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Abstract 

This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as 
blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune 
system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, 
immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. 
Identifying novel compounds that ‘tune’ the system, up-regulating the immune response during infectious 
disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand 
the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options 
that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress 
in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune 
modulating compounds in the coming years 

 

Introduction 

There are approximately 8.7 million different species on Earth (Mora et al., 2011), many of which produce 
venoms that have been refined over 600 million years of evolution for optimal potency and selectivity 
(Mauri et al., 2017). Animal venoms have been used to treat various diseases by many cultures for millennia. In 
mithridatism practice, individuals regularly exposed themselves to small amounts of venom until 
immunity developed (Valle et al., 2012). In Chinese traditional medicine, venom from the glands of Bufo bufo 

gargarizans was used for treating infection and inflammation (Meng et al., 2009, Qi et al., 2014) 
 
Venom is a complex mixture of peptides, proteins, enzymes, salts, and non-protein constituents. In terms 
of numbers of species, there are currently 600 leech species (Sket and Trontelj, 2008), 800 tick species (Cabezas-Cruz 

and Valdes, 2014), 3000 snake species (Wagstaff et al., 2006), 700 cone snail species (Puillandre et al., 2014), 1100 bat species 
(Jan et al., 2012), 2000 scorpion species (Cao et al., 2014), 10,000 cnidarians species (Cegolon et al., 2013) and 46,000 
spider species (World Spider Catalog, 2017), although not all these species are venomous or dangerous to humans. 
Other venomous animal include centipedes, scorpions, octopus, sea anemones and fish (Fry et al., 2009). 
Advances in proteomic, genomic and transcriptomic platforms are rapidly defining animal venom 
complexity (termed venomics) and are helping facilitate the translation of venom-derived compounds to 
novel therapeutics (Haney et al., 2014, Safavi-Hemami et al., 2014, Undheim et al., 2013). To date, six venom-derived drugs 
have been approved by FDA (Table 1) and many others are in preclinical development or clinical trials 
(King, 2011). The majority of venoms investigated thus far have been derived from snakes, due to the large 
amounts of venom these species produce for research (King, 2011). However, it should be noted that the 
venom yield is higher in captive snakes compared to the wild snakes and the amount of venom can be 
different depending on the type of bite, specifically a hunting or defensive bite (Mirtschin et al., 2006). Venoms 
and venom-derived compounds are known to activate or inhibit the immune response and synthetic 
venom-derived peptides are capable of modulating the human immune system. For example, the ShK 
peptide from the venom of sea anemone inhibits the Kv1.3  ion channel in T effector memory (TEM) cells, 
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producing decreased cell proliferation and suppression of IL-2 production (Beeton et al., 2005). Furthermore, a 
derivative of ShK (dalazatide) recently completed a successful Phase I clinical trial in psoriasis patients 
(Tarcha et al., 2017) 
 
The systematic study of the venom components and their interaction with the immune system may reveal 
novel therapeutics for a plethora of human diseases and therapeutics against envenomation symptoms. 
Venoms are engaged by the immune system and a response is generated to counterbalance their effects. 
This recognition is chiefly mediated by inflammation combined with the release of anti-inflammatory 
mediators in order to maintain homeostasis (Farsky et al., 2005, Leon et al., 2011, Petricevich, 2010). Crude venom and 
venom-derived compounds from spider, snake, scorpion and bee venom trigger inflammation (de Lima and 

Brochetto-Braga, 2003, Farsky et al., 2005, Petricevich, 2010, Rahmani et al., 2014). Inflammation refers to the complex reaction to 
harmful or noxious stimuli, including vascular changes, cell recruitment and cytokine release. The clinical 
signs of inflammation include redness, pain, heat, swelling and loss of function. It is also one of the steps 
in healing (Voronov et al., 1999). The immune system has evolved for approximately 1000 million years as a 
defensive system to protect the host (Buchmann, 2014). Initially, innate or natural immunity protects the body 
with a non-specific and fast response regulated through two lines of defense. The first line is comprised of 
physical and chemical barriers including skin, mucosa, cilia, tears, sweat, urine and bacterial flora. When 
the first defense line falls the second line is activated that includes the inflammatory response. Here 
diverse cell types are recruited (i.e. mast cells, neutrophils and eosinophils) and other chemical barriers 
such as the complement cascade are activated. The adaptive response can also be activated to generate 
immunological memory. Adaptive immunity is chiefly composed of T cells and B cells. T cells require 
antigen presentation by antigen presenting cells (APCs) via the Major Histocompatibility Complex 
(MHC). When APCs present antigen to T cells they become activated and secrete cytokines. B cells 
produce antibodies and plasma cells, the mature form of B cells, belong to the humoral immunity arm (Cota 

and Midwinter,, Warrington et al., 2011). This review catalogues the potential of venom and their components as drugs 
or drug scaffolds, focusing on their potential as novel modulators of these immune cells (Figure 1). 
 

