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Abstract—Fog computing extends the functionality of the
traditional cloud data center (cdc) using micro data centers
(mdcs) located at the edge of the network. These mdcs provide
both computation and storage to applications. Their proximity
to users makes them a viable option for executing jobs with
tight deadlines and latency constraints. Moreover, it may be
the case that these mdcs have diverse execution capacities, i.e.
they have heterogeneous architectures. The implication for this
is that tasks may have variable execution costs on different
mdcs. We propose PASHE (Privacy Aware Scheduling in a
Heterogeneous Fog Environment), an algorithm that schedules
privacy constrained real-time jobs on heterogeneous mdcs
and the cdc. Three categories of tasks have been considered:
private, semi-private and public. Private tasks with tight
deadlines are executed on the local mdc of users. Semi-private
tasks with tight deadlines are executed on “preferred” remote
mdcs. Public tasks with loose deadlines are sent to the cdc
for execution. We also take account of user mobility across
different mdcs. If the mobility pattern of users is predictable,
PASHE reserves computation resources on remote mdcs for job
execution. Simulation results show that PASHE offers superior
performance versus other scheduling algorithms in a fog
computing environment, taking account of mdc heterogeneity,
user mobility and application security.

Keywords-Fog Computing; Cloud Computing; Cloud data
center; Micro data center;

I. INTRODUCTION

According to various studies, the billions of devices
connected to the Internet [21] generate huge amounts of
data. Analyzing this “big” data is a major challenge faced
by researchers today, requiring scalable solutions. Typically,
this data is sent to a cloud data center (cdc) for analysis.
However, there could be significant communication delay
from user devices to the cdc, leading to tasks missing their
real-time deadlines [4], [5]. An example of such a task
could be changing the course of an autonomous vehicle upon
sighting an obstacle on the road. If this task is sent to a cdc
and not completed by its designated deadline, there could
be possible loss of life. Another issue is that users may not
be comfortable in sending their personal and sensitive data
to the cdc for execution.

Fog computing addresses these issues by proposing an
architecture consisting of a number of micro data centers
(mdcs), located at the network edge, in proximity to users
[10], [13]. User devices can communicate directly with

the mdcs, which provide limited computation and storage.
Moreover, the mdcs are connected to the cdc. A key insight
here is that the tasks with tight deadlines and security
constraints could be executed on the mdcs, whereas tasks
that have loose deadlines and no security constraints could
be sent to the cdc for execution.

In practice, mdcs may have variable execution capacities,
i.e., they may be “heterogeneous”. For example, the mdc in
the home network of a user may have lower capacity than
the mdc in a work network. Likewise, while traveling from
home to work, the user may interact with several mdcs, each
with a different execution capacity. This “heterogeneity” in
execution capacities adds an extra layer of complexity to the
scheduling of tasks on the fog network.

In this paper, we present PASHE (Privacy Aware
Scheduling in a Heterogeneous Fog Environment), a
security-aware real-time scheduling algorithm for hetero-
geneous fog networks. This algorithm accounts for mdc
heterogeneity, security constraints and performance con-
straints of applications. Specifically, private tasks can only be
executed on the local mdc of users. Semi-private tasks may
be executed on trusted remote mdcs, and public tasks on the
cdc. Subject to meeting the security constraints, tasks with
tight deadlines are executed on the local or trusted remote
mdcs. On the other hand, tasks with loose deadlines are
sent to the cdc for execution. The idea is to use the mdcs
for executing the security/privacy and deadline constrained
tasks and to use the cdc for all other tasks.

