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Abstract

This thesis presents my work that I have done together with my

supervisor, Dr Egor Muljarov. It is based on the resonant state ex-

pansion (RSE), a rigorous perturbation theory, recently developed

in electrodynamics. Here, the RSE is applied to non-relativistic

quantum mechanical systems in one dimension. To facilitate the

analytics, the model of Dirac delta functions for describing quan-

tum potentials was employed. The resonant states (RSs) of a sym-

metric double quantum well structure modeled by delta functions

was first calculated. The full set of these RSs is investigated. This

includes bound, anti-bound and normal resonant states which are

all eigenstates solutions of Schrödingers equation with boundary

conditions of outgoing waves. These RSs are then taken as an

unperturbed basis state, for the quantum mechanical (QM) ana-

logue of the RSE (QM-RSE). The transformation of the RSs and

their transitions between different subgroups as well as the role of

each subgroup in observables, such as the quantum transmission,

is also analysed.

The resonant state expansion is first verified for a triple

viii



quantum well systems, showing convergence to the available an-

alytic solution as the number of resonant states in the basis in-

creases. The method is then applied to multiple quantum well

and barrier structures, including finite periodic systems. Results

are compared with the eigenstates in triple quantum wells and in-

finite periodic potentials described by the famous Kronig-Penney

model, revealing the nature of the resonant states in the studied

systems.
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Chapter 1

Introduction

This thesis present the work I have done with my supervisor Dr

Egor Muljarov. It is based on a resonant states expansion, a rigor-

ous perturbation theory, recently developed in electrodynamics [1]

for accurate calculation of eigen wave numbers in open optical

system. Here it is applied to non-relativistic quantum mechanical

systems in one dimension. The method is used for finding the res-

onant states in various potentials approximated by combinations

of Dirac delta functions. We start our work investigating the full

set of resonant states in double and triple quantum well/barrier

structures. This includes bound, anti-bound and normal resonant

states which are all eigensolutions of Schrödinger’s equation with

generalised outgoing wave boundary conditions. We analysed the

transformation of resonant states and their transitions between

different subgroups as well as the role of each subgroup in observ-

ables, such as the quantum transmission.

Using the triple quantum well, we verified the resonant
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state expansion, showing convergence to the available analytic so-

lution as the number of resonant states in the basis increases. The

method is then applied to multiple quantum well and barrier struc-

tures, including finite periodic systems. Results are compared with

the eigenstates in triple quantum wells and infinite periodic po-

tentials, revealing the nature of the resonant states in the studied

systems.

Before going into the regorous formalism of resonant states

in quantum mechanincs which is provided further in this introduc-

tion, we first look at a well known problem of a forced harmonic

oscillator with damping which presents the simplest physcial sys-

tem showing resonant states.

1.1 Classical harmonic oscillator

In classical mechanics, a harmonic oscillator is a system

that, when displaced from its equilibrium position, experiences a

restoring force, F , proportional to the displacement, x: ~F = −k~x

where k is a positive constant. If F is the only force acting on the

system, the system is called a simple harmonic oscillator, and it

undergoes simple harmonic motion: sinusoidal oscillations about

the equilibrium point, with a constant amplitude and a constant

frequency (which does not depend on the amplitude). The com-

mon equation to harmonic oscillators is the equation of motion

ẍ+ ω2
0x = 0 (1.1)
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with the well-known solutions

x(t) = c1 cosω0t+ c2 sinω0t. (1.2)

If a frictional force (damping) proportional to the velocity is also

present, the harmonic oscillator is described as a damped oscillator

(
d2

dt2
+ 2γ

d

dt
+ ω2

0

)
X(t) = eiωt (1.3)

with a solution

X(t) = X0(ω)eiωt (1.4)

where

X0(ω) =
−1

(ω − ω1)(ω − ω2)
(1.5)

is the Green’s function (GF) having 2 poles, at ω1 and ω2. These

are the eigen frequencies of the system, which are given by

ω1,2 = ±Ω− iΓ (1.6)

with the real part as

Ω =
√
ω2

0 − γ2 (1.7)

and imaginary part as Γ = γ. These poles present resonances in

the system response, as demonstrated by Fig. 1.1
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Figure 1.1: This figure shows classical resonance at ω ≈ ω0 = 1
with width ∼ 2γ (γ = 0.5).

By taking the limit as γ → 0 (no damping), ω1 and ω2 on

the real axis resembles the energies of bound states and the expres-

sion for Eq. (1.3) is reduced to the previous expression Eq. (1.1).

The appearance of these bound states in two dimensional pho-

tonic crystal waveguides is investigated in [2], and in quantum

mechanics the creteria for their existence in one dimension was

also discussed in [3].

1.2 Bound states in a finite square

well

Figure 1.2: Form of a 1D potential along the x-axis.
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The finite square well problem nicely introduces bound

states in quantum mechanics. We consider the finite square well

of width 2a defined by a potential V (x) given by

V (x) =


−V0, if |x| < a

0, if |x| > a

(1.8)

which contributes to Schrödinger’s equation. The wavefunction

ψ(x) of a bound states having −V0 < E < 0 are then piecewise

continuous functions:

ψ(x) =



Ce−βx, if x > a

A sinαx+B cosαx, if |x| ≤ a

Deβx, if x < −a

(1.9)

where

β =
√
−E (1.10)

and

α =
√
V0 + E (1.11)

where we have used ~ = 1 and m = 1/2. The condition that

characterizes the finite wells bound states takes the form of a tran-

scendental equation that cannot be solved analytically. Due to the

symmetric nature of our wave functions, the bound states come in

pairs: even and odd states. This results in two secular transcen-

dental equations that we need to solve in order to find the energies
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at which bound states occur: Even states: A = 0, B 6= 0, C = D;

α tanαa = β. (1.12)

Odd states: A 6= 0, B = 0, C = −D;

α cotαa = −β. (1.13)

To find the energies of the allowed bound states, root-

finding techniques must be employed. In this case a Newton-

Raphson procedure in Matlab is used and details of its imple-

mentation are given in Sec. 2.2. There is also a continuum of state

in quantum well for energies E > 0 which is usually treated as

scattering states. Resonant states (RSs) allow treating the con-

tinuum on equal footing with bound states: Both types of states

are discrete eigen solutions of Schrödinger’s equation.

1.3 Resonant states (RSs)

The concept of RSs, originates from non-relativistic quan-

tum mechanics. This concept was introduced in the original works

of Gamow [4] and Siegert [5], see also review articles [6, 7].

Quantum-mechanical RSs are the eigen solutions of the Schrödinger

wave equation with purely outgoing wave boundary conditions [4–

6]. RSs have generally complex energy eigenvalues En = ~Ωn −

i~Γn, with negative imaginary part having the meaning of the

inverse lifetime of the quantum state, exponentially decaying in
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time as e−Γnt which results by substituting the energy En to the

time-dependent wave function ψn(r, t) = ψn(r)e−iEnt/~. Already

in the early works on RSs, it has been understood that owing to

this decay, the wave function grows in space exponentially at large

distances, reflecting the fact that the probability density leaks out

of the open system [8]. These exponentially increasing tails of

RSs outside the system makes the wave function not square in-

tegrable, thus preventing from using the standard normalization

condition. Therefore, a special normalization and orthogonality

conditions for RSs were proposed [5, 6]. The RSs can then be

used to calculate the Green’s function of the system via its spec-

tral representation [9, 10] using the Mittag-Leffler theorem. The

Green’s function in turn provides the complete system response

and allows to calculate observables such as local density of states,

scattering, or transmission.

It has been also realized that the full set of the RSs is

complete inside the finite area of space occupied by an open sys-

tem [9, 10], and therefore the RSs can be used as a basis for ex-

panding solutions of the Schrödinger equations, also with modified

potential. Using this approach, the Schrödinger wave equation is

reduced to a linear matrix eigenvlue problem, which can be solved

by diagonalizing a complex symmetric matrix. This is called the

resonant state expansion method (RSE).
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1.4 Resonant state expansion

The resonant state expansion (RSE) is a rigorous pertur-

bative method for treating open optical systems, which has been

recently developed in electrodynamics [1]. The RSE has been

verified and applied to various one-dimensional (1D), 2D and 3D

open optical systems [11–17], demonstrating its high efficiency and

suitability to treat perturbations of the permittivity of arbitrary

strength and shape. The RSE treats the perturbed problem as a

combination of an unperturbed problem usually having an analyt-

ical solution and a perturbation. It is well known that the presence

of a continuum in the spectrum of a system is a significant prob-

lem for any perturbation theory. In open quantum systems such

a continuum is often the dominating if not the only part of the

spectrum. However, going away from the real axis to the complex

frequency plane, the continuum can in many cases be effectively

replaced by a countable number of discrete resonant states (RSs).

In optics, these are vectorial eigen solutions of Maxwell’s equa-

tions.

The 1D quantum-mechanical analog of the RSE was formu-

lated early in [18] with the only numerical implementation known

in the literature [19], which was a calculation of a single bound

state in a rectangular quantum well. The conclusion made in [19]

was that the convergence of this calculation is not quick enough

compared to some other methods also assessed in [19]. Perhaps,
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this has become the reason why this approach in quantum me-

chanics was not developed any further. However, very recently, the

RSE has been re-invented in electromagnetics [1], and it has been

shown [11] that the RSE actually presents a very efficient computa-

tional approach, with a potential to supersede some popular com-

putational methods, such as finite-difference time-domain [20, 21],

finite element method [22], Fourier modal method [23, 24], and

so on. This indicates clearly that there a need also to study

the quantum-mechanical (QM) analogue of the RSE (QM-RSE),

which we have started doing in the present work.

The aim of this work is to apply, verify and study the QM-

RSE in various 1D quantum systems. We first calculate the RSs of

a symmetric double quantum well structure modeled by a delta-

function potential. These RSs are then taken as an unperturbed

basis for the QM-RSE. Both symmetric and asymmetric triple

quantum well or barrier structures, which allow relatively simple

analytic solutions, are then used to verify the QM-RSE and to

study its convergence. In this case, the potential of the third well

or barrier in the middle is treated as a perturbation. The QM-

RSE is then applied for an efficient calculation of RSs in multiple

quantum well structures and finite periodic quantum lattices of

different period and potential strength. The results obtained are

compared with infinite quantum lattices described by a Kronig-

Penney model [25].
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1.5 Resonant states (RSs) and their

normalisation in one-dimensional

systems

Resonant states (RSs) have been known in quantum me-

chanics for almost a century, since the pioneering works of Gamow[4]

and Siegert [5]. They describe, in a mathematically rigorous way,

natural resonances which quantum systems exhibit. People are

dealing with resonances in different fields of physics, ranging from

classical mechanics and electrodynamics to quantum physics and

gravity. Resonant phenomena have attracted significant interest

in recent years, in particular, in quantum mechanics due to a rapid

progress in the field of semiconductor nanostructures, where dif-

ferent electronic states are formed in various types of quantum

potentials. In spite of this growing interest in resonances, many

fundamental aspects of RSs in quantum systems are still to be

investigated [26].

Perhaps, a more traditional way of dealing with resonances

is to study the singularities of the scattering matrix as described in

many textbooks (see, e.g. [27]). Finding these singularities is actu-

ally equivalent to solving the Schrödinger equation with outgoing

wave boundary conditions outside the system. These boundary

conditions strictly define the RSs of the system.

Consider the RSs of a one-dimensional (1D) quantum me-

chanical systems, such as a double or triple quantum well. For
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a better understanding of their properties, we will study them

in detail in Chap. (2) and (3) and later use in Chap. (4) and (5)

for constructing an analytic basis of RSs and varifying the RSE.

The basis of RSs of a double well can then be used for treating

more complicated potentials with the RSE. In general, RSs of a

quantum-mechanical system are eigen solutions of the Schrödinger

equation

Ĥ(r)ψn(r) = Enψn(r) , (1.14)

satisfying the outgoing wave boundary conditions (BCs). Here

Ĥ(r) is the Hamiltonian of a single particle, ψn(r) and En are,

respectively, its eigen wave function and eigen energy, and r is a

three-dimensional coordinate. Note that one can obtain the time

independent Schrödinger equation Eq. (1.14) from the time depen-

dent one, as well as obtain from classical mechanics as shown in

App.(A). Having in mind application to e.g. planar semiconduc-

tor heterostructures, we reduce our consideration in this work to a

non-relativistic one-dimensional Schrödinger’s problem. For bre-

vity of notations, we make use of the units ~ = 1 and m = 1/2,

where m is the particle mass (e.g. the electron effective mass in

a semiconductor). It is also convenient to introduce the eigen

wave number kn of the particle associated with a given RS and

use it instead of the energy En which are linked together via a

non-relativistic parabolic dispersion relation

En = k2
n . (1.15)
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A 1D time-independent Schrödinger equation then takes

the form: [
− d2

dx2
+ V (x)

]
ψn(x) = k2

nψn(x) , (1.16)

where V (x) is the potential of the particle, which is chosen in such

a way that it vanishes outside the system. In 1D, the outgoing

wave BCs for RSs reduce to

ψn(x) ∝ eikn|x| for |x| → ∞ , (1.17)

which are also known as Siegert BCs [5]. Solving Eq. (1.16) with

the BCs Eq. (1.17) inevitably leads to the fact that the energies

En are generally complex,

En = (pn + iκn)2 = (p2
n − κ2

n) + 2ipnκn , (1.18)

where pn and κn are, respectively, the real and the imaginary part

of the eigen wave number: kn = pn+ iκn. For bound states pn = 0

and κn > 0, so that the energy is real negative En = −κ2
n < 0,

and the general Eq. (1.17) reduces to the standard BC of the wave

function vanishing away from the system: ψn(x) ∝ e−κn|x| → 0 at

|x| → ∞. For anti-bound states [28], if they exist in the spectrum,

pn = 0 and κn < 0, corresponding to a purely growing wave

outside the system, even though their energies are real. All other

RSs have pn 6= 0 and κn < 0 which results in complex eigen

energies and wave functions which oscillate and grow exponentially

in the exterior: ψn(x) ∝ e(ipn−κn)|x| →∞, according to Eq. (1.17).

13



Figure 1.3: Diagram showing the locations of bound, antibound
and resonant states wave numbers in a complex k-plane.

As a consequence of this exponential growth the wave func-

tions of the RSs are not orthogonal and not normalizable in the

usual way. Indeed RSs require a proper general orthonormality

condition which would include the standard one as a special case,

valid for bound states. For a one-dimensional system, this general

orthonormality of RSs is given [1, 5, 10] by

δnm =

∫ xR

xL

ψn(x)ψm(x)dx− ψn(xL)ψm(xL) + ψn(xR)ψm(xR)

i(kn + km)
,

(1.19)

where δnm is the Kronecker delta, and xL and xR are two arbitrary

points outside the system, one to the left of it (xL) and one to the

right (xR).

The orthogonality (n 6= m) is now proven in Appendix (B),

while the normalization (n = m) can be derived from the Green’s

function, as done e.g. in [1].

Taking the normalisation (n = m) and following from Eq. (1.19)

obtain ∫ a

−a
ψ2
n(x)dx− ψ2

n(xL) + ψ2
n(xR)

2ikn
= 1. (1.20)
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The integral can be split into 3 different integrals covering the

whole range in total:

∫ −a
xL

ψ2
n(x)dx+

∫ a

−a
ψ2
n(x)dx+

∫ xR

a

ψ2
n(x)dx−ψ

2
n(xL) + ψ2

n(xR)

2ikn
= 1,

(1.21)

or

[
ψ2
n

−2ikn

]−a
xL

+

∫ a

−a
ψ2
n(x)dx+

[
ψ2
n

2ikn

]xR
a

−ψ
2
n(xL) + ψ2

n(xR)

2ikn
= 1. (1.22)

ψ2
n(−a)

−2ikn
− ψ2

n(xL)

−2ikn
+
ψ2
n(xR)

2ikn
− ψ2

n(a)

2ikn

−ψ
2
n(xL) + ψ2

n(xR)

2ikn
+

∫ a

−a
ψ2
n(x)dx = 1 (1.23)

Since the wave function is continuous at x = ±a, Eq.(1.23) is

reduced to

∫ a

−a
|ψ2
n|(x)dx− ψ2

n(−a) + ψ2
n(a)

2ikn
= 1. (1.24)

In Eq. (1.19) xL and xR can be any (but outside the system).

Allowing xL → −∞ and xR → +∞ and noting that ψn(±∞) =

0 for bound state Eq.(1.19) becomes the standard orthogonality

condition:

δnm =

∫ ∞
−∞

ψn(x)ψm(x)dx. (1.25)

For exponentially growing wave functions the divergence of the

integral at |xR,L| → ∞ is exactly compensated by the second term.
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Furthermore, as the normalization does not depend on xL and

xR, it is usually convenient to take these points exactly at the

boundaries of the system.

1.6 Semiconductor heterostructures:

Multiple quantum wells and su-

perlattices

Due to the new growth techniques, it has become possi-

ble to construct artificial one dimensional (1D) lattice structures

by growing different layers of materials on top of each other. A

semiconductor heterostructure resembles the atomic lattice: It is

a sandwich of two different semiconductors with different band

gaps. In general, a number of potential wells separated by poten-

tial barriers, is referred to as a multiple quantum wells. If one

makes a heterostructure with thin enough layers, quantum inter-

ference effects start to dominate in the motion of the electrons.

