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Abstract This paper presents a new morphing method based on the ‘as-rigid-as-possible’ approach.

Unlike the original as-rigid-as-possible method, we avoid the need to construct a consistent tetrahedral

mesh, but instead require a consistent triangle surface mesh and from it create a tetrahedron for each

surface triangle. Our new approach has several significant advantages. It is much easier to create a

consistent triangle mesh than a consistent tetrahedral mesh. Secondly, the equations arising from our

approach can be solved much more efficiently than the corresponding equations for a tetrahedral mesh.

Finally, by incorporating the translation vector in the energy functional controlling interpolation, our

new method does not need the user to arbitrarily fix any vertex to obtain a solution, allowing artists

automatic control of interpolated mesh positions.

Keywords Morphing, Simplex, Transformation, Interpolation

1 Introduction

Morphing, also called metamorphosis or shape

blending, is a technique used to smoothly trans-

form one graphical shape into another. Many 2D

morphing methods have been developed to assist

2D animation making [1]. In recent years, with

the introduction of 3D cartooning techniques, 3D

morphing has increased in importance in games

and animation production.

The most popular type of model used in 3D

graphics is a surface triangle mesh. In this paper,

we propose a new morphing method that works

well even when the two input 3D triangle meshes

have very different shapes. Many successful ap-

proaches to morphing use a framework based on
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firstly creating consistent meshes for the original

source and target models, i.e. source and target

meshes having one to one correspondences between

their vertices, edges and faces. Given these, a path

may then be determined for each vertex to follow

during the morphing process. Much work has con-

sidered the first issue [2, 3, 4]; this paper focuses

on the trajectory problem.

The approach used in this paper is based on the

as-rigid-as-possible warping method [5] for gener-

ating a smooth morph between two quite different

shapes. However, that method requires 3D objects

to be represented as volume, tetrahedral meshes.

Unfortunately, as is well known, meshing complex

solids is not easy, and creating consistent tetra-

hedral meshes is notoriously difficult. Indeed, we

are unaware of any satisfactory general solution to

that problem.

Our new method has the following merits com-

pared to the original as-rigid-as-possible method,

while still providing very good 3D morphing re-

sults:

• Our method works directly with surface tri-

angle meshes instead of requiring tetrahe-

dral meshes representing the interior of each

object.

• Creating consistent triangle meshes is a

much easier problem to solve than creating

consistent tetrahedral meshes.

• The number of vertices in consistent trian-

gle meshes is far fewer than in correspond-

ing tetrahedral meshes of the same objects

at the same resolution, resulting in greatly

reduced computing time.

• By incorporating the translation vector into

our energy functional, we do not need to fix

some arbitrary vertex when computing the

solution; the original method needs user se-

lection of at least one fixed vertex.

The inputs to our method are a source mesh

and a target mesh, in the form of consistent trian-

gle meshes, and the desired number of intermediate

frames. The output is a sequence of intermediate

meshes forming a morphing sequence.

Figure 1 illustrates results produced by linear

interpolation, Alexa’s original as-rigid-as-possible

volume warping method [5], and our new surface-

mesh-based method. Our method produces almost

identical results to Alexa’s volume-based morphing

method, but at much lower computational cost,

and without the need to produce volume meshes

and make them consistent.

We note that [6] uses ideas somewhat similar

to ours to solve the deformation problem. Nev-

ertheless, there is a significant difference. In our

method, we incorporate the translation vector into

the error function, avoiding the need for the user

to fix the location of any vertex in the solution pro-

cess. Appropriate choice of the vertex to fix is not

a simple task, so our approach simplifies the user

interface for the user. Nevertheless, in the degen-

erate case, our error function corresponds to the

form not using a translation vector, allowing the

artist to fix any vertex if desired, giving the artist

the freedom to choose how much explicit control

to use.

2 Related Work

Methods for 3D morphing typically take one of

two approaches. The first blends simpler volumes
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(a)

(b)

(c)

Fig 1: Morphing comparison using a total of 5 frames: (a) morphing using linear interpolation,

(b) morphing using Alexa’s method [5],(c) morphing using our method. In (b), initial and final

tetrahedral meshes are shown in gray, while in (c) initial and final triangle meshes are shown.

into which the initial and final shapes have been

embedded [7, 8]. The second directly manipulates

an explicit geometric object representation, typi-

cally a surface mesh or volume mesh [2, 5]. The

first class of approach has the advantage of being

able to morph objects having different topologies.