A real-life application where this algorithm would be
useful is “Traffic control and management in a smart city”
– a scenario outlined by the Open Fog Consortium. Various
vendors (e.g. Google, Uber) [24] have been testing self-
driving cars with a number of on-board sensors, a global
positioning system, LIDAR cameras etc. These vehicles will
generate multiple terabytes of data every day, making it
challenging to send all of this data to a cloud data center.
It is therefore essential to use the edge capability for partial
processing of this data. These cars will be communicating
with roadside units to provide navigation support. A self
driving car will use various sensors to enable decision
support, e.g. stop or slow down or turn. Since these tasks
are real-time in nature, and involve “local decision making”,
sending them to the cloud for processing may not be feasible,
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due to the significant network latencies involved. It would
be important to process these tasks directly on roadside units
(or in-vehicle) – i.e. in fog devices (mdcs). Since the mdcs
are in proximity to the source of data, it is much more likely
that the task deadlines will be met by executing them at the
edge, without sending tasks to the cloud, or cdc. Moreover,
this also reduces the overall data traffic in the network, and
to the cdc. The vehicle must be capable of executing tasks
autonomously when it cannot connect to the cloud, and some
tasks could be sensitive in nature, for example, the actual
path that the user is taking, or infotainment services being
used (requiring use of an mdc). Other kinds of tasks that
may be used for data analytics may be executed on the cdc,
which would be more than capable of carrying out these
high computation tasks. This paper is organized as follows.
Section II discusses related work. The model, notation and
problem formulation is described in section III. Section IV
discusses the proposed algorithm PASHE. The simulation
results are described in section V. Section VI concludes the
paper.

II. RELATED WORK

In many cloud systems today, performance is heavily
dependent on network connectivity and availability. This
is especially true for real-time latency-sensitive applica-
tions [5]. Another issue is that data “belongs” to the
cloud service provider, which may not be acceptable in
privacy aware applications, e.g. maintaining patient records.
Edge/fog computing is significant because it can make an
impact in such scenarios, as it can provide much lower
latencies by locating devices in proximity to users [13].
Moreover, these edge devices would be in control/ownership
of users, resulting in local processing of private data. An
extensive summary of edge computing has been described
by Shu et al. in [22]. They explain several case studies
that could benefit from edge technology, such as smart
homes, smart cities, video analytics. They also describe
mechanisms for handling security/ privacy, reliability, and
programmability. Additional reviews of Edge computing can
be found in [1], [2], [21].

In real-time systems, the defining property is that the
output needs to be received within the specified deadline
[4], [5]. There has been some work on resource allocation
and scheduling in fog networks to achieve these objectives
[7], [11]. In our previous work [10], we proposed RT-
SANE, a security-aware, real-time scheduling algorithm for
homogeneous fog networks. In this work, we consider mdc
heterogeneity.

III. MODELLING AND PROBLEM FORMULATION

In this section, we describe our model and notation.
The edge–cloud architecture is shown in figure 1. At the
lowest level are users with their devices. The top layer
comprises of a cloud data center (cdc). The edge/fog layer
sits between these, consisting of fog nodes/ cloudlets/ micro
data centers (mdcs). Table I summarizes the notations. The
system architecture consists of a single cloud data center
(cdc) C, assumed to have sufficient capacity to execute
all jobs. Users can purchase credits for executing their
jobs on the cloud, e.g. from Amazon Web Services. In

Figure 1: Edge Architecture

addition, connected to C is a set of micro data centers
(mdcs), M = {m1,m2,m3, ....,mn} . A set of jobs
J = {j1, j2, j3, ...., jk} need to be executed on the mdcs
or the cdc. Each job ji ∈ J is dedicated to a user ui ∈ U ,
where U = {u1, u2, u3, ...., uz} is the set of users. Each job
ji ∈ J is represented by a 3-tuple < et(ji), d(ji), t(ji) >.
Here, et(ji) represents the execution cost of job ji, d(ji)
is the job’s deadline, and t(ji) is the job’s security tag,
representing the job’s security constraints. We elaborate on
these security tags later. We use the term job and task
interchangeably. Each mx ∈ M can either be local (ml) or
remote/foreign (mf ). The implication for this is that each
job ji, based on its requirement, may either be executed
on its local ml, or on one of the remote mdcs,mf , or
on the cdc. Each mx ∈ M has a processing capability
denoted by cp(mx). The mdcs are heterogeneous in that they
may have variable computing capacities. This means that a
particular job ji ∈ J can take different times to execute
on different mdcs. For the purpose of communication, a
link is established between the cdc and various mdcs. A
link between a cdc and an mx has a bandwidth denoted as
bw(C,mx). For the purpose of peer-to-peer communication,
there also exist links between various mdcs. For example,
for a particular user ui, we may have a link between its
local ml and a foreign mf , having a bandwidth denoted as
bw(ml,mf ).