The simplest structure in which these may be observed is a quan-

tum well, which simply consists of a thin layer of a narrower-gap

semiconductor between thicker layers of a wider-gap material [29].

The band profile then shows a ”rectangular well,” as illustrated in

Fig. 1.4.

Quantum well heterostructures are key components of many

optoelectronic devices, because they can increase the strength of
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electro-optical interactions by confining the carriers to small re-

gions [30].

1.6.1 Single and coupled quantum wells

A single quantum well semiconductor structure typically

consists of a thin semiconductor layer sandwiched between two

layers of a material with a wider bandgap, like aluminium arsenide.

The band structure is demonstrated in Fig. 1.4. This structure can

be grown by molecular beam epitaxy, a widely used technique in

the manufacture of semiconductor devices.

A coupled quantum well structure consists of two single

quantum wells separated by a barrier layer. The barrier layer is

sufficiently thin enough to allow the tunneling of carriers between

the two quantum wells layer. As a result, an electron and a hole

can either reside in one of the two quantum wells.

Thin metal films can also support quantum well states, in

particular, metallic thin overlayers grown in metal and semicon-

ductor surfaces. The electron (or hole) is confined by the vacuum-

metal interface in one side, and in general, by an absolute gap

with semiconductor substrates, or by a projected band gap with

metal substrates.
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Figure 1.4: Sketch of a realistic semiconductor quantum well show-
ing conduction and valence band edges

Figure 1.5: Sketch of a superlattice showing conduction and va-
lence band edges

1.6.2 Superlattices

Superlattices are one-dimensional periodic structures that

were grown early in 1925 by Johansson and Linde [31]. Typically,

the thickness of one layer is several nanometers. It can also re-

fer to a lower-dimensional structure such as an array of quantum

dots or quantum wires. The properties of one-dimensional periodic

potential and negative differential conductivity in semiconductors

were first investigated theoretically in 1970’s by L. Esaki and R.

Tsu [32]. Later on, superlattices were artificially grown [33–35]

by different material growth techniques. By the advancement of

semiconductor superlattice structures, unusual optical and elec-

trical properties have been observed and a detailed study of their
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band structure has become possible. In principle, superlattices

consist of two (or more) materials interleaved in thin layers by

depositing them in a repeated pattern. The two different semi-

conductor materials are deposited alternatively on each other to

form a periodic structure in the growth direction.

1.7 Periodic potentials

In this case, we consider a superlattice as an example,

therefore we need to study periodic structures in a bit more de-

tails. The Schrödinger equation for an electron in one-dimension

is

Hψ(x) =

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (1.26)

with a periodic potential

V (x+ d) = V (x) (1.27)

where d is a lattice period. The fundamental theorem regarding

the motion of electrons in a periodic potential is that of Bloch

(1928) [36] which, in its one-dimensional form, is usually called

the Bloch-Floquet theorem.
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1.7.1 Bloch’s theorem

The concept of the Bloch theorem was first developed in

1928, by Felix Bloch [36], to describe the conduction of electrons in

crystalline solids. Independent mathematical proofs was provided

by [37, 38]. As a result, a variety of nomenclatures are common:

applied to ordinary differential equations, it is called Floquet the-

ory.

Mathematically Bloch’s theorem states that for any peri-

odic potential u(x), there is a special fundamental system of solu-

tions with the translational symmetry

ψnk(x) = eiqxukj(x) (1.28)

where

ukj(x+ nd) = ukj(x) (1.29)

The indexes k, j are the electron wave vector and electron bands

respectively. Eq.(1.28) and Eq.(1.29) imply that

ψkj(x+ nd) = eiqdψkj(x). (1.30)

Dropping the indexes Bloch’s theorem showed that the solutions

to the Schrödinger’s equation are the product of a plane wave and

a periodic function with the periodicity of the lattice:

ψ(x+ nd) = eiqdψ(x). (1.31)
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such that for every period d in the lattice the eigenstates of H

can be chosen so that each ψ is associated with a wave vector q.

Details of this proof is presented in Appendix (C).

1.7.2 Kronig-Penney model

The Kronig-Penney model was first formulated in 1930 by

R. de L. Kronig and W. G. Penney [25]. The Kronig-Penney model

was discussed in a number of solid-state physics text books [39].

A schematic of this model describing a one-dimensional periodic

potential is shown in Fig. 1.6. This model shows a periodic super-

lattice with a δ-functions.

Figure 1.6: Sketche of a Kronig-Penney model with δ function
potentials

It does not describe band overlaps which take place in re-

alistic (finite) potentials [40]. Even though the model is highly

artificial, yet it illustrates many of the characteristic features of

the behaviour of electrons in a periodic lattice (i.e. will open gaps

in the energy dispersion relation). The wave functions associated

with this model can be calculated by solving the one-dimensional
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time independent Schrödinger equation Eq.(1.26). Since the elec-

tron moves in a periodic potential

V (x) = −γ
∞∑

n=−∞

δ(x− nd), (1.32)

where γ is called the barrier/well strength. Its wavefunction must

satisfy Bloch’s theorem for any choice of superlattice

ψ(x+ d) = eiqdψ(x) (1.33)

where d is the period of the superlattice potential while k is the

eigen-wavenumber associated with the direction of electronic mo-

tion. Applying the relevant boundary conditions to our wave func-

tions obtained

cos(qd) = cos(kd)− γ

2k
sin(kd). (1.34)

Full derivation of Eq.(1.34) is given in App.(D).There are only two

variables in Eq.(1.34) namely k and q. The LHS of Eq.(1.34) is

bounded since it can only assume values between +1 and −1 for

real k. If we plot the left-hand side of this equation against kd, it

will be possible to determine those value of k (and hence energy)

which are permissible; that is, permit cos(kd)− γ
2k

sin(kd) to take

values between +1 and −1. This is shown in Fig. 1.7 for barrier

and well.
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Figure 1.7: Plot of the function cos(kd) − γ
2k sin(kd) for barrier

and well. For barrier we use the parameter γ = −10 while for the
well we use γ = 10

1.8 Overview

In chapter two, we present the concept of RSs in a finite

square quantum well. We derive first the analytic secular transcen-

dental equations for even and odd states by applying the outgoing

wave boundary conditions. The complex roots of these equations

are found using Newton-Raphson method implemented in Matlab.

We consider all types of RSs present in such a system. We also

calculate the wave functions of RSs.

In chapter three, we investigate the full spectrum of eigen-

solutions of the one-dimensional Schrödinger’s equation for double

and triple quantum wells/barriers structures. We model a double

and triple quantum wells structures with Dirac delta-function po-

tentials working out and analysing analytic solutions. The trans-

formation of RSs and their transitions between different subgroups

as well as the role of each subgroup in observables, such as the
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quantum transmission, is analysed. We also revisit in this chap-

ter the well known problem of bound states in delta-like potentials.

Using triple quantum wells in chapter three we were able

in chapter four to verify and study the quantum mechanical RSE

(QM-RSE) in 1D quantum systems. This verification is made

using available simple exact solutions for triple QWs. The com-

parison demonstrates high accuracy and quick convergence of the

QM-RSE.

We complete the research overview of the thesis with the

final chapter where we apply the QM-RSE to multiple quantum

well structures and finite periodic and random quantum lattices.

The application of QM-RSE to 1D quantum lattices has its ap-

plication to a semiconductor heterostructures: Multiple quantum

wells and superlattices. The QM-RSE allowed us to study RSs of

multiple QW systems with a large number of QWs. The RSs of

multiple QW structures are analysed and compared with the band

structure in the Kronig-Penney model.
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Chapter 2

Resonant states in a finite

rectangular quantum well

Figure 2.1: Form of a 1D potential along the x-axis.

In this chapter, we consider a well-known problem in quan-

tum mechanics [27], the one-dimensional finite rectangular well, to

study the spectrum of RSs. Quite long ago Nussenzveig [41] stud-

ied the behaviour of RSs in a rectangular potential well (barrier)

as a function of the well depth (barrier height). In his work he ob-

served the flow of RSs in a complex plane by varying the depth of

the potential. For over a decades little has been done to improve

on those results. In this chapter, we accurately calculated such

RSs numerically using Newton-Raphson method implemented in
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Matlab. We demonstrate how the bound states appear or disap-

pear in the spectrum transforming into anti-bound states as the

strength of the potential V0 changes [28, 42–44]. Then we extend

our consideration to study properties of RSs wave functions and

discuss the physical meaning of the normal RSs, also paying at-

tention to the their evolution and transformation into/from bound

and anti-bound states.

2.1 Derivation of the secular equa-

tion

In quantum mechanics, RSs are eigen solutions of the Schrö-

dinger equation Eq.(1.14) with outgoing wave boundary conditions

(BCs).

A 1D time-independent Schrödinger equation then takes

the form: [
− d2

dx2
+ V (x)

]
ψn(x) = k2

nψn(x) , (2.1)

where V (x) is the potential of the particle, which is chosen in such

a way that it vanishes outside the system.

V (x) is a general potential with compact support. Here we

reduce it to rectangular :

V (x) =


−V0, if |x| < a

0, if |x| > a

(2.2)
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This potential is illustrated in Fig. 2.1. Solutions in this poten-

tial has been covered in depth by many texbooks such as [27].

However, RSs in general are usually not considered in textbooks.

Therefore, in this chapter it is interesting to study RSs of this po-

tential and to see in particular how the RSs move in the complex

k-plane as we change the depth of the well. We find a general

eigen solutions of Eq.(2.1) with BCs Eq. (1.17). Thus the wave

function has the form

ψ(x) =



Aeikx, if x > a

B(eiqx + pe−iqx), if |x| ≤ a

Ae−ikx, if x < −a

(2.3)

where p = ±1 is the parity and we have omitted the RS index

n for brevity of notation. A and B are normalisation coefficients

to be shown later and k and q are the wave numbers which are

related via

q =
√
k2 + V0 (2.4)

and the energy of the states are given by

E = k2 . (2.5)

For simplicity we use in m = 1
2

and ~ = 1. To find the eigenvalues,

k, we require that ψ(x) and ψ′(x) are continuous at x = ±a.

ψ(a+ 0+) = ψ(a− 0+), (2.6)
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ψ′(a+ 0+) = ψ′(a− 0+), (2.7)

Aeika = B(eiqa + pe−iqa), (2.8)

ikAeika = iqB(eiqa − pe−iqa) (2.9)

where 0+ is a positive infinitesimal. Expressing Eqs.(2.8) and (2.9)

obtained

q

k
=
eiqa + pe−iqa

eiqa − pe−iqa
. (2.10)

From this we get

pe2iqa =
q − k
q + k

, (2.11)

which after some algebra leads to

k = iqn tan(qa) (2.12)

for even and

k = −iqn cot(qa) (2.13)

for odd states.

After finding solutions of the transcendental equations, we

then substitute the values of k and q back into Eq.(2.11) in order

to obtain the wave functions. We found that: if

q − k
q + k

= +e2iqa (2.14)

the solutions are even and the wavefunctions are symmetric. If
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however,

q − k
q + k

= −e2iqa (2.15)

the solutions are odd and the wavefunctions are antisymmetric.

The secular transcendental equations Eq.(2.12) and Eq.(2.13)

are solved below together with Eq.(2.4) in order to find the eigen

wave numbers in the complex k-plane. Equations Eq.(2.12) and

Eq.(2.13) cannot be solved analytically. So, in this work, we

employ the Newton-Raphson method implemented in MATLAB,

which is very efficient in finding roots of a complex function. Solv-

ing Eq.(2.12) and Eq.(2.13), we find all types of states, which in-

clude bounds, antibound and normal RSs. For both even and odd

solutions the wave functions have to be normalized but care has to

be taken during the calculations. For bound states this is an easy

task, see Eq.(1.25) but for the resonant states which has expo-

nentially increasing tails, an additional term must be considrered

to normalize them correctly Eq.(1.19). An outer limit is required

for their normalization and is given by a. We use xL = −a and

xR = a in Eq.(1.19). It is found that the value of xL, xR can be

any and thus for convenience we are free to choose the boundaries

of the well as the limits of this normalization (see Sec.(1.5)). The

orthonormality condition is given as [1, 5, 10]:

δnm =

∫ a

−a
dxψn(x)ψm(x)−ψn(a)ψm(a) + ψn(−a)ψm(−a)

i(kn + km)
(2.16)
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where we have restored RS indices in order to distinguish differ-

ent RSs which contribute to Eq. (2.16). Using the normalization

condition Eq.(2.16) the constants are found as [14] (for derivation,

see App.(E)):

An =
(−1)nqne

−ikna√
V (a+ i

kn
)

(2.17)

and

Bn =
(−i)n

2
√
a+ i

kn

(2.18)

2.2 Numerical procedure of finding

the eigen wave numbers

There are many numerical procedures for solving Eq.(2.12)

and Eq.(2.13). While the equations cannot be solved analytically,

they can be solved numerically up to any desired accuracy. Below

are the few steps we used in order to find the solutions:

1) We use the relation between q and k in Eq.(2.4). This makes

the final equations to solve written in terms of k only.

2) We define a function f(k) such that the equation we solve be-

comes f(k) = 0.

3) We set the physical parameter values, such as V0 and a.

4) We create a mesh of guess values for k in the complex k-plane

i.e. real k = −100 : 1 : 100 and imag k = (−3 : 1 : 0)i and perform

the followin few steps for each point:

5) In the Newton-Raphson method we find k which fulfil condition
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(2) above by changing k iteratively with k − f(k)
f ′(k)

.

6) We repeat until f(k) is smaller than certain tolerance, in this

case 10−9.

7) We then perform the Newton-Raphson for all the points in the

mesh.

8) We remove all the solutions that didn’t converge and also all

the solutions that are similar, meaning that the absolute values of

all the real and imaginary part has to be larger than the tolerance.

9) Lastly, we plot the solutions for k in the complex k-plane (see

for e.g. Fig. 2.2 and Fig. 2.3) for different parameters, and then

calculate also the wave functions.

The MATLAB code implemented using Newton-Rapson

method for the calculation of the resonant states wave numbers is

now given in Appendix (F).

2.3 Bound states

Bound states have localised wave function with exponen-

tially decaying tails at outside the system. For bound states the

energy is real. For potential vanishing at |x| → ∞, the bound

state energies are negative [45]. Applying the asymptotic bound-

ary conditions, the bound states wavefunctions have the asymp-

totic behaviour as

ψn(x) = ±e−κn|x|, |x| → ∞ (2.19)
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with κn > 0, where we have used in Eq.(2.3)

kn = iκn (2.20)

Therefore the bound state energy E is

En = k2
n = −κ2

n, (2.21)

taking negative values.

The eigen wave numbers of bound states are located on a

positive imaginary k-plane [43], (see Fig. 2.2 and Fig. 2.3) for a

rectangular quantum well with V0 = 3 and 16 respectively and

their wave functions are shown in Fig. 2.4.

2.4 Eigen wave numbers of the RSs

Figure 2.2: RS eigen wave numbers of the Schrödinger equation
with a rectangular well potential of depth V0 = 3 with outgoing
waves boundary conditions plotted in the complex k-plane
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Figure 2.3: As Fig. 2.2 but for V0 = 16

Fig. 2.2 and Fig. 2.3 show the plots of the complex roots

in Eq.(2.12) and Eq.(2.13) which contain all types of RSs. As

we can see, there are different types of modes, we call the res-

onant states as a general class of eigenstates, which includes all

kind of states: bound, antibound and normal resonant states. For

a shallow well like the one considered in Fig. 2.2, there are only

two bound states and the RSs look similar to those in [26]. In-

creasing the depth of the well V0, the normal RSs wave numbers

move upwards parallel to the imaginary axis, and also the num-

ber of bound and antibound states is increased. When the pair of

conjugate RSs hits the imaginary axis it splits up into a bound-

antibound states pair [28, 41] which gets more bound when in-

creasing the depth further (see for e.g., Fig. 2.3). The number of

bound and antibound states depends on the choice of parameter

V0. The normal resonant states all have non zero real and imagi-

nary parts of kn. Each normal resonant state with Re(kn) > 0 has

a partner in the left half plane with Re(kn) < 0. The positions

33



of a normal resonant state and corresponding anti-resonant state

are symmetric with respect to imaginary axis. Their locations are

mirror images with respect to the imaginary axis k−n = −k∗n and

ψ−n(x) = ψ∗n(x). Depending on the system parameters, there are

also discrete states on the imaginary axis. These states are called

bound and antibound states. The bound states of the system con-

sidered in Fig. 2.3 are the ground state, 1st excited state and 2nd

excited state. The bound states are located on the positive imagi-

nary axis Im(kn) > 0 while the antibound states are located in the

negative imaginary axis Im(kn) < 0. Since the energy of bound

states is negative, the ground state corresponds to the highest RSs

on the positive imaginary axis.

2.5 Wave functions of the RSs

Figure 2.4: The absolute value of the wave function for the ground
state, 1st excited and 2nd excited states with the rectangular well
potential of depth V0 = 16

Fig. 2.4 shows the plots of the absolute values of the wave
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function for the ground state, 1st excited and 2nd excited state.