However, mesh-based methods typically produce

better results—often, shape boundaries resulting

from use of embedding methods are not smooth

enough. Thus, the focus of morphing has shifted

towards mesh-based approaches in recent years.

Our method is based on use of surface triangle

meshes.

As noted earlier, explicit surface or volume mesh

morphing typically uses two main steps: creating

consistent meshes, and determining vertex trajec-

tories. We first briefly review the former, then

consider the latter in more detail as it is the main

focus of this paper.

Various work has considered how to create con-

sistent meshes for pairs of shapes of genus zero,

using a topological merging method. A frequent

approach is to first dissect the source and target

shapes into several pieces [9], then to construct a
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local parameterization for each piece, and finally to

perform merging [4, 10] or remeshing [2, 11] to cre-

ate the consistent mesh. Praun [12] gives a tracing

method which can dissect source and target shapes

automatically.

Many of the above papers concentrate on the

problem of creating consistent meshes, and only

use simple linear vertex coordinate interpolation

methods to find vertex trajectories. For source

and target objects with very similar shapes, lin-

ear interpolation is sufficient to produce simple

visual effects. However, if objects undergo large

deformations, especially bending, linear interpola-

tion always leads to visually unacceptable shrink-

age of intermediate shapes—see, for example, Fig-

ure 1(a).

Using global Euclidean coordinates at each ver-

tex does not capture local shape information and

vertex connectivity information directly. Some

work thus tries to interpolate other intrinsic rep-

resentations based on local shape information, in-

cluding barycentric coordinates, Laplacian coordi-

nates, and other quantities which represent local

intrinsic attributes of the mesh, as we now discuss.

Floater and Gotsman [13] used barycentric coor-

dinate interpolation to find suitable paths for con-

vex 2D shapes. This method has been extended

concave shapes by embedding them into a convex

shape [14]. Ju et al. [15] used mean value coordi-

nates (a generalisation of barycentric coordinates)

to control 2D shape deformation. The same prin-

ciples can also be used for 3D morphing. Mean

value coordinates are invariant under translation

and rotation but are not invariant under scaling,

restricting their usefulness.

Alexa et al. [16] suggested interpolation of

Laplacian coordinates to determine morphing tra-

jectories and discussed how to control morphing

locally. Laplacian coordinates are invariant under

translation but are not under rotation and scaling.

Later work [17, 18] has considered how to modify

interpolated Laplacian coordinates to provide bet-

ter morphing results. Recently, Hu [19] extended

this approach by interpolating the curvature flow

Laplacian operator.

Sheffer and Kraevoy [20] introduced so-called

pyramid coordinates into mesh editing and mor-

phing. While these coordinates are rotation-

invariant, reconstruction of Cartesian coordinates

from them requires time consuming non-linear op-

timization. Lipman [21] proposed rotation invari-

ant differential coordinates by considering tangen-

tial and normal components relative to the surface.

Their method requires the solution of two linear

systems for each intermediate frame, and hence

roughly twice the amount of work of other simi-

lar methods.

Yu et al. [22] introduced a technique which in-

terpolates gradients of the surface mesh; recon-

struction of in-between surfaces requires the solu-

tion of a Poisson equation. These gradients are

again not invariant under rotation, so must be

modified when rotation is involved, using a simi-

lar method to that used for Laplacian coordinates.

Xu et al. [23] generalised this technique for use

in morphing. They calculate intermediate surface

gradients by quaternion interpolation, and recon-

struct surfaces by solving a Poisson equation. This

method produces good results in many cases.

