-

quadruplexes, namely a human telomeric (hTelo) and a promoter 

(C-KIT1) sequence, are studied here for the first time by 

metadynamics. The theoretical results are validated by FRET DNA 

melting assays and provide an accurate estimate of the absolute 

gold complex/DNA binding free energy. This advanced in silico 

approach is valuable to achieve rational drug design of selective 

G4s binders.  

DNA can adopt different structures other than the canonical 

right-handed double helix (B-DNA), and numerous structural 

studies have revealed that guanine-rich DNA sequences can 

form secondary structures termed G-quadruplexes (G4s).[1] To 

form G4s, four guanine bases assemble into a pseudoplanar 

tetrad (G-quartet) are held together by one or more nucleotide 

strands and stabilized by metal ions. Recent bioinformatics 

studies have shown that there are ca. 716,000 DNA 

sequences in the human genome that can potentially form G4 

structures.[2] These non-canonical DNA structures are present 

in telomeres and promoter regions of oncogenes and have 

been the subject of intense study over the past 10 years, being 

associated with a number of biological processes such as 

telomere maintenance, gene regulation, and replication.[3] It 

has been proposed that formation of the quadruplex structure 

in promoter regions can control transcription and, as a 

consequence, the expression of the corresponding 

oncogenes.[4] Moreover, stabilizing G4s in telomeres indirectly 

inhibits telomerase activity, thus affecting cancer mortality.[3b]  

Within this context, G4s emerge as promising targets for 

anticancer drug discovery, while their roles in cancer biology 

have yet to be completely elucidated. A number of studies 

report on the efficient G4 stabilization by small molecules with 

associated anticancer effects.[5] For example, the tri-

substituted acridine derivative, BRACO-19, a telomeric G4 

stabilizer, has shown in vitro anticancer activity in prostate 

cancer. [6] Of note, two quinolone molecules, CX-3543 and CX-

5461, selectively stabilize G4s structures, and are now in 

clinical trials.[7]  

In addition to organic molecules, metal-based 

compounds have also been developed as promising 

experimental G4 stabilizers, including several Schiff-base 

metal complexes (mainly Ni2+,[8] Cu2+,[8c-e] Zn2+,[8a-c] Pt2+ [9] and 

Pt4+ [9a]), as well as some metallo-supramolecular DNA-

binders.[10] Despite the great advances in the development of 

G4 stabilizers, still important challenges remain to be tackled, 

including achieving selective binding of small molecules to a 

specific quadruplex over duplex DNA and other G4s. 

Our pioneering work in this area identified small-

molecule organometallic Au(I) compounds, featuring N-

heterocyclic carbenes (NHCs) ligands, as potent and selective 

stabilizers of telomeric G4s,[11] including the bis-NHC gold(I) 

complex - [Au(9-methylcaffein-8-ylidene)2]+ (AuTMX2, 

Figure 1).[11a] X-ray diffraction analysis of the adduct formed by 

AuTMX2 and a 23-nucleotide telomere repeat sequence 

(Tel23) indicated that the compound binds non-covalently 

between neighbouring G4s.[11b]  

Based on these promising results, our research in an 

unmet medical need involves developing new organometallic 

Au(I) NHC complexes targeting specific G4 structures for 

possible applications in therapy and/or imaging. In order to 

rationally achieve selectivity, computational methods, 

including molecular dynamics (MD) approaches, are highly 

valuable in elucidating both the structural and energetics 

requisites underlying the ligand/target recognition process. In 

fact, a number of classical MD studies on the adducts of G4s 

structures with different stabilizers have been performed 

providing atomistic support for the interpretation of the binding 

mechanism to G4-DNA.[8a-c, 12] 

Recently, funnel-metadynamics has been shown to be 

successful at calculating the free energy surface for organic 

ligands and their interactions with G4s.[13] Thus, we applied 
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metadynamics to evaluate the binding of AuTMX2 to two 

different G4 structures, namely the human telomeric sequence 

hTelo (pdb 2HY9[14]) and the C-KIT1 oncogene promoter 

sequence (pdb 4WO2[15]). The results have been compared 

with those obtained for the neutral mono-carbene complex 

AuTMX-I (Figure 1). Furthermore, we have validated the 

accuracy of our calculations performing gold complexes/G4 

binding assays using FRET (fluorescence resonance energy 

transfer) DNA melting. 