We consider jobs with three types of security tags: private
(tp), semi private (tsp) and public (tpu). Private jobs can
execute only on the local ml. Jobs with semi private and
public tags are first sent to the ml. If sufficient resources are
not available on ml, then they are migrated to a “preferred”
foreign mf . If semi private jobs do not get enough resources
on a preferred foreign mdc, then they need to wait and can
be resubmitted later, while public jobs can be moved to the
cdc for execution, if they fail to get the required resources
on a preferred foreign mdc.

The size of data transmitted by user ui to ml =
sc(ui, ji,ml). The communication delay between user ui

and ml is given by cd(ui, ji,ml). This delay can be repre-
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Table I: Notations

C Cloud Data Center
M Set of micro-data centers

ml,mf Local & foreign micro data centers
R(mx) Reliability of mx

UR(mx) Unreliability of mx

l(i, j) Link between mi & mj

Rl(i, j) Reliability of link between mi and mj

URl(i, j) Unreliability of link between mi and mj

Tl(i, j) Trust value of link between mi and mj
J Set of all jobs/applications
U Set of all users
ui Particular user ui ∈ U
ji Specific job/task/application ∈ J
Tj Set of tags assigned to jobs

tp, tsp, tpu Tags for private, semi-private, public jobs
cp(mx) capacity of mx

cp(C) capacity of C
bw(ui,ml) bandwidth of link between user ui and ml
bw(mi,mf ) bandwidth of link between ml and mf

ted(ji,mx) Total execution cost of job ji on mx

et(ji) Execution cost of an interaction of ji
st(ji) Start time of job ji
ct(ji) Completion time of job ji
d(ji) Deadline for task ji

cd(ml, ji,mf ) Communication delay for ji between ml and mf

cd(ui, ji,ml) Communication delay for ji between ml and ui

cd(ui, ji, C) Communication latency for ji between ui and C
k′ Number of jobs meeting their deadlines successfully
k Total number of jobs submitted

sented by the following equation:

cd(ui, ji,ml) = t+ sc(ui, ji,ml) +
s(ji)

bw(ui,ml)
(1)

Here, bw(ui,ml) is the bandwidth of the communication
link between the user ui and their ml. The size of the data
transmitted by ui is given by s(ji). The time to initialize the
communication link is denoted by t. In addition, the cost of
transferring the state of the job ji is given by sc(ui, ji,ml).
A similar relationship would hold for a foreign mdcs. For
the sake of brevity, we omit these equations.

Each real-time job ji ∈ J , needs to finish before its
deadline.

st(ji) + et(ji) + cd(ui, ji,ml) ≤ d(ji) (2)

Here, st(ji) denotes the start time for job ji. Jobs execut-
ing on their mf must finish before their deadline as well.

et(ji) + cd(ml, ji,mf ) ≤ d(ji) (3)

The delay between ml and mf is modeled as:

cd(ml, ji,mf ) = t+ sc(ml, ji,mf ) +
s(ji)

bw(ml,mf )
(4)

The delay between ui and cdc is modeled as:

cd(ui, ji, C) = t+ sc(ui, ji, C) +
s(ji)

bw(ui, C)
(5)

The jobs executing on the cdc must also finish before their
deadline.

et(ji) + cd(ui, ji, C) ≤ d(ji) (6)

An mdc must have sufficient spare capacity available
to execute a job – referred to as the “Spare Capacity
Condition”, represented as:

et(ji) ≤ cp(mx)−
∑

et(jx,mx) (7)

Here, cp(mx) stands for the execution capacity of mx, jx
represents the set of all jobs currently assigned to mx, and∑

et(jx,mx) represents the sum of execution costs for all
jobs already allocated to mx. This equation needs to hold
∀ji ∈ J, ∀mx ∈M . Here, mx can be either ml, or mf .

