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Cellular immunity is governed by a complex network of migratory cues that enable 10 

appropriate immune cell responses in a timely and spatially controlled fashion. This 

review focuses on the chemokines and their receptors regulating the steady state 

localization of immune cells within healthy peripheral tissues. Steady-state immune 

cell traffic is not well understood but is thought to involve constitutive (homeostatic) 

chemokines. The recent discovery of tissue-resident memory T (TRM) cells illustrates 15 

our need for understanding how chemokines control immune cell mobilization and/or 

retention. These studies will be critical to unravel novel pathways for preserving 

tissue function (aging) and preventing tissue disease (vaccination). 
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Tissue immune surveillance, the last frontier in immunology 

For many reasons that include restricted access to healthy human tissue and sample 

sizes, there exists a formidable gap in our knowledge about how immune 

surveillance cells are recruited and retained in healthy tissues. This situation is 

remarkable for two reasons: 1) the significant complexity of immune surveillance cells 5 

present in healthy tissues/organ, notably those constantly exposed to environmental 

microbes and toxins and, 2) the extended duration this system needs to operate, 

which can exceed 80 years in humans. Peripheral tissue immune surveillance 

compartments are composed of both cells of the innate and adaptive immune 

systems and the diversity in their composition reflects the special need for immune 10 

surveillance tailored to distinct body locations.  

As, thankfully, most individuals are healthy most of the time, the maintenance of 

tissue immune surveillance is a long-lasting process whose duration vastly exceeds 

that of rare episodes of infection and inflammation. Obviously, chemokines and their 

receptors expressed on target cells in collaboration with adhesion receptors and their 15 

ligands are intimately involved in both processes. The reader interested in general 

aspects of the chemokine system and its involvement in host defence is referred to 

excellent reviews published in recent years [1-3]. The vast majority of the literature 

deals with the inflammatory side of the chemokine network. Homeostatic immune cell 

processes are also controlled by chemokines whose expression is constitutive and 20 

tissue-specific. Again, our current understanding of the control of immune cell traffic 

by chemokines in primary (bone marrow, thymus) and secondary lymphoid tissues 

(LNs, spleen, Peyers Patches) is well advanced [3]. In clear contrast, our 

understanding of immune cells localization in peripheral tissues and healthy organs is 

still very limited. Exciting new findings revealed the importance of the tissue 25 

environment on shaping local immune cells, as best examined for tissue 

macrophages [4-6], and some types of tissue-resident memory T (TRM) cells [7-10]. 

In this article, we will discuss recent advances in our understanding of how 

chemokines and their receptors help orchestrate T cell compartments in healthy 

peripheral tissues with the view that this knowledge may help us understand the 30 

steady-state immune processes underpinning tissue health. 
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Migration control of circulating T cells 

Antigen-experienced T cells in peripheral blood include lymph node-homing central 

memory T (TCM) cells and memory precursor T (TMP) cells as well as effector 

memory T (TEM) cells that are largely excluded from secondary lymphoid tissues [11-

13]. Naïve, TCM and TMP cells, express CCR7 as well as CD62L (E-selectin) for 5 

binding to GlyCAM-1 on high endothelial cells (HEV), which enables their sequential 

entrance into tissue-draining lymph nodes in response to CCL19 and CCL21 under 

steady-state conditions (reviewed in [14]). TEM cells lack CCR7 but express 

combinations of receptors for inflammatory chemokines guiding them to peripheral 

sites during episodes of inflammation. As such, TEM cell recruitment is transient and 10 

ceases to occur with resolution of inflammation.  

In line with the underlying paradigm linking immune function with cell migration 

properties, the chemokine system defines distinct subsets among circulating memory 

T cell subsets. This is best exemplified by T helper cell subsets whose functional 

properties (cytokine secretion profile) correlate with the combinatorial cell surface 15 

expression of chemokine receptors, as expertly discussed in recent review articles [2, 

15]. Under steady-state conditions, circulating TCM and TEM cells are largely 

excluded from healthy peripheral tissues and organs and, as such, do not appear to 

contribute to the peripheral immune surveillance system.  

During immune responses, pathogen-specific T cells are activated in relevant tissue-20 

draining LNs where they expand and differentiate into effector T cells before being 

released into the blood stream. The type of chemokine receptors present on effector 

T cells matches their functional demand at the site of infection/inflammation. 

Interestingly, early work in mice has demonstrated that effector T cells also gain 

access, in reduced numbers, to healthy peripheral tissues throughout the body [16, 25 

17]. This process may help to prevent the spreading of infections to secondary sites 

and, in addition, may contribute to long-lived peripheral memory T cell compartments 

in unaffected (healthy) tissues. Further, the gene expression signature of TMP cells, 

the survivors of effector T cell contraction phases, includes the lymphoid tissue 

chemokine receptors CXCR4, CCR7 as well as the inflammatory chemokine 30 

receptors CXCR3 and CXCR6 that may potentially guide these cells to inflammatory 

sites [18, 19]. Collectively, memory T cells in peripheral blood do not gain access 
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under steady-state conditions to healthy tissues, indicating that their study does not 

reveal the characteristics typically associated with memory T cells present in healthy 

peripheral tissues. 

 

Control of T cell positioning by homeostatic chemokines 5 

It is becoming increasingly clear that T cells present in healthy (steady-state) 

peripheral tissues are not simply a mirror image of circulating T cells. This 

fundamental understanding raises many exciting questions regarding the 

mechanisms governing their generation as well as their tissue-specific localization 

and retention. Recent findings emphasise the importance of target tissues 10 

themselves in this process [15, 20]. A point in case is tissue macrophages, many of 

which are derived from “primitive” myeloid progenitor cells