These states are obtained by applying the boundary conditions

to our wave function. The wave functions form two discrete sets,

one remains unchanged under a mirror transformation (i.e. if we

change x to -x), and the other changes sign. It is observe that, the

wavefunctions exhibit even and odd symmetries about x = 0 as

expected. Functions with this kind of behaviour are said to have

a definite parity [46]. If ψn(x) = ψn(−x) the parity is said to be

even, and if ψn(−x) = −ψn(x) the parity is said to be odd (for

proof, see Appendix (I)). As we can see from Fig. 2.4, the wave

function has exponentially decreasing tails outside of the well (see

straight lines in log scale). Little is being discussed on these bound

states since they have been covered in depths in many journals and

textbooks.

2.5.1 Normal RSs

The resonant state can be defined as an eigenstate of the

stationary Schrödinger equation with boundary conditions of out-

going or incoming waves only.

ψn(x) = ±eikn|x|, x = ± →∞ (2.22)

which is also called Siegert condition [5]. For evaluation of reso-

nant states, we seek a solution of Eq.(2.1) with complex energy

Eq.(1.18) with pn > 0 and κn > 0 such that the wavefunctions
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behaves asymptotically as:

ψn(x) =


eipnx+κnx, if x→ +∞

±e−ipn−κnx, if x→ −∞

(2.23)

This nature of the wavefunction shows the positive real part of

energy state since p2
n > κ2

n. We can see from Fig. 2.5, Fig. 2.6, and

Fig. 2.7 that |ψ| diverges exponentially as eκn|x|.

Figure 2.5: Plots of the absolute value of the 5th and 10th RSs
wave function for V0 = 16

In Fig. 2.5 are plots of the absolute value of the 5th and 10th

RSs wave function. We can see that the wave function have even

and odd symmetry about x = 0. With each subsequent state the

symmetry switches and the wave function vanishes only for odd

states. This is also observed in Fig. 2.6 and Fig. 2.7.
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2.5.2 Antibound states

An antibound state shares physical features with the bound

states and resonant states but it is called as a separate type of

states. Wave functions for antibound states are not square inte-

grable. Like for normal RS they diverge exponentially at large |x|

(see Fig. 2.6). The solution inside the well is similar to that of the

bound state having energy E < 0. We can see the wave function

is symmetric around the origin, which indicates that there must

be solutions of defined parity also for antibound states.

Figure 2.6: Plots of the absolute values of the antibound state,
1st, 2nd and 3rd resonant states wave functions for V0 = 16
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Figure 2.7: Plots of the absolute values of the ground state, first
excited state, 1st, 2nd and 3rd resonant states wave functions for
V0 = 3

Fig. 2.6 shows the plots of the absolute values of the an-

tibound state, 1st, 2nd and 3rd normal RSs wave functions while

Fig. 2.7 shows the ground, first excited states, 1st, 2nd and 3rd res-

onant states wave functions for comparison. The antibound states

show a similar features to the bound states wave functions having a

defined parity within the well. Unlike the bound states (see for e.g.

Fig. 2.4), we can see that in a normal RSs and antibound states

the wave functions grows exponentially at large distance. Strong

oscillation is observed in Fig. 2.6 for a well depth of V0 = 16 as

compared to Fig. 2.7 which has a shallow well (V0 = 3). It is found

that for normal RSs the number of oscillations in wave functions

depends on the size of well depth.

The larger the size of well depth the more stronger oscillation is

observed within the full spectral range (see Fig. 2.6). Since the

bound states and normal RSs wave functions alternate between

even and odd states with ground state wave function as even,
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therefore, the wave functions of the 1st and 5th RSs in Fig. 2.6

and Fig. 2.5 respectively are considered to be odd states. Unlike

in Fig. 2.6, the wave function for the 1st RSs in Fig. 2.7 is even

because of the symmetry brakage due to higher number of bound

states in Fig. 2.7. It is found that the wave functions for odd states

vanishes at x = 0 (see for e.g. 5th RSs in Fig. 2.5, 1st, 3rd RSs in

Fig. 2.6 and 1st excited and 2nd RSs for Fig. 2.7).

2.5.3 Symmetry of the wave functions

In this part we discuss the symmetric/asymmetric nature of

the 1st and 2nd RSs wave functions for V0 = 3 and V0 = 16. We can

see that Figs (2.8) - (2.11) shows the real and imaginary parts of

the wave function of the 1st and 2nd resonant states. For Figs (2.8)

and (2.9) we used the parameter V0 = 3 while for Figs (2.10) and

(2.11) we used V0 = 16 for comparison.

Figure 2.8: The plot shows the wave functions of the real and
imaginary part of the 1st resonant state for V0 = 3
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Figure 2.9: The plot shows the wave functions of the real and
imaginary part of the 2nd resonant state for V0 = 3

Figure 2.10: The plot shows the wave functions of the real and
imaginary part of the 1st resonant state for V0 = 16
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Figure 2.11: The plot shows the wave functions of the real and
imaginary part of the 2nd resonant state for V0 = 16

It is shown that in Fig. 2.8 the wave function of the 1st

resonant state has an even function while it is odd in Fig. 2.10.

We can also see that the wave function of the 2nd resonant state

in Fig. 2.9 has an odd function while it is even in Fig. 2.11. This

switch between even and odd symmetry happen due to the change

in system size. The 1st resonant state is the next member in a

sequence of RSs starting from the ground state and going to the

highest excited state.

We found that the real part of the wave function is not

changing throughout, while the imaginary part changes. This

demonstrates that the wave function of the RSs are symmetric

across the imaginary axis and contain symmetric pair of states

which are complex conjugates of each other. This gives the rela-

tion ψn(x) = ψ∗n(x) with index n = ±1, 2 as shown in Figs (2.8) -

(2.11).
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2.6 Summary

In this chapter, the concept of RSs was introduced and dis-

cussed in a 1D finite square well potential. RSs were studied by

seeking solutions to the time independent Schrödinger equation

with outgoing boundary conditions. After application of bound-

ary conditions to the problem, a system of equations was gener-

ated and written in terms of secular transcendental equations for

even and odd states. Solutions of these equations were analyt-

ically obtained using Newton-Raphson method in Matlab. The

full spectrum obtained include bound states associated with pure

imaginary and positive wave numbers, the antibound states asso-

ciated with pure imaginary and negative wave numbers and the

normal RSs with a complex wave numbers which lie in the lower

half of the complex k-plane. The properties of RSs were consid-

ered and discussed in details. The wave function of state of all

types were plotted and compare with each other, demonstrating

probability leakage of antibound and normal RSs. The symmetric

nature of the RSs wave function was also discussed. We demon-

strate that each resonant state wave function contains a symmetric

pair of states which are complex conjugate of each other.
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Chapter 3

Resonant states in double

and triple quantum wells

and barriers

In this chapter, we investigate the full spectrum of eigensolutions

of the 1D Schrödinger equation for double and triple quantum

well/barrier systems. The full spectrum of RSs includes bound,

anti-bound and normal RSs, all together determining the spectral

properties of a quantum system, such as local density of states and

transmission [14].

We concentrate on double and triple quantum well struc-

tures where the delta potential approximation is a lot more ap-

propriate, as it picks up the main resonant properties and features

of these systems, at the same time omitting unimportant spec-

tral details related to finite widths of realistic potentials, which

in turn lead to additional quantum reflections. A single quantum
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well modeled by a delta potential shows no resonant states either

(apart from a single bound state), see for e.g. App.(D). This is

because such a system has a zero width, in clear contrast with

finite systems size.

3.1 RSs in a double well/barrier struc-

tures

We model a symmetric double quantum well structure with

a superposition of two Dirac delta functions,

V (x) = −γδ(x− a)− γδ(x+ a) , (3.1)

where 2a is the distance between the wells and γ is the strength

of the potential which has the meaning of the depth of each quan-

tum well multiplied by its width. Fig. 3.1 sketches this potential

along with a realistic coupled quantum well structure it models.

An obvious advantage of the model is its simplicity and explicit

analytical solvability. The solution for this potential, in terms of

bound states, has been covered in depth in many texbooks, see

e.g. [47]. We revisit this problem again, in order to study the full

spectrum of RSs and their properties, which has not been done in

the literature. This is also of practical importance, as the full set

of RSs can be further used as a basis in the RSE.
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Figure 3.1: A sketch of the potential of a symmetric double well
structure (red line) approximated by two delta-functions (grey
arrows).

3.1.1 Exact solution

A general solution of Eq. (1.16) with the potential Eq. (3.1)

has the form (for brevity of notations, we drop in this and the

following section the index n labeling RSs):

ψ(x) =



Aeikx +Be−ikx x > a,

C1e
ikx + C2e

−ikx |x| 6 a,

Deikx + Fe−ikx x < −a,

(3.2)

with constant coefficients standing at the exponentials. Applying

the outgoing wave BCs leads to B = D = 0. Furthermore, using

the mirror symmetry of the potential, V (−x) = V (x), splits all

the solutions into two groups: even and odd states, having the

property

ψ(−x) = ±ψ(x) . (3.3)
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From this we obtain F = ±A and C1 = ±C2 = C. Then the wave

function takes the form

ψ(x) =



Aeikx x > a,

C
(
eikx ± e−ikx

)
|x| 6 a,

±Ae−ikx x < −a.

(3.4)

The wave function ψ(x) must be continuous at any point but its

derivative ψ′(x) is discontinuous at x = ±a. The break in the

derivative can be evaluated by integrating Eq. (1.16) across the

delta-function potential wells. This yields to four boundary con-

ditions determining the relation between the coefficients A and C,

as well as the eigenvalues k. However, as the symmetry of the

potential has been already taken into account leading to Eq. (3.4),

only one pair of BCs (e.g. at x = a) provides a unique information:

ψ′(a+ 0+)− ψ′(a− 0+) = −γψ(a) , (3.5)

ψ(a+ 0+)− ψ(a− 0+) = 0 , (3.6)

where 0+ is a positive infinitesimal. The other pair of BCs (at

x = −a) is then fulfilled automatically. Substituting the wave

function Eq. (3.4) into the BCs Eqs. (3.5) and (3.6), obtain

ikAeika − ikC(eika ∓ e−ika) = −γAeika , (3.7)

Aeika − C(eika ± e−ika) = 0 , (3.8)
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Expressing the ratio A/C from Eqs. (3.5) and (3.6) and combining

the results obtain

A

C
=
ik(eika ∓ e−ika)

(ik + γ)eika
=
eika ± e−ika

eika
, (3.9)

After rearrangement this leads to a transcendental secular equa-

tion,

1 +
2ik

γ
= ∓e2ika , (3.10)

determining all the RS eigenvalues kn. Note that the upper (lower)

sign corresponds to even (odd) RSs.

3.1.2 Bound and anti-bound states

To find bound and anti-bound states of the system, we

make a substitution k = iκ in Eq. (3.10) and solve the latter for

real values of κ. Then the eigen energy E = −κ2 takes real

negative numbers. For bound states, κ should be positive, as

required by evanescent wave function outside the system. For

anti-bound states instead the wave function has a pure exponential

growth to the exterior which is provided by κ < 0.

While the secular equation Eq. (3.10) apparently depends

on two parameters, γ and a, this parametric space reduces to a

single parameter

α = γa (3.11)

which can be treated as the effective system size or the effective

strengths of the potential. Concentrating on the dependence of
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Figure 3.2: Exact (black solid lines) and approximate (blue and
red dashed and dotted lines) effective wave numbers q = −2ik/γ
of the two bound states in a double quantum well system modeled
by a double delta function potential, as functions of the effective
system width α = γa.

the eigen states on the system size, it is convenient to introduce a

dimensionless wave number q = 2κ/γ. Then Eq. (3.10) takes the

form

q± = 1± e−q±α , (3.12)

where we introduce an index + (−) labeling even (odd) parity

states. The full solution of Eq. (3.12) found numerically with the

help of the Newton-Raphson method implemented in MATLAB is

shown in Fig. 3.2 for positive values of α and q. It demonstrates

the dependence of the imaginary wave vector for two bound (even

and odd) states in the system as function of its effective width α.

At large distances between the wells (α� 1) the two states
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are quasi-degenerate,

q± ≈ 1± e−α , (3.13)

illustrating the fact that each isolated delta-like quantum well ac-

commodates only one bound state at q = 1. As clear from Fig. 3.2,

Eq. (3.13) is a good approximation of the full solution Eq. (3.12)

for α & 3. As α increases, the splitting between the levels becomes

exponentially small, reflecting the vanishing tunnel coupling be-

tween the wells.

In the opposite limit of small width a or small wave num-

ber κ (i.e. small binding energy), we obtain a simple analytic

approximation, based on the Taylor expansion of the exponential

in Eq. (3.12),

e−qα ≈ 1− qα + q2α2/2 , (3.14)

valid for |qα| = |κa| � 1. For the even parity state, it is sufficient

to use the expansion Eq. (3.14) up to 1st order, while the same

level of approximation for the odd parity state requires the 2nd

order to be taken into account. Then approximate solutions of

Eq. (3.12) take the form:

q+ ≈
2

α + 1
(even), q− ≈ 2

α− 1

α2
(odd). (3.15)

They are shown in Fig. 3.2 by dashed lines matching the exact

solution (solid lines) at small α (for the even state) or at small q

(for the odd state).

The analytic approximation Eq. (3.15) also allows us to find
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a condition for bound states to exist in the system [3], which re-

quires that q > 0. Indeed, when a bound state disappears from

the spectrum, its binding energy vanishes, meaning that q → 0.

This makes the approximation Eq. (3.15) valid, so that it precisely

determines the critical values of the system parameters when the

bound state disappears. While the ground state exists for any

α > 0 (q+ is always positive), the excited (odd) bound state exists

for only

α > 1 (3.16)

and disappears at α = 1 (when q− is vanishing), as the width

of the system becomes insufficient to accommodate it, given the

tunnel coupling between the wells. However, a quantum state itself

cannot disappear from the system completely and is transformed

into an anti-bound state which can be observed for α < 1.

To see it more clearly and also to investigate the depen-

dence on the potential strength (e.g. keeping the width 2a fixed),

we introduce another dimensionless imaginary wave number s =

2κa, so that Eq. (3.10) becomes

α =
s

1± e−s
(3.17)

and can be easily plotted due to the explicit functional dependence

on s, see Fig. 3.3. Since a > 0, the region of positive s corresponds

to bound states. We see two bound states for α > 1 and only one

for 0 < α < 1. The odd state transforms at α = 1 from the bound
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Figure 3.3: Effective wave number s = −2ika as function of the
effective potential strength α = γa plotted for even and odd eigen
states using the explicit functional dependence Eq. (3.17). The
plot demonstrates transitions from bound to anti-bound states
and then to normal RSs. Regions for potential wells (α > 0) and
barriers (α < 0) are indicated, as well as for bound (s > 0) and
anti-bound (s < 0) states. Blue and green lines show the real and
imaginary parts of the wave numbers s for the pair of the lowest
energy normal RSs formed from a pair of degenerate anti-bound
states at α ≈ −0.27.

into an anti-bound state, as negative s corresponds to growing

exponentials outside the systems, see Eq. (3.4) for k = is/2a and

s < 0. Another anti-bound state forms from the even bound state

at α = 0 when the wells switch into barriers. At the same time, as

α changes its sign from positive to negative, the odd anti-bound

state goes away to infinity as s → −∞ and then comes back at

small negative values of α as an even anti-bound state, coexisting

with the other even anti-bound state up to α ≈ −0.27. At that

point the two anti-bound states merge, now transforming into a

pair of normal RSs, which then evolve as α decreases further. Both

RSs have the same imaginary part and the opposite real part of
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k, shown in Fig. 3.3 by blue and greens lines, respectively.

3.1.3 Resonant states

We now consider all possible solutions of Eq. (3.10) in the

complex k-plane, generating bound, anti-bound and normal RSs,

as shown in Fig. 3.4 for the case of a double well and a double bar-

rier structure. For the wells (γa = 3), one can see two bound states

and an infinite countable number of normal RSs with nonzero real

and imaginary parts of k. These normal RSs all have complex

wave functions which cannot be made real by redefining the nor-

malization constant, unlike bound or anti-bound states. These

RSs appear in pairs: Each RS with the eigen wave number k and

the eigen function ψ has a counterpart with the eigen wave number

−k∗ and the eigen function ψ∗, so that the spectra of RSs shown

in Fig. 3.4 possess a mirror symmetry about the imaginary axis,

which is a general property of an open system, not related to its

spatial symmetry. For the barriers (γa = −3), there are only nor-

mal RSs seen in the spectrum, as this potential strength is too big

for anti-bound states to exist, see Fig. 3.3. In both spectra, normal

RSs of even and odd parity appear in alternating order and are

almost equally spaced for large k dominated by the real part. The

reason for that is that these states have the same nature as Fabry-

Pérot modes in an optical system, with a half integer multiple of

their De-Broglie wavelength λ = 2π/k approximately matching

the system size 2a Indeed, the spacing between the wave numbers
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plotted in Fig. 3.4 is δk ≈ π/2a. These RSs are formed owing to

the constructive interference of waves created by multiple reflec-

tion from the potential inhomogeneities at x = ±a. The absolute

value of the imaginary part of k grows monotonically with the real

part of k (and consequently with the resonance energy), showing

an increasing probability of a particle to leave the system as its

energy increases.

