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Abstract. Multi-view range image integration focuses on producing a
single reasonable 3D point cloud from multiple 2.5D range images for the
reconstruction of a watertight manifold surface. However, registration
errors and scanning noise usually lead to a poor integration and, as a
result, the reconstructed surface cannot have topology and geometry
consistent with the data source. This paper proposes a novel method
cast in the framework of Markov random fields (MRF) to address the
problem. We define a probabilistic description of a MRF labeling based
on all input range images and then employ loopy belief propagation to
solve this MRF, leading to a globally optimised integration with accurate
local details. Experiments show the advantages and superiority of our
MRF-based approach over existing methods.

1 Introduction

3D surface model reconstruction from multi-view 2.5D range image has a wide
range of applications in many fields such as reverse engineering, CAD, medical
imagery and film industry, etc. Its goal is to estimate a manifold surface that
approximates an unknown object surface using multi-view range images, each of
which essentially represents a sample of points in 3D Euclidean space, combined
with knowledge about the scanning resolution and the measurement confidence.
These samples of points are usually described in local, system centred, coordinate
systems and cannot offer a full coverage of the object surface. Therefore, to build
up a complete 3D surface model, we usually need to register a set of overlapped
range images into a common coordinate frame and then integrate them to fuse
the redundant data contained in overlapping regions while retain enough data
sufficiently representing the correct surface details. However, to achieve both is
challenging due to its ad hoc nature. On the one hand, registered range images
are actually 3D unstructured point clouds downgraded from original 2.5D im-
ages. On the other hand, scanning noise such as unwanted outliers and data
loss typically caused by self-occlusion, large registration errors and connectivity
relationship loss among sampled points in acquired data often lead to a poor
reconstruction. As a result, the reconstructed surface may include holes, false
connections, thick and non-smooth or over-smooth patches, and artefacts.
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Hence, a good integration should be robust to registration errors and scanning
noise introduced in the stages of registration and data acquisition. Once multiple
registered range images have been fused into a single reasonable point cloud,
many techniques [1–4] can be employed to reconstruct a watertight surface.

2 Related work

Existing integration methods can be classified into four categories: volumetric
method, mesh-based method, point-based method and clustering-based method.
The volumetric method [5–8] first divides the space around objects into voxels
and then fuse the data in each voxel. But the comparative studies [9, 10] show
they are time-consuming, memory-hungry and not robust to registration errors
and scanning noise. The mesh-based method [11–14] first employs a step dis-
continuity constrained triangulation and then detects the overlapping regions
between the triangular meshes derived from successive range images. Finally, it
reserves the most accurate triangles in the overlapping regions and reconnects
all remaining triangles subject to a certain objective function such as maximis-
ing the product of the interior angles of triangles. However, since the number of
triangles is usually much larger than that of the sampled points, the mesh-based
methods are computationally expensive. Thus some of the mesh-based methods
just employ a 2D triangulation in the image plane to estimate the local surface
connectivity in the first step as computation in a 2D sub-space is more efficient.
But projection from 3D to 2D may lead to ambiguities if the projection is not
injective. The mesh-based methods are thus highly likely to fail in non-flat re-
gions where no unique projection plane exists. This speeded-up strategy cannot
deal with 3D unstructured point clouds either. The point-based method [15,16]
produces a set of new points with optimised locations. Due to the neglect of
local surface topology, its integration result is often over-smooth and cannot re-
tain enough surface details. The latest clustering-based method [9, 10] employs
classical clustering methods to minimise the objective dissimilarity functions. It
surpasses previous methods since it is more robust to scanning noise and regis-
tration errors. Nonetheless, the clustering, which measures Euclidean distances
to find closest centroids, does not consider local surface details, leading to some
severe errors in non-flat areas. For instance, in Fig. 1, although point A is closer
to point B and thus the clustering-based method will wrongly group them to-
gether, we would rather group A with C or D to maintain the surface topology.

Fig. 1: Local topology has a significant effect on the point clustering in non-flat areas
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To overcome the drawbacks of the existing integration methods, we propose
a novel MRF-based method. We first construct a network by a point shifting
strategy in section 3. In section 4, the MRF labeling is then configured on this
network where each node is formally labeled with an image number. In section 5,
we employ loopy belief propagation (LBP) to solve the MRF and find the opti-
mal label assignment. Each node will just select its closest point from the image
with its assigned image number. These selected points, directly from the original
data, are used for surface reconstruction. The integration achieves a global opti-
misation as the MRF labeling considers all image numbers for each node. Also,
according to the experimental resutls shown in section 6, it effectively preserves
local surface details since in the output point cloud, the points representing a lo-
cal patch of the reconstructed surface are usually from the same input image due
to the neighbourhood consistency of MRF. More importantly, our method can
also cope with the more general input—multiple 3D unstructured point clouds.