 

 
Figure 1. Chemical structures of the two Au(I) NHCs investigated in this 

study. 

 

Initially, the X-ray structure of the telomeric-G4 adduct 

with AuTMX2 (pdb 5CCW[11b]) was used as reference to run a 

first set of metadynamics simulations, to calculate the 

compound’s thermodynamically most stable positions, 
providing a starting point for the free energy calculations with 

hTelo and C-KIT1 (see Experimental for details). This allowed 

the validation and positioning of the interaction of AuTMX2 with 

the selected G4 models (Figure S1). In our study, the Gibbs-

free energy (at 300 K, GMD) was determined for all the seven 

compound’s poses (Table S1) and showed that each one has 

different binding energy. The position corresponding to the 

AuTMX2‘s interaction with the topmost tetrad (pose 1, Figure 

S1), was chosen for the further calculations of the interactions 

with hTelo and C-KIT1.  

In the work of Moraca et al., funnel metadynamics was 

used to constrain the ligand within a specific area determined 

to be the top tetrad surface.[13] However, in our study, the gold-

complexes were not constrained and were allowed to find the 

most energetically favourable interactions with the entire G4 

models, including loops and top and bottom tetrads, allowing 

possible further interactions to be identified. Thus, five 50 ns 

trajectories were calculated for each combination of 

compound and G4 model (for a total of 4 experimental 

conditions and a total of 20 simulations). This was performed 

using a simple distance collective variable (CV) between the 

Au+ centre of the complex and the K+ at the centre of the 

uppermost tetrad (see experimental section for details), 

resulting in a free-energy (GMD, at 300 K) profile output, 

based on the Au+-K+ distance (Figure S2, Table 1). Moreover, 

to closely investigate the molecular mechanism of interaction 

of the gold complexes, multi-CV calculations were run on the 

same systems. This involved adding a second CV for the 

torsion angle between the complexes and the uppermost 

tetrads (Figure 2). 

As metadynamics explores the whole energy surface of 

an interaction, rather than just one minimum, further possible 

meta-stable positions can also be observed. In fact, hTelo’s 
trajectories with AuTMX2 show two possible binding sites 

(state I and II) with the first one (state I) having the lowest 

energy (ca. -37 KJ/mol, Table 1). Figures 2 shows the multiple 

collective variable (CV) plot of free energy surface of AuTMX2 

interactions with hTelo. Interestingly, state I shows two minima 

(a and b), corresponding to the same Au-K+ distance (ca. 0.8 

nm) but with different torsion angles. The latter are related to 

AuTMX2 being virtually in the same position but with the gold 

complex rotating around its centre, resulting in the same pose 

with two different torsion angles (see position of the caffeine 

ligands in Figure 2). 

In state I, AuTMX2 is interacting with both an adenine 

(A13) in the loop b region, and two guanine bases of the tetrad 

(G4 and G22), with strong -stacking between the NHCs of the 

gold complex and the aromatic rings of G22 (Figure 2). Instead, 

the higher energy state II (ca. -14 KJ/mol, Table 1) 

corresponds to a position where the gold complex does not 

interact with the guanine bases, but exclusively with the loop 

thymine (T11) (Figure 2). In this second state, the loop covers 

the top of the G4-tetrad, hindering possible interactions 

between the gold complex and the G-tetrad.  

Interestingly, a similar behaviour was observed for 

AuTMX2 binding to C-KIT1, with two states I and II (Figure S3, 

Table 1). C-KIT1 has a very different structure and surface 

from hTelo: while the former has a prominent flanking loop that 

may cover the top of the tetrad, C-KIT1 top surface is virtually 

flat, leading the gold complex to interact with the top of the 

tetrad and the rings of flanking bases (A1) (Figure S3). Thus, 

state I corresponds to AuTMX2 stabilized by -stacking with 

the guanine rings (lowest energy), while in state II, it interacts 

with both A1 and G6 via -stacking (Figure S3).  