Interestingly, at large k the even RS wave numbers of the

double well structure approach asymptotically the odd RS wave

numbers of the double barrier structure, and vice versa, provided

that the absolute values of |γa| are the same for the barriers and

wells. This can be understood, looking again at Eq. (3.10) and

noticing that if the first term was neglected, Eq. (3.10) would be-

come invariant with respect to a simultaneous flip of the sign of

γ (switching between barriers and wells) and the sign standing

at the exponential (switching between even and odd solutions),

thus making the above two cases equivalent. Indeed, this equiva-

lence is asymptotically achieved at large k, when the first term in

Eq. (3.10) is getting small compared to the other two and can be

neglected.

Applying the normalization condition Eq. (1.19) to the wave

function Eq. (3.4) and excluding exponentials with the help of the

secular equation Eq. (3.10), we find the normalization constants in
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Figure 3.4: Complex eigen wave numbers kn of RSs in a double
delta-potential structure, with two wells (γa = 3, shiny balls) and
two barrier (γa = −3, open circles). Even and odd parity states
are shown, respectively, in black and red.

Eq. (3.4), for derivation, see Appendix (H)

A = C
(

1 +
γ

2ik

)−1

and C =
1

2
√
±[a− (γ + 2ik)−1]

. (3.18)

The normalized wave functions of a double well or a double barrier

system are now ready to use in the RSE in Chap. 4 which can be

applied for various perturbations.

3.2 RSs in a triple well/barrier struc-

tures

We now add a third well (barrier) positioned at x = b,

somewhere between the two equal wells (barriers): −a < b < a.
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Figure 3.5: As Fig. 3.1 but for a triple delta-function potential.

It is modeled in the same way, so that the potential is given by

V (x) = −γδ(x− a)− γδ(x+ a)− βδ(x− b) , (3.19)

where the strength β is in general different from that of two other

wells, with β > 0 (β < 0) corresponding to an additional well

(barrier). A sketch of this potential and its relation to a more

realistic semiconductor heterostructure is provided in Fig. 3.5.

We use the same approach as in Sec. 3.1 to solve Eq. (1.16)

with the potential Eq. (3.19), taking the wave function of a RS in

the following form:

ψ(x) =



Aeikx x > a,

C1e
ikx + C2e

−ikx b 6 x 6 a,

D1e
ikx +D2e

−ikx −a 6 x < b,

Be−ikx x < −a.

(3.20)
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3.2.1 Exact solution for a symmetric struc-

ture

We first consider the case of a symmetric potential, having

b = 0 and arbitrary β. Then using Eq. (3.3), we find B = ±A for

the solution outside the system and

C1e
ikx + C2e

−ikx = D1e
ikx +D2e

−ikx (3.21)

for the region inside. Equating coefficients at the same exponen-

tials in Eq. (3.21), obtain D2 = ±C1 = ±C and C2 = ±D1 = ±D,

where we have introduced constants C and D for brevity of nota-

tions. Then the wave function takes a simplified form:

ψ(x) =



Aeikx x > a,

Ceikx ±De−ikx 0 6 x 6 a,

Deikx ± Ce−ikx −a 6 x < 0,

±Ae−ikx x < −a.

(3.22)

The existence of the third delta-function in the potential Eq. (3.19)

has lead to a new break point in the wave function, which is at

x = 0, and to two more BCs:

ψ′(ε)− ψ′(−ε) = −βψ(0) , (3.23)

ψ(+ε)− ψ(−ε) = 0 , (3.24)
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in addition to the pair of BCs given by Eqs. (3.5) and (3.6). Using

Eq. (3.24) for an odd parity state [the lower sign in Eq. (3.22)]

results in a condition C = D meaning that ψ(0) = 0, as should

be for any anti-symmetric state. This makes however the odd

state insensitive to the potential well or barrier if the latter is

placed exactly in the center, thus keeping ψ′(x) continuous at x =

0. The odd parity solution of the Schrödinger equation with the

potential Eq. (3.19) and b = 0 is thus the same as for the double

delta potential Eq. (3.1) and is described in detail in Sec. 3.1. We

therefore concentrate below on even parity states.

For even parity states Eq. (3.24) is automatically fulfilled

due to Eq. (3.3), but Eq. (3.23) brings in a unique information

about the middle well/barrier: 2ik(C −D) = −β(C +D), or

σ =
D

C
= −1 + 2ik/β

1− 2ik/β
. (3.25)

At the same time, Eqs. (3.5) and (3.6) now give

ikAeika − ik(Ceika −De−ika) = −γAeika , (3.26)

Aeika − (Ceika +De−ika) = 0 , (3.27)

which result, after they are combined with Eq. (3.25), in two dif-

ferent expressions for the ratio A/C,

A

C
=
ik(eika − σe−ika)

(ik + γ)eika
=
eika + σe−ika

eika
, (3.28)
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determining a secular transcendental equation for even parity states:

1 +
2ik

γ
=

1− 2ik/β

1 + 2ik/β
e2ika . (3.29)

In the limit β → 0, Eq. (3.29) transforms into the double-well

secular equation (3.10) for even parity.

3.2.2 Bound and anti-bound states

Repeating the procedure used in Sec. 3.1.2, we first in-

troduce a purely imaginary wave number k = iκ, expressed in

terms of a real valued κ and then use an effective dimension-

less wave number q = 2κ/γ, in order to study the dependence of

the bound state on the system size. In addition to the effective

width/strength α defined by Eq. (3.11), we introduce a relative

strength of the middle well/barrier:

ε =
β

γ
. (3.30)

Equation (3.29) then takes the form

q = 1 +
q + ε

q − ε
e−qα (3.31)

[compare with Eq. (3.12) for +]. The exact numerical solution

of Eq. (3.31) for ε = 0.5 is shown in Fig. 3.6 by black solid lines

displaying two even parity bound states, as well as the odd parity

state which is the same as in Fig. 3.2. While the ground state
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Figure 3.6: As Fig. 3.2 but for a triple-delta potential with b = 0
and ε = 1/2.

having the highest value of q exists for any size of the system (i.e.

for all α > 0), the 2nd excited (even) state disappears in this case

at α = 5.

To understand this behavior, we again use the Taylor ex-

pansion Eq. (3.14) up to 2nd order, obtaining from Eq. (3.31) an

approximation for even states:

q ≈ 2− ε(α− 1)

1 + α(1− αε/2)
. (3.32)

Obviously, for ε = 0, Eq. (3.32) is equivalent to the approxima-

tion Eq. (3.15) for the even parity values q+. The approximation

Eq. (3.32) is shown for ε = 0.5 in Fig. 3.6 by dashed blue lines,

demonstrating a good agreement with the full solution for α→ 0

(ground state) and for q → 0 (2nd excited states). The latter limit

allows us to obtain the following inequality for ε and α, showing
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under which conditions an even bound state exists:

α > 1 +
2

ε
. (3.33)

When both γ > 0 and β > 0, this inequality refers to the 2nd

excited state in a triple well. In particular, for the example in

Fig. 3.6, the even excited state disappears at α = 1 + 2/ε = 5.

If, however, there is a barrier in the middle of two wells, i.e.

γ > 0 but β < 0, there is a maximum of two bound states in the

spectrum, one even (the ground state) and one odd (the excited

state), and the same Eq. (3.33) now becomes a condition for the

ground state to exist. Indeed, if the barrier is high enough, namely

if β < −2γ, the ground state also disappears from the spectrum at

the system size smaller than that determined by Eq. (3.33). This

case presents an interesting situation when a one-dimensional sym-

metric potential well structure cannot accommodate any bound

states. An illustration for ε = −4 is provided in Fig. 3.7 showing

that the ground state disappears at α = 1/2, in agreement with

Fig. 3.9 below.

To analyze the behavior at a large system size, we take

the limit α→∞, which makes the exponential term in Eq. (3.31)

small. This results in a quadratic equation for q:

q2 − q(1 + ε+ e−qα) + ε(1− e−qα) = 0 (3.34)
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Figure 3.7: As Fig. 3.6 but for ε = −4.

giving solutions

q0 ≈ 1 +
1 + ε

1− ε
e−α (3.35)

for the ground and

q2 ≈ ε+
ε

1− ε
e−εα (3.36)

for the 2nd excited state. These approximate values are also plot-

ted in Figs. 3.6 and 3.7 showing a good agreement with the full

solution.

To study the dependence on the quantum well strength γ

(i.e. α for a fixed a), we introduce, as in Sec. 3.1.2, the effective

wave number s = 2κa. Then Eq. (3.29) becomes

s

α
= 1 +

s/α + ε

s/α− ε
e−s (3.37)
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Figure 3.8: As Fig. 3.3 but for a triple delta potential with b = 0
and different ε as labeled. All the curves are obtained by plotting
the inverse of the function Eq. (3.38). Note that only even parity
solutions are displayed, with an excited state branch shown by a
dashed curve for each ε.

which has an explicit solution for α(s):

α =
2s

1 + ε+ e−s ±
√

(1− ε)2 + 2(1 + 3ε)e−s + e−2s
, (3.38)

[compare with Eq. (3.17)]. Again, the advantage of representing

the solution in the form of Eq. (3.38) is that it can be displayed

without solving the secular equation. The plots of it are presented

in Fig. 3.8, showing the evolution of bound and anti-bound states

with the effective potential strength α. We see that as α decreases

the bound states transform into anti-bound states and then to

normal RSs (not shown in Fig. 3.8), as in the case of a double

barrier, see Fig. 3.3.

Finally, by fixing α (i.e. the product of the potential strength

γ and the width a) the dependence q(ε) or s(ε) on the relative
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Figure 3.9: As Fig. 3.8 but for the relative potential strength de-
pendence given by Eq. (3.39), for different values of α as labeled.

potential strength ε, given by Eq. (3.30), can be extracted. Ex-

pressing ε from Eq. (3.31) obtain

ε = q
1− q + e−qα

1− q − e−qα
=
s

α

1− s/α + e−s

1− s/α− e−s
. (3.39)

Taking the inverse of this function, we find the dependence s(ε)

[or q(ε)] which is displayed in Fig. 3.9, showing the evolution of

states with the potential ratio ε continuously changing between

positive and negative values, thus covering also an important case

of mixed potentials (with a barrier in the middle). Interestingly

the two even states displayed show a sort of avoided crossing which

is getting sharper with increased potential strength/width α, i.e.

the separation between the two states decreases with α owing to

a smaller tunnel coupling between the wells.
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3.2.3 Solutions for an asymmetric case

Let us now consider a more general case of an arbitrary

position of the middle well/barrier at x = b, with −a < b <

a. To find the secular equation for RSs and relations between 6

amplitudes in the wave function Eq. (3.20), one needs to satisfy 3

pairs of BCs, describing the continuity of the wave function and

discontinuity of its first derivative at x = −a, b and a. We skip

all the details of derivation which can be made in a way similar

to those outlined in Secs.3.1.2 and 3.2.2. We present a resulting

secular equation for k, which can be written compactly as

ξ2(1− η)− 2ξ cos(2kb) + 1 + η = 0 , (3.40)

after introducing

ξ =
e2ika

1 + 2ik/γ
and η =

2ik

β
. (3.41)

For derivation, see App.(J).

We again first study the dependence of the full solution of

Eq. (3.40) for bound states on the potential strength γ, for fixed

a, b and β. Introducing α = γa and s = −2ika, as before, and

solving the quadratic equation (3.40) for ξ, obtain two branches

of the solution:

α±(s) =
s

1− e−s/ξ±(s)
, (3.42)
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where

ξ±(s) =
c±

√
c2 + η2 − 1

1− η
, (3.43)

c(s) = cosh(sb/a) and η(s) = − s

βa
. (3.44)

It is instructive to see that for b = 0, the two branches become

ξ− = 1 and ξ+ =
1 + η

1− η
(3.45)

corresponding to the odd and even parity states and coincid-

ing which the solution for a symmetric triple structure given by

Eq. (3.10) with the lower sign used and by Eq. (3.29), respectively.

Taking further the limit η → ∞ (corresponding to β → 0), ob-

tain solutions for a double well structure: ξ∓ = ±1 which, after

substitution into Eq. (3.43), give exactly Eq. (3.17).

Finally, expressing η from Eq. (3.40), we find an explicit

dependence of the wave numbers k on the middle well/barrier

strength β:

βa = s
1− 2ξc+ ξ2

1− ξ2
, (3.46)

where ξ = e−s/(1 − s/α), in accordance with Eq. (3.41). The

function k(β) can be obtained by simply inverting the function

β(k) given by Eq. (3.46). Taking c = 1 Eq. (3.46) reduces to

βa = s
1 + ξ

1− ξ
(3.47)

for a symmetric structure (b = 0), which is exactly the same as

Eq. (3.39).
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Figure 3.10: As Fig. 3.4, for double (γ = 3/a), triple symmetric
(b = 0, γ = 3/a, β = 6/a) and triple asymmetric (b = 3a/5,
γ = 3/a, β = 6/a) quantum well structures.

3.2.4 Resonant states

RSs for both symmetric and asymmetric triple well struc-

tures are shown in Fig. 3.10. The spectrum of RSs for the sym-

metric structure is quite similar to that of the double well which is

also shown for comparison (the same as demonstrated in Fig. 3.4).

Note that odd RSs remain the same for both systems. For the

triple well, we now see two bound states, in accordance with our

analysis in Sec. 3.2.2. Indeed, for α = 3 and ε = 2 the inequality

Eq. (3.33) is fulfilled allowing the second excited state to exist.

The spectrum of RSs for an asymmetric triple well struc-

ture with b = 3a/5, γ = 3/a and β = 6/a is quite different. First of

all, the middle well is 3 times deeper than for the symmetric struc-

ture. Being shifted from the center of the structure, the middle
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quantum well mixes even and odd RSs. As a result, stronger devi-

ations from the double well spectrum of RSs is seen. Choosing the

ratio 2a/(a−b) equal to an integer, as in the present case, the third

well in the middle splits the structure into two resonators having

commensurable widths (in our case aL = 8a/5 and aR = 2a/5,

respectively, splitting the width in 4:1 proportion). Therefore res-

onances accommodated in the right (narrower) subsystem can be

enhanced by the left (wider) subsystem. As a result, one can see

a quasi-periodic modulation in the spectrum with the period of

about 2π/aR, which is five times larger than the separation be-

tween the RS wave numbers, which is approximately π/a.

3.3 Role of the resonant states in

the transmission

In this section, we study the role of RSs in observables,

such as the local density of states or the scattering matrix. Below

we consider, as an example, the transmission of a particle through

a quantum system consisting of two Dirac delta wells. A particle

traveling in free space is described by a wave function in the form

of plane wave with a wave number k. We first calculate analyt-

ically its transmission amplitude ta(k) as a function of the real

wave number k of the particle. This transmission can be found by

choosing appropriate BCs outside the system, namely by allowing

the system to be excited with an incoming wave. To do so, we

keep in Eq. (3.2) the term with an incoming wave which now has a
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non-vanishing amplitude D 6= 0, while requiring that B = 0. The

BCs at x = ±a, given by Eqs. (3.5) and (3.6), are the same as for

the RSs. Applying them and solving a set of algebraic equations,

we find the transmission amplitude

ta(k) =
A

D
=

4k2

4k(k − iγ)− γ2(1− e4ika)
, (3.48)

t̃a(k) = ta(k)eika. (3.49)

For detail derivation of Eq. (3.48), see App.(K). Now taking the

analytic continuation of this function into the complex k plane, it

is easy to see that t̃a(k) has simple poles at k = kn, where kn are

the wave numbers of all possible RSs (including bound, anti-bound

and normal RSs), which satisfy the secular Eq. (3.10). Also, the

function Eq. (3.48) is vanishing on an infinitely large circle in the

complex k plane, and therefore, one can apply to it the Mittag-

Leffler (ML) theorem [1, 10, 14], writing the transmission function

in the form of an infinite series over all poles:

t(k) = e−ika
∑
n

R̃n

k − kn
, (3.50)

Here R̃n are the residues of the analytic function t̃a(k) at its poles,

which are given by

R̃n =
k2
ne
ikna

2kn − iγ + iaγ2e4ikna
. (3.51)
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Figure 3.11: The amplitude of the analytic transmission |ta(k)|
(thick red curve) trough a double Dirac delta well structure with
γ = 3/a and its spectral representation t(k) calculated for different
number of RSs taken into account in the Mittag-Leffler expansion:
bound states only (magenta), bound states and 1 pair of RSs (dark
blue), bound states and 3 pairs of RSs (dark green), and 100 RSs
in total including all bound and anti-bound states (black dashed
curve).

Using the ML expansion Eq. (3.50) we study in Fig. 3.11 the role

of different RSs in the transmission.

For an arbitrary one-dimensional potential with compact

support, i.e. vanishing (or constant) outside the system area |x| 6

a, the transmission amplitude is given by

t(k) = 2ike−2ikaGk(a,−a) , (3.52)

see e.g. [11]. Here, Gk(x, x
′) is the Green’s function of the Schrödinger

equation (1.16) for a given fixed wave number k. For the coordi-

nates x and x′ within the system, the Green’s function is also

vanishing on an infinitely large circle in the complex k plane, and
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therefore, one can apply to it the Mittag-Leffler (ML) theorem of

the form [1, 10, 14]

Gk(x, x
′) =

∑
n

ψn(x)ψn(x′)

2kn(k − kn)
, (3.53)

where ψn(x) are the RS wave functions normalized according to

Eq. (1.19).