Another important morphing method is the

as-rigid-as-possible approach, which can handle

source and target shapes with large differences.
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Shoemake [24] proposed the use of a global affine

transformation to represent distortion between

source and target shapes. By decomposing the

transformation matrix into separate rotational and

irrotational parts, and interpolating them inde-

pendently, the overall transformation matrix and

shape of each intermediate frame can be calcu-

lated. Alexa [5] developed this idea to determine

the local transformation separately for each mesh

element (interior triangles for 2D morphing or in-

terior tetrahedra for 3D morphing) instead of the

whole shape, then used optimization to minimize

the difference between the desired transformation,

and the actual transformation which is applied,

taking into account the connectivity constraints on

adjacent mesh elements. This method uses a tetra-

hedral volume mesh to solve 3D morphing prob-

lems. However, most models used in animation are

represented using surface triangle meshes. It is a

difficult problem to generate a corresponding solid

tetrahedral mesh from a triangle mesh, especially

one with well-shaped elements. Obviously, it is

even more difficult to create consistent meshes for

source and target shapes, making Alexa’s method

very hard to use in practice for 3D morphing. Sim-

plex transformation has also been used with sur-

face triangle meshes to perform deformation learnt

from existing examples [25].

Hu et al. [26] presented a method based on min-

imization of deformation energy, which is novel in

that it does not use interpolation, but is a global

optimization method. Yan et al. [27, 28] proposed

the use of strain fields from mechanics for smooth

interpolation. This method can provide very uni-

form results even if the source and target meshes

are quite different, but it requires the solution of

a nonlinear equation and again, it is not easy to

create consistent tetrahedral meshes in 3D. Bao

et al. [29] also used a similar idea for point cloud

morphing.

Although many morphing methods use differ-

ent algorithms, they are typically guided by the

same physical principle—that of keeping the shape

as rigid as possible as it changes. This con-

cept has also been used in geometry editing and

parametrization [30, 31, 32].

In this paper, we present a new method based on

Alexa’s as-rigid-as-possible method [5]. Our modi-

fication allows this method to be applied to surface

meshes directly without the need for construction

of consistent tetrahedral meshes. As a further con-

sequential benefit, our method requires much less

computation than Alexa’s original method. Our

method can be used in cases involving large rota-

tions, and no arbitrary vertex needs to be fixed

by the user in order to compute a solution to the

morphing problem.

We explain our method in Section 3 and demon-

strate results in Section 4, finally drawing conclu-

sions in Section 5.

3 Surface Morphing

Our approach to the morphing problem builds

on the work of Alexa [5]. We presume that con-

sistent source and target surface triangle meshes

have already been computed. To determine tra-

jectories, the basic approach is as follows: we cal-

culate the transformation matrix and translation

vector relating the initial and final disposition of

each mesh element. The transformation matrices

are further decomposed into rotational and irro-

tational components, each of which is interpolated
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separately. Finally, we reconstruct each intermedi-

ate mesh from the interpolated transformation ma-

trices and translation vectors. Our method differs

from that of Alexa [5] in two ways. First, we do not

need to create consistent tetrahedral meshes, but

calculate each transformation matrix simply using

information from the surface triangle meshes (we

generate a set of surface tetrahedra, as we explain

shortly). Secondly, we use a different error energy

function, taking into account the translation, so no

vertex needs to be fixed in our method.

3.1 Transforming Triangles

We now consider transformation of mesh tri-

angles. An n-simplex is the simplest possible n-

dimensional polytope in n-dimensional Euclidean

space: in 2D and 3D, these are triangles and tetra-

hedra respectively. Given two such n-simplices S1

and S2 in nD space, there exists a unique trans-

formation that changes S1 into S2. If ui are the

vertices of S1, and vi are the corresponding ver-

tices of S2, this can be written:

vi = Mui + T, (1)

where M is an affine transformation matrix rep-

resenting rotation, scaling and shearing, and T is

a translation vector. M and T are determined by

the vertex coordinates of S1 and S2, as follows:

M = V U−1, (2)

where in 2D,

V =

[
v1 − v3 v2 − v3

]
, (3)

U =

[
u1 − u3 u2 − u3

]
,

and in 3D,

V =

[
v1 − v4 v2 − v4 v3 − v4

]
, (4)

U =

[
u1 − u4 u2 − u4 u3 − u4

]
.

Having computed M , it can be substituted into

Eqn. 1 to find T .

Our morphing method adds a vertex per mesh

triangle to create a single tetrahedron for each ini-

tial and final triangle mesh face. The transforma-

tion matrix relating each such pair of correspond-

ing tetrahedra can then be calculated. After de-

composing the transformation into rotational and

irrotational parts, we interpolate these two parts

separately to get a desired transformation matrix

for each intermediate frame. Finally, we use an

optimization method to ensure the connectivity of

adjacent triangles.