3 MRF network construction for integration

MRF describes a system based on a network or a graphical model and allows
many features of the system of interest to be captured by simply adding ap-
propriate terms representing contextual dependencies into it. Once the network
has been constructed, contextual dependencies can be cast in the manipulations
within a neighbourhood. In a MRF network, the nodes are usually pixels. For ex-
ample, in [17–20], the network is the 2D image lattice and 4 neighbouring pixels
are selected to form a neighbourhood for each pixel. But it is difficult to define
a network for multiple registered range images since the concept ‘pixel’ does not
exist. The simplest method is to produce a point set by k-means clustering and
the neighbours of a point can be found by Nearest Neighbours (NNs) algorithm.
Since both k-means clustering and NNs are based only on Euclidean distance,
in such a network neither the delivery of surface topological information nor the
compensation for pairwise registration errors can be achieved.

In this paper, we propose a novel scheme to produce a MRF network Inet.
Given a set of consecutive range images I1, I2, . . . , Im, we first employ the pair-
wise registration method proposed in [21] to obtain a transform H12 mapping I1
into the coordinate system of I2. The transformed image I ′1 and the reference im-
age I2 supply not only the redundant surface information (overlapping area) but
also the new surface information (non-overlapping area) from their own view-
points for the fused surface. To integrate I ′1 and I2, the overlapping area and
non-overlapping area have to be accurately and efficiently detected. In the new
scheme, we declare that a point from one viewpoint belongs to the overlapping
area if its distance to its corresponding point from the other viewpoint is within
a threshold, otherwise it belongs to the non-overlapping area. The corresponding
point is found by a closest point search with k-D tree speedup. The threshold is
set as 3R where R is the scanning resolution of the input range images.

After the overlapping area detection, we initialise Inet as:

Inet = Snon−overlap, Snon−overlap = S1 + S2 (1)
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where S1 from I ′1 and S2 from I2 are the points in the non-overlapping area.
Then, each point in the overlapping area is shifted by half of its distance to its
corresponding point along its normal N towards its corresponding point.

P ′ = P + 0.5d ·N, d =
−→
P ·N and

−→
P = Pcor − P (2)

where Pcor is the corresponding point of P . After such a shift, the correspond-
ing points are closer to each other. For each point shifted from a point in the
overlapping region of the reference image I2, a sphere with a radius r = M ×R
(M is a parameter controlling the density of the output point cloud) is defined.
If some points fall into this sphere, then their original points, without shifting,
are retrieved. Their averages Soverlap are then computed and Inet is updated as:

Inet = Snon−overlap + Soverlap (3)

So, this point shifting (1) compensates the pairwise registration errors, (2) does
not change the size of overlapping area as the operation of points is along the
normal, and (3) still keeps the surface topology as the shift is along the normal.

Now, we consider the third input image I3. We map the current Inet into
the coordinate system of I3 through the transformation H23. Similarly, we then
do the overlapping area detection between I ′net transformed from Inet and the
current reference image I3. We still update Inet by Eq. (3). In this update,
Snon−overlap contains the points from I ′net and I3 in non-overlapping regions
and Soverlap are produced by the aforementioned point shifting strategy. We keep
running this updating scheme over all input range images. The final Inet will be
consistent with the coordinate system of the last input image Im. Although it
is not usual, if some points in Inet only appear in Snon−overlap, we delete them
from Inet. Fig. 2 shows 18 range images of a bird mapped into a single global
coordinate system and the MRF network Inet produced by our new scheme. In
this paper, for clarity, we use surfaces instead of point clouds when we show range
data. The triangulation method employed here for surface reconstruction is the
ball-pivoting algorithm [1]. In Fig. 2, it can be seen that the registered images
contain a massive amount of noise such as thick patches, false connections and
fragments caused by poor scanning and registration errors. The point shifting
scheme compensates the errors a bit whereas the resultant point set Inet is still
noisy, leading to an over-smoothed surface without enough local details. But it
offers us a roughly correct manifold for estimating the ground truth surface.