For illustration, we apply the general result given by Eqs. (3.52)

and (3.53) to the particular case of the double delta-function po-

tential Eq. (3.1). Using the explicit form of the wave functions

Eq. (3.4), their normalization Eq. (4.11), and the secular equation

(3.10), one can write the transmission, with the help of Eqs. (3.52)

and (3.53), in the form of an infinite series over its poles:

t(k) = ke−2ika
∑
n

Rn

k − kn
, (3.54)

where

Rn = ± ikna
2

γ[(γ + 2ikn)a− 1]
. (3.55)

The results of Eq. (3.50) and Eq. (3.54) can be compared with the

analytic transmission t̃a(k), given by Eq. (3.49), which is done in

Fig. 3.11 and Fig. 3.12. Using the ML expansion Eqs. (3.50) and

(3.54), we also study in Fig. 3.11 and Fig. 3.12 the role of different

RSs in the transmission. We first note that in these representa-

tions, bound states play a small but non-negligible role, produc-

ing some background contribution. The maxima of the transmis-

sion reaching the value of 1 for this symmetric quantum structure
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Figure 3.12: The probability of transmission trough a double Dirac
delta well structure with γ = 3/a, evaluated using the analytic
transmission t̃a(k) (thick red curve) and its spectral representation
t(k) calculated for different number of RSs taken into account in
the Mittag-Leffler expansion: bound states only (magenta), bound
states and 1 pair of RSs (dark blue), bound states and 3 pairs of
RSs (dark green), and 100 RSs in total, including the bound states
(black dashed curve).

can be described by only taking into account in the summations

Eq. (3.50) and Eq. (3.54) the corresponding normal RSs. Adding

the very first pair of normal RSs already describes quite well the

first peak in the transmission. The agreement is further improved

by adding more RSs. With three pairs of RSs, the first peak of the

transmission is fully reproduced, but the other two are described

only qualitatively. To correct this and to describe other peaks,

more RSs in Eq. (3.50) and Eq. (3.54) are needed. Taking all of

them into account, the correct transmission is fully reproduced.

3.4 Summary

In this chapter, we have studied the full set of resonant

states of a one-dimensional Schrödinger problem with double and
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triple quantum wells or barriers approximated by Dirac delta func-

tions. This includes bound, anti-bound and normal resonant states

which are all eigensolutions of Schrödinger’s equation with gener-

alised outgoing wave boundary conditions. We have analysed the

transformation of resonant states and their transitions between

different subgroups as well as the role of each subgroup in observ-

ables, such as the quantum transmission. As part of this study we

have revisited the well known problem of bound states in the quan-

tum well potentials modeled by Dirac delta functions. We have

finally shown and demonstrated that the normal resonant states

determine the main spectral features in quantum transmission,

and taking the full set of resonant states, allows one to precisely

determine the transmission via its Mittag-Leffler expansion.
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Chapter 4

Resonant state expansion

in quantum mechanics

In this chapter, we outline the formalism of the QM-RSE which

have been developed earlier in [1, 18]. We have chosen as an unper-

turbed basis for the QM-RSE, solution to a simple 1D Schrödinger

equation with a potential described by a double quantum well com-

posed of two delta functions. The QM-RSE is applied to triple

quantum wells and verify using the exact solution showing the

convergence as the number of basis states increases. The interfer-

ence effect in triple quantum wells was also studiesd.

4.1 Formalism of the QM-RSE

The QM-RSE treats a perturbation ∆V (x) of the quantum

potential in the time-independent Schrödinger equation,

[
− ~2

2m

d2

dx2
+ V (x) + ∆V (x)

]
ψν(x) = Eνψν(x) , (4.1)
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by using as a basis the RSs for the unperturbed potential V (x) and

transforming Eq. (4.1) into a matrix eigenvalue problem. Here, for

simplicity, we concentrate on the 1D Schrödinger equation for a

particle with mass m. ψν(x) is the wave function of a perturbed

RS of the particle and Eν is its energy. It is useful to introduce also

the RS wave numbers κν defined as Eν = ~2κ2
ν/(2m). The corre-

sponding wave functions and the wave numbers of the RSs in the

unperturbed potential V (x) are denoted by ϕn(x) and kn, respec-

tively, where index n labels the unperturbed RSs. The QM-RSE is

applicable to potentials with compact support and perturbations

included in the area occupied by the unperturbed system [1, 13].

Using the Green’s function of the Schrödinger equation for

the unperturbed quantum potential V (x) and treating the term

with perturbation ∆V (x)ψν(x) in Eq. (4.1) as an inhomogeneity,

one can find a formal solution of Eq. (4.1). Then, applying the

Mittag-Leffler expansion to the Green’s function, and expanding

the perturbed RSs into the unperturbed ones,

ψν(x) =
∑
n

Cnν

√
κν
kn
ϕn(x) , (4.2)

the Schrödinger equation (4.1) is converted into a linear complex

eigenvalue problem [1, 18]

∑
m

HnmCmν = κνCnν , (4.3)
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where

Hnm = knδnm +
∆Vnm

2
√
kn
√
km

, (4.4)

∆Vnm =

∫ a

−a
ϕn(x)∆V (x)ϕm(x)dx , (4.5)

and δnm is the Kronecher delta. Here we assumed, without loss

of generality, that the perturbation is located within the region

|x| 6 a.

The perturbed wave numbers κν and the expansion coeffi-

cients Cnν can be found by diagonalizing the complex symmetric

matrix Hnm, consisting of the diagonal matrix of the unperturbed

eigen wave numbers kn and a perturbation matrix ∆Vnm. The

√
kn factors are introduced in Eqs. (4.2) and (4.4), in order to

symmetrize the eigenvalue problem.

The perturbation matrix Eq. (4.5) is determined by the un-

perturbed wave functions ϕn(x) which have to be properly noma-

lized. As shown in [1, 13, 18], the proper normalization in 1D,

leading to the eigenvalue problem Eq. (4.3), has the following form:

1 =

∫ a

−a
ϕ2
n(x)dx− ϕ2

n(a) + ϕ2
n(−a)

2ikn
, (4.6)

where we have used the fact that the inhomogeneity of the un-

perturbed potential is located within the region |x| 6 a, so that

x = ±a are the boundaries of the unperturbed open quantum sys-

tem. More detailed discussions of the normalization of the RSs in

quantum-mechanical systems can be found in [10, 48–50].

75



The complete basis of RSs usually contains an infinite count-

able number of functions. Therefore, the matrix equation (4.3)

of the QM-RSE has infinite size and for practical use requires a

truncation. This truncation presents the only limitation of the

QM-RSE, which is an asymptotically exact method. Moreover,

the RSE is capable of treating arbitrarily strong perturbations [1],

provided that a sufficient number of RSs is kept in the basis, in

order to guarantee the required accuracy of calculation.

4.2 Unperturbed resonant states: Dou-

ble quantum well

To apply the QM-RSE for particular quantum systems, we

need to choose a suited basis of RSs. These are the solutions of the

Schrödinger equation with an unperturbed potential V (x) which

in principle can be chosen arbitrary, though both V (x) and ∆V (x)

have to be functions with compact support, and the perturbation

∆V (x) must be non-vanishing only within the area of inhomogene-

ity of V (x), as already noted. Usually, the optimal choice of the

unperturbed potential is such that the Schrödinger equation with

V (x) has an analytic solution and at the same time is close to the

full potential to be treated, in this way minimizing the effect of

the perturbation.

In this work, however, we have chosen as unperturbed, or

the basis system the most simple 1D quantum potential containing

RSs: a double symmetric quantum well described by two Dirac
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delta functions. We fix this choice for all perturbed examples

considered below, varying only the parameters of the basis system,

where necessary. We also use the convenient units of ~ = 1 and

m = 1/2 throughout this work.

The unperturbed quantum potential is thus given by

V (x) = −γδ(x− a)− γδ(x+ a) , (4.7)

which models a symmetric double quantum well (barrier) structure

for γ > 0 (γ < 0). Here, δ(x) is the Dirac delta function, 2a

is the distance between the wells, and γ is the strength of the

potential which has the meaning of the depth of each quantum well

multiplied by its width, having in mind a comparison of this model

with the corresponding rectangular quantum wells. An obvious

advantage of the model is its simplicity and explicit analytical

solvability. The solution of the unperturbed Schrödinger equation

in Chap. 3 is given by

ϕn(x) =



Ane
iknx, x > a,

Cn(eiknx ± e−iknx) |x| 6 a,

±Ane−iknx, x < −a,

(4.8)

where the basis RS wave numbers kn satisfy the secular equation

1 +
2ikn
γ

= ∓e2ikna , (4.9)
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with the upper (lower) sign corresponding to even (odd) parity

states. Note that Eq. (4.9) generates a complete set of the basis

RSs which include bound, anti-bound and normal RSs, as classified

and discussed in detail in Chap. 3. They all need to be taken into

account in the QM-RSE.

The normalization of RSs was also calculated in Chap. 3,

using the definition Eq. (4.6). The result is given by

An = Cn

(
1 +

γ

2ikn

)−1

, (4.10)

Cn =
1

2
√
±[a− (γ + 2ikn)−1]

. (4.11)

4.3 Verification of the QM-RSE: Triple

quantum wells

To verify the QM-RSE and to study its convergence, we

take another exactly solvable system, having a relatively simple

analytic solution: a triple quantum well described by three delta

functions. For simplicity, we keep the strength of the left and right

wells/barriers (separated by the distance 2a) the same, while the

position and the strength of the middle well/barrier can be any.

In this way, our triple well/bar rier system is described by the

potential V (x) + ∆V (x), where V (x) is given by Eq. (4.7) and

∆V (x) = −βδ(x− b) , (4.12)
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where the position b and the strength β of the middle well/barrier

are arbitrary parameters, with |b| < a and β > 0 corresponding to

a well and β < 0 to a barrier.

4.3.1 Analytic solution

A general analytic solution of the Schrödinger equation

with the triple delta potential V (x) + ∆V (x), where V (x) and

∆V (x) are given by Eqs. (4.7) and (4.12), respectively, is also pro-

vided in Chap. 3. The secular equation for the RS wave numbers

κ of this perturbed quantum system is given by

ξ2(1− η)− 2ξ cos(2κb) + 1 + η = 0 , (4.13)

where

ξ =
e2iκa

1 + 2iκ/γ
, η =

2iκ
β

. (4.14)

Both secular equations (4.9) and (4.13), for double and

triple quantum wells, are solved numerically to find the exact

RSs wave numbers of the unperturbed and perturbed problem,

respectively. This is done using the Newton-Raphson method im-

plement in MATLAB. Exact wave numbers of the RSs in double

and triple quantum wells are presented in the complex k-plane in

Figs. 4.1–4.4 and compared with QM-RSE (see a discussion of this

comparison in Sec. 4.3.3 and Sec. 4.3.4 below).

Since a single delta-function potential well always has only

one bound state for any strength of the potential (γ > 0), it is clear
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Figure 4.1: (a) Eigen wave numbers of the resonant states for a
double symmetric quantum well with γ = 3/a (open circles) and
a triple symmetric quantum well with b = 0 and γ = β = 3/a,
calculated using the QM-RSE (red crosses) and the analytic sec-
ular equation (4.13) (blue squares). The wave numbers of even
(black circles) and odd (green circles) unperturbed RSs for a dou-
ble quantum well structure are calculated via Eq. (4.9). The insets
show a zoom-in of a particular area and a sketch of the perturbed
potential (black lines) and the perturbation used (red line). (b)
Relative error of the QM-RSE values of the RS wave numbers as
function of the real or imaginary part of the wave number, for
different basis sizes M as given. The dashed line shows a power
law dependence as labeled.
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Figure 4.2: As Fig. 4.1 but β = 10/a

that a double-delta potential can accommodate the maximum of

two bound states as shown in Chap. 3. For the parameters used for

the double well (γ = 3/a and γ = 10/a), these two bound states

are present in the spectrum and are seen in 4.1 (a) and 4.2 (a) re-

spectively, on the imaginary k-axis (black and green circles). All

other eigenmodes of the double well system are the normal RSs

which always exist in pairs, thus providing the mirror symmetry of

the full spectrum of RSs, which is a general property of any open

system. As it is clear from Eqs. (4.9) and (4.13), there is an infi-

nite countable number of RSs in the spectrum, which is another

general property of an open system. Furthermore, Fig. 4.1 (a) and
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4.2 (a) shows that the normal RSs are almost equally spaced when

the real part of kn is much larger than the imaginary part. This

quasi-periodicity of the RS wave numbers can be understood as a

result of constructive interference of quantum waves propagating

back and forth within the system and experiencing multiple re-

flections from the wells/barriers at the boundaries x = ±a. From

this resonant condition for the constructive interference one can

estimate the distance between the neighboring RSs in the complex

k-plane to be ∼ π/(2a), which is observed in Fig. 4.1 (a).

The spectrum of RSs for a symmetric triple well structure,

also shown in Fig. 4.1 (a) (blue squares), is quite similar to that of

the double well. We see from the inset that in spite of a rather

strong potential of the middle well perturbing the double well sys-

tem, the wave numbers of the even parity RSs are only slightly

modified, while those of the odd parity states remain unchanged

since ∆V (0) = 0. The only significant change observed in the

spectrum is that there are two antibound states which appeared

on the negative imaginary half axis. These antibound states are

formed from the closest to the origin pair of normal RSs of the

double well spectrum, as it was discussed in detail in Chap. 3.

At the same time, the asymmetric triple well spectra are

quite different, see Figs. 4.3 (a) and 4.4. They also show the same

quasi-periodicity with the period of about π/(2a), determined by

the fixed width of the system 2a, not changed by the perturbations

used in the QM-RSE. However, one can see additionally another
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Figure 4.3: As Fig. 4.1 but b = a/3.

quasi-periodic behavior of the RS wave numbers, with a larger

period, which depends on the position b of the middle quantum

well as it is clear from Fig. 4.4.

To study this effect, we have chosen the position of the mid-

dle well in such a way that it splits the system into two subsystems

with the smaller one being L times narrower than the full system.

The results are shown in Figs. 4.3 (a) and 4.4 (a-c) for L = 3, 4,

5, and 10, respectively. The RS spectra for these systems show
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a quasi-periodicity with L neighboring RSs forming a period, as

it is clear from these figures. Physically, this can be understood

by looking again at the resonant condition for the constructive

interference of waves experiencing multiple reflections. Due to the

commensurability of the sizes of the full system and the smaller

subsystem, the effect of constructive interference forming the RSs

can be enhanced for some of them owing to additional reflections

from the middle well.
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Figure 4.4: As Fig. 4.3 (a) but for b = a/2 (a), b = 3a/5 (b), and
b = 4a/5 (c).
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4.3.2 Matrix elements of the perturbation

To use the QM-RSE, one needs to calculate the matrix

elements of the perturbation Eq. (4.5). For the basis RSs wave

functions given by Eq. (4.8) and the perturbation Eq. (4.12), we

find

∆Vnm = −βϕn(b)ϕm(b) , (4.15)

where

ϕn(b) = 2Cn ×


cos knb for even RSs ,

i sin knb for odd RSs ,

(4.16)

and the normalization constants Cn are given by Eq. (4.11).

In general, if both the unperturbed and perturbed poten-

tials are symmetric, the RS wave functions for both potentials are

either even or odd. In other words, the perturbation matrix ∆Vnm

does not lead to any mixing of RSs of different parity. However,

for the delta-like perturbation Eq. (4.15), if it is symmetric, i.e. if

b = 0, not only even and odd states do not mix, but, moreover,

odd basis RSs do not perturb. This is clear from the fact that

the matrix elements are non-vanishing only between even parity

states. In this case the matrix elements are given by

∆Vnm = −4βCnCm . (4.17)

The vanishing effect of the perturbation on the odd RSs is also
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confirmed by the exact solution for the symmetric triple well pre-

sented in Fig. 4.1 (a) which shows that the wave numbers of the

odd RSs of both double and triple quantum wells coincide.

4.3.3 QM-RSE for a triple symmetric quan-

tum well

We treat with the QM-RSE the symmetric triple quantum

well first. The QM-RSE results are generated by solving numer-

ically the linear matrix eigenvalue problem Eq. (4.3) with ∆Vnm

defined by Eq. (4.17). The infinite matrix Hnm in Eq. (4.3) is trun-

cated in such a way that all RSs within a circle of radius R centered

at k = 0 in the complex k-plane are kept in the basis. This intro-

duces the total number of the basis RSs M . We use this definition

of the basis for all the examples treated in this work.

We compare in Fig. 4.1 (a) the QM-RSE result for the RS

wave numbers (red crosses) for a symmetric triple quantum well

with the exact solution of Eqs. (4.13) and (4.14) (blue squares).