In the proposed algorithm, if ml does not have spare
capacity available, or if the user is mobile, jobs may be exe-
cuted on any of the heterogeneous foreign mdcs. Moreover,
mf may or may not be reliable. In order to come up with
a set of reliable mdcs, we propose the following approach.

In case the local mdc of job ji does not have sufficient
spare capacity available (eq. 7), then, the job ji may be
executed on a foreign mdc. For this, the set of available
foreign mdcs are arranged in decreasing order of their
bandwidth. One of the mdcs from this set is selected for
execution, as follows.

Each mx has a reliability R(mx) and an unreliability
UR(mx) value associated with it, which ranges between
0 and 1, i.e. 0 ≤ R(mx) ≤ 1. Intuitively, UR(mx) =
1−R(mx), however, these may also be defined as a fuzzy
membership function. The reliability of a link between ml

and mf is denoted by Tl(mi,mf ). Higher the value of
Tl, more trusted is the foreign mdc. In this work, we
assume a threshold value of 0.5, i.e for a particular ml,
if Tl(ml,mf ) ≥ 0.5, then mf is trusted with respect to that
particular ml, otherwise it is untrusted. The Reliability and
Unreliability values of a link l(ml,mf ) between a local ml

and one of its foreign mf can be calculated by using the
reliability and unreliability values associated with ml and
mf as shown in eq. (8) and eq. (9):

Rl =
Rml +Rmf

2
− Rml + URmf

2
+

Rmf + URml

2
(8)

URl =
URml + URmf

2
− Rml + URmf

2
+

Rmf + URml

2
(9)

Finally, the trust value of the link between ml and mf ,
Tl(ml,mf ) is calculated as given below by using link
reliability and unreliability values obtained in eq. (8) and
eq. (9):

Tl(ml,mf ) =
Rl

Rl + URl
(10)

If, for ml, Tl(ml,mf ) ≥ 0.5, then mf is trusted for ml.

Tl(ml,mf ) >= 0.5 (11)

The main performance metric that we consider in this
work is Success Ratio (SR). This is the ratio of the number
of jobs that meet their deadlines (k′) and the total number of

jobs considered for execution (k), in other words, SR = k′
k .
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Table II: Mapping of Jobs to mdcs or cdc

ml mf (rj) mf (urj) cdc
tp Y N N N
tsp Y Y N N
tpu Y Y Y Y

The problem we solve in this paper may be stated as
follows: Given a set of jobs J , a set of heterogeneous mdcs
M with different execution capacities, and trust levels, and

a cdc, C, maximize SR = k′
k , while ensuring that jobs get

executed on their preferred mdcs : mf (t1),mf (t2), ....etc.,
according to table II.

IV. PASHE ALGORITHM

In the proposed PASHE algorithm, all mdcs are het-
erogeneous, meaning that they may have different pro-
cessing capabilities, denoted as cp(mx). The implication
is that each job may take a different amount of time
to execute on a different mdc. The available mdcs are
divided into two sets: MF , the set of all foreign mdcs,
and ML, the set of all local mdcs. From the set of foreign
mdcs,MF , we obtain the set of trusted foreign mdcs, given
by MF (T ). All the local mdcs in the set ML are assumed
to be reliable. A set of trusted foreign mdcs,MF (T ) =
{mf (t1),mf (t2),mf (t3), ....,mf (td)}. This set consists of
the mdcs that are trusted, i.e. the mdcs for which the value
of Tl ≥ 0.5. For a particular job ji associated with a
particular user ui, the set of trusted foreign mdcs,MF (T )
is sorted in decreasing order of bandwidth from the user’s
ml, such that bw(ml,mf (t1)) ≥ ....bw(ml,mf (td)). This
implies that cd(ml, ji,mf (t1))....... ≤ cd(ml, ji,mf (td)).
This sorted list of trusted mdcs, then becomes MF (T )sorted.
The first member of this list becomes the most preferred
foreign mdc for job execution, the second member becomes
the next most preferred foreign mdc, and so on.