We also need to define a neighbourhood for each node in Inet, consistent
with the MRF theory. Instead of performing a NNs algorithm to search the
neighbours for a point i in such a network, we find the neighbouring triangles
of i in the triangular mesh. The vertices of these triangles, excluding i, are
defined as the neighbours of i. The collection of all neighbours of i is defined
as the neighbourhood of i, written as N (i). In this work, to strengthen the
neighbourhood consistency, we define a larger neighbourhood N (i) consisting of
neighbours and neighbours’ neighbours as shown in Fig. 3. Doing so is allowed
since the condition i ∈ N (j)⇔ j ∈ N (i) is still satisfied. The superiority of this
definition over the NNs method is that it reflects the surface topology and is
parameter-insensitive.
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Fig. 2: Left: 18 range images are registered (Please note that a patch from a certain
range image is visible if and only if it is the outermost surface); Right: The surface
representing point set Inet produced by point shifting is usually noisy and over-smooth.

Fig. 3: Left: A neighbourhood and the normalised normal vectors attached to the neigh-
bours. Right: the expanded neighbourhood used in this work. Please note that the
number of neighbours of each point in such a network can vary.

4 MAP-MRF labeling for integration

We denote s = {1, . . . , n} representing the points in Inet and define the la-
bel assignment x = {x1, . . . , xn} to all points as a realisation of a family of
random variables defined on s. We also define the feature space that describes
the points and understand it as a random observation field with its realisation
y = {y1, . . . , yn}. Finally, we denote a label set L = {1, . . . ,m}, where each label
corresponds to an image number. Thus, we have {xi, yj} ∈ L, {i, j} ∈ s.

An optimal labeling should satisfy the maximum a posteriori probability
(MAP) criterion [22] which requires the maximisation of the posterior proba-
bility P (x|y). Considering the Bayes rule, this maximisation can be written as:

x∗ = arg max
x

(
P (x|y)

)
= arg max

x

(
P (x)p(y|x)

)
(4)

In a MRF, the prior probability of a certain value at any given point depends
only upon neighbouring points. This Markov property leads to the Hammersley-
Clifford theorem [22]: the prior probability P (x) satisfies a Gibbs distribution
with respect to a neighbourhoodN , expressed as P (x) = Z−1×e−(U(x)/Q), where
Z is a normalising constant and U(x) is the priori energy. Q, a global control
parameter, is set to 1 in most computer vision and graphics problems [22].

Let p(y|x) be expressed in the exponential form p(y|x) = Z−1
y × e−U(y|x),

where U(y|x) is the likelihood enery. Then P (x|y) is a Gibbs distribution

P (x|y) = Z−1
U × e−(U(x)+U(y|x)) (5)
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The MAP-MRF problem is then converted to a minimisation problem for the
posterior energy U(x|y): x∗ = arg minx

(
U(x|y)

)
= arg minx

(
U(x) + U(y|x)

)
.

Under the MRF assumption that the observations are mutually independent,
U(y|x) can be computed by the sum of the likelihood potentials V (yi|xi) at all
points. In this work, we estimate V (yi|xi) by a truncation function:

U(y|x) =
∑
i∈s

V (yi|xi) =
∑
i∈s

∑
yi∈L\xi

min(Di(yi, xi), F ) (6)

where F is a constant and L \ xi denotes the labels in L other than xi, and

Di(yi, xi) = ‖Ci(yi)− Ci(xi)‖ (7)

is a distance function where Ci(l), l ∈ L denotes i’s closest point in the lth
input image. In this way, we convert the estimation for the likelihood potential
of different labels at point i (or the single label cost) into the measurement of
the distances between i’s closest points from the input images with different
labels. The truncation parameter F plays an important role here. It eliminates
the effect from the input images which do not cover the area around i.