The unperturbed wave numbers for both even and odd parity RSs

are shown by black and green circles respectively. We see that

applying the perturbation does not change the wave numbers of

the odd RSs of the basis system, as discussed above. At the same

time, all even RSs are modified due to the perturbation, including

the ground state of the system (shown by the topmost square/cross

on the imaginary k-axis).
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It is clear from the comparison in Fig. 4.1 (a) that the QM-

RSE is reproducing the exact values. The only RSs having no

exact solution to compare with is an antibound states with the

wave number close to zero. To quantify this agreement we show

in Fig. 4.1 (b) the relative error |(κRSE
ν − κex

ν )/κex
ν |, where κRSE

ν

and κex
ν are the QM-RSE and the exact wave numbers of a given

perturbed RS ν. The relative error is shown for different basis sizes

M demonstrating the convergence of the QM-RSE to the exact

solution as the basis size increases. Note that the shown values of

M include also odd basis states which remain unperturbed in this

example. Figure 4.1 (b) allows us also to quantify the convergence:

The relative error is approximately inversely proportional to the

basis size M . Interestingly, for any fixed M the relative error

scales for different normal RSs as as 1/k2, see the dashed line in

Fig. 4.1 (b).

4.3.4 QM-RSE for a triple asymmetric quan-

tum well

Applying the QM-RSE to an asymmetric triple quantum

well structure shows a very similar quality of the calculation, even

though the perturbation now mixes even and odd RSs of the basis

system, effectively doubling the actual linear size of the matrix

eigenvalue problem. Indeed Figs. 4.3 (a) and 4.4 (a-c) demonstrate

a visual agreement between the QM-RSE and the exact solution,

confirming the spectral changes caused by the additional quantum
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interference effects in these structure, as discussed in Sec. 4.3.1.

Note that Newton-Raphson solutions of the secular equations are

much sensitive to the initial guess values use for finding the roots.

As a consequence, some RSs can be missing in the analytic spec-

trum (which is however not the case of the present calculation).

At the same time, the RSE finds all solutions in a selected spectral

range at the same time producing no spurious solutions. Indeed,

the RSE is based on a complete (though, truncated) set of RSs

of the unperturbed system, and as a result of the calculation, it

returns also a complete set of perturbed RSs. Therefore, there can

be no RSE solutions which are missing or spurious.

Figure 4.3 (b) demonstrates the convergence of the QM-

RSE to the exact solution for the asymmetric triple well, which

is very similar to the symmetric case. The comparison with the

exact solutions in Figs. 4.1-4.4 and the study of the relative errors

for the RS wave numbers thus provides a verification of the QM-

RSE in 1D. We can now take the advantages of the QM-RSE,

applying it to more complex potentials, such a multiple quantum

wells and finite quantum lattices, where the exact solutions are

more difficult to find by other means.

4.4 Summary

In this chapter, we have studied the resonant state expan-

sion in various simple one-dimensional quantum mechanical sys-

tems. The method is used here for finding the resonant states in
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various potentials approximated by combinations of Dirac delta

functions. The resonant state expansion is verified for a triple

quantum well system, showing convergence to the available an-

alytic solution as the number of resonant states in the basis in-

creases. We have demonstrated that the relative error scales as

the inverse of the basis size. For a fixed basis size, it scales as

1/k2 for normal RSs. We have studied, using the RSE, the inter-

ference effect where the system is divided into two resonators of

commensurable widths.
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Chapter 5

QM-RSE applied to finite

quantum lattices

In this chapter, we apply the QM-RSE to finite periodic quantum

potentials. We keep using the model of delta functions and define a

finite periodic potential in such a way that it consists of N equally

spaced delta-like quantum wells of strength γ. The separation

between the quantum wells, or the period of the potential is

d =
2a

N − 1
, (5.1)

where 2a, is the width of the system. The full potential of the

system, V (x) + ∆V (x), thus consists of the unperturbed potential

V (x) of a double well, which is given by Eq. (4.7) and a perturba-

tion

∆V (x) = −γ
N−1∑
k=2

δ(x− bk) , (5.2)
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in which

bk = −a+ d(k − 1) (5.3)

are the positions of the quantum wells. According to Eq. (4.5), the

perturbation matrix of the QM-RSE is then given by

∆Vnm = −γ
N−1∑
k=2

ϕn(bk)ϕm(bk) (5.4)

with ϕn(b) provided in Eq. (4.16).

5.1 QM-RSE calculation of the res-

onant states wave numbers and

convergence

We use the QM-RSE to calculate the RS wave numbers for

increasing number of wells N . The N = 2 case is the unperturbed

system, and the N = 3 case is already treated in Sec. 4.3.3 above,

see Fig. 4.1. So, increase N further, we now first look at the N = 4

case. The wave numbers of both unperturbed and perturbed RSs

for this case are shown in Fig. 5.1 (a). The spectrum looks very

similar to the ones considered before in what concerns the normal

RSs, showing again a bigger period which we discuss below in more

depth. However, a significant difference compared to the spectra

in Figs. 4.3 and 4.4 is the presence of two anti-bound states on the

negative imaginary half-axis. This is due to two facts. First of all,

the considered systems has a larger depth of the quantum wells:
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Figure 5.1: As Fig. 4.1 but for a finite periodic potential with N =
4 quantum wells of depth γ = 10/a. The perturbation used in the
QM-RSE is given by Eq. (5.2). The resonant states of a triple well
structure with β = γ = 10/a and b = a/2 are shown additionally
(blue stars). The relative error in (b) is calculated using the QM-
RSE values for M = 4480 replacing the exact solution.
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γ = 10/a. Secondly, the number of quantum wells is increased to

4. These two factors result in a stronger overall quantum potential

which is able to accommodate a larger number of bound states:

One can see that there are 4 bound states in this system, which are

produced by a hybridization of the bound states of four individual

quantum wells. Increasing the depth of the potentials reduces the

tunnel coupling between these bound states, which allows us to

consider this coupling as a rather small perturbation not affecting

much the individual states. At the same time, the presence of

two more bound states inevitably leads to two anti-bound states

showing up in the spectrum. One can understand the presence of

these four states in the spectrum as a result of transformation of

two pairs of normal RSs into bound and anti-bound states as the

strength of the quantum wells increases, see Chap. 3 for a more

detailed discussion of this phenomenon.

The convergence of the QM-RSE is quantified in Fig. 5.1 (b)

where we again show the relative error of the calculation of the

RS wave numbers for four different basis sizes: M ≈ M0, 2M0,

4M0, and 8M0. However, this time we do not find the exact solu-

tion, which would be a complicated, though not impossible task.

Instead of the exact solution we take the values calculated with a

much larger value of M . We see that the relative error is in princi-

ple very similar to that presented in Figs. 4.1 (b) and 4.4 (b), where

the exact solution was used. Again, the 1/k2 dependence of the rel-

ative error for a fixed M is observed, and the error scales inversely
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proportional to M . We therefore conclude that the convergence of

the QM-RSE does change when one makes the perturbation more

complex.

5.2 Comparison with triple well spec-

tra

IncreasingN further, the computational complexity of find-

ing RSs using some alternative methods, such as transfer or scat-

tering matrix approaches, increases dramatically. This is not only

due to an increasing number of interfaces (or inhomogeneities)

present in the system, determining the size of the linear algebra

problem, but mainly because some of the eigenmodes are becom-

ing prohibitively difficult to find. These are usually modes having

the most interesting properties, such as superradiant states [51] or

bound states in the continuum [52]. At the same time, the com-

plexity of the QM-RSE remains almost the same. Of course, the

overall strength of the perturbation increases proportionally to N

which requires taking into account more RSs in the basis in order

to keep the accuracy of calculation the same.

Looking at Fig. 5.2 where the RSs for N = 5, 6 and 11

are shown, we see that the number of bound and antibound states

further increases (up to 6 and 4, respectively). However N = 6 and

N = 11 have the same number of bound/antibound states. This

can be understood in the following way. The quantum tunneling

between the wells increases with N , since the well separation d
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the resonant states for a triple well structure with β = γ = 10/a
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decreases. With increasing tunneling one goes further away from

the picture of nearly independent quantum wells, from which the

tunneling is only a small perturbation, in which case the total

number of bound states is equal to the number of wells. With

a larger tunneling instead, the whole potential has to be treated

more like one common wide quantum well which can accommodate

a limited number of bound states. As for the antibound states,

their number is usually two less the number of bound states [43].

We also see in Fig. 5.2 a quasi-periodic behavior of the RS

wave number, similar to the phenomenon observed for triple quan-

tum wells and discussed in Sec. 4.3.1. Increasing N , the number of

states in the period increases – it is actually equal to N−1, as can

be seen from the graphs. To confirm that this is a manifestation

of the same effect of an additional resonant enhancement, owing

to the splitting of the whole system into two or more resonator, we

compare in Fig. 5.2 the RSs of finite periodic systems with those of

the corresponding triple well system. We have chosen the smallest

separation between the wells in the triple well system equal to d,

the period of the quantum lattice, which is given by Eq. (5.1).

This comparison reveals close similarities between the fi-

nite periodic and the corresponding triple well systems, with the

same quasi-periodicity in the spectra observed for both. One can

see from the insets in Figs. 5.1(a) and 5.2(a)-(c) that the spec-

tra of the two systems are in a good qualitative agreement. In

other words, the RS spectrum of a finite periodic system does
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not change much if one removes from the potential all the inner

quantum wells except the rightmost one. The physical reason for

the quasi-periodic oscillations is essentially the same as mentioned

above and discussed in more detail in Sec. 4.3.1. The finite periodic

potential with N quantum wells splits the full system into N − 1

resonators of width d similar to one such resonator present in the

corresponding triple well. The presence of multiple resonators of a

commensurable width in finite periodic structures only enhances

the effect already observed in the triple wells: Indeed, the am-

plitudes of the quasi-periodic oscillations in the RS spectra are

stronger in the case of the quantum lattices.

5.3 Comparison with the Kronig-Penney

model

Taking the limit N → ∞ while keeping the period (the

distance between the neighboring wells) fixed, we end up with the

famous Kronig-Penney potential [25]

V (x) = −γ
∞∑

n=−∞

δ(x− nd) (5.5)

describing an infinite periodic system, or an infinite quantum lat-

tice. The Kronig-Penney model is known to have an exact analytic

solution showing allowed bands and band gaps in the energy spec-

trum or the wave number spectrum of a particle.

The exact solution of the Kronig-Penney model is given
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tum lattice with N = 20 calculated using the QM-RSE, for
γ = 10/a (wells) and γ = −10/a (barriers).

by [25]

cos(qd) = cos(kd)− γ

2k
sin(kd) . (5.6)

where q the wave number of the quasi-particle in the periodic

potential which is a conserved quantity. According to Bloch’s

theorem, the wave function of the particle has the form ψ(x+d) =

eiqdψ(x) containing this wave number.

We compare in Fig. 5.3 the spectra of RSs for a potential of

N = 20 wells (barriers) with the spectra of allowed and forbidden

bands of a particle in the periodic potential Eq. (5.5) corresponding

to N =∞. For the former, we again use the complex k-plane, see

the bottom part of Fig. 5.3. For the latter, we use the (q, k) plane

with real values of q and k, see the top part of Fig. 5.3. For the

comparison, we use the same parameters of both structures: γ =
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10/a and d = 2a/19. One can see a clear qualitative agreement

between the allowed band and the groups (periods) of RSs in the

quasi-periodic RS spectra. The Kronig-Penney model thus helps

us to clarifies on the actual physical meaning of these periodic

groups of RSs: In the limit N → ∞ they just form the allowed

band in a periodic potential. Figure 5.3 shows results for wells and

barriers, demonstrating a good agreement and correlation between

finite and infinite periodic structures.

5.4 Effect of varying strength of pe-

riodic quantum lattice

We finally study the dependence of the RS wave numbers

on the potential strength of a finite periodic structure of N = 20

quantum barriers. We see from Fig. 5.4 that each group of RSs of

the quasi-periodic spectrum (discussed in Sec. 5.3) is quite robust

to changes of the potential strength. However, the separation

between the groups which would correspond to a band gap in the

spectrum of an ideal periodic system strongly depends on γ. This

is consistent with the result of Kronig-Penney model also showing

the dependence of the band gap width on the potential strength.

We do not provide here any quantitative comparison, though.

Another important effect is a decrease of the imaginary

part of the RS wave numbers as potential strength γ increases. In

other words, increasing γ improves the quality factor (Q-factor)

Q = |Rekn/(2 Imkn)| of all the resonances. This is expected, as
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Figure 5.4: Resonant state wave numbers of a finite periodic lattice
of N = 20 quantum barriers, calculated using the QM-RSE for
different barrier strength γ as given.

higher values of γ provide a better reflection from the potential

inhomogeneities, in this way helping the given probability density

to stay longer within the system. For some resonant states, the Q-

factor becoming really large, see, for example the very RS having

Q ≈ 400. The physical reason of formation of such states might

be similar to that of bound states in the continuum [52]. The true

bound states, however, have an infinite Q-factor.

5.5 Random quantum lattice

Here we apply the RSE to finite random potentials and

calculated their wavenumbers for 10 different realisations, unlike

in Chap. 4 where we fixed our parameters. Here the parameters

used are N = 20, a = 1, γ = −10, α = 0.2, 0.5, and 0.8. Since β
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from Eq.(5.2) is not fixed, in this case, it is given in the form

β = bmin + (bmax − bmin)r (5.7)

where bmax = γ(2−α), bmin = αγ and r is a random number taken

between 0 and 1. In all the realisations we use average values of

β instead given as

β̄ =
N−1∑
k=2

βk
N − 2

(5.8)

where N is the number of lattices within the quantum well. It is

however noted that from Eq.(5.7) if r = 0 then β = bmin and we

expect a very strong disorder while, if r = 1 then β = bmax which

leads to no disorder in the system.
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Figure 5.5: As Fig. 4.1 but for a finite random potential with
N = 20 quantum barriers of depth γ = −10/a for 10 different real-
isations. The number of realisations was calculated using α = 0.2,
0.5, and 0.8 as shown, in (a), (b), and (c), respectively.

It is observed that there is a stronger disorder for smaller

α and a weaker disorder for larger α getting closer to 1. This

can be seen from Fig. 5.5 (a-c) where α = 0.2, 0.5 and 0.8 are
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presented. Similar quasi-periodicity of the spectra are observed

also with disorder.

5.6 Summary

In this chapter, we further apply a resonant state expansion

to a more complicated quantum systems. The systems include

multiple quantum well and barrier structures, and finite random

and periodic systems. Results of these are compared with the

eigenstates in triple quantum wells studied in Chap. 4, and with

the Kroniq-Penney model revealing the nature of the resonant

states in the studied systems.

We found in perticular, that the spectrum of the normal

RSs looks very similar to the one considered in Chap. 4. However,

a significant difference observed, is the increase in the number of

bound states and presence of antibound states on the negative

imaginary half axis. We have demonstrated that the transforma-

tion of these bound/antibound states results with an increasing

number of quantum wells and also with a larger depth of the quan-

tum well in the considered systems.

We again demonstrated in this chapter, the convergence of

the QM-RSE, where we presented the results of the relative error

calculations of the RSs wave numbers for different basis sizes.

The effect of varying the strength of a finite periodic struc-

ture was discussed. We found that the region of each sub-groups

which would correspond to band gaps in the spectral range of this
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finite periodic system is strongly depends on potential strength γ.

We finally, applied the QM-RSE to the finite random po-

tentials and studied the disorder of the system considered. We

demonstrated that the disorder in this system depends on the

choice of strength α. We found that the stronger disorder is ob-

served for a smaller choice of α.
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Chapter 6

Conclusion and outlook

We have applied the resonant state expansion (RSE), a novel pow-

erful theoretical method recently developed in electrodynamics,

to non-relativistic quantum-mechanical systems in one dimension,

modeling all potentials with Dirac delta functions. We have veri-

fied the method, which we call here quantum-mechanical resonant

state expansion (QM-RSE), testing it on systems with triple quan-

tum wells while using the resonant states of a double quantum well

as a basis. We have studied the full set of resonant states of a one

dimensional Schrödinger problem with double and triple quantum

wells or barriers approximated by Dirac delta functions. This full

set includes bound, anti-bound and normal resonant states. We

have revisited the problem of finding bound states in delta-well

potentials and have worked out simple analytic expressions for

important limiting cases and compared them with the full numer-

ical solution. The latter is in turn presented here as universal
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dependencies containing the minimal number of parameters. Fur-

thermore, we have studied the transition between different types

of resonant states, demonstrating in particular how bound states

disappear from the spectrum continuously transforming into anti-

bound states, which are in turn transform further into normal

resonant states. We have shown that these normal resonant states

determine the main spectral features in observables, such as the

quantum transmission, and that taking the full set of resonant

states, including the bound and anti-bound states, allows one to

precisely determine the transmission via its Mittag-Leffler expan-

sion. Complicated potentials like finite Kronig-Penney lattices are

easy to add resonances using the RSE, as the RSE provides the

full Green’s function in terms of the RSs, and the Green’s function

gives access to all the observables, including the transmission. We

have also, analysed the RSs of double and triple quantum wells in

terms of the constructive interference of quantum waves supported

by these structures.