We use similar ideas to those in Sumner [33] to

construct these surface tetrahedra. For each mesh

triangle of the source and target meshes, we add

a fourth vertex, and connect it to the triangle to

give a tetrahedron. The fourth vertex is added at

a certain distance along the normal direction over

the triangle’s centroid. Let v1, v2, v3 be the ver-

tices of a triangle on the mesh. The fourth vertex

is placed at

v4 =
(v1 + v2 + v3)

3
+

(v2 − v1)× (v3 − v2)√
| (v2 − v1)× (v3 − v2) |

. (5)

By putting the new vertex over the centroid, and

by letting the distance from the new vertex to the

triangle centroid be proportional to the square root

of the triangle area, we create a tetrahedron that

is as similar as possible to a regular tetrahedron.

This ensures that the calculation of the transfor-

mation between a source and target tetrahedron

is as well-conditioned as possible. It also ensures

the tetrahedron changes shape as little as possi-

ble, in accordance with the spirit of the as-rigid-

as-possible concept.
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From these tetrahedra, we can calculate the

transformation matrix M for each pair of corre-

sponding tetrahedra using Eqn. 2, and afterwards

the translation vector T using Eqn. 1.

3.2 Interpolation

Given the initial and final transformations for

each pair of tetrahedra, and thus for the underly-

ing mesh triangles, we now interpolate the trans-

formation matrix M and the translation vector T

for each tetrahedron to get the desired transforma-

tion matrix and the desired translation vector for

each vertex of each triangle, for each intermediate

model.

We interpolate the transformation matrix using

the method in [5]. First the transformation is de-

composed by singular value decomposition giving

M = PDQ, (6)

which may also be written

M = P (QQT )DQ = RS, (7)

where R = PQ and S = QTDQ. R is an orthogo-

nal matrix representing rotation, and S represents

the irrotational part of the transformation. We

now interpolate the rotation matrix R and irrota-

tional matrix S separately. The latter is interpo-

lated by simple linear interpolation to give S̃(t),

the desired irrotational matrix at time t (where t

is normalised to the range 0 to 1):

S̃(t) = I (1− t) + S t. (8)

Linear interpolation is appropriate for the shears

and scalings represented by S.

We use quaternions to interpolate the rotation

matrix R, a widely used approach. A quaternion

may be written Q = [w, x, y, z]. A unit magni-

tude quaternion w2 + x2 + y2 + z2 can also be

written as [cos(θ/2),n sin(θ/2)] and represents a

rotation with axis n through an angle θ. Spheri-

cal interpolation of unit quaternions is an effective

tool for performing rotation interpolation. De-

tails of quaternion interpolation, and conversion

between rotation matrices and unit quaternions

can be found in [34]. We transform the rotation

matrix R to a unit quaternion Q, then interpolate

between a quaternion Q0 = [1, 0, 0, 0] representing

no rotation at time t = 0, and a quaternion Q rep-

resenting the final rotation at time t. The result is

Q̃(t) which we convert back to a rotation matrix

R̃(t).

Thus, the desired transformation matrix at time

t is

M̃(t) = R̃(t)S̃(t), (9)

The desired translation vector at time t is sim-

ply interpolated by linear interpolation, represent-

ing a constant velocity of motion.

T̃ (t) = T t, (10)

3.3 Optimization to Find Mesh Vertices

We now show how to compute the new mesh

at time t from the desired translation vectors and

transformation matrices.

Remember that a different transformation is de-

termined for each triangle independently. As a

result, gaps or overlaps would occur between tri-

angles if each triangle were simply transformed

independently according to its own interpolated

transformation matrix M̃(t) and translation vec-

tor T̃ (t). The key to retaining connectivity of ad-

jacent triangles is that each vertex belongs to more
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than one triangle but can have only a single trans-

formation. We thus determine transformations for

vertices so that each triangle has a transformation

as close as possible to that determined by its in-

terpolated transformation matrix and translation

vector. We do so using our optimization method

from [35].

