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Abstract 

Imprinted genes are subject to epigenetic regulation that leads to monoallelic expression 

from one parental allele only. Brain expression of the imprinted gene Cdkn1c is sensitive to 

early life adversity, including exposure to maternal low protein diet (LPD) where increased 

expression of Cdkn1c is due to de-repression of the normally silent paternal allele. Maternal 

LPD also leads to changes in the dopamine system and reward related behaviours in 

offspring. We have recently demonstrated that these brain and behavioural phenotypes are 

recapitulated in a transgenic model in which Cdkn1c expression alone is increased. Here we 

summarise these findings and suggest that the loss of imprinting of Cdkn1c in the offspring 

following maternal low protein diet is a key contributor to the associated changes in the 

dopamine system and behavior reported after early life adversity. 

 

Introduction 

An adverse early life environment (in utero and/or early post-natal) can impact on the 

developing offspring, often resulting in a poor health lasting well into later life. Physiologies 

affected by exposure to such a sub-optimal environment include the cardiovascular, 

metabolic and immune systems. An optimal early life environment is also critical for 

neurodevelopmental outcomes [1] and later-life behavioral phenotypes [2]. Many 

deleterious effects of adverse environment exposure whilst in utero, such as malnutrition 

and exposure to stress, have been demonstrated in large epidemiological studies (e.g.  

“Dutch Hunger Winter” and “1959-61 Chinese famines”).  These include reduced cognitive 

abilities [3], as well as increased incidence of schizophrenia [4,5], personality disorder [5] 

and addiction and gambling problems [6]. These human studies are supported, and indeed 

have been extended, by a large number of animal studies that show clear associations 

between in utero and/or early post-natal exposure to stress, toxins, low protein and high fat 

diets, and abnormal brain and behavior in the offspring [1]. 

There is now a growing need to understand the mechanisms that link exposure to an 

adverse early life environment and the observed changes in brain and behavior. One 

suggestion is that an adverse early life environment leads to changes in the epigenetic 

status, and therefore expression potential, of genes that are important during 



neurodevelopment. In this respect, imprinted genes have been posited as possible 

mediators of early life environmental effects. This group of genes are subject to 

developmentally determined epigenetic regulation which renders one parental allele 

transcriptionally silent [7]. Although relatively small in number, imprinted genes are 

developmentally important [8,9] and even subtle increases or decreases in expression can 

have significant phenotypic consequences for neurodevelopment [10,11]. Furthermore, a 

change in the imprinting status of imprinted genes is a recognized functional mechanism 

within the brain, with de-repression of the normally silent alleles of Dlk1 and Igf2 playing a 

role in neurogenesis [12,13]. As a consequence, imprinted genes may be well placed for 

mediating environmental effects on neurodevelopment via changes in their epigenetic 

regulation. However, although limited, current data suggests that generally imprinted genes 

are relatively insensitive to environmental manipulations, at least in the context of in utero 

nutritional programming and gene expression in metabolic tissues [14,15]. Nevertheless, 

although studies thus far indicate there is not an enhanced effect of early life programming 

on changes in expression of this class of genes as a whole, some key imprinted genes do 

appear to be more sensitive to the effects of a suboptimal maternal diet [14,15].  

 

Cdkn1c expression is altered by an adverse early life environment 

One such exception is cyclin dependent kinase inhibitor 1c (Cdkn1c aka p57Kip2), an 

imprinted gene that is normally silenced on the paternal allele [16]. Expression of Cdkn1c in 

the offspring brain is elevated in response to a number of adverse early life events. 

Specifically, both maternal low protein diet (LPD) [17], and the degree of early post-natal 

maternal care [18] lead to increased (2-3 fold) Cdkn1c expression. Such alterations in gene 

expression may reflect changes in expression of the normally active allele, or even changes 

in cellular composition. However, using a novel Cdkn1c-luciferase animal model, we 

demonstrated that increased expressed of Cdkn1c in response to maternal LPD was 

definitively due to de-repression of the normally silent paternal allele, and accompanied by 

reduced DNA methylation at the Cdkn1c promoter (loss-of-imprinting; LOI) indicating an 

epigenetic response to prenatal adversity [19]. Importantly, aberrant Cdkn1c expression was 

initiated in utero and persisted into adulthood. 

Suboptimal diet in pregnancy and poor maternal care are both linked to the abnormal 

development and function of the offspring dopamine system [20-23]. Increased levels of 

both Tyrosine hydroxylase (Th, the rate-limiting enzyme in dopamine synthesis) and 

dopamine have been reported, as well as abnormal reward responses, a behavior known to 

require dopamine [17,18]. Cdkn1c is important in neurogenesis, migration and morphology 

of the developing nervous system [24-26]. Of particular relevance here is the fact that 

Cdkn1c cooperates with Nurr1 to promote the proliferation and differentiation of midbrain 

dopaminergic neurons [27]. Maternally inherited loss of function of Cdkn1c results in 

reduced numbers of Nurr1-positive and Th-positive cells in the ventral midbrain at 

embryonic day (E)18.5 [27]. Taken together with the recently reported epigenetic sensitivity 

of Cdkn1c to the early life environment, this suggests the possibility that Cdkn1c may 



contribute to the programming of the offspring dopamine system by abnormal early life 

environments. However, although its neurodevelopmental function is consistent with a 

causal role, it is highly likely that Cdkn1c is one of many genes whose expression changes 

following early life adversity. Consequently, to what extent does this subtle elevation in 

Cdkn1c expression contribute to altered behavior later in life? 