The immune response to venom 

Snake venom and immune modulation 

Snake venom is synthetized by glands under the eye and they comprise a cluster of proteins that are 
determined by diet, geography (Daltry et al., 1996), age and gender (Woltering, 2012). Snake venom proteins are 
mixed with other components such as enzymes, amino acids, carbohydrates, lipids, amines and metal 
components (i.e. Zn+, Mg+, K+, Ca+ and Na+). Snake envenomation is a significant public health burden in 
tropics with over five million bites annually according to the World Health Organization (WHO) (Ahmed 

et al., 2008, Chippaux, 1998) 
 
Post envenomation, venom components generate an immune response (Leon et al., 2011). Both the innate and 
adaptive immune arms then attempt to neutralize the venom components. The innate immune response 
commences first and triggers a non-specific inflammatory cascade mediated by neutrophils, eosinophils, 
basophils and macrophages that phagocyte antigen and release cytokines (Nicholson, 2016). Mast cells release 
histamine to expand the blood vessels enhancing cell recruitment and migration. Leukocytes and mast 
cells produce prostaglandin D2 (PGD2) that vasodilates and permeabilizes vessels. Prostaglandins also 
stimulate nerve endings causing pain (Ricciotti and FitzGerald, 2011, Urb and Sheppard, 2012). Bradykinins are released  
that modify cell junctions allowing neutrophils to migrate to the site of injury (Golias et al., 2007, Sukriti et al., 2014).  
Nitric oxide (NO) is a gas produced by endothelial cells that functions as a signaling molecule. NO is 
involved in the relaxation of blood vessels and can perform mediator activities in immune cells such as 
macrophages, neutrophils, APCs and T cells (Coleman, 2001). Snake venom is known to induce these mediators 
after envenomation. For example, the venom of Bothrops erythromelas induces NO production in 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/cell-proliferation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/interleukin-2
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib7
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib94
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/envenomation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/counterbalances
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/homeostasis
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib25
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib48
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib66
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/apitoxin
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib21
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib21
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib25
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib66
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib75
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytokine
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib99
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib9
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cilium
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mast-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neutrophil-granulocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/complement-system
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/adaptive-response
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/t-cells
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/b-cell
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/antigens
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/major-histocompatibility-complex
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytokines
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/antibody
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/plasma-cell
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib18
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib18
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib103
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/white-blood-cell
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#fig1
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/venom
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib20
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib107
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/enzyme
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/amino-acid
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/carbohydrate
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/lipid
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/amine
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/envenomation
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib14
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/immune-response
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib48
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/neutrophil-granulocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/eosinophil-granulocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/basophil-granulocyte
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/macrophages
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/phagocyte
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/antigens
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytokines
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib59
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mast-cell
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/blood-vessels
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/white-blood-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/white-blood-cell
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/prostaglandins
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib78
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib96
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bradykinin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-junction
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib31
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib89
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nitric-oxide
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/t-cells
https://www.sciencedirect.com/science/article/pii/S0041010117303525?via%3Dihub#bib16
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/bothrops


murine splenocytes (Luna et al., 2011) and the venom from Bothrops jararacussu enhances neutrophil 
chemotaxis (Wanderley et al., 2014). Snake envenomation can cause an increase of neutrophils and lymphocyte 
counts and one study found that an elevated neutrophil/lymphocyte ratio correlated with longer periods of 
hospitalization (Elbey et al., 2017), with selective proliferation likely due snake-derived L-amino acid oxidases 
(Pontes et al., 2016, Wei et al., 2009). Snake venom can induce systemic and local inflammation and it is well 
documented that the genus Bothrops can induce severe inflammation. In a murine model, the snake venom 
from Bothrops asper enhanced the production of IL-6, TNFα and eicosanoids (Zamuner et al., 2005) and venom-
derived phospholipase A2s (PLA2s) improved phagocytic activity of macrophages in vitro(Rueda et al., 2013) 
 
