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Estimating effects of removing negative features on engineering analysis

Ming Li and Shuming Gao ∗
State Key Laboratory of CAD&CG, Zhejiang University, China P.R.

Ralph R. Martin
School of Computer Science & Informatics, Cardiff University, UK

Abstract

This paper provides a general framework for the quantitative estimation of the effects of removing negative features on engineering
analysis, or modification sensitivity for short. There are two main applications: (i) when defeaturing models so that finite element
analysis may be carried out more quickly and with lower memory requirements, and (ii) when performing iterative design based
on finite element analysis. Our approach can handle large as well as small features, and features with Neumann/natural boundary
conditions prescribed on them; previous methods have difficulties in handling such cases.

Estimation of the modification sensitivity is achieved by reformulating it as a modeling error caused by use of different mathe-
matical models to describe the same engineering analysis problem. Results are obtained using the dual weighted residual (DWR)
method in combination with a heuristic assumption of small variation of dual solution after defeaturing. The final derived sen-
sitivity estimator is expressed in terms of the difference of local boundary integrations over the feature boundary, which can be
explicitly evaluated using solutions defined on the defeatured model.

The algorithm’s performance is demonstrated using a Poisson equation. Comparisons to results obtained by previous approaches
indicate it is both accurate and computationally efficient.

Key words: modification sensitivity, design sensitivity, engineering analysis error, large design changes, DWR.

1. Introduction

Computational simulations, or engineering analysis, pre-
dict the physical behavior of a designed engineering compo-
nent under various boundary constraints and external load-
ings. They allow engineers to investigate, visualize and test
various physical and mechanical properties and operations
on a designed object before constructing a real physical pro-
totype, shortening the design cycle. Engineering analysis is
generally performed using finite element (FE) analysis on
a mesh derived by discretizing a CAD model.

Such simulation-based design typically involves a pro-
cess of repeated design changes which modify a designed
model by adding or removing design features, or adjusting
geometric parameters of features, to meet ultimate design
objectives of functionality, manufacturability, aesthetics,
and so on. A design objective is typically measured using
local quantities of engineering interest [16], such as point-
wise displacements or average temperatures over a region
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etc; global values are not able to provide specific enough
information about the model. Each time a design change
is made, for example, adding a feature to the model, the
engineering analysis problem must be solved again for the
modified model in order to obtain these target local quan-
tities. See Fig. 1(a). Such repeated analyses can be very
expensive if the model’s geometry is complex or a sophis-
ticated or accurate analysis is required.

The overall computational efficiency can be much im-
proved if the previous computational results for the prior
design stage can be reutilized for the modified model. This
idea can be put into practice by estimating differences be-
tween local quantities in the prior and current design, allow-
ing decisions on design changes to be made. See Fig. 1(b).
In some cases these changes may be small and local, but
in other cases, relatively large features may be added to
or removed from a model. The approach reported here can
handle cases where large negative features (with prescribed
Neumann or natural boundary conditions) are removed—
previous work has considered smaller, more local shape
changes. (A companion paper also considers the case of pos-
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Fig. 1. Different strategies for simulation-based design. (a) repeated engineering analysis is required for each design change; (b) using
modification sensitivity estimation, only one step of engineering analysis is required for all model modifications.

itive features, but these require rather more heuristic meth-
ods [20]; this paper provides a sounder and more theoreti-
cal background to the approach). In summary, we consider
how to estimate the effects of removing large design fea-
tures on results of engineering analysis, measured in terms
of changes in a particular quantity of engineering interest,
in other words, the modification sensitivity for that quan-
tity and model.

The problem of modification sensitivity estimation also
arises when performing model simplification for analysis.
Here, the aim is to remove design features that have lit-
tle impact on the results of analysis, allowing the analysis
to be performed more quickly on a simpler model. Irrele-
vant geometric details can significantly increase the time
and computational complexity both for the meshing pro-
cess and the FE analysis performed on it [29,19]. Worse,
they may even lead to mesh generation failure [29] or ill-
conditioned computations [24] that may produce inaccu-
rate analysis results. In extreme cases, the fully-featured
problem may be too complex for an engineering analysis to
be tractable, and model simplification is essential in such
cases. Consider, for example, Fig. 2. Finite element anal-
ysis requires both geometric adaptivity and smooth mesh
size transitions, leading to a mesh with far more elements
for the fully-featured model than for a corresponding de-
featured model. The benefits of suppressing features come
at a cost of somewhat different results of the analysis. Un-
derstanding such modification sensitivity is essential to en-
sure that a desired analysis accuracy can still be met after
defeaturing.

As noted, this paper focuses on the modification sen-
sitivity estimation of the case of removing negative fea-
tures (of Neumann/natural boundary conditions) within
the model’s interior or along its boundary. This problem is
of particular relevance in plate or shell analysis [8], where
design changes are usually made within the material of the
model. Estimating sensitivity to the creation of such nega-
tive features is also important in classical topological opti-
mization [10], although that topic focuses on negative fea-
tures of infinitesimal size while this paper focuses on neg-
ative features of possibly large size, which can be in the
model’s interior or on its boundary.

The general framework provided in this paper for esti-
mating the effects of removing negative features on engi-
neering analysis is based on reformulating the modifica-
tion sensitivity, originally caused by a geometric difference,
as a modeling error, caused by the use of different PDEs
to mathematically model a physical phenomenon over the
same geometric model. Estimating this modeling error is
achieved using the dual weighted residual (DWR) method,

originally developed in [3,22], in combination with a heuris-
tic assumption that the difference between the dual solu-
tions of the fully-featured model and the defeatured model
is small. This results in the derived modification sensitivity
being expressed in the form of a local integration over the
feature’s boundary, which can be explicitly evaluated using
engineering analysis results from the defeatured model.

The remainder of the paper is organized as follows. Re-
lated work is discussed in Section 2. The problem studied
in this paper is defined more precisely in Section 3. Esti-
mating the modification sensitivity using DWR is described
in Section 4. The computational efficiency and accuracy of
our approach and related approaches are discussed in Sec-
tion 5, while numerical experiments are presented in Sec-
tion 6. Conclusions are drawn in Section 7.