Let M̃i(t) and T̃i(t) represent the interpolated

transformation matrix and translation vector of

the ith triangle. An error function taking into ac-

count the difference between the actual state and

the desired interpolated state is defined as follows:

E =
n∑

i=1

Ai(‖M∗
i − M̃i‖2F + α‖T ∗

i − T̃i‖22) (11)

where n is the number of simplices in the mesh,

M∗
i is the actual transformation matrix for the ith

triangle, and T ∗
i is the actual translation vector of

the ith triangle. F denotes the Frobenius norm.

Ai is the area of the ith triangle: large triangles

are more visible so should provide a greater con-

tribution to the error function. α is the square of

the reciprocal of the diagonal length of the scene

bounding box, which is used to ensure both terms

are comparable, and have the same units of mea-

surement.

We minimize the error energy E to get the best

intermediate shape while ensuring that adjacent

triangles remain connected. The variables being

optimised over in Eqn. 11 are the vertex coordi-

nates for the intermediate shape.

As noted in [33], such a quadratic optimization

problem can be decomposed into 3 independent

optimization problems for x, y and z. Each sub-

problem can be transformed into a linear system

by setting the gradient of E to zero, giving three

independent linear systems:

KX = bx, KY = by, KZ = bz, (12)

where X, Y and Z are the x, y and z coordinate

vectors of the interpolated mesh; these have size

m + k, where m is the number of vertices in the

mesh, and k is the number of triangles. K is a

sparse matrix of size (m+ k)× (m+ k), and bx, by

and bz are vectors of size m + k. This decompo-

sition into 3 smaller linear systems allows the so-

lution to be found more efficiently. We use direct

Cholesky decomposition and back substitution to

do so. By now, we get a tetrahedra mesh sequence.

When rendering, we only keep the surface triangle

where ignore the fourth vertex located on each sur-

face triangle.

An important difference between our method

and that in [5] is that we incorporate the transla-

tion vector as the second term in the error function

in Eqn. 11, in addition to the shape error repre-

sented by the first term. Without this extra term,

the matrix K in Eqn. 12 would be singular, but

adding this term ensures that the linear system has

a unique solution. Alexa’s original method uses an

alternative method to avoid singularities, which is

to fix the positions of one or more vertices. How-

ever, this requires user input, and it is not always

easy for the user to make appropriate choices.

We use the coefficient α to control the relative

importance of the position error. By making the

position error small compared to the shape error,

it weakly restricts each triangle shape, while al-

lowing it to decide the global mesh position. Ex-

periments show that if the normalising factor α

is not used, morphing results may be poor if dis-

placements are large. On the other hand, α should

not be too small, to avoid the equations becoming
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ill-conditioned. We have performed many exper-

iments showing that our choice of α above con-

sistently provides satisfactory results. Our exper-

iments show that interpolated shapes determined

by our method differ little from those found by

Alexa’s approach of fixing a suitable arbitrary ver-

tex, and mainly differ in model positions—see, for

example, Figure 2.

In more detail, in Alexa’s original method [5],

the location of (at least) one vertex must be deter-

mined by the user, in each frame. In the simplest

case, its position may be found in intermediate

frames by interpolating its position in the initial

and final frames. Different choices of this fixed

vertex may lead to differing positions of the model

in intermediate frames, and poor choices may pro-

duce unsatisfactory animation results, leading in

bad cases to unacceptable wobbling and jittering

of the model’s perceived location. Our method

has no such problems, as no vertex needs to be

fixed; the source smoothly changes globally into

the target both in shape and in position. Fig-

ure 2(a) shows a morphing result based on Alexa’s

approach of fixing the position of a vertex in each

frame (marked by the blue sphere in the first im-

age). Figure 2(b) shows the corresponding mor-

phing result if instead the translation vector is in-

corporated. In Figure 2(a), it can be seen that the

hand appears to move backwards in the intermedi-

ate frames and then forwards again (which is why

the hand shape appears smaller in the intermediate

results). In Figure 2(b) the intermediate results

differ little in shape from those in Figure 2(a) but

are more stable in position. (The viewpoint is the

same for all frames.)

Nevertheless, we note that in cases where the

artist wants to explicitly control the intermediate

mesh positions, instead of relying on an automatic

method, we can easily set α = 0 in Eqn. 11, and

allow the artist to fix any vertex as desired, as in

Alexa’s method.