When the inflammatory response is generated by external dangers the complement system activates a 
sequence of proteins that induces cell lysis and antigen presentation to the adaptive immune system. The 
activation of complement is part of the innate immune response and includes more than 30 proteins (Sarma 

and Ward, 2011). There are three biochemical pathways; the classic pathway, the alternative pathway and lectin 
pathway(Sarma and Ward, 2011). The main role of the complement system is to amplify the immune response 
through the stimulation of phagocytosis and cell killing (Sarma and Ward, 2011). Venom from Bothrops 

jararacussu and Bothrops pirajai can activate the classic and lectin pathways (Ayres et al., 2015). Venom from 
the Elapidae family Micrurus genus can also activate a specific complement cascade that induces B 
cell and T cell function (Tanaka et al., 2012). A P-I metalloproteinase derived from the venom of Bothrops 

pirajai can activate complement proteins that induce mast cells to produce histamine, enhancing 
phagocytosis and enhancing immune cell migration (Pidde-Queiroz et al., 2013). Similarly, venom from Daboia 

Russelii can activate complement proteins and induce IL-6 and IL-10 (Stone et al., 2013). Conversely, a P-III 
metalloproteinase from Naja naja atra venom is considered an anticomplement molecule (Sun and Bao, 2010). 
Another study found that Naja naja atra venom enhanced innate and humoral immune responses while 
inhibiting CD4+ and CD8+ T cell proliferation in response to mitogen (Kou et al., 2014). Naja naja atra venom 
also induced production of IFNγ and IL-4 and inhibited IL-17 production. Mice injected with Crotalus 

durissus terrificus venom showed increased plasma levels of IL-4, IL-5, IL-6, TNFα, IL-10 and NO 
(Hernandez Cruz et al., 2008) and decreased phagocytosis by neutrophils (Lima et al., 2012). A L-amino acid oxidase 
from Agkistrodon blomhoffii ussurensis venom induced IL-2, IL-6 and IL-12 from primary human 
monocytes and T cells (Wei et al., 2007) and a PLA2 from Bothrops leucurus venom induced IL-1β, IL-6, IL-
12p40 and TNFα from primary human mononuclear cells (Nunes et al., 2011). Snake venom can also suppress 
the immune system with Naja kaouthia venom able to protect against induced arthritis in rats (Gomes et al., 

2010) 

Scorpion venom and immune modulation 

Scorpions are arthropods that have evolved for >400 million years (Ma et al., 2012) and Buthidae is the family 
with medical significance (Smith et al., 2011). Scorpion venom is comprised of proteins, enzymes, peptides, 
amino acids, carbohydrates, inorganic salts, lipids and amines (Quintero-Hernández et al., 2013) and shares 
similarities with tick and spider venom (Cordeiro et al., 2015). Scorpion venom is also rich in neurotoxins that 
can cause alterations in the central nervous system (Watt and Simard, 1984). Scorpion envenomation is a 
significant public health burden in several tropical and subtropical countries such as Brazil (Furtado Sda et al., 

2016), Mexico (Isbister and Bawaskar, 2014), and Iran (Jalali and Rahim, 2014). In addition, over one million cases are 
reported globally every year (Isbister and Bawaskar, 2014). Clinical symptoms in envenomed patients include 
sweating, hypertension, nausea, extreme pain, vomiting, tachycardia and convulsions (Isbister and Bawaskar, 2014) 
and envenomation can induce a systemic inflammatory response syndrome, a result of abnormal 
cytokine production (Voronov et al., 1999). Scorpion venom is known to interact with Na+, K+, Ca+ and Cl− ion 
channels (Quintero-Hernández et al., 2013) 
 
Previous studies have shown that the main cytokines released in response to scorpion envenomation are 
IL-1, IL-6 and TNFα (Fukuhara et al., 2003, Jalali et al., 2011). One study showed that systemic IL-6 plays an 
important role in scorpion envenomation (Sofer et al., 1996). In another scorpion envenomation study, there was 
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an increase of systemic IL-6, soluble IL-6 receptor, TNFα, and RANTES, with high levels correlating 
with fatal outcomes (Abdel-Haleem et al., 2006). Venom from Androctus australis hector, Centruroides noxiusand 
Tityus serrulatus can initiate systemic IL-1 release in humans, triggering a complex cascade of other 
inflammatory/regulatory cytokines including IL-6, IL-10 and TNFα (Petricevich, 2010). Another study showed 
that Tityus serrulatus envenomation initiated systemic release of IL-1, IL-6, IL-8, TNFα and IL-10 (Fukuhara 

et al., 2003) 
 
Cytokines can be released at different time points depending on the cytokine and the stimulus (Sullivan et al., 