2. Related work

Unlike the well-studied analysis error estimates for FE
approximation [17], the problem of estimating modifica-
tion sensitivity is rarely studied, and was stated to be an
open problem in a recent survey on physically-based model
simplification [26]. Previous research work closely related
to this topic includes studies on design sensitivity, feature
sensitivity, and reanalysis techniques.

Design sensitivity analysis computes the derivatives of
model response quantities with respect to design variables,
and plays a critical role in design optimization. Given suf-
ficiently small model modifications, shape sensitivity anal-
ysis [6] allows designers to compute the change in local
quantities of interest when a model boundary is perturbed,
based on infinitesimal changes, while topological sensitiv-
ity analysis [10,25] computes the change when an infinites-
imal circular hole is created within an existing geometry.
Extensions of topological sensitivity analysis to arbitrarily-
shaped features are given in [2,21]. Explicit analytical ex-
pressions have also been derived for, e.g. the case of a clas-
sical Poisson equation [11]. Recently, a practical, efficient
numerical approach was proposed by Suresh et al [15,27,28]
for estimating the topological sensitivity (called feature sen-
sitivity there) to creation of an arbitrarily-shaped small
internal hole. However, design sensitivity analysis and its
variants are essentially dependent on asymptotic expan-
sions of target functionals, which strongly limits the nature
of permissible sizes and locations of the features involved.
They are hard to apply directly to the problem of large de-
sign changes we consider here.

Our sensitivity estimator is achieved by extending the
DWR method. The DWR method was originally developed
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(a) Original CAD model (b) Defeatured CAD model (c) Mesh for original model

with 86030 elements

(d) Mesh for defeatured model

with 3990 elements

Fig. 2. Suppressing features (36 holes, 8 blends and 2 extrusions) from the fully-featured model in (a) leaves the defeatured model in (b). It
needs fewer mesh elements to represent it to the desired accuracy.

by Becker and Rannacher [3,4] to estimate goal-oriented
FE approximation error for a broad class of nonlinear prob-
lems. It was then extended by Oden and Prudhomme [22]
to modeling error estimation. This prior work only consid-
ers problems in which the underlying geometry over which
analysis is performed, and the associated boundary condi-
tions, remain unchanged before and after approximation.
Recently, Cnossen considered [7] the possibility of applying
DWR to fluid-flow problems where varying boundary con-
ditions may be used with fixed geometry. We go further and
consider utilizing DWR for quite general geometric design
changes, extending this previous work.

All the above mentioned approaches consider goal-
oriented modification sensitivity estimation. There are also
heuristic approaches studying modification sensitivity in
terms of global energy differences [13]. However, an essen-
tial starting step is that a cut boundary has to be selected
around the suppressed feature to allow for local computa-
tion, and there is no obvious simple approach for doing so.

Another approach for estimating modification sensitivity
is based on reanalysis techniques [8,18], which links small
geometric modifications of a model to variations in its as-
sociated stiffness matrix. However, modifying large design
features may drastically change this matrix. Moreover, for
successful implementation of reanalysis techniques, steps
of model preparation, meshing and nodal mapping are re-
quired, which are non-trivial problems in their own right.

3. Problem statement

We now further explain and define the problem of esti-
mating effects of removing negative features on engineering
analysis, i.e. modification sensitivity.

In our problem, we assume that we have a general engi-
neering analysis problem defined over two different models,
which for simplicity we call the fully-featured model and
a defeatured model. The engineering analysis problem con-
cerning, e.g. heat transfer or elasticity analysis, is gener-
ally described by one or more partial differential equations
(PDEs) plus certain prescribed boundary conditions, e.g.
external loadings or fixed temperatures. Performing engi-

neering analysis on a model requires computing the field
solutions of the corresponding boundary value PDE prob-
lem over the model, typically using FE methods.

The fully-featured model might be a model before fea-
ture suppression when performing model simplification, or
it might be a modified model with one or more added neg-
ative features in a simulation-based design scenario. It typ-
ically has a complex geometry and its PDE solutions are
very hard to compute or even intractable. The defeatured
model might be a simplified model after removing features,
or in a design scenario, a simpler model before one or more
negative features have been added to the design. Typi-
cally it has much simpler geometry and its PDE solutions
are much easier to determine (or may even be provided).
Since only negative features are considered here, the fully-
featured model is contained within the volume of the de-
featured model.

The negative features to be suppressed are assumed to be
given in advance. This paper mainly focuses on estimating
the effects of removing such a single negative feature on
engineering analysis. A general approach to utilizing the
results to help simplify complex models is not a trivial task
and will be addressed in our future work.

Geometric differences between the fully-featured model
and the defeatured model perturb the underlying solutions
to the analysis problems defined over these models, and af-
fects values of the local quantities of interest. Our objective
is to quantitatively estimate the modification sensitivity in
terms of changes of local quantities of interest due to the
geometric difference between the fully-featured model and
the defeatured model; we wish to do so without explicitly
solving the analysis problem for the fully-featured model.

A mathematical formulation is now given. The problem
is first analysed for the case of removing a single negative
feature; its extension to multiple features will be discussed
at the end of this section. As illustrated in Fig. 3, we have
a fully-featured model Ω − ω and a defeatured model Ω,
where ω ⊂ Ω is a negative feature to be suppressed, pro-
vided by the user or other software. The engineering anal-
ysis problem over Ω or Ω− ω is defined as follows. Firstly,
we define the solution u over Ω − ω to be the solution to
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(a) Defeatured model Ω (b) Fully-featured model Ω−ω

Fig. 3. Engineering analysis problems for fully-featured and defea-
tured geometric models.

the following PDE problem:
Lu = f in Ω− ω,

Au = a on ∂Ω,

Bu = b on ∂ω,

(1)

where ∂Ω or ∂ω denotes the boundary of Ω or ω, L,A,B
are abstract linear or nonlinear differential operators gov-
erning the physical phenomenon within the model interior,
bounded by ∂Ω and ∂ω. The problem and boundary con-
ditions are further characterised by f , a and b. For the par-
ticular problem studied in this paper, Neumann or homo-
geneous Dirichlet boundary conditions are assumed over
boundary ∂Ω, and Neumann boundary conditions are as-
sumed over feature boundary ∂ω in this paper.