The prior energy U(x) can be expressed as the sum of clique energies:

U(x) =
∑
i

V1(xi)+
∑
i

∑
j∈N (i)

V2(xi, xj)+
∑
i

∑
j∈N (i)

∑
k∈N (i)

V3(xi, xj , xk)+ · · · (8)

We only consider the unary clique energy and the binary one. Here, single-point
clique V1(xi) are set to 0 as we have no preference which label should be better.
We hope that in the output point cloud, neighbouring points are from the same
input image so that the local surface details can be well preserved. Therefore, we
utilize the neigbhourhood consistency of MRF to ‘discourage’ the routine from
assigning different labels to two neighbouring points:

U(x) =
∑
i

∑
j∈N (i)

V2(xi, xj) =
∑
i

∑
j∈N (i)

λAij(xi, xj) (9)

where λ is a weighting parameter and here we use the Potts model [23] to measure
the clique energy (or the pairwise label cost):

Aij(xi, xj) =
{

1, xi 6= xj ,
0, otherwise

(10)

Once we find the optimal x∗ which assigns a label xi to point i by minimising
the posterior energy, i will be replaced with its closest point from the input image
with the number xi (xith image). Please note that in this step we do not need to
run a closest point search again as this point Ci(xi) has already been searched
for (see Eq. (7)). The final output of the integration is thus a single point cloud
composed of points directly from different registered input range images.

The labeling is actually a segmentation for the point set s. Due to Eq. (9)
and (10), neighbouring points in s tend to be labeled with the same image
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Fig. 4: Left: The idea of point shifting to generate Inet. Right: The illustration of a
2-image integration based on the MAP-MRF labeling

number. The surface reconstructed from the output point cloud will consist of
patches directly from different registered input images. Therefore, one advantage
of the new integration method is the preservation for surface details, which avoids
the error illustrated in Fig. 1. Another significant advantage is its high robustness
to possible moving objects. The image patches containing moving objects are less
probably selected. On the one hand, the single label cost for labeling the points in
the area corresponding to a moving object with the image containing the moving
object must be high in terms of Eq. (6). On the other hand, the points on the
boundaries among patches always have high pairwise label costs according to
Eq. (9) and (10). As a result of minimising the posterior energy, the boundaries
usually bypass the areas where the moving objects appear.

Here we also add a robustness parameter β in order to make the algorithm
more robust to noise. When we compute the single label cost V (yi|xi), we always
carry out the robustness judgment as below:

• if V (yi|xi) < β, Go through the routine;
• if V (yi|xi) > β, Terminate the calculation of V (yi|xi) and delete the

point i from the list of s. And,

β = (m− q)× F (11)

where m is the number of input images (m = max(L)) and q is the number of
input images that contain the roughly same noise if known. Generally, we set
q as 2 so that random noise can be effectively reduced. We can also adjust q
experimentally. If the reconstructed surface still has some undesirable noise, q
should be increased. If there are some holes in the surface, we use a smaller q.

In summary, Fig. 4 illustrates the idea of point shifting which is the key step
to construct the MRF network in section 3 and a 2-image integration based on
the MAP-MRF labeling described in details in section 4.

5 Energy minimisation using Loopy Belief Propagation

There are several methods which can minimise the posterior energy U(x|y). The
comparative study in [24] shows that two methods, Graph-Cuts(GC) [23,25] and
LBP [19,26], have proven to be efficient and powerful. GC is usually regarded fast
and has some desirable theoretical guarantee on the optimality of the solution
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it can find. And since we use the ‘metric’ Potts model to measure the difference
between labels, the energy function can be minimised by GC indeed. However,
in the future research, we plan to extend our technique by exploring different
types of functions for the measurement of pairwise label cost such as the linear
model and quadratic model [19]. Thereby, LBP becomes a natural choice for us.

Max-product and sum-product are the two variants of LBP. The algorithm
proposed in [19] can efficiently reduce their computational complexity from
O(nk2T ) to O(nkT ) and O(nk log kT ) respectively, where n is the number of
points or pixels in the image, k is the number of possible labels and T is the
number of iterations. Obviously, max-product is suitable here for the minimisa-
tion. It takes O(k) time to compute each message and there are O(n) messages
to be computed in each iteration. In our work, each input range image has about
104 points and typically a set of ranges images have 18 images. To reflect the
true surface details of the object, the number of points in the output point
cloud must be large enough. Thus if we use a point set as the label set, the
number of labels would be tens of thousands. In that case LBP would be ex-
tremely time-consuming and too memory-hungry to be tractable. A MATLAB
implementation would immediately go out of memory because of the huge n× k
matrix needed to save the messages passing through the network. But the final
output of integration must be a single point cloud. So, our MRF labeling using
image numbers as labels makes it feasible to employ LBP for the minimisation.

The LBP works by passing messages in a MRF network, briefed as follows:

1. For all point pairs (i, j) ∈ N , initialising message m0
ij to zero, where mt

ij is
a vector of dimension given by the number of possible labels k and denotes
the message that point i sends to a neighbouring point j at iteration t.