2000). Experiments performed on rats have shown that the plasma cytokines IL-1, IL-6 and TNFα peak 
three hours post injection of Mesobuthus eupeus venom and that antivenom can dampen the inflammatory 
response (Razi Jalali et al., 2015). The scorpion venom of Tityus serrulatus and its fractions were tested in a 
murine macrophage cell line pretreated with the mitogen lipopolysaccharide (LPS). Crude venom and two 
fractions augmented TNFα, IL-6 and NO release. In contrast, a separate fraction inhibited the release of 
TNFα and IL-6 and induced IL-10 suggesting anti-inflammatory activity (Zoccal et al., 2011). The venom of 
Androctonus crassicauda is known to enhance IL-12 production in human monocytes (Saadi et al., 2015). 
IL-12 is a pleiotropic cytokine driving T helper 1 (Th1) differentiation, IFNγ production, and T cell 
proliferation (Miles et al., 2015, Saadi et al., 2015). T cells are central for anti-pathogen and anti-cancer immunity and 
their dysfunction underlies autoimmunity (Miles et al., 2011). Additionally, the venom of the Hemiscorpius 

lepturus induces IL-12 release from human monocytes in vitro (Hadaddezfuli et al., 2015) and a fraction from 
Tityus serrulatus venom induced IL-1, IL-6, TNFα and IL-10 from murine monocytes in vitro (Petricevich 

et al., 2007). Venoms can also interfere with immune cell proliferation. The venom of Tityus serrulatus 
increases IL-6 secretion in PBMC and inhibits proliferation in T cells activated by mitogen (Casella-Martins 

et al., 2015) 
 
The recognition of external threat is performed by Toll-like receptors (TLRs) which are membrane-
spanning proteins in the innate immune system, mainly expressed in macrophages and dendritic cells 
(DCs) (Kawai and Akira, 2010).  TLRs are able to recognize ligands from microbes (bacteria, viruses and fungi) 
and then activate immune responses (Kawai and Akira, 2010). Ten TLRs have been identified in humans and 
TLR agonists induce activation and maturation of the immune system (Kawai and Akira, 2010). Venoms are 
known to engage the innate immune system including TLRs. For example, crude Tityus serrulatus venom 
and a venom fraction are sensed by murine TLR2 and TLR4 and induce the NF-κB and MAPK signaling 
pathways in macrophages resulting in release of IL-6, TNFα, PGE2 and LTB4 (Zoccal et al., 2014). Tityus 

serrulatus venom fractions have also been observed to modulate APC phenotype and function (Petricevich 

et al., 2008) 
 
The interaction between venom-derived compounds and ion channels and has been well studied (King, 2011). 
Venom-derived peptides are highly selective for these targets, and they have been described as promising 
candidates for new therapeutic approaches and drug development (Bagal et al., 2013). Ion channels, specifically 
K+ channels, are involved in T cell activation and are a chief target for immunomodulation. Other 
lineages also express K+channels (DCs, monocytes, and macrophages) (Zhao et al., 2015). Scorpion venom and 
its components can manipulate K+ channels for immune modulation (Hmed et al., 2013, Petricevich et al., 2007). For 
example, several scorpion peptides are known to inhibit K+ ion channels (Dutertre and Lewis, 2010, Swartz, 2013) 
including Margatoxin (MgTX) peptide from the venom of Centruroides margaritatus. MgTX can inhibit 
Kv 1.3 channels expressed by T cells and B cells (Bartok et al., 2014, Garcia-Calvo et al., 1993). A second example is 
Kaliotoxin (KTx) peptide from the venom of Androctonus mauretanicus mauretanicus which can inhibit 
both Ca+ and K+ channels (Crest et al., 1992) 

Bee venom and immune modulation 

The venom of Apis mellifera also has applications for immune modulation. 50–60% of the dry venom 
comprises a single melittin peptide (Raghuraman and Chattopadhyay, 2007) and 2–3% of the dry venom comprises 
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the apamin peptide (Gmachl and Kreil, 1995). Bee venomalso contains enzymes such as hyaluronidase, PLA2 and 
histamine (Hwang et al., 2015) 
 