Suppressing feature ω from model Ω− ω, leads to a new
PDE problem with solution u0 satisfyingLu0 = f in Ω,

Au0 = a on ∂Ω.
(2)

Note that the boundary conditions prescribed over feature
ω in Eq. (1) disappear, due the removal of feature ω.

Typically, the analyst wishes to know certain results of
the analysis such as average local stresses or temperatures.
Such quantities of engineering interest may be defined in
terms of an integral over a local region S ⊂ Ω− ω:

Q(u) =

∫
S

l(u) dΩ, (3)

where q(·) is a linear or nonlinear bounded functional de-
fined over the solution space.

The geometric difference between Ω and Ω − ω causes
the corresponding solutions u0 and u to differ, and which
in turn affects the quantities of interest Q(u0) and Q(u).
The estimated effect on the engineering analysis results of
removing a design feature, i.e. the modification sensitivity,
is then given by

e(Ω,Ω− ω) = Q(u)−Q(u0). (4)

We assume the solution u0 is known, and we wish to avoid
explicitly computing u.

We now consider what happens for a model containing
multiple features, and how to determine the modification
sensitivity when a single feature or multiple features are
removed. The ideas are simplest explained in terms of two
features, but generalise to multiple features. Suppose model
M = Ω−ω1−ω2 is a complex fully-featured model contain-
ing two negative features ω1, ω2. These two features can

always be assumed to be disjoint in their interior, as we can
replace ω1 with ω1− (ω1∩ω2) if they are not. The effect on
the quantity of interest due to interactions between them
has to be considered in the cases of multiple features. If
ω1 and ω2 are not physically dependent (normally meaning
they are not geometrically intersecting or very close), the
two features can be processed separately to estimate their
associated modification sensitivities. Furthermore, for each
feature, say ω1, two different sensitivity estimation calcu-
lations can be performed (i) taking the fully-featured and
defeatured models as Ω − ω1 and Ω, that is the sensitiv-
ity is computed as e(Ω,Ω − ω1), and (ii) taking them as
(Ω−ω2)−ω1 and Ω−ω2, that is the sensitivity is computed
as e(Ω−ω2, (Ω−ω2)−ω1). If there are no feature interac-
tions, the two calculations produce the same result. Note,
however, that the former strategy involves the same defea-
tured model Ω for different features ω1 and ω2 and has a de-
featured model of greater geometric simplicity. For a com-
plex engineering part with hundreds of features, the former
will be much cheaper computationally, so is the strategy
used in our experimental implementations in Section 6. On
the other hand, if ω1 and ω2 are physically dependent, they
should be taken to be a single high-level feature composed
of multiple sub-features, and a corresponding modification
sensitivity estimate computed.

4. Modification sensitivity estimation using DWR

Estimation of the modification sensitivity defined by
Eq. (4) is ultimately achieved by reformulating it as
the modeling error between two different weak formula-
tions (which we explain shortly). The modeling error is
then estimated using the dual weighted residual (DWR)
method [22]. We first explain the concept of weak formula-
tions and the DWR method. Then the concrete approach
of reformulating the modification sensitivity as a model-
ing error is described. Finally, our modification sensitivity
estimator is derived.

4.1. Weak formulations

Weak formulations are an important tool to permit the
transfer of concepts from linear algebra to solving PDEs
under certain boundary conditions. They provide a uni-
form language for describing various engineering analysis
problems, and are the base of FE analysis.

Taking a concrete example, we use the following Poisson
equation to illustrate the derivation of a weak formulation
and its properties. Suppose we wish to find a solution u to
the problem: 

−div(∇u) = f in Ω,

u = ud on ΓD,

∇u · n = h on ΓN ,

(5)
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where ΓD, ΓN are Dirichlet and Neumann boundaries,
which taken together make up ∂Ω; n is a unit outward
normal vector to ΓN .

In the general framework of finite element analysis, the
weak form of Eq. (5) can be obtained by multiplying by a
test function v on the left and right hand sides, and then
performing integration by parts, leading to a new problem:
find u ∈ V such that∫

Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ +

∫
ΓN

hv dΓ, v ∈ V0, (6)

where the solution space V is defined as

V = {v ∈ H1(Ω) : v = ud on ΓD},
and the test space V0 is defined as

V0 = {v ∈ H1(Ω) : v = 0 on ΓD},
for a Hilbert space H1(Ω) over region Ω.

Note that the Dirichlet boundary condition is built into
the definition of the solution space V , while functions in
the test space V0 are zero on the Dirichlet portion of the
boundary. This is in contrast to the Neumann case where
the solution and the test functions are unrestricted on the
boundary.

4.2. DWR in modeling error estimation

We now introduce the use of DWR for modeling er-
ror estimation. Following common practice, the convention
N(·; ·) is used to indicate a function linear in all arguments
that follow the semicolon but possibly nonlinear for pre-
ceding arguments.

The problem of estimating modeling error is defined for
the following two abstract nonlinear problems expressed in
weak form: find solutions u, u0 such that

N(u; v) = F (v) ∀v ∈ V, (7)

and
N0(u0; v) = F0(v) ∀v ∈ V, (8)

where N(·; ·), N0(·; ·) are semilinear forms defined on a Ba-
nach space V , and F (·), F0(·) are linear functionals on V .
We assume that each equation admits a unique solution for
either u or u0.

Suppose that for the above two different modeling equa-
tions, solution u0 provides an approximation to the solution
u. For a particular quantity of interest Q(u) as in Eq. (3),
the problem of modeling error estimation is to evaluate
Q(u)−Q(u0) without explicitly solving u from Eq. (7).