Algorithm 1 PASHE

1: Calculate ct, cd, ∀ji ∈ J .
2: Populate Queue Q with tag tp, tsp and tpu
3: Arrange Q in increasing order of deadlines
4: ∀ji with tag tp:
5: if (ji satisfies st(ji) + et(ji) + cd(ui, ji,ml) ≤ d(ji)

&& et(ji) ≤ cp(mx)−
∑

et(jx,mx) on ml) then
6: schedule ji on local mdc ml.
7: else
8: re-submit job later
9: ∀ji with tags tsp or tpu:

10: if (ji satisfies st(ji) + et(ji) + cd(ui, ji,ml) ≤ d(ji)
&& et(ji) ≤ cp(mx)−

∑
et(jx,mx) on ml) then

11: schedule ji on local mdc ml.
12: else
13: Preferred−MDC().

14: Calculate SR ratio (k
′
k ).

Algorithm 2 Preferred-MDC( )

1: Generate list of trusted foreign mdcs,MF (T )sorted.
2: ∀ji with tag tsp:
3: spF inished = 0;
4: for (i=1 to length(List) do.
5: if mf (tj) & ml satisfy Tl(ml,mf ) >= 0.5 &&

mf (tj) satisfies et(ji) + cd(ml, ji,mf ) ≤ d(ji) &&
et(ji) ≤ cp(mx)−

∑
et(jx,mx) then

6: schedule ji on mf (tj)
7: spF inished = 1
8: break;
9: else

10: i++;
11: if (spF inished == 0) then:
12: re-submit job later.
13: ∀ji with tag tpu:
14: puFinished = 0;
15: for (i=1 to end of List L) do.
16: if mf (tj) satisfies et(ji) + cd(ml, ji,mf ) ≤ d(ji)

and et(ji) ≤ cp(mx)−
∑

et(jx,mx) then
17: schedule ji on mf (tj)
18: puFinished = 1;
19: break;
20: else
21: i++;
22: if (puFinished) == 0 then:
23: if ji satisfies et(ji) + cd(ui, ji, C) ≤ d(ji) then
24: schedule ji on cdc.
25: else
26: return;

In PASHE, the completion time (ct) and communication
delay (cd) is calculated for each job ji ∈ J . Next, all jobs
with security tags tp, tsp, and tpu, are sorted in an increasing
order of their deadlines [4], and added to a queue Q. All
private jobs are scheduled on their local ml. If the local mdc
does not have spare capacity available, the job needs to be
re-submitted later. The proposed algorithm tries to execute
semi private and public jobs on the local ml. However, if
the ml does not have a sufficient spare execution capacity
available, then the jobs are sent to their preferred foreign
mf (t1). The preferred foreign mf (t1) is selected from the
set of trusted foreign mdcs,MF (T ) for that particular local
ml on the basis of their link reliability value Tl. A semi
private or public job is sent to the preferred mf (t1), which
has the highest link bandwidth with ml. If the preferred
trusted mf (t1) is not available, semi private jobs are sent to
the next preferred, trusted foreign mf (t2), and so on. The
public jobs are sent to the cloud data center cdc.