DCs are the chief lineage for antigen presentation and they initiate both naïve and memory T cell 
responses (Randolph et al., 2005). Immature DCs are able to digest antigens by endocytosis, micropinocytosis 
and phagocytosis and, once they uptake antigen, DC migrate to lymph nodes where they mature and 
encounter T cells (Randolph et al., 2005). DCs express well known surface markers and costimulatory molecules 
that increase in expression during maturation (CD40, CD80, CD83 and CD86) and a mature DC 
phenotype correlates directly with potent T cell responses (Hubo et al., 2013). PLA2 from bee venom can 
enhance the maturation of DC and PLA2, in combination with TNFα and IL-1β, can induce the 
upregulation of costimulatory molecules CD83, CD86, both important for T cell stimulation (Aerts-Toegaert 

et al., 2007, Jeannin et al., 2000, Van Kaer, 2015). Immune cells express classic antigen presenting molecules MHC class 
I and class II but can also express non-classical molecules including CD1 (Rossjohn et al., 2015). Bee venom 
PLA2 can activate human T cells via CD1 molecules (Bourgeois et al., 2015) and can also induce a Th2 response 
via the release of IL-33 (Palm et al., 2013), a cytokine common in the skin and intestine (Miller, 2011). Thus, bee 
venom is a potent immune modulator and it has been used for a over a hundred years in autoimmune 
diseases such as rheumatoid arthritis and allergic disorders like asthma (Pak, 2016). Bee venom is known to 
induce T regulatory (Treg) cells (Park et al., 2015), an important regulatory lineage that corrects erroneous 
activities of other T cell subsets. Treg cells produce TGFβ and IL-10 that suppress the immune system 
and therefore reduce autoimmunity, inflammation and allergy (Wan and Flavell, 2007). Bee venom is known to 
induce Treg populations effectively and therapeutic application decreases inflammation of the bronchi in 
a murine asthma model (Choi et al., 2013) 

Sea anemone toxin and immune modulation 

A toxin rather than a venom, the ShK peptide from derived from the Stoichactis helianthusanemone 
(Pennington et al., 2012) shows promise as a selective immune suppressor (Norton et al., 2004). Analogs of the toxin 
have shown similar activities and modes of action (Lanigan et al., 2001). The anemone produces the toxin for 
protection against predators. Autoimmunity is the failure of the immune system to differentiate external 
threats from healthy operations resulting in unintended tissue damage. Most autoimmune diseases have 
no cures and researchers are actively exploring natural sources for novel therapeutics (Smallwood et al., 2017). 
The ShK peptide is known to block Kv1.3 channel found on the surface of TEM cells, which are central to 
the damage cascade in autoimmunity (Beeton et al., 2005). The Dalazatide peptide recently underwent clinical 
trials in psoriasis and the patients showed an improvement of this condition. The clinical trial data has 
now been published (Tarcha et al., 2017) 

Conclusions 

Recent advances in omics technologies paired with advances in synthetic peptide production and rapid 
recombinant expression (cell-free systems) is leading to an explosion in basic and applied venomics. 
Indeed, an estimated 20 million venom-derived compounds are thought to remain unexplored in nature 
(Escoubas and King, 2009). Combining advances in venomics with progress in low cost, high-throughput 
screening platforms will no doubt yield hundreds of prototype compounds applicable to the ∼10,000 
diseases known to medicine (WHO). At present, six venom-derived drugs have been FDA approved with 
many more in preclinical development and in clinical trials. Current research shows that venom has the 
capacity to induce potent effects on the immune response. These include customizer compounds that 
tune immune cell numbers, phenotype and function. For instance, snake and bee venom compounds that 
regulate immune cell subsets numbers and cell trafficking would be useful across autoimmunity, 
infectious disease and cancer. Snake venom compounds that induce IL-2 and IFNγ would be useful in the 
emerging field of cancer immunotherapy and snake venom compounds that augment humoral immunity 
might be useful as adjuvants for antibody-based vaccines. Scorpion venom compounds that induce IL-12 
would be useful for DC-based vaccines and snake and scorpion venom compounds that induce IL-10 
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might be useful in autoimmune disorders. Snake and scorpion venom compounds that selectively shut 
off T cell and B cell function would also be useful in autoimmune disorders and transplant medicine. 
Additionally, targeting these immune pathways may also open new therapeutic options that help alleviate 
envenomation symptoms associated with immune dysfunction. With these examples in mind, it is likely 
that venom-derived immune drug development is still in its infancy and these data emphasize the 
importance of preserving biodiversity to sustain future discoveries. 
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Fig 1 
 

 
 
 

Immune pathways modulated by venom. The innate (blue) and adaptive (red) immune arms can be 
modulated by crude venom and venom components. Cells at the junction of the innate and adaptive 
immune arms, including DCs and APCs (black), can also be modulated by venom and venom 
components. The ability to selectively target each of these subsystems using synthetically-derived 
venom components will open novel immunotherapies across infectious disease, cancer and 
autoimmunity. 
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Table 1 
FDA approved therapeutics from venom-derived proteins. 
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