To do so, the formulation of an auxiliary problem, we
consider an adjoint problem with respect to the prime prob-
lem, following [16]. The prime problem in Eq. (7) has the
adjoint problem: find solution p ∈ V such that

N ′(u; q, p) = Q′(u; q) ∀q ∈ V, (9)

where N ′(u; q, p) and Q′(u; q) are Gâteaux derivatives [22].
The corresponding adjoint problem for Eq.(8) is: find solu-
tion p0 ∈ V such that

N ′0(u0; q, p0) = Q′(u0; q) ∀q ∈ V. (10)

Defining the residual functional to characterize the de-
gree to which u0 fails to satisfy the problem in Eq. (7) as

R(u0; v) = F (v)−N(u0; v), v ∈ V, (11)

the following theorem is given in [22] for estimating the
modeling error by dropping higher order remainder terms.
Theorem 1 [22] When u − u0, p − p0 are small, any ap-
proximation (u0, p0) of the solutions (u, p) of Eq. (9) gives
an a posteriori error estimate of

Q(u)−Q(u0) ≈ R(u0; p0) +R(u0; p− p0).

4.3. Conversion from modification sensitivity to modeling
error

Based on the result in Theorem 1, we now give a general
framework for modification sensitivity estimation. Let u,
u0 to denote solutions of Eqs. (1) and (2) defined respec-
tively on Ω−ω and Ω, and p, p0 for their respective adjoint
solutions defined as in Eqs. (9) and (10).

As the fully-featured model is contained in the defeatured
model, that is Ω−ω ⊂ Ω, the part of the solution u0 defined
over geometry Ω− ω is well defined, and is denoted by

ū0 = u0|Ω−ω. (12)

The solution ū0 can seen as the solution of another en-
gineering analysis problem defined over model Ω− ω with
particular Neumann conditions prescribed over the inter-
nal boundary ∂ω: find ū0 such that

Lū0 = f in Ω− ω,

Aū0 = a on ∂Ω,

B̄ū0 = b̄ on ∂ω,

(13)

where the last term B̄ū0 = b̄ in this case corresponds to

∂ū0

∂n
=
∂u0

∂n
. (14)

Generally, the term B̄ū0 = b̄ is different from the last equa-
tion of Eq. (1), that is Bu = b, and it is this difference
which is essentially the source of the modification sensitiv-
ity studied in this paper.

Let the corresponding abstract weak forms for Eqs. (1)
and (13) be expressed as follows: find solutions u, u0 ∈ V
such that

N(u; v) = F (v) ∀v ∈ V, (15)

and
N0(ū0; v) = F0(v) ∀v ∈ V, (16)

i.e., ū0 and u are solutions of two different modeling equa-
tions, Eqs. (15) and (16).

Now, it is clear from Eq. (14) that

Q(u)−Q(u0) = Q(u)−Q(ū0). (17)

The left hand side of the equation, Q(u) − Q(u0), is the
modification sensitivity defined over two different geome-
tries Ω,Ω − ω considered here. The right hand side of the
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equation, Q(u)−Q(ū0), is the modeling error defined over
the same geometry Ω−ω caused by two different weak for-
mulations, that is Eqs. (15) and (16). Their equality allows
us to use the result in Theorem 1 to convert from modifi-
cation sensitivity estimation to modeling error estimation.

Note that when applying the DWR method to modeling
error estimation, the solution and test spaces for Eqs. (9)
and (10) have to be the same Banach space V . This is gener-
ally not satisfied for general boundary settings as explained
in Section 4.1, but is satisfied for the particular boundary
conditions stated in Eq. (1), that is, the solution and test
spaces of Eqs. (1), (13) and their associated adjoint prob-
lems are the same. Thus, based on Theorem 1 and noticing
that ū0 = u0 over Ω−ω, the following lemma can be given
for modification sensitivity estimation:
Lemma 1 The modification sensitivity in Eq. (4) is given
as

Q(u)−Q(u0) ≈ R(u0; p), (18)

where u0 is the solution to Eq. (2), and p is the adjoint
solution to Eq. (1).

4.4. Modification sensitivity estimate

In this section, the sensitivity expression in Eq. (18) is
further simplified to ultimately give a computable modifi-
cation sensitivity estimate in the form of local boundary
integrations. This section uses the notation that, given two
general vectors w, v, their inner product over a region S is

(w, v)|S =

∫
S

w · v dV.

Let the general expression of performing integration by
parts for (Lw, v)|Ω−ω be

(Lw, v)|Ω−ω = H∂Ω(w, v) + h∂ω(w, v)− L∗(w, v)|Ω−ω,
(19)

where L is the abstract differential operator in Eq. (1),
H∂Ω(w, v) and h∂ω(·, ·), L∗ are functionals defined over V ×
V expressed in forms of integrations over boundaries ∂Ω
and ∂ω, and Ω− ω.

Now, consider replacing w in Eq. (19) by the particular
solution u from Eq. (1). Evaluating the specific boundary
conditions defined by Au = a over the boundary ∂Ω for
H∂Ω(w, v), we get a functional H̄∂Ω(u, v). Similarly, eval-
uating boundary conditions Bu = b defined over ∂ω for
h∂ω(w, v), we get another functional h̄∂ω(u, v). This leads
to the corresponding weak formulation of Eq. (1)

(Lu, v)|Ω−ω = H̄∂Ω(u, v)+ h̄∂ω(u, v)−L∗(u, v)|Ω−ω. (20)

Using the above notation, the sensitivity estimation term
R(u0; p) in Eq. (18) can now further simplified:
Theorem 2 The modification sensitivity defined in Eq. (4)
can be expressed as a difference between two local boundary
integrations over the feature boundary ∂ω:

Q(u)−Q(u0) ≈ R(u0; p) = h̄∂ω(u0, p)− h∂ω(u0, p), (21)

where h∂ω(u0, p), h̄∂ω(u0, p) are defined as above.

Proof: See Appendix A.
This theorem states that the modification sensitivity is

essentially due to the difference of the PDE solutions along
the boundary ∂ω before and after removing feature ω.