We recently addressed this question directly using an established Cdkn1c transgenic model 

(Cdkn1cBACx1) based on a single copy insertion of bacterial artificial chromosome (BAC) 

spanning the Cdkn1c locus into the mouse genome [28]. In this model, Cdkn1c is expressed 

from the transgene in the developing nervous system with temporal and spatial accuracy 

[28] at approximately 2-fold the normal level modeling LOI [29]. Neural analysis of these 

animals revealed increased Th staining intensity in the striatum and ventral tegmental area 

(VTA), increased whole tissue dopamine levels in the striatum, and an enhanced immediate 

early gene (IEG) response to the stimulant, amphetamine [30], changes reminiscent of those 

reported after early life adversity [17,22]. In addition to these neuronal changes, the 

Cdkn1cBACx1 animals showed changes in a number of behaviors linked to the dopamine 

system.  

 

Dissociation of liking and wanting 

The hyperdopaminergic phenotype predicted a change in reward-related behaviors [30,31]. 

We assessed the hedonic reaction of Cdkn1cBACx1 mice via examination of the microstructure 

of their consummatory behavior [32]. Rodents typically produce repeated clusters of licks 

separated by pauses when consuming liquids. The mean number of licks in a cluster (cluster 

size) is directly related to the perceived palatability of solution being consumed, 

independent of the overall amount consumed, and is therefore a measure of “liking”. 

Cdkn1cBACx1 animals displayed a lower lick cluster size relative to their wild-type (WT) 

littermate controls suggesting a reduced hedonic response [12]. 

Interestingly, when assessed on a progressive ratio schedule (a test of “wanting”), 

Cdkn1cBACx1 mice were far more motivated by the food reward (8% sucrose), reaching a 

higher breakpoint (the maximum ratio reached by an animal within a session indicating the 

point at which they will no longer work for the reward) than their WT littermate controls 

[30]. Although a dissociation of this kind has been suggested from separate studies [32], the 

Cdkn1c LOI model is one of only two manipulations to show a double-dissociation between 

wanting and liking within the same animals. Strikingly, the other example is also a 

hyperdopaminergic animal, produced by knockdown of the dopamine transporter gene, Dat 

[33]. 

 

Behavior in the social group 

In addition to showing alteration in hedonism, we found that Cdkn1cBACx1 mice were more 

likely to win a tube-test encounter with unfamiliar animals than their WT littermates, 

indicative of altered social dominance behaviors [30]. Social dominance has not been shown 

to be influenced by an adverse early life environment directly, although rat offspring raised 



by high licking and grooming mothers do show reduced social interaction and concomitant 

increased Cdkn1c expression [18]. However, previous work indicates that social dominance 

is governed, in part, by the dopamine system in rodents [34] and that more dominant 

animals show increased motivation for reward [35]. 

The enhanced social dominance shown by Cdkn1cBACx1 mice is also interesting in the context 

of imprinted function generally. Previous work with another imprinted gene, Grb10, 

demonstrated that mice carrying a paternal knockout (Grb10patKO) were also more likely to 

win a tube-test encounter with unfamiliar animals [36], paralleling the findings seen in 

Cdkn1cBACx1 mice. This is the first explicit demonstration of a convergent role for imprinted 

genes on a behavioral function, paralleling other functional studies indicating a convergent 

role for imprinted genes in placental function, energy homeostasis and thermogenesis [37]. 

Moreover, the direction of effects is apparently opposite for maternal Cdkn1c and paternal 

Grb10, as twice as much expression of maternal Cdkn1c and loss of paternal Grb10 both 

increase wins in this test. This pattern fits with the prevailing theory for the evolution of 

imprinting, namely intragenomic conflict [38], and suggests that the maternal interest is to 

increase, whereas the paternal interest is to decrease, social dominance. 

However, whilst highlighting a possible conflict of interest over a behavioral phenotype, the 

use of this one tube test outside of the normal social group has been criticized as being 

unlikely to reflect actual social dominance differences within the normal social group [39]. 

To address this, we explored the social dominance behavior of Cdkn1cBACx1 mice more 

deeply and in the more relevant context of the cage-group. We found that levels of Cdkn1c 

expression had no influence on the social dominance rank within the normal home-cage 

[40]. Nevertheless, the pattern of data did indicate that over-expression of Cdkn1c leads 

individuals to disrupt the normally stable social hierarchy. We interpret this to be because 

the Cdkn1cBACx1 mice are more territorial than their wild-type cage-mates, shown in other 

tests, and may contest the social dominance hierarchy more frequently, which in turn leads 

to a greater incidence of fighting within the social group [40]. 

 

Conclusions 

These neural and behavioral data suggest that doubling the expression of Cdkn1c, mimicking 

loss-of-imprinting, leads to a hyper-dopaminergic animal [33,41]. In turn, this leads to whole 

raft of behavioral abnormalities, impacting on reward and social function. Moreover, the 

phenotype of this model of Cdkn1c LOI recapitulates many of the effects seen in animals 

where manipulation of the early life environment leads to changes in behavior, the midbrain 

dopamine circuitry and Cdkn1c expression [17,18] (Figure 1). This suggests that, although it 

is likely to result in a number of gene expression changes, the loss of imprinting of Cdkn1c in 

the offspring following maternal low protein diet is a key contributor to the associated 

changes in the dopamine system and behavior reported after early life adversity. However, 

whether this particular gene expression increase is the critical change, still remains to be 

fully established. 
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Figure 1 Schematic summarising similar brain and behavioural phenotypes seen mice 
exposed to maternal LPD and transgenic Cdkn1cBACx1 mice (LOI = loss of imprinting). 
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