4 Results

We have applied our method to various mod-

els, both morphing between two different objects,

and performing morphing corresponding to various

fundamental deformations of a single object. Typ-

ical experimental results are shown in Figures 2–

6. In each figure, the first and last images show

the given source and target meshes, while inter-

mediate images show morphing results produced

by our method. All experiments were performed

on a PC with a 3.2GHz Pentium 4 CPU with 1GB

memory. Table 1 shows the times taken per frame

to compute the intermediate models illustrated in

this paper.

Experiments show that the morphing results

generated by our method are smooth and natu-

ral, and that no shape jittering or wobbling oc-

curs, which may be a problem for other morphing

methods relying on a fixed vertex.

Our method can also be easily modified for use

in the solution of 2D polygon morphing problems,

turning polygon edges into virtual triangles in a

manner analogous to the 3D case. After adding

a virtual vertex on each edge, the transformation

relation between each pair of virtual triangles is

calculated, and the 3D equations of this paper can

be directly replaced by 2D equaivalents in an obvi-

ous manner. Figure 7 shows a 2D polygon morph-

ing result produced by our method, in which each

polygon had 196 vertices.
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(a)

(b)

Fig 2: Hand: (a) not using translationg vector(letting α = 0 in Eqn. 11) and one vertex is

fixed(blue sphere), (b) using translation vector, no vertex need to be fixed.

Hand Armadillo Bunny to Camel to 2-Torus to

Rabbit Horse Vase

Number of vertices 12782 165954 14221 8431 13998

Time per frame 1.28s 20.34s 1.45s 0.79s 1.30s

Table 1: Timing information

5 Conclusions

This paper has shown how to make Alexa’s mor-

phing method much more practical, requiring only

surface meshes rather than volume meshes. Our

approach not only avoids the complex process of

consistent tetrahedral meshing, but also lowers the

computation time, since surface triangle meshes

have many fewer vertices than corresponding vol-

ume tetrahedral meshes. Secondly, unlike many

other morphing methods using intrinsic represen-

tations, our approach does not need to fix any

vertex during the solution process, and provides
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Fig 3: Armadillo.

automatic control of mesh position. Our method

requires the solution of 3 linear systems which can

be done very rapidly using direct Cholesky decom-

position. Our method can also be easily modified

for use in the solution of 2D polygon morphing

problems. In summary, our method is of wide ap-

plicability.

Except compared with Alexa’s mothod [5] as in

figure 1, our method is also compared with Xu’s

method as in figure 8. It is obvious that our

method has very similar morphing results com-

pared to Alexa and Xu’s methods if proper vertex

is fixed in the those two methods. Compared to

Alexa’s method, our method highly increase the

solving efficiency and does not need complex solid

mesh. Though Xu’s method and ours has similar

solving efficiency, our method does not need to fix

any vertex and much simplified the artist opera-
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Fig 4: Bunny into Rabbit.

Fig 5: Camel into Horse.

Fig 6: 2-Torus into Vase.

tion, while Xu’s method need to fix at least one

vertex and may suffer from the fixed vertex selec-

tion problem as in figure 2.

The main limitation of our work is inherited

from [5] and shared by [23]: the largest rotation

angle may not exceed π, due to the use of quater-
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Fig 7: 2D polygon morphing: Ox into Camel.

(a)

(b)

Fig 8: Man into Woman.(a) Morphing using our method, (b) Morphing using Xu’s method [23].

The results of the two methods are very similar.

nion interpolation. Figure. 9 give 2 similar 3D

examples but the largest rotation angle is a lit-

tle different. In Figure. 9(a), our method works

well where the largest rotation angle is a little less

than π. In Figure. 9(b), the largest rotation angle

is a little larger than π, and the morphing result

is in error since the quaternion interpolation can-

not distinguish angle larger or smaller than π. A

simple way to overcome the analogous problem in

2D is given in [36, 37], but it cannot be extended

to 3D. The morphing method in [28] can be used

in cases where the rotation angle exceeds π, but it

requires the solution of a nonlinear system, which

is less efficient. We intend to further investigate
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(a)

(b)

Fig 9: (a) The Largest Rotation Angle Less Than π, (b) The Largest Rotation Angle Larger Than

π.

removing this restriction.
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