Compared to the expression based on volume integration
in Eq. (18), the sensitivity expression in Eq. (21) is sim-
pler. However, Eq. (21) still involves the solution p, which
is defined over the geometry Ω − ω and is assumed to be
unavailable. In order to derive a computable sensitivity es-
timate, we further divide p into p0 and ε0 = p − p0. From
the linearity of R(u0; p), we have

Q(u)−Q(u0) ≈ h̄∂ω(u0, p0)− h∂ω(u0, p0)+

(h̄∂ω(u0, ε0)− h∂ω(u0, ε0)).
(22)

The first term h̄∂ω(u0, p0)−h∂ω(u0, p0) can be directly eval-
uated from the prime and adjoint solutions u0, p0 defined
over the defeatured model Ω. The second term h̄∂ω(u0, ε0)−
h∂ω(u0, ε0) is however dependent on the solution adjoint
error ε0 = p − p0 or p defined over the feature boundary
∂ω, and is not available.

This unavailable term can be further approximated by
its exterior solution [5], i.e. the solution to the same anal-
ysis problem defined over geometry Rn − ω (n is the di-
mensionality of the model being analysed), using the same
boundary conditions as those for the solution u0 over fea-
ture boundary ∂ω. Alternatively, it can be bounded using
values based on global energy norm estimates of the pri-
mal and adjoint problems [16]. The first estimation strat-
egy requires solution of a further analysis problem, and has
specific requirements on the size and location of the target
feature. The second approach, on the other hand, involves
complex computations.

For the particular problem of modification sensitivity es-
timation of large features, due to the locality of the ad-
joint problems in Eq. (9), in terms of its source term and
boundary terms, the difference between solutions p and p0

is typically negligible compared with the term R(u0; p0),
and may be simply discarded. This is stated in the follow-
ing corollary.
Corollary 1 The modification sensitivity defined by
Eq. (4) can be approximated by the difference of local
boundary integrations:

Q(u)−Q(u0) ≈ h̄∂ω(u0, p0)− h∂ω(u0, p0), (23)

where u0, p0 are prime and adjoint solutions of Eq. (2),
and h∂ω(u0, p0), h̄∂ω(u0, p0) are boundary integration terms
over the feature boundary ∂ω defined by Eqs. (19) and (20).
The above corollary lacks rigorous proof of validity of drop-
ping the term with respect to R(u0, p − p0). We hope to
verify this in our future work. Various examples, includ-
ing those shown in Section 6, demonstrate the accuracy of
Corollary 1 for modification sensitivity estimation.

In practical implementations, the solutions u0, p0 are de-
rived using FE methods from a very dense mesh generated
from the defeatured model Ω ignoring FE approximation
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error. Based on these values, the modification sensitivity
can be easily evaluated based on Eq. (23).

5. Computational efficiency and accuracy

In this section, we use a classical Poisson equation to
compare the computational efficiency and accuracy of the
proposed approach with other methods: direct FE analysis,
feature sensitivity [27] and topological sensitivity [11,25].

Poisson’s equation is often encountered in heat and mass
transfer theory, elasticity, and other areas of mechanics and
physics. Let the fully-featured and defeatured models re-
spectively be Ω−ω and Ω. The solution prime solution for
the defeatured model, u0, is given by Eq. (5) after replac-
ing u by u0; let p0 be the corresponding adjoint solution.
For Ω− ω we wish to find the solution u such that

−div(∇u) = f in Ω− ω,

u = 0 on ΓD,

∇u · n = h on ΓN ,

∇u · n = g on ω,

(24)

where ΓD ∪ ΓN = ∂Ω.
The equivalent weak form for Eq. (24): find u ∈ V such

that
N(u, v) = F (v), v ∈ V,

where

N(u, v) =

∫
Ω−ω
∇u · ∇v dΩ−

∫
∂ΩN

hv dΓ−
∫
∂ω

gv dΓ,

F (v) =

∫
Ω−ω

fv dΩ,

and V = {v ∈ H1(Ω) : v|ΓD = 0}.
In the following, we use PC for the center of the smallest

ball that encloses the internal feature ω, and

p̃0 = p0|PC
, ∇ũ0 = ∇u0|PC

, ∇p̃0 = ∇p0|PC
. (25)

To make a comparison with other approaches, we first
summarize below related methods for estimating modifica-
tion sensitivity, including direct FE analysis (FEA), topo-
logical sensitivity analysis (TSA) and feature sensitivity
analysis (FSA).

(1) FE analysis. The difference between Q(u) and Q(u0)
is evaluated directly by computing the field solutions u, u0

from Eqs. (1) and (2). We ignore discrete FE approximation
errors, and use the resulting value as ground truth when
comparing other approaches.

(2) Topological sensitivity analysis [2,11,25]. Explicit ex-
pressions are determined for the modification sensitivity for
the cases of an internal circular or elliptic hole within an
existing geometry.

For a circular hole ω of radius ε,

Q(u) = Q(u0) + t(ε)DTQ, (26)

where

t(ε) = −2πε; DTQ = gp̃0, when g 6= 0;

Table 1
Comparison of computational requirements of FEA, TSA, FSA and

our proposed approach for modification sensitivity estimation.

FE analysis Integration

Fine Coarse Exterior Volume Boundary

TSA
√

Ours
√ √

FSA
√ √ √

FEA
√ √ √

or

t(ε) = −πε2; DTQ = 2∇ũ0 · ∇p̃0 − fp̃0, when g = 0.

Here, g represents the external loadings prescribed on
boundary ∂ω. We call this the TSA-Circle result for short.

Similarly, for an ellipse with semi-axes a and b parallel
to the main axes of the coordinate system, we have [2],

Q(u) = Q(u0) + abπ(∇ũT0 Tω∇p̃0 − fp̃0), (27)

where Tω is defined as

Tω =

 1 + a/b 0

0 1 + b/a

 .

We call this the TSA-Ellipse result for short.
(3) Feature sensitivity analysis [27]. Feature sensitivity

describes the first order change of a quantity of interest
when an arbitrarily-shaped small hole free of external load-
ings is created within a geometry. The corresponding com-
putation is:

Q(u) = Q(u0) +

∫
∂ω

(V · n)(F1 + F2) ds

where

F1 =
fp̃0 − (∇ũ0 +∇uE) · (∇p̃0 +∇pE)

2
,

F2 = fpE/3, V = P − PC ,

and uE , pE are the corresponding prime and adjoint exte-
rior solutions defined over geometryRn−ω, n = 2, 3 taking
the boundary conditions as those of the solution u0 over
feature boundary ∂ω.