V. RESULTS AND DISCUSSION

A. Simulation setup and Parameters
We consider a simulation with 12 users, each user ui

has its own dedicated job ji. The execution costs of jobs
range between (500-5500) MIPS. The number of mdcs
that have been considered here is 3, each with a different
computing capacity, which range between (400-2200) MIPS.
It is assumed that a single cdc with a computing capacity
of 44800 MIPS is present.
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All simulations have been run on a modified iFogSim
simulator which is capable of modeling the characteristics of
heterogeneous mdcs and a cdc [12]. The iFogSim simulator
was found to be most suitable, as it is specially meant for
resource management in the Fog environment. Parameters
such as latency, network congestion, energy consumption
and cost have been considered. All iFogSim simulations
have been run on a machine with an Intel Xeon 2.40
GHz Processor and 4GB of RAM. In iFogSim, a class
with the name HeterogeneousMdcs has been created. This
class contains 12 different independent applications, each
having one module. The deadline of each application along
with its MIPS capacity requirement has been declared in
this class. The capacity of the cdc and the communication
delays have also been specified. By varying the capacity
of the mdcs for different iterations of the simulation in
the HeterogeneousMdcs class, a heterogeneous execution
environment has been created. The UpdateAllocatedMips
function in the FogDevice class assigns a MIPS load to the
various modules. This has been done in order to implement
FCFS along with the existing time shared scheduling method
in iFogSim. Next, a job priority has been created, which
contain jobs in a non decreasing order of their deadlines or in
FCFS order. The implementation keeps a check on whether
an application completes its execution or not. If so, then the
application is removed from the queue and the remaining
MIPS of the mdc is allocated to some other job. In order to
evaluate the performance of all given scheduling algorithms,
the following metrics have been used in the simulation:

1) Success Ratio (SR): This is defined as (k
′
k ) ∗ 100, i.e.

the percentage of the number of jobs meeting their
deadlines to the total number of jobs submitted for
scheduling.

2) Heterogeneity Factor (HF): defined as
cp(mfastest)−cp(mslowest)

average(cp(mz))
. Here, cp(mfastest) is

the execution speed of the fastest mdc, cp(mslowest)
is the execution speed of the slowest mdc, and
average(cp(mz) is the average of the execution
speeds of all mz ∈ M . In the simulations, the HF
value has been increased from 0 to 1.6, each time by
a value of 0.2. This varies the level of heterogeneity
of the execution capacities of the mdcs.

3) Deadline Factor (DF): This metric specifies the range
over which the job deadlines are varied. The inter-
pretation is that a low value for DF implies that the
overall deadlines in the system are “tight”. Likewise,
high DF values imply “loose” deadlines. A lower
bound for the job deadline d(ji)LB was calculated,
equal to ect(ji). Here, ect(ji) is the earliest time that
job ji can start. Next, the average deadline value of
the system davg was calculated. This value was then
multiplied by a factor of 1 to 4 to get a range of
deadline factor values.

1) Effect of mdc heterogeneity on Performance: We
investigate the effect of mdc heterogeneity (HF) on Success
Ratio (SR). In cdc-only, all jobs are sent to the cdc for
execution, leading to considerable communication delay. On
the other hand, in PASHE, jobs are first sent to the mdcs.
For the simulation, we consider delay between an mdc and
a user device to be 2ms, and between the cdc and a user

Figure 2: Effect of HF on SR

device to be 100ms. In cdc-only, public jobs are sent to
the cdc, while private and semi private jobs do not get any
chance for execution. Therefore, mdcs do not have any role
to play here. Due to the large communication delay between
the user and the cdc, only public jobs with loose deadlines
can complete their execution. Hence, the performance results
in a straight line (with 25% jobs meeting their deadlines).
PASHE results in an increased SR because all private jobs
are executed on the local ml, semi private jobs are sent to
either the local ml, or to a reliable foreign mdc. In the next
simulation, the performance of PASHE is compared with
FCFS in a heterogeneous Fog Environment. The number
of mdcs has been fixed to 3, with computing capabilities of
mdcs ranging from (350–2700) MIPS. The results for this
simulation are shown in Figure 3.

Figure 3: Effect of HF on SR

The HF has now increased from 0 to 1.6, and its effect
on SR can be observed – increasing HF also leads to
an increase in SR for both FCFS and PASHE. In both
algorithms jobs are sent to mdcs as well as the cdc for
execution. It is seen that by varying the computing capability
of mdcs, possibly by increasing it instead of fixing it to
some constant value, a larger number of jobs are able to
meet their deadlines. However, PASHE demonstrates a better
performance than FCFS, as it schedules jobs with earlier
deadline first unlike FCFS. If jobs arrive at the same time,
then they are scheduled according to their job ids.