2. For t = 1, 2, . . . , T , updating the messages as

mt
ij(xj) = min

xi

(
λAij(xi, xj)+

∑
yi∈L\xi

min(Di(yi, xi), F )+
∑

h∈N (i)\j

mt−1
hi (xi)

)
(12)

3. After T iterations, computing a belief vector for each point,

bj(xj) =
∑

yj∈L\xj

min(Dj(yj , xj), F ) +
∑

i∈N (j)

mT
ij(xj) (13)

and then determining labels as:

x∗j = arg min
xj

(
bj(xj)

)
(14)

According to Eq. (12), the computational complexity for the calculation of the
message vector is O(k2) because we need to minimise over xi for each choice of
xj . By a simple analysis, we can reduce it to O(k). The detail is given as below:

1. Rewriting Eq. (12) as,

mt
ij(xj) = min

xi

(
λAij(xi, xj) + g(xi)

)
(15)
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where g(xi) =
∑

yi∈L\xi

min(Di(yi, xi), F ) +
∑

h∈N (i)\j

mt−1
hi (xi)

2. Considering two cases: xi = xj and xi 6= xj .

(1) If xi = xj , λAij(xi, xj) = 0, thus mt
ij(xj) = g(xj).

(2) If xi 6= xj , λAij(xi, xj) = λ, thus mt
ij(xj) = min

xi
g(xi) + λ

3. Synthesizing the two cases:

mt
ij(xj) = min

(
g(xj),min

xi
g(xi) + λ

)
(16)

According to Eq. (16), the minimisation over xi can be performed only once,
independent of the value of xj . In other words, Eq. (12) needs two nested FOR
loops to compute the messages but Eq. (16) just needs two independent FOR
loops. Therefore, the computational complexity is reduced from O(k2) to O(k)
and the memory demand in a typical MATLAB implementaion is reduced from
a k × k matrix to a 1× k vector.

As for implementation, we use a multi-scale version to further speed up the
LBP algorithm, as suggested in [19], which significantly reduces the total num-
ber of iterations needed to reach convergence or an acceptable solution. Briefly
speaking, the message updating process is coarse-to-fine, i.e. we start LBP from
the coarsest network, after a few iterations transfer the messages to a finer scale
and continue LBP there, so on and so forth.

6 Experimental results and performance analysis

The input range images are all downloaded from the OSU Range Image Database
(http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm). On average, each
‘Bird’ image has 9022 points and each ‘Frog’ image has 9997 points. We em-
ployed the algorithm proposed in [21] for pairwise registration. Inevitably, the
images are not accurately registered, since we found the average registration er-
ror (0.30mm for the ‘Bird’ images and 0.29mm for the ‘Frog’ images) is as high
as 1/2 scanning resolution of the input data. Fig. 5 shows that the input range
data are registered into the same coordinate system, rendering a noisy 3D surface
model with many thick patches, false connections and fragments due to local and
global registration errors. A large registration error causes corresponding points
in the overlapping region to move away from each other and the overlapping
area detection will thus be more difficult. The final integration is likely to be
inaccurate accordingly. In our tests, the truncation parameter F is set to 4 and
the weighting parameter λ is set to 10. Fig. 6 and 7 show the integration results
produced by existing methods and our MRF-based integration, proving that our
method is more robust to registration errors and thus performs best. Now we
analyse some details of the new algorithm. Fig. 8 shows the labeling result. On
the integrated surface, we use different colours to mark the points assigned with
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Fig. 5: Range images (coloured differently) are registered into the same coordinate
system as the input of the integration. A patch from some range image is visible if and
only if it is the outermost surface. Left: 18 ‘Bird’ images; Right: 18 ‘Frog’ images.

Fig. 6: Integration results of 18 ‘Bird’ images. Top left: volumetric method [6]. Top
middle: mesh-based method [14]. Top right: fuzzy-c means clustering [10]. Bottom left:
k-means clustering [9]. Bottom right: the new method.

Fig. 7: Integration results of 18 ‘Frog’ images. Top left: volumetric method [6]. Top
middle: mesh-based method [14]. Top right: fuzzy-c means clustering [10]. Bottom left:
k-means clustering [9]. Bottom right: the new method.