We have studied the convergence of the QM-RSE to the

exact solutions. In particular, we have demonstrated that the

QM-RSE is asymptotically exact, with the number of basis res-

onant states being the only technical parameter of the method,

and that the relative error scales inversely proportional to the ba-

sis size. We have further demonstrated that the QM-RSE enables
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an accurate and efficient study of complicated quantum struc-

tures, such as multiple quantum wells and finite periodic poten-

tials, which are harder to address by alternative methods. Some

complicated quantum systems can exhibit interesting physical phe-

nomena, such as formation of quasi-periodic bands of resonances

or bound states in the continuum, and thus have to be investigated

with an accurate and efficient tool. The QM-RSE can offer such

a tool, as we have demonstrated in this work. Furthermore, it is

straightforward to expand the QM-RSE beyond one dimension, as

it has been demonstrated in numerous publications on the RSE

applied to open optical systems [12–15].

A feature research may include applying the QM-RSE to

higher dimensions noting that with the successful application of

the RSE in electrodynamics and wave optics allows us to expect

that using the QM-RSE in higher dimensions is straight forward

and does not require any modification of the formalism. More-

over, it is technically a lot easier than in electrodynamics, as the

Schrödinger equation is a scalar wave equation. The only open

question at the moment is how quick would be the convergence of

the QM-RSE in 2D and 3D. We do not know the answer on this

question yet but expect it not to be very different from that in

electromagnetic problems.

Another area of future application of the QM-RSE is in the

physics of semiconductor nanostructures, where calculating the

eigenstates of electrons, holes, and excitons in quantum wires and
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dots of non-trivial shape and material composition is a challenging

computational task for existing commercial solvers.
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Appendix A

The Schrödinger equation

In 1925, Erwin Schrödinger and Werner Heisenberg independently

developed the new quantum theory. Schrödinger’s method in-

volves partial differential equations, whereas Heisenberg’s method

employs matrices; however, a year later the two methods were

shown to be mathematically equivalent. Most textbooks begin

with Schrödinger’s equation, since it seems to have a better phys-

ical interpretation via the classical wave equation. Indeed, the

Schrödinger equation can be viewed as a form of the wave equa-

tion applied to matter waves.

A.1 The time-independent Schrödinger

equation

The general solution to the Schrödinger equation starts

from the classical description of the total energy, E, which is equal
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to the sum of the kinetic energy, T, and the potential energy, V

E = T + V =
p2

2m
+ V (x) (A.1)

going from classical to quantum mechanics, p becomes an operator

p̂ = −i~ d
dx

. A wavefunction, ψ, is defined to convert the energy

equation into a wave equation Eq.(A.2) [53]. This is achieved

by multiplying each term in the energy equation by the defined

wavefunction, ψ

Eψ(x) =
p̂2

2m
ψ(x) + V (x)ψ(x) (A.2)

To incorporate the de Broglie wavelength of the particle, we intro-

duce the operator −~2d2
dx2

, which provides the square of the momen-

tum, p̂2. When applied to a plane wave we obtain Eq.(A.3) [53, 54]

−~2d
2ψ

dx2
= ~2k2ψ = p2ψ, (A.3)

where

ψ = ei(kx−ωt) (A.4)

and k is the wavenumber (k = 2π
λ

). Replacing the momentum

squared, p̂2, in Eq.(A.2) by this operator yields the one-dimensional

time-independent Schrödinger Eq.(A.5).

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (A.5)
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This single-particle one-dimensional equation can easily be

extended to the case of three dimensions, where it becomes

− ~2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (A.6)

A.2 The time-dependent Schrödinger

equation

The wave function of a particle of fixed energy E could be

written as a linear combination of wave functions of the form

Ψ(x, t) = Aei(kx−ωt) (A.7)

representing a wave travelling in the positive x direction, and a

corresponding wave travelling in the opposite direction [55]. The

wave function in Eq.(A.7) is regarded as a wave function for a free

particle of momentum p = ~k and energy E = ~ω. With this in

mind, we can then note that

∂2Ψ

∂x2
= −k2Ψ (A.8)

which can be written, using E = p2

2m
= ~2k2

2m
:

− ~2

2m

∂2Ψ

∂x2
=

p2

2m
Ψ. (A.9)
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Similarly

∂Ψ

∂t
= −iωΨ (A.10)

which can be written, using E = ~ω:

i~
∂Ψ

∂t
= ~ωψ = EΨ. (A.11)

We now generalize this to the situation in which there is both a

kinetic energy and a potential energy present, then E = p2

2m
+V (x)

so that

EΨ =
p2

2m
Ψ + V (x)Ψ (A.12)

where Ψ is now the wave function of a particle moving in the

presence of a potential V (x). But if we assume that the results

Eq.(A.9) and Eq.(A.11) still apply in this case then we have

− ~2

2m

∂2Ψ

∂x2
+ V (x)Ψ = i~

∂ψ

∂t
(A.13)

which is the famous time-dependent Schrödinger equation.
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Appendix B

Derivation of the

Orthogonality condition

In this section we derive the orthogonality condition leading to a

special normalisation condition as given by Eq.(1.19). In general,

a one-dimensional wave equation for a closed system occupying the

interval a ≤ x ≤ b (for example, a particle in a box with infinite

walls at x = a and x = b) can be formulated as follows: Take

Hψn(x) = Enψn(x), (B.1)

multiply Eq.(B.1) by ψm and integrate. Then obtain:

∫ b

a

ψm(x)Hψn(x)dx = En

∫ b

a

ψm(x)ψn(x)dx. (B.2)

Similarly, from

Hψm(x) = Emψm(x), (B.3)
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we have

∫ b

a

ψn(x)Hψm(x)dx = Em

∫ b

a

ψn(x)ψm(x)dx. (B.4)

Subtract Eq.(B.4) form Eq.(B.2) and use the fact that the Hamil-

tonian H is Hermitian for any closed system. Then we obtain:

∫ b

a

(ψn(x)Hψm(x)− ψm(x)Hψn(x)) dx = (En−Em)

∫ b

a

ψn(x)ψm(x)dx = 0.

(B.5)

Obviously, for En 6= Em the last integral vanishes.

Now consider an open system like a rectangular quantum

well Fig.(2.1). The Schrödinger equation in this case is the same

(but written here in term of the eigen wave numbers):

Hψn(x) = k2
nψn(x). (B.6)

Multiplying Eq.(B.6) by ψm and integrating over a finite interval,

from xL to xR which are both outside the system, obtain:

∫ xR

xL

ψm(x)Hψn(x)dx = k2
n

∫ xR

xL

ψm(x)ψn(x)dx. (B.7)

Similarly,

Hψm(x) = k2
mψm(x), (B.8)

then

∫ xR

xL

ψn(x)Hψm(x)dx = k2
m

∫ xR

xL

ψn(x)ψm(x)dx, (B.9)
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with

H = − d2

dx2
+ V. (B.10)

Subtract Eq.(B.9) from Eq.(B.7) to obtain

∫ xR

xL

(ψn(x)Hψm(x)− ψm(x)Hψn(x)) dx = (k2
n−k2

m)

∫ xR

xL

ψn(x)ψm(x)dx.

(B.11)

Using Eq.(B.10), Eq.(B.11) becomes

∫ xR

xL

(
ψn

(
− d2

dx2
+ V

)
ψm − ψm

(
− d2

dx2
+ V

)
ψn

)
dx = (k2

n−k2
m)

∫ xR

xL

ψn(x)ψm(x)dx.

(B.12)

This can be simplified to

−
∫ xR

xL

(ψnψ
′′
m − ψmψ′′n) dx = (k2

n − k2
m)

∫ xR

xL

ψn(x)ψm(x)dx.

(B.13)

Integrating Eq.(B.13) by parts and noting that outside the system

ψn(x) = Ane
iknx for x > a, so that ψ′n = iknψn(x), we finally

obtain for n 6= m a proper orthogonality condition Eq.(1.19)

δnm =

∫ xR

xL

ψn(x)ψm(x)dx− ψn(xL)ψm(xL) + ψn(xR)ψm(xR)

i(kn + km)
,

(B.14)

For n = m, a rigorous approach requires to involve Green’s

function which is done e.g. in [1, 5, 10].
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Appendix C

Derivation of the Bloch

theorem

In this section we derive the Bloch theorem described by a one-

dimensional periodic potential.

Consider an N identical periodic lattice, each separated by

a lattice constant a

ψ(x+ a) = eikaψ(x), (C.1)

with a periodic boundary condition

ψ(x+Na) = ψ(x), (C.2)

The symmetry of this potential implies that we can find a solution

to the wave equation

ψ(x+ a) = Bψ(x). (C.3)
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If we apply this translational symmetry N times we will return to

the initial lattice point:

ψ(x+Na) = BNψ(x) = ψ(x). (C.4)

This requires BN = 1 and has the general solution of the form

BN = e2πni n = 0,±1,±2, ... (C.5)

or

B = e2πni/N = eika (C.6)

where k is the Bloch wavevector given as

k =
2πn

Na
. (C.7)

Using Eq. (C.6) we can re-write Eq. (C.3) as

ψ(x+ a) = Bψ(x) = eikaψ(x) (C.8)

which implies Blochs theorem.
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Appendix D

Derivation of the energy

dispersion in the

Kronig-Penney model

In this section we derive the energy dispersion in the Kronig-

Penney model Eq.(5.6). We start from the one-dimensional time

independent Schrödinger equation Eq.(1.26) using again m = 1/2

and ~ = 1. Since a particle moves in a periodic potential

V (x) = −γ
∞∑

n=−∞

δ(x− nd), (D.1)

its wavefunction must satisfy Bloch’s theorem for any choice of

superlattice

ψ(x+ d) = eiqdψ(x). (D.2)

where d is the period of the superlattice potential while q is the

eigen-wavenumber associated with the direction of particle motion.
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Figure D.1: A sketch of a potential profile of a Kronig-Penney
model approximated by Dirac-δ functions.

In region (1) the wave function is given by:

ψ1(x) = Aeikx +Be−ikx (D.3)

The wave function in region (2) can be written interms of Bloch

theorem Eq.(1.31)

ψ2(x) = ψ1(x− d)eiqd =
[
Aeik(x−d) +Be−ik(x−d)

]
eiqd (D.4)

where k =
√
E and q =

√
k2 + γ. Applying the continuity condi-

tion to the wavefunction, i.e.

ψ1(d) = ψ2(d) (D.5)

which gives

(A+B)eiqd = Aeikd +Be−ikd (D.6)

Therefore

A(eiqd − eikd) = B(e−ikd − eiqd) (D.7)

The continuity of the first derivative is not satisfied since V (x)

120



consist of δ-functions. Integrating the Schrödinger equation

∫ d+δ

d−δ

d

dx

(
dψ

dx

)
dx = ψ′(d+ δ)− ψ′(d− δ) (D.8)

This is express as

∫ d+δ

d−δ

d

dx

(
dψ

dx

)
dx = −2m

~

∫ d+δ

d−δ
[γδ(x− d)− E]ψ2(x)dx = −γψ2(d).

(D.9)

Applying the discontinuity relation to the wave function in Eq.(D.4)

obtain

[
ikeiqd − ikeikd + γeiqd

]
A =

[
ikeiqd − ike−ikd − γeiqd

]
B. (D.10)

Solving Eq.(D.7) and Eq.(D.10) leads to the following final expres-

sion

cos(qd) = cos(kd)− γ

2k
sin(kd) (D.11)

The importance of this equation is that it provides a restriction

on the allowed values of kn in the periodic potential. The LHS

of Eq.(D.11) is bounded in the region of (−1, 1) which leads to

that restrictions. (See for e.g. Fig. D.2 for different wells/barrier

strengths).
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Figure D.2: Plot of the function cos(kd)− γ
2k sin(kd) for wells (bar-

riers) γ > 0 (γ < 0).
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Appendix E

Calculation of the

normalisation coefficients

for RSs in a rectangular

well

In this section we calculate the normalisation coefficients for a

rectangular well in Chap. 2 as given by Eq.(2.17) and Eq.(2.18).

We use the proper normalisation condition as given by the

orthonomality condition

∫ a

−a
ψ2(x)dx− ψ2(−a) + ψ2(a)

2ik
= 1. (E.1)
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The wave function as given by Eq.(2.3) is

ψ(x) =



Aeikx, if x > a

B(eiqx + pe−iqx), if |x| ≤ a

Ae−ikx, if x < −a

(E.2)

where E = k2, q =
√
k2 + V0 and p = ±1 is the parity.

Applying the boundary conditions to the wave functions

get

Aeika = B(eiqa + pe−iqa), (E.3)

and

ikAeika = iqB(eiqa − pe−iqa). (E.4)

we multiply Eq.(E.3) by ik and get

ikAeika = ikB(eiqa + pe−iqa), (E.5)

Expressing Eqs.(E.4) and (E.5) obtain

q

k
=
eiqa + pe−iqa

eiqa − pe−iqa
(E.6)

from this we get Eq. (2.11)

pe2iqa =
q − k
q + k

. (E.7)

Using Eq.(E.7) we can write the wave function within the finite
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range |x| ≤ a as

ψ2 = B2(e2iqx + e−2iqx + 2p) (E.8)

Using ψ2(a)=ψ2(−a) from Eq. (E.1) obtain

∫ a

−a
ψ2(x)dx− ψ2(a)

ik
= 1. (E.9)

Using Eq.(E.8) we can write ψ2(a)
ik

in Eq.(E.9) as

ψ2(a)

ik
=
B2

ik
(e2iqa + e−2iqa + 2p). (E.10)

Eq.(E.10) can be written interms of Eq.(E.7) as

ψ2(a)

ik
=

4q2B2p

ik(q2 − k2)
=

4q2B2p

ikV0

. (E.11)

were

V0 = q2 − k2. (E.12)

Similarly, from Eq.(E.9) and usin Eq.(E.8) we can write

∫ a

−a
ψ2(x)dx = B2

(
e2iqa − e−2iqa

iq
+ 4pa

)
(E.13)

Simplifying Eq.(E.13) using Eq.(E.7) get

∫ a

−a
ψ2(x)dx = B2p

(
4a+

4kq

iq(q2 − k2)

)
(E.14)
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This can be written in terms of Eq.(E.12) as

∫ a

−a
ψ2(x)dx = B2p

(
4a+

4k

iV0

)
. (E.15)

We now substitute Eq.(E.11) and Eq.(E.15) into Eq.(E.9)

B2p

(
4a+

4k

iV0

)
− 4q2B2p

ikV0

= 1. (E.16)

Rearranging this we get

4B2p

[
a+

k

iV0

− q2

ikV0

]
= 1 (E.17)

using Eq. (E.12) we can write from Eq. (E.17).

k2 − q2

iV0k
= − 1

ik
=
i

k
(E.18)

Putting Eq. (E.18) in Eq. (E.17) we get the normalisation coeffi-

cient B as

B =
(−i)n

2
√
p
(
a+ i

k

) . (E.19)

Following similar method obtain the coefficient A as

An =
(−1)nqne

−ikna√
V (a+ i

kn
)
. (E.20)
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Appendix F

Matlab code

In this section we present a code written in MATLAB for the

determination of resonant states wave numbers in a double delta

function potential implemented using Newton-Raphson method.

function RSs-NRM

clearvars

close all

V0=3;

kere = −100 : 1 : 100; guess value along the real k-plane

keim = (−3 : 1 : 0)*1i; guess value along the imaginary k-plane

tol = 1e− 9; Tolerance

maxiter = 100; this determine the max. number of iteretions

ke = zeros(length(kere),length(keim)); ke - Maximum number of

resonant states (RSs) wave numbers to be computed

iter = zeros(length(kere),length(keim));

This loop apply the Newton-Raphson method for finding
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all the RSs wave numbers

for ii=1:length(kere)

for jj=1:length(keim)

ke(ii,jj) = kere(ii)+keim(jj);

while(iter(ii,jj)<maxiter)||(abs(Newton-Raphson(ke(ii,jj),V0))>

tol)

ke(ii,jj) = ke(ii,jj)-Newton-Raphson(ke(ii,jj),V0)/func-prime(ke(ii,jj),V0);

iter(ii,jj) = iter(ii,jj)+1; end

if iter(ii,jj)==maxiter

ke(ii,jj)=0;

end

end

end

ke = ke(:);

kp = zeros(1,length(ke));

kp(1) = ke(1);

tol=1e− 6;

c=1;

for i = 2: length(ke);

if all(abs(real(ke(i))-real(kp(1:c)))>tol)||all(abs(imag(ke(i))-

imag(kp(1:c)))>tol)

c=c+1;

kp(c) = ke(i);

end

end
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kp=kp(1:c);

This loop removes all repeated solutions and the ones that are zero

at both real and imaginary axis

kp2 = zeros(1,length(kp));

tol = 1e− 6;

c =0;

for i = 1: length(kp);

if(abs(kp(i))>tol)

c = c+1;

kp2(c) = kp(i);

end

end

kp = kp2(1:c);

plot(kp,’+b’); Here we plot our RSs wave numbers in a complex

k-plane.