2) Effect of Deadline Factor on Performance: In this
simulation we compared the performance of FCFS and
PASHE by varying the Deadline Factor (DF ). The number
of jobs considered is 12. Four mdcs with different comput-
ing capacities cp(mx) were considered. The communication

337



Figure 4: Effect of DF on SR

delay between a user device and an mdc was kept at 2ms,
and between the cdc and user device as 100ms. The result is
shown in Figure 4. We observe that performance (SR value)
increases when DF is increased. This is because increasing
the DF reduces the constraint on completion time, and
a larger number of jobs are able to meet their deadlines.
We can also observe that PASHE results in a higher SR
as compared to FCFS, as it employs a better heuristic:
Earliest Deadline First (EDF ) which schedules applications
according to their deadlines, ensuring that more jobs are able
to finish execution before their deadlines. In FCFS, jobs
are scheduled in the order in which they arrive, irrespective
of their deadlines. Interestingly, after a certain threshold DF
value, both the algorithms result in an SR as high as 100%.
At this instant, the deadlines become so loose that all the
jobs finish well before time, irrespective of the scheduling
algorithm used.

Figure 5: Effect of ResourceReservation on SR

3) Effect of Resource Reservation on Performance: In
this simulation, we studied the effect of resource reservation
on system performance. The authors in [23] observe that in
their study, it is possible to predict the mobility patterns of
users with as much as 93% accuracy. Moreover, they also
observe the accuracy of this prediction is largely independent
of the distance that the users cover. For example, while
traveling from home to work, users may take pretty much
the same path everyday. Our proposed idea is that if the
mobility pattern of a user is fixed, this can be used to reserve
some portion of the computation capacity of the foreign
mdcs in the users’ path. The proposed algorithm PASHE
with this reservation module added, becomes PASHE R.
In this simulation, we considered three mdcs with comput-

ing capacity values cp(mx) of 780, 2090, and 350 MIPS
respectively. The jobs were a mix of private jobs, semi-
private jobs and public jobs, but the ratio of semi-private jobs
was kept higher. Here, 50% of the jobs were semi-private
while private and public jobs were 25% each. The MIPS
requirements of jobs range from (350–5500). The public jobs
are allowed to execute on foreign mdcs if the mdcs have
sufficient spare capacity available . In this case, semi private
jobs may miss their deadlines on their preferred mdcs. This
is because public jobs are computationally expensive, and
may consume all the computing capacities of foreign mdcs,
and still fail to meet their deadline. Therefore, it makes sense
to reserve some mdc capacity for semi-private jobs only.
Figure 5 shows that reservation of 0%, 20%, and 40% of the
mdc computing power gives a constant performance without
much improvement. This can be explained as follows. For
cases in which a smaller percentage of mdc computing
power is reserved for semi-private jobs, resource hungry
public jobs occupy the mdcs for the most part, and hence,
deny the mdcs to the semi-private jobs. In fact, even the
public jobs are unable to meet their deadlines. However, as
the amount of resource reservation for semi-private jobs is
increased, a larger number of them can finish their execution
before their deadlines, leading to a higher SR value.

Figure 6: Effect of HF on SR

The next simulation compares the performance of
PASHE R versus simple PASHE in a heterogeneous
fog environment. The HF value has been varied from 0
to 1.6. The number of jobs considered is 12 and the number
of mdcs considered is 3. The result for this simulation is
shown in Figure 6. In this scenario, 35% of the computation
capacity of the foreign mdcs has been reserved for semi-
private jobs. This ensures that PASHE R results in a
larger number of semi-private jobs being able to meet their
deadlines than would have been possible without reservation.
This translates to a higher SR. Also note that this reservation
causes more of the high computation public jobs to be sent
to the cdc. In comparison, the SR values for PASHE are
lower, due to the absence of reservation for semi-private
jobs. This leads to public jobs blocking the mdcs, causing
the semi-private jobs to miss their deadlines. Hence, the SR
values are lower versus the values obtained by PASHE R.