When the simulation was repeated for the neutral mono-

NHC complex AuTMX-I, the compound was shown to interact 

via - and -alkyl interactions with the guanine tetrad (G22) 

and the loop (A13) in hTelo (Figure S4), as observed for 

AuTMX2 (state I). However, as expected, the calculated GMD 

was lower with respect to the one for AuTMX2, due to the lack 

of the second caffeine ligand (Table 1). The enhanced 

efficiency of multiple collective variable simulations proved 

extremely valuable in identifying a second, unexpected 

binding mode of AuTMX-I (state II), similar in energy to state 

I. Therein, the complex interacts within a grove in loop c 

(Figure S4) by - stacking the caffeine moiety with T18. This 

interaction was only observed when using the multiple 

collective variable simulations.  

With C-KIT1, AuTMX-I shows a single binding mode due 

to its -stacking with G6 of the uppermost tetrad of the G4 

(Figure S5). Moreover, the iodido ligand tends to be positioned 

outside the G4 structure, in both hTelo and C-KIT1 adducts. 
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Figure 2. Multiple collective variable (CV) plot of free energy surface of AuTMX2 interactions with hTelo (centre). CVs correspond to distance (nm) between Au+ 

in AuTMX2 and K+ in upper tetrad and torsion angle (rad). Two states are highlighted (I and II) and two poses for state I are shown as a and b. States I-a, b and II 

are shown in translucent molecular surface, coloured according to lipophilicity (green: lipophilic, pink: hydrophilic). G4 structure is shown as sticks and ribbon, with 

hidden backbone for clarity. AuTMX2 is shown in ball and stick, with each caffeine ligand coloured differently (black and grey). C2 and C4 highlight the carbon 

atom positions in AuTMX2 in each of the related poses I-a or I-b. 

 

 

Table 1. Gibbs-free energy values, experimental (Gexp) and calculated by 

metadynamics (GMD), for AuTMX2 and AuTMX-I interactions with hTelo 

and C-KIT1. G values are expressed in kJ/mol and obtained considering 

T = 300K. Experimental binding constants (Kb) are reported in Table S2. 

 G4 model 

 hTelo C-KIT1 

 GMD
[a]  Gexp GMD

[a] Gexp 

AuTMX2 (state I) -37 ± 7 -39 ± 2 -45 ± 3 

 

-12 ± 3 

-37.6 ± 0.4 

 

- AuTMX2 (state II) -14 ± 3 -12.1 ± 0.4 

AuTMX-I -28 ± 3 -23.2 ± 0.4 -30 ± 5 -29 ± 3 

 [a] Data are obtained from simulations using a simple distance collective 

variable. 

 

Following the interesting observations of multiple binding 

modes of AuTMX2 and to further investigate the stabilization 

properties of the two gold-based complexes, determination of 

the Gibbs-free energy (Gexp) from the DNA FRET melting 

profiles was performed. Thus, AuTMX2 and AuTMX-I were 

synthesized by adapting published protocols. [11a, 16] starting 

from their methylated precursors (Scheme S1 and S2). The 

difference in DNA melting temperature (ΔTm, in °C) of hTelo 

and C-KIT1 induced by the binding of the two Au(I) NHC 

complexes was readily monitored through the modification of 

the FRET phenomenon and enabled an easy quantification of 

the compounds’ stabilization properties of G4-DNA. 

Afterwards, the compounds were incubated with fixed 

amounts of each G4 for 10 min and the DNA melting profile 

recorded. As shown in Figure 3, both complexes stabilize the 

hTelo and C-KIT1 structures, with the strongest effects 

observed for AuTMX2.  