Estimating modification sensitivity using the different
approaches listed above involves solving different PDE
problems, for example, over the defeatured model Ω, the
fully-featured model Ω−ω, or the exterior geometryR2−ω,
and involves volume or boundary integrations for value
evaluations. The requirements are summarized in Table 1.

Basically, solving the field problem over the fully-
featured model using FE analysis is most time consuming.
This is followed in sequence by solving the field problems
for the defeatured model, and for the exterior geometry.
Solving the prime and adjoint problems using FE meth-
ods involves the same stiffness matrix, and solving both is
not much more work than solving just one of them using
the direct triangular decomposition method. Integration is
generally much cheaper than FE analysis, and boundary

7



integration is generally cheaper than volume integration.
As can be seen from the summary in Table 1, the efficien-
cies of these related methods are, in increasing order, TSA,
our approach, FSA and direct FEA.

We now consider the accuracy of each method. Both TSA
and FSA use pointwise values to approximate field val-
ues within a suppressed feature based on Eq. (25). This is
in contrast to our modification sensitivity estimate, where
prime and adjoint solutions u0, p0 are used directly without
any approximation, and thus it is expected to be more ac-
curate than TSA and FSA particularly for features of large
sizes. On the other hand, as we discard the terms involving
ε0 in Eq. (22), our method may in principle be less accu-
rate than TSA or FSA for features of sufficiently small size.
However, the goal of our paper is to be able to handle fea-
tures of relatively large size; our experimental results in the
next Section demonstrate that this potential issue is not a
problem in practice. Finally, we note that FSA is typically
more effective than TSA for arbitrarily-shaped features at
the cost of additional computations of an auxiliary exterior
problem, but both are equally accurate with TSA-Circle for
circular features or with TSA-Ellipse for elliptic features.

Our experimental results in the next Section agree with
these analyses on efficiency and accuracy. Note all the
proposed modification sensitivity analysis is applicable to
arbitrary-shape negative features either in the model’s in-
terior or along its boundary, while the TSA or FSA is gen-
erally only application for negatives features of sufficiently
small sizes and far away from the outer boundary.

6. Numerical experimental results

Our framework for estimating modification sensitivity
has been implemented on a 2.8GHz dual quad-core pro-
cessor with 4GB RAM using COMSOL [1], a commercial
finite element based CAD/CAE system. We both demon-
strate the efficiency and accuracy of our approach, and pro-
vide comparisons with those obtained using FEA, TSA and
FSA. The Poisson equation described in Section 5 is taken
as a concrete example problem for analysis.

In all examples, unless otherwise stated, the quantity of
interest is defined as the average of the solution u over a
local region S ∈ Ω− ω:

Q(u) =

∫
S

u dΩ /

∫
S

dΩ. (28)

Here, when considering accuracy, we use effectivity to as-
sess results. Effectivity of a sensitivity estimator is usually
measured in terms of effectivity index, which can be de-
fined as the ratio between the estimated sensitivity e and
the exact value E, that is

I = e/E. (29)

When using a global energy norm, effectivity indices be-
tween 0.5 and 2.0 are often characterized as being reason-
able values to achieve in the error estimation literature.

Fig. 4. Removing an internal elliptical hole from a rectangular block.
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(b) Variation of solution in S

as ratio (Q(u)−Q(u0))/Q(u0)

Fig. 5. Effectivity with varying internal feature size in Fig. 4.

However, for goal-oriented error estimation of the kind con-
sidered in this paper, it is generally very difficult or expen-
sive to obtain highly accurate error estimates [23]. In prac-
tice, effectivity indices up to 10 can still be useful [14]. We
leave the reader to form their own judgement.

6.1. Effectivity testing

We first consider our method’s effectivity under changes
of shape of a design feature, and of the boundary conditions
prescribed over its boundary.

In the first simple 2D example, the model is an axis-
aligned rectangle centred at (0, 0), containing a single fea-
ture, an internal elliptic hole ω (see Fig. 4). The hole is also
centered at (0, 0) and has semi-axes of a and a/2 for vari-
ous values of a. The local circular region of interest within
which we wish to estimate the average solution is centered
at (0.7, 0.2) and has radius 0.1. The corresponding param-
eters of the Poisson equation in Eq. (24) are set as: f = 1,
u = 0 along the outer boundary, and ∂u/∂n = g. The effec-
tivity of the modification sensitivity estimator was tested
under variations of the features’s sizes a, locations and the
external loadings g as will be explained later. The quantity
of interest is defined via Eq. (28).

The modification sensitivity was computed using the pro-
posed method for varying internal feature sizes, locations,
and boundary conditions. In the first test, a was changing
from 0.1 to 0.6. The resulting effectivity indices are plot-
ted in Fig. 5(a); they range between 1.0 and 1.12, demon-
strating that the method is highly effective in modification
sensitivity estimation for various feature sizes.

Note that when a = 0.6, the internal feature ω (plotted
in dashed line in Fig. 4) is large, occupying over a quarter
of the area of the rectangular block, dominating it. This
dominance of ω can be observed in Fig. 5(b), where IQ =
(Q(u)−Q(u0))/Q(u0) is plotted with variation of a to show
relative variation in the solution. The change to the average
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(a) Comparison between R(u0; p0) and

Q(u)−Q(u0)
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Fig. 6. Performance under variations of the internal feature size and
center location for the example in Fig. 4.
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Fig. 7. Performance under variations of Neumann boundary term g

on the internal feature for the example in Fig. 4.

values in S caused by including ω can be as much as a factor
of five compared to the value computed from the defeatured
model. Such cases are not atypical of real design problems,
and are not handled well by previous approaches.