The next simulation compares the performance of
PASHE R and cdc− only. The simulation setup remains
the same as the previous case. The results are shown in
Figure 7. From the figure, we observe that PASHE R
offers a higher SR than cdc-only, partly due to employing
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Figure 7: Effect of HF on SR

the mdcs for job allocation, and partly due to the 35%
reservation for semi private jobs. This results in a larger
number of jobs completing their execution successfully. On
the other hand, the cdc-only algorithm does not employ the
edge for scheduling and all jobs are sent to the cdc, resulting
in low SR values. Interestingly, we observe that increasing
HF has no effect on SR, which is shown in terms of a
flat line in Figure 7. This is because HF corresponds to the
heterogeneity of the mdcs, which are not used to schedule
jobs in cdc-only.

Figure 8: Effect of number of jobs on SR

4) Effect of Number of jobs on Performance: The goal
of this simulation is to analyze the effect of increasing the
system load (i.e. the number of jobs). The mdc computing
capacities have been taken as 500, 1500, 2200 MIPS re-
spectively. Initially, we consider 4 jobs in the system. Three
“small” jobs with capacity requirement of 240, 500 and 700
MIPS execute on 3 different mdcs, and the one “large” job
with capacity requirement of 3600 MIPS executes on the
cdc. The results for this simulation are shown in figure 8.
We observe that PASHE performs well, in general, versus
FCFS. As the number of jobs increases from 4 to 12 with
computing requirements of 150, 110, 180, 4400, 3500, 200,
5500, and 257 MIPS respectively, the performance (SR
value) degrades. However, PASHE still performs better
than FCFS. This can be attributed to the fact that PASHE
follows the EDF heuristic which schedules job according
to their deadlines, while FCFS schedules jobs in the order
that they arrive in the ready queue. Furthermore, from Figure
8, we observe that when the number of jobs is less, the mdcs
are capable of executing all jobs successfully but when the
number of jobs increases, then the mdcs fail to execute them

because of their limited resources.

Figure 9: Effect of number of jobs on SR

The next simulation in this section compares the perfor-
mance of PASHE and cdc-only. The setup remains same
as in the previous simulation. The results are depicted
in Figure 9. Initially, when only four jobs are present,
PASHE offers an SR value of 100%, as all the jobs meet
their deadline, because the three mdcs provide sufficient
execution resources. In cdc-only, all jobs are sent to the
cdc, and not to the mdcs, so many of them fail to meet
their deadlines. This is the case even when the number of
jobs is less. This is due to the large communication delay
between the user jobs and the cdc. When the job count is
increased from 4 to 12, performance of both the algorithm
degrades. This is because of the additional computation
load placed. As the mdcs have limited computing capacity,
this increased load leads to more deadline misses, and a
reduction in the SR value. As we can observe in figure 9,
PASHE gives superior performance compared to cdc-only,
even when job count increases. This is due to the fact that
PASHE employs the mdcs for scheduling jobs. Only when
the capacity of the mdcs is exhausted, are the jobs sent to
the cdc.
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VI. CONCLUSION

In this work, we propose PASHE, a novel algorithm for
resource scheduling in fog environments, supporting edge
mdcs which are “heterogeneous” and able to take user
mobility into account. The proposed approach is able to
take job requirements (security and completion deadline)
into account, to identify the most suitable location to execute
the job, i.e. a local vs. remote mdc or a centralized cdc. The
proposed algorithm also allows for reservation of bandwidth
on remote mdcs. The approach has been validated through
the widely used fog simulator, iFogSim, where an extension
has been provided to model heterogeneous mdcs. The out-
come of this work can be used to support capacity planning
of mdcs at the network edge.
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