As previously reported,[11c] AuTMX2 leads to a 

characteristic melting profile for hTelo, featuring a two-step 

melting pattern, where a small increase in fluorescence is 

initially observed before the steep increase after ca. 65 ºC 

(Figure 3A, red trace). Instead, AuTMX2 with C-KIT1, 

investigated for the first time, shows a gradually incrementing 

curve, rather than an initial steep ramp or two-step curve.  

In the presence of the mono-caffeine derivative, AuTMX-

I, the ΔTm of both G4s is approximately 2-fold lower than the 

one found for AuTMX2 (6.5 ± 0.2 ºC for hTelo and 11.0 ± 1.8 

ºC for C-KIT1, respectively). Interestingly, AuTMX-I does not 

have an effect on the shape of the melting profiles of either 

DNA sequence, which is similar to the control DNA (Figure 3A-

B, black and blue traces). 

 

 



          

 

 

 

 

 
Figure 3. Representative FRET melting profiles of a 0.2 μM hTelo (A) and C-KIT1 (B) G-quadruplex DNA solutions in 60 mM potassium cacodylate buffer in 

absence (black solid lines), and in presence of 1 μM of AuTMX2 (dotted lines) and AuTMX-I (dashed lines). C) ΔTm of hTelo and C-KIT1 G4s in the presence of 

AuTMX2 (horizontal lines) and AuTMX-I (vertical lines). Data is shown as mean ± SEM of three independent experiments; ** p<0.005, *** p<0.001. Results for 

AuTMX-I hTelo vs C-KIT1 are significantly different (significance not shown in the plot), * p<0.05. 

 

In order to determine the energy of binding (Gexp) of the 

gold compounds to each G4, the experimental data were 

normalized to folded fraction () of G4-DNA and fitted 

according to Eq. 1 and 2,[17] where the enthalpy (∆H) for the 
process was derived from the resulting fit (see Experimental 

section). In order to fit a two-step melting profile of AuTMX2 

with hTelo, another equation (Eq. 4, Experimental section) 

was used, taking into account the upper and lower limits of the 

sigmoid curve used for fitting. This allowed us to treat the data 

fits as two independent melting curves. Thus, Gexp was 

calculated for both compounds vs each G4 structure, and also 

for hTelo’s two-step melting curve (Table 1). The resulting fits 

are shown in Figure S6. From the reported results a trend 

could also be identified in which the greater the stabilization of 

the G4 structure by the compound and lower is the energy of 

binding (at least considering the most stable mode, state I for 

hTelo). 

Most importantly, the Gexp are in perfect accordance 

with the GMD values obtained using metadynamics (Table 1). 

The analysis of the melting curves and Gexp values of 

AuTMX2 with the two G4 models clearly suggest the existence 

of two distinct modes of binding, possibly mutually exclusive, 

in line with the computational results. Thus, considering hTelo, 

the first binding mode corresponds to the lower energy state I 

(Figures 2 and S6), exclusively featuring compound’s 
interaction with the guanines in the tetrad. The second binding 

mode at higher energy (state II) involves loop/flanking base 

interactions and/or interactions with part of the tetrad (Figures 

2 and S6). Instead, as observed before, the flatness of the top 

tetrad of C-KIT1 allows the compound to probe the whole top-

surface of the G4. Since the stacking of the complex with the 

guanines is more favourable (state I), it may be expected that 

this is the interaction most likely to occur in vitro. Notably, our 

metadynamics results also point towards the existence of a 

second binding site for AuTMX-I on hTelo, involving the loop 

C. This interaction may be for further optimization of selective 

hTelo stabilizers.  

Overall, the in silico results confirm and complement the 

experimental data revealing two ligand binding modes of 

AuTMX2 on the two G4s structures, and providing further 

structural and energetics information on ligand binding 

mechanism, including a quantitatively well-characterized free-

energy landscape. The experimental validation of the binding 

energy of Au(I) NHC to G4s complexes calculated by 

metadynamics methods was also achieved. This advanced 

approach can be extended to other types of molecules as G4 

stabilizers, highlighting selectivity features essential to orient 

the drug design.  
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