Our method’s effectivity was also tested under variations
of both the elliptic feature’s size and center: a was varied
from 0.1 to 0.6, and the x-coordinate of the center was
varied from 0 to 0.2, leaving the y-coordinate unchanged.
A comparison between the estimated sensitivity and the
exact value Q(u)−Q(u0) was plotted in Fig. 6(a), and the
effectivity index surface was also plotted in Fig. 6(b). The
values of the indices are all around 1.0, again showing the
algorithm to be highly effective under these variations.

The proposed method can also handle the case when a
non-homogeneous Neumann condition is prescribed on the
internal feature ω. For the example in Fig. 4, the Neumann
boundary term g was randomly set to 2i(i−1)r for a random
number 0 < r < 1 and test number i = 1, 2, . . . , 11. The
applied g values and corresponding effectivity indices are
shown in Figures 7. Again, our algorithm is shown to be
highly effective.

6.2. Comparison with topological sensitivity and feature
sensitivity

We next compare the effectivity and efficiency of our
method with direct FEA, TSA and FSA. The direct FE

Fig. 8. Example used to compare methods, from [27].
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Fig. 9. Modification sensitivity estimates using FEA, TSA, FSA and

our method for the model in Fig. 8.

analysis results were taken as ground truth for the other ap-
proaches. TSA testing considered two different strategies:
Eq. (26) for a circular hole (TSA-Circle), and Eq. (27) for
an elliptic hole (TSA-Ellipse).

This test used the example in Fig. 8 of an internal ellip-
tic hole ω with semimajor axis and semiminor axis respec-
tively a and a/2; values of a are explained shortly. This
example was taken from [27] with slight modifications: for
the Poisson equation as defined in Eq. (24), the source term
was given value f = 20, instead of 1, to cause bigger val-
ues of modification sensitivity. Outer boundary conditions
are depicted in Fig. 8; the boundary for the internal elliptic
hole was set free. When applying TSA-Circle, a spherical
hole with the same cross-section was used as the internal
feature instead of this elliptic feature. The quantity of in-
terest is defined via Eq. (28).

In this example, the semi-major axis a was varied be-
tween 0.05 and 0.095. The computed quantities of interest
and the effectivity indices for the results obtained by dif-
ferent approaches are summarized and compared in Figs. 9
and 10. The estimated quantity obtained using each ap-
proach was defined as Q(u0) + e for the solution u0 over
the defeatured model, plus the estimated sensitivity e. The
bar plots in Fig. 9 show values of the local quantity of in-
terest and the effectivity index obtained by each approach
for each test case; the curve plots in Fig. 10 demonstrate
their global variation.

Fig. 9(a) shows that the estimated quantity using our
approach was always very close to the benchmark results
computed using direct FE analysis, for all values of a. FSA,
TSA-Circle and TSA-Ellipse, however, behave differently—
as the value of a increases, the estimated quantities drasti-
cally move away from the benchmark value. Overall varia-
tions of the quantities can easily be seen in Figs. 10(a),(b).

We note that the estimates obtained with TSA-Ellipse
and FSA always agreed over the whole range of a. The for-
mer, however, is cheaper to compute as it does not involve
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Fig. 10. Modification sensitivity estimates using FEA, TSA, FSA and our method for the model in Fig. 8.
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solving other auxiliary exterior problems. They are slightly
closer to the benchmark FEA results than estimates using
TSA-Circle. (Outcomes reported in [27] only compare their
approach to TSA-Circle without considering the more ac-
curate TSA-Ellipse).

The corresponding effectivity indices were also compared
in Fig. 9(b). Over the whole range of a, the effectivity of
our estimate was always around 1. This was in contrast to
results of other approaches, which ranged from 1 to 3. Over-
all variations of the effectivity indices can easily be seen in
Figs. 10(c),(d). This further demonstrates the superior ac-
curacy of our method in estimating modification sensitiv-
ity, even for large design changes, unlike previous methods.

In detail (see Figs. 10(b),(d)), when the feature size was
relatively small, with a ranging from 0.005 to 0.035, the
computed quantity of interest was very close to the bench-
mark FEA results for all approaches. In a very small of
range of parameter a around 0.005, TSA-Ellipse and FSA
perform slightly better than our approach, which can be
explained by the fact that we have discarded the term
h̄∂ω(u0, ε0)−h∂ω(u0, ε0) in Eq. (21). These results demon-
strate the minor effects on sensitivity estimation of doing
so.

Computation times for this problem, for each method,
are given in Fig. 11. As can be seen, the topological sensi-
tivity method was quickest, then our method, then feature
sensitivity, and finally direct FE analysis. This is consistent
with our discussion in Section 5.

6.3. 3D example

We now consider how our method performed on a some-
what more realistic 3D exampleM with 11 candidate fea-
tures labeled L1, . . . , L11, shown in Fig. 2(a). L10 and L11

are respectively a blind hole and a blend on the bottom.
We note that features typically appear on the boundaries
of 3D models, unlike 2D models where they are generally

in the interior, which means that approaches like TSA or
FSA are typically unsuitable. In comparison, our method
can be directly applied to 3D models without modification.

The corresponding parameters of the Poisson equation
in Eq. (24) were set as follows: the source term was set to
f = 1, u = 0 along the planar regions on the model’s left
and right sides, and the condition ∂u/∂n = −1 was set
over the central large cylindrical region. The quantities of
interest Q1(u), Q2(u) defined via Eq. (28) were measured
over two different regions S1 and S2 shown in Fig. 2(a).
Denote M0 = M + ∪11

i=1Li as the fully defeatured model
for later use.

We aim to simplify the modelM by suppressing certain
features from L = {L1, . . . , L11} so that changes between
the field solutions ui0 of the final simplified modelMi

m, i =
1, 2 and solutions u of the full-featured modelM is under
certain sensitivity control.

Thus, the corresponding modification sensitivity was
first computed to estimate the effects of removing each
single feature Li, i = 1, . . . , 11, from model M, that is
e(M,M + Li); see its definition in Eq. (4). Due to the
reason as explained in Section 6, for these 11 features
with little interaction, we instead computed sensitiv-
ity e(M0 − Li,M0), which is approximately equal to
e(M,M + Li) but much cheaper to compute; our experi-
mental results also demonstrate their close approximation,
which are not further shown here.