M = [real(kp.’),imag(kp.’)];

dlmwrite(’output.dat’,M,’t’);

This is the function we solved

function[value] = Newton-Raphson(ke,V0)

value = exp(2*1i*ke)+1+2*1i*ke/V0;

end

function[value] = func-prime(ke,V0)

value = 2*1i*exp(2*1i*ke)+2*1i/V0;

end
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end
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Appendix G

Particle in a single

delta-like potential

Consider a particle in a quantum well described by a delta-like

potential V (x) = −αδ(x), where α is a positive constant. Using

the units in which ~ = 1 and the particle mass m = 1/2, the

Schrödinger equation takes the form

[
− d2

dx2
− αδ(x)

]
ψ(x) = Eψ(x). (G.1)

For a bound state the energy E = −κ2 < 0, is negative where κ

is a positive real number. The general form of the wave function

follows from Eq.(G.1) for x 6= 0, i.e. where the delta function has

no effect. Thus

ψ(x) =


Aeκx +Be−κx x < 0,

Ceκx +De−κx x > 0.

(G.2)
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where A,B,C, and D are some constants.

Using the boundary conditions for localised states ψ(x →

±∞) = 0 we find that B = C = 0, while the continuity of the wave

function at x = 0 yields A = D. However, due to the delta-like

potential, the wave function is not smooth at x = 0. It’s derivative

has a discontinuity. To take the effect of the delta-like potential

into account and to calculate this discontinuity, let us integrate

Eq.(G.1) over a small area surrounding the point x = 0

−
∫ ε

−ε

d2ψ(x)

dx2
dx− α

∫ ε

−ε
δ(x)ψ(x)dx = E

∫ ε

−ε
ψ(x)dx (G.3)

and then take the limit ε→ 0+, where 0+ is positive infinitesimal.

The result is

−ψ′(0+) + ψ′(0−)− αψ(0) = 0. (G.4)

Differentiating the wave function, obtain

ψ′(x) = Aκ


eκx x < 0,

−e−κx x > 0.

(G.5)

Substituting the derivatives into Eq.(G.4) gives

κ =
α

2
(G.6)

and therefore

E = −κ2 = −α
2

4
. (G.7)
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Eq.(G.6) is a linear equation for κ. Therefore, for any real positive

constant α there is only one localised state in the potential−αδ(x).

This bound state has the energy given by Eq.(G.7). The wave

functionψ(x) = Ae−α|x|/2 can be normalised by requiring

∫ ∞
−∞

ψ2(x)dx = 2A2

∫ ∞
0

e−αx =
2A2

α
= 1, (G.8)

from what follows that A =
√

α
2
. The solution for the localised

state (the energy and the wave function) obtained can be checked

by double differentiation of the wave function

ψ′′(x) =

√
α

2

[
α2

4
e−α|x|/2 − αδ(x)

]
(G.9)

and substitution back into Eq.(G.1).
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Appendix H

Calculation of the

normalisation coefficients

for RSs in a double

well/barrier system

In this section we determine the normalisation coefficient for cal-

culating the perturbation matrix. We consider the wavefunction

within the the range |x| 6 a, in Eq. (3.4). Applying the normali-

sation condition

∫ a

−a
ψ2
n(x)dx− ψ2

n(−a) + ψ2
n(a)

2ikn
= 1. (H.1)

to the wave function Eq. (3.4) and excluding exponentials with the

help of the secular equation Eq. (3.10)

1 +
2ik

γ
= ∓e2ika , (H.2)
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we can find the normalization constants A and C. Where the +

sign correspond to the even state and − sign the odd state. From

Eq. (3.4) we can write the wave function for |x| 6 a,

as

ψn(x) = Cn
(
eiknx ± e−iknx

)
(H.3)

Using equation Eq.(H.3) obtain

eiknx = cos kn(x) + i sin kn(x) (H.4)

and following from it

e−ikx = cos kn(x)− i sin kn(x) (H.5)

obtain

(eiknx + e−iknx)2 = 4 cos2 kn(x) (H.6)

Substituting Eq.(H.6) into Eq.(H.1) results in

4C2
n

∫ a

−a
cos2 kn(x)dx− 8C2

n cos2 kn(a)

2ikn
= 1. (H.7)

Performing integration

4C2
n

∫ a

−a

1

2
(1 + cos(2kn(x))) dx− 8C2

n cos2 kn(a)

2ikn
= 1 (H.8)

2C2
n

[∫ a

−a
dx+

∫ a

−a
cos(2kn(x))dx

]
+

8C2
n cos2 kn(a)

2ikn
= 1 (H.9)
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integrating Eq.(H.9) we get

C2
n

[
4a+

sin(2kn(a))− sin(2kn(−a))

kn

]
+

8C2
n cos2 kn(a)

2ikn
= 1

(H.10)

C2
n

[
4a+

2

kn
sin(2kn(a))− 4

ikn
cos2 kn(a)

]
= 1. (H.11)

Let from Eq.(H.11) write

sin(2kna) =
e2ikna − e−2ikna

2i
(H.12)

and

cos2(kna) =

(
e2ikna + e−2ikna

2

)2

=
e2ikna + e−2ikna + 2

4
. (H.13)

Using Eq.(H.2) and putting Eq.(H.12) and Eq.(H.13) into Eq.(H.11)

and rearranging obtain the normalisation coefficient for even state

as

C =
1

2
√

[a− (γ + 2ik)−1]
. (H.14)

Similar method were applied and obtain the coefficient for odd

state as

C =
1

2
√

[−a+ (γ + 2ik)−1]
(H.15)

and also the normalisation coefficient A as

A = C
(

1 +
γ

2ik

)−1

. (H.16)
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Appendix I

Symmetry in a double

delta-function potential

In this section we prove the symmetry of a wave function for both

even and odd states in a double delta-function potential in Chap. 3.

The solutions to the time-independent Schrödinger equation with

a double delta function potential Eq.(3.1) come in two forms :

1. Even parity: ψe(−x) = ψe(x) symmetric states

2. Odd parity: −ψo(−x) = ψo(x) anti-symmetric states

Let’s first consider the symmetric solution for an even-

parity wavefunction

ψe(x) =



Ae−iknx, if x < −a

C1e
iknx + C2e

−iknx, if |x| ≤ a

Beiknx, if x > a

(I.1)
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Then

ψe(−x) =



Aeiknx, if x < −a

C1e
−iknx + C2e

iknx, if |x| ≤ a

Be−iknx, if x > a

(I.2)

Now require that the wavefunction is symmetric ψe(−x) = ψe(x).

Let’s consider first the region for x < −a :

Aeiknx = Beiknx (I.3)

valid for any x < −a. Therefore

A = B. (I.4)

Lets now consider the region for −a < x < a

C1e
iknx + C2e

−iknx = C1e
−iknx + C2e

iknx. (I.5)

Rearranging Eq.(I.5), we obtain

(C1 − C2) eiknx − (C1 − C2) e−iknx = 0. (I.6)

Factorizing Eq.(I.6) we have

(C1 − C2)
(
eiknx − e−iknx

)
= 0 (I.7)
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which holds only for any −a < x < a. Therefore,

C1 = C2 = C. (I.8)

Using Eq.(I.4) and Eq.(I.8) into Eq.(I.1), we can write the even-

parity wavefunction as

ψe(x) =



Beiknx, if x < −a

C
(
eiknx + e−iknx

)
, if |x| ≤ a

Be−iknx, if x > a

(I.9)

which clearly shows the symmetry of the wave function about the

origin. This is also applicable to the rectangular well in Chap. 2.

For the odd-parity wavefunction we start with the same form of

the solution

ψo(x) =



Ae−iknx, if x < −a

C1e
−iknx + C2e

iknx, if |x| ≤ a

Beiknx, if x > a

(I.10)

Then

ψo(−x) =



Aeiknx, if x < −a

C1e
−iknx − C2e

iknx, if |x| ≤ a

Be−iknx, if x > a

(I.11)

For the wavefunction to be odd-parity ψo(−x) = ψo(x).
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Let’s first consider the region for x > a

Be−iknx = −Ae−iknx (I.12)

valid only for x > a. Therefore,

B = −A (I.13)

or

A = −B. (I.14)

Let’s now consider the region for a < x < −a

C1e
iknx + C2e

−iknx = −C1e
−iknx − C2e

iknx. (I.15)

Rearranging Eq.(I.15) we obtain

(C1 + C2) eiknx = − (C1 + C2) e−iknx (I.16)

Factorising Eq.(I.16) we obtain

(C1 + C2)
(
eiknx + e−iknx

)
= 0 (I.17)

which holds only if a < x < −a. Therefore

C1 = −C2 (I.18)
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or

C2 = −C1. (I.19)

We now let’s from Eq.(I.18) and Eq.(I.19) respectively as

C1 = C (I.20)

and

C2 = −C. (I.21)

Substitute equations Eq.(I.14), Eq.(I.20) and Eq.(I.21) into Eq.(I.10)

gets

ψo(x) =



−Beiknx, if x < −a

C
(
eiknx − e−iknx

)
, if |x| ≤ a

Be−iknx, if x > a

(I.22)

This clearly shows the anti-symmetric wavefunction, ψo(−x) =

ψo(x).
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Appendix J

Derivation of the exact

solution for an asymetric

triple quantum well

In this section we derive the exact solution for an asymetric triple

quantum well in Chap. 3. The model of this potential for a one-

dimensional time independendent Schrödinger equation is given

by

V (x) = −γδ(x− a)− γδ(x+ a)− βδ(x− b) (J.1)
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The wave function satisfying the outgoing boundary conditions

has the form

ψ(x) =



Aeκx, if κ < −a

Beκx + Ce−κx, if − a < x < b

De−κx + Eeκx, if b < x < a

Fe−κx, if x > a

(J.2)

The wavefunction ψ(x) is continuos at x = ±a and at x = b

and its first derivative ψ′(x) has a discontinuity. The continuity

relations at x = ±a and at x = b are repectively given by

ψ(±a+ 0+) = ψ(±a− 0+) (J.3)

and

ψ(b+ 0) = ψ(b− 0) (J.4)

The discontinuity at x = ±a and at x = b is given, respectively,

by the following relations

ψ′(±a+ 0+)− ψ′(±a− 0+) = −γψ(±a) (J.5)

and

ψ′(b+ 0)− ψ′(b− 0) = −βψ(b). (J.6)
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Using the above relations we obtain the following set of six simul-

taneous equations for the constant coefficients in the wave function

Eq.(J.2

Ae−κa = Be−κa + Ceκa, (J.7)

Beκb + Ce−κb = De−κb + Eeκb, (J.8)

Fe−κa = De−κa + Eeκa, (J.9)

κBe−κa − κCeκa = −γAeκa + κAe−κa, (J.10)

κDe−κa − κEeκa = −γFeκa + κFe−κa, (J.11)

−κDe−κb+κEeκb−κBeκb+κCe−κb = −βBeκb−βCe−κb. (J.12)

We multiply Eq.(J.7) by κ and get

κAeκa = κBe−κa + κCeκa. (J.13)

Subtracting Eq.(J.10) from Eq.(J.13) we get the coefficient B in

terms of A,
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B =
A

2κ
(2κ − γ), (J.14)

and adding Eq.(J.10) to Eq.(J.13) we get the coefficient C in terms

of A,

C =
γ

2κ
e−2κaA. (J.15)

We multiply Eq.(J.9) by κ and obtain

κFe−κa = κDe−κa + κEeκa. (J.16)

Adding Eq.(J.11) to Eq.(J.16) we get the coefficient D in terms of

F :

D =
F

2κ
(2κ − γ). (J.17)

Subtracting Eq.(J.16) from Eq.(J.11) we get the coefficient E in

terms of F :

E =
γ

2κ
e−2κaF. (J.18)

We now substitute the expressed coefficientsB,C,D,E into Eq.(J.8)

to get the following equation

A

2κ
(2κ−γ)eκb+

γ

2κ
e−2κaAe−κb =

F

2κ
(2κ−γ)e−κb+

γ

2κ
e−2κaFeκb

(J.19)
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which can be simplified to

A
[
(2κ − γ)eκb + γe−2κae−κb

]
−F

[
(2κ − γ)e−κb + γe−2κaeκb

]
= 0

(J.20)

Substituting the coefficients B,C,D,E into Eq.(J.12) we obtain

−κ F

2κ
(2κ − γ)e−κb + κ

γ

2κ
e−2κaFeκb

−κ A

2κ
(2κ − γ)eκb + κ

γ

2κ
e−2κaAe−κb =

−β A
2κ

(2κ − γ)eκb − β γ

2κ
e−2κaAe−κb. (J.21)

We collect the like terms of Eq.(J.21) and get the expression of

the form

A

[
γ

2
e−2κae−κb

(
1 +

β

κ

)
− 1

2
(2κ − γ)eκb

(
1− β

κ

)]
=

F

[
1

2
(2κ − γ)e−κb − γ

2
e−2κaeκb

]
. (J.22)

Simplifying Eq.(J.22) we obtain

A

[
γe−2κae−κb

(
1 +

β

κ

)
− (2κ − γ)

(
1− β

κ

)
eκb
]
−

F
[
(2κ − γ)e−κb − γe−2κaeκb

]
= 0 (J.23)

Now combining Eq.(J.20) and Eq.(J.23) we obtain the secular

equation for κ :
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γe−2κae−κb
[
(2κ − γ)e−κb + γe−2κaeκb

] (
1 + β

κ

)
[(2κ − γ)eκb + γe−2κae−κb]

−
[
(2κ − γ)e−κb + γe−2κaeκb

]
(2κ − γ)

(
1− β

κ

)
eκb

[(2κ − γ)eκb + γe−2κae−κb]

−(2κ − γ)e−κb + γe−2κaeκb = 0 (J.24)

which can be simplified to the following:

(
(2κ − γ)e−κb + γe−2κaeκb

) [
γe−2κae−κb

(
1 +

β

κ

)
− (2κ − γ)

(
1− β

κ

)
eκb
]

−
(
(2κ − γ)e−κb − γe−2κaeκb

) (
(2κ − γ)eκb + e−2κae−κb

)
= 0

(J.25)

Eq.(J.25) can be reduced to

ξ2(1− η)− 2ξ cos(2iκb) + 1 + η = 0 , (J.26)

where

ξ =
e−2κa

1 +−2κ/γ
and η =

−2κ
β

. (J.27)

By replacing κ = −ik, one obtains Eq.(3.40).
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Appendix K

Derivation of transmission

amplitude for a double

delta function potential

In this section we derive Eq.(3.48) for the transmission amplitude

for the double delta potential V (x) given by

V (x) = −γδ(x− a)− γδ(x+ a) (K.1)

where γ is the strength of the potential well. There is a gen-

eral method for finding the transmission from piecewise potentials:

transfer matrix method [56]. Here we find this transmission in a

similar way, by using the homogenous solutions, and finding the

constant coefficients applying the boundary conditions.

Consider a free particle incoming from left to the right and

and having a probability to be reflected back and transmitted

througth the double quantum well structure. This correspond to
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the following form of the wave function.

ψ(x) =



Aeikx +Be−ikx, if x < −a

Ceikx +De−ikx, if |x| ≤ a

Feikx, if x > a

(K.2)

The continuity relations across the delta function satisfies the fol-

lowing boundary conditions at x = ±a

ψ(±a+ 0+) = ψ(±a− 0+), (K.3)

ψ′(±a+ 0+)− ψ′(±a− 0+) = −γψ(±a). (K.4)

This results in the following simultaneous algebraic equations :

Ae−ika +Beika = Ce−ika +Deika, (K.5)

Ceika +De−ika = Feika, (K.6)

ik
[
Ce−ika −Deika − Ae−ika +Beika

]
= − γ(Ae−ika +Beika),

(K.7)

ik
[
Feika − Ceika +De−ika

]
= −γFeika. (K.8)
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We multiply Eq.(K.5) by ik and get

ikAe−ika + ikBeika = ikCe−ika + ikDeika. (K.9)

Adding Eq.(K.5) and Eq.(K.9) we get the coefficient C in terms

of A and B :

C =
A(2ik − γ)e−ika − γBeika

2ike−ika
(K.10)

Subtracting Eq.(K.9) from Eq.(K.5) we get the coefficient D in

terms of A and B :

D =
γAe−ika +B(2ik + γ)eika

2ikeika
. (K.11)

Then we multiply Eq.(K.6) by ik and get

ikCeika + ikDe−ika = ikFeika. (K.12)

Adding and subtracting Eq.(K.12) from Eq.(K.17) we get the co-

efficients C and D, respectively, in terms of F :

C =
F (2ik + γ)

2ik
, (K.13)

D =
−γFe2ika

2ik
. (K.14)

Combining Eq.(K.10) with Eq.(K.13) and Eq.(K.11) with Eq.(K.14),

we get two espressions for B in terms of A and F :
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B =
A(2ik − γ)e−ika − F (2ik + γ)e−ika

γeika
(K.15)

and

B =
−γFe3ika − γAe−ika

(2ik + γ)eika
. (K.16)

Excluding B from Eq.(K.15) and Eq.(K.16), we obtain

A(2ik − γ)e−ika − F (2ik + γ)e−ika

γeika
=
−γFe3ika − γAe−ika

(2ik + γ)eika

(K.17)

After some algebra Eq.(K.17) yields

t(k) =
F

A
=

(2ik − γ)(2ik + γ) + γ2

(2ik + γ)(2ik + γ)− γ2e4ika
(K.18)

which determines the transmission amplitude t(k). Simplifying

Eq.(K.18) further, we obtain Eq.(3.48)

ta(k) =
F

A
=

4k2

4k(k − iγ)− γ2(1− e4ika)
. (K.19)
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