536 R. Song, Y. Liu, R. R. Martin, and P. L. Rosin

Fig. 8: Left: labeling result of ‘Bird’ images. Right: labeling result of ‘Frog’ images

Fig. 9: Convergence performance of the new method using different input images. Left:
The ‘Bird’ image set; Right: The ‘Frog’ image set

Fig. 10: Integration results of 18 ‘Bird’ images produced by different clustering al-
gorithms. From left to right (including the top row and the bottom row): k-means
clustering [9], fuzzy-c means clustering [10], the new algorithm.

Fig. 11: The triangular meshes of integrated surfaces using different methods. From left
to right: volumetric [6], mesh-based method [14],point-based method [16], our method
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Fig. 12: Different performance measures of integration algorithms. Left: distortion met-
ric. Right: computational time

different labels, corresponding to different input range images. The boundary
areas coloured with red actually represent the triangles where the three vertices
are not assigned with the same label (Please note that the surface is essentially
a triangular mesh). If a group of points are all assigned with the same label, the
surface they define will be marked with the same colour. We find that not all
input images have contribution to the final integrated surface. For the ‘Bird’ and
the ‘Frog’ images, the reconstructed surfaces are composed of the points from
10 and 11 source images respectively. We plot in Fig. 9 how the LBP algorithm
converges. To observe the convergence performance, in the LBP algorithm, we
calculate Equ. (13) to determine the label assignment in each iteration of mes-
sage passing. And then we count the number of points assigned with different
labels from what they are assigned in last iteration. When the number is less
than 2% of the total number of the initialisation points (Inet), the iteration is
terminated. Fig. 9 shows that the new method achieves a high computational
efficiency in terms of iteration number required for convergence.

Due to the different objective functions, it is very difficult to define a uniform
metric such as the integration error [9, 10] for a comparative study because to
maintain local surface topology, we reject the idea that the smaller the average
of the distances from the fused points to the closest points on the overlapping
surfaces, the more stable and accurate the final fused surface. Thus we cannot use
such a metric in this paper. Nonetheless, Fig. 10 highlights the visual difference
of the integration results produced by classical clustering methods (according to
Fig. 6 and 7, they are superior to other existing methods) and the new method.
It can be seen that our algorithm performs better, particularly in the non-flat
regions such as the neck and the tail of the bird.

Even so, for a fair comparison, we adopt some measurement parameters
widely used but not relevant to the objective function: 1) The distribution of
interior angles of triangles. The angle distribution shows the global optimal de-
gree of triangles. The closer the interior angles are to 60◦, the more similar the
triangles are to equilateral ones; 2) Average distortion metric [27]: the distortion
metric of a triangle is defined as its area divided by the sum of the squares of the
lengths of its edges and then normalised by a factor 2

√
3. The value of distortion

metric is in [0,1]. The higher the average distortion metric value, the higher the
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quality of a surface; 3) The computational time; Fig. 11 and 12 show that the
new method performs better in the sense of the distribution of interior angles
of triangles, the distortion metric and the computational time. All experiments
were done on a Pentium IV 2.40 GHz computer. Additionally, because there is
no specific segmentation scheme involved, our method based on MRF labeling
saves computational time compared with the techniques using some segmenta-
tion algorithms as a preprocessing before the integration [10].

7 Conclusion and future work

Clustering-based methods proved superior to other existing methods for integrat-
ing multi-view range images. It has, however, been shown that classical clustering
methods lead to significant misclassification in non-flat areas as the local sur-
face topology are neglected. In this paper, we develop a MRF model to describe
the integration problem and solve it by LBP, producing better results as local
surface details are well preserved. Since the novel MRF-based method consid-
ers all registered input images for each point belonging to the network Inet,
the integration is globally optimised and robust to noise and registration errors.
The reconstructed surface is thus geometrically realistic. Also, it is applicable to
many other data sources such as 3D unstructured point clouds.

However, a couple of works can still be done to improve the integration in
the future. As we mentioned above, the Potts model used in this paper is merely
the simplest one. So we plan to explore different types of MRF models. We also
hope to reduce the accumulated registration errors. One pairwise registration can
produce one equation subject to the transform matrix. If we have more locally
registered pairs than the total number of images in the sequence, the system of
equations will be overdetermined. Solving this linear system of equations in a
least squares sense will produce a set of global registrations with minimal devia-
tion from the set of calculated pairwise registrations. In the future work, we will
develop a scheme that can make a good balance between the extra cost caused
by more pairwise registrations and the reduction of error accumulation.
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