In order to demonstrate the effectivity of the modifica-
tion sensitivity estimation, comparison between the esti-
mated modification sensitivities with the benchmark sensi-
tivities obtained using direct FE analysis for the local quan-
tities defined over S1 and S2 are shown in Figs. 12(a)(b);
values are recorded as 0 when below 10−6. The associ-
ated effectivity indices for regions S1 and S2 are plotted in
Fig. 13.

According to the estimated modification sensitivity
e(M0 − Li,M0) for each feature Li, features L3 and L4

have a large influence on the quantity defined over region
S1, showing that a suitable simplified model for this prob-
lem should keep these, but delete other features, resulting
in a simplified model M1

m = M0 − L3 − L4. Similarly,
a different simplified model M2

m = M0 − L1 − L10 is
suitable for the quantity defined over region S2. Table 2
further compares the two groups of models M,M0,M1

m,
and M,M0,M2

m in terms of number of mesh elements,
solution time, corresponding quantities and difference of
quantities from their exact values.
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Fig. 12. The estimated modification sensitivity for each feature com-
pared with that obtained using direct FE analysis, for the quantity

defined over regions S1 and S2.
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Table 2

Comparisons of the computational results for the fully-featured
model, the fully defeatured model, and the partially defeatured model

obtained by our modification sensitivity estimate.

R1 R2

M M0 M1
m M M0 M2

m

Mesh Elements 85132 4512 20762 85132 4512 27134

Running time (s) 5.90 0.26 1.232 5.90 0.26 1.732

Quantity (×10−6) 4.01 3.80 3.99 4.02 3.69 3.99

Quantity difference (×10−6) 0 0.21 0.02 0 0.33 0.03

As can be observed from the results in Table 2, using the
fully-featured model M is most time consuming; it may
even not be affordable for large and complex geometries.
Simply using the fully defeatured model M0 significantly
reduces the computational time but also leads to large anal-
ysis errors. As a trade-off, by keeping certain important
features directed by the estimated modification sensitivi-
ties, a partially defeatured modelM1

m orM2
m of intermedi-

ate complexity was obtained which both reduces the anal-
ysis complexity, and simultaneously maintains high analy-
sis fidelity. The computational time for solving the analysis
problem defined over modelsM,M0 andM1

m,M2
m (plus

time of modification sensitivity estimations to guide their
generations) was also compared in Fig. 14.

Note clearly that the final simplified modelM1
m orM2

m

was obtained using prime and adjoint solutions defined over
the fully defeatured modelM0, which only needs to be com-
puted once for all features, and for all regions containing
quantities of interest such as S1 and S2. This saves much
computational time.

This example also shows that different local quantities
of interest may require different simplified models to main-
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Fig. 14. Computational time in solving the analysis problem over
the full-featured model M , the fully defeatured model M0 and the

partially defeatured model M1
m and M2

m (plus time of modification

sensitivity estimations).

tain certain analysis fidelity. Solely using geometry-based
simplification criteria is an unsuitable approach.

7. Conclusions and future work

As can be observed from the experimental results, our
novel method for estimating modification sensitivity is
both accurate and efficient even for large negative features.
Such cases cannot be well handled by previous approaches
such as topological sensitivity analysis or feature sensi-
tivity analysis, which were mainly intended for design
optimization, and focus on relatively small changes.

Our method has similar computational efficiency to topo-
logical sensitivity analysis, in that only prime and adjoint
solutions of the defeatured model need to be computed for
all non-interacting features, and it is less computationally
expensive than the approach of feature sensitivity analysis,
as the latter requires certain additional solutions to auxil-
iary exterior problems for each feature.

Moreover, due to use of the adjoint formulation, the er-
ror can be efficiently estimated with little extra effort when
a feature changes in shape, size, location, or boundary
conditions. Since repeated design changes are required in
simulation-based design, and also as CAD models typically
contains many different features at different locations and
of different shapes, this will save much computational cost.

However, the approach here is limited to negative fea-
tures with Neumann boundary conditions, where the fully-
featured model is contained within the defeatured model.
A companion paper [20] considers its extension to positive
features. The key issue involved in this extension is how to
derive suitable boundary conditions outside the defeatured
model so that the conversion from modification sensitivity
to modeling error is still possible. We are also exploring ap-
plying Nitsche’s method to handle cases of general features
with prescribed Dirichlet boundary conditions.

Appendix A. Modification sensitivity estimators

Using the notation in Section 4.4, we have

F0(v) = (f, v)|Ω, F (v) = (f, v)Ω−ω

and

F0(v) = F (v) + (f, v)|ω.
From the definition of N(u, v), we have
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N(u, v) = (Lu, v)|Ω−ω
= H̄∂Ω(u, v) + h̄∂ω(u, v)− L∗(u, v)|Ω−ω.

By observing that solutions u and u0 share the same bound-
ary conditions over ∂Ω, we also have

N0(u0; v) = (Lu0, v)|Ω = H̄∂Ω(u0, v)− L∗(u0, v)|Ω.

Taking into account Eq. (20), the residual R(u0; v) defined
by Eq. (11) then becomes

R(u0; v) = N(u0; v)− F (v) =

H̄∂Ω(u0, v) + h̄∂ω(u0, v)− L∗(u0, v)|Ω−ω − (f, v)|Ω−ω.

By observing that H∂Ω(u0, v) = H̄∂Ω(u0, v), we get

L∗(u0, v)|Ω−ω = H∂Ω(u0, v) + h∂ω(u0, v)− (Lu0, v)|Ω−ω,

R(u0; v) = h̄∂ω(u0, v)−h∂ω(u0, v)+(Lu0, v)|Ω−ω−(f, v)|Ω−ω.
As u0 is a solution to Eq. (2), this ultimately gives

R(u0; v) = h̄∂ω(u0, v)− h∂ω(u0, v). (A.1)

Replacing v by p, p0 or ε0 = p− p0 in Eq. (A.1), we have

Q(u)−Q(u0) ≈ R(u0; p) = h̄∂ω(u0, p)− h∂ω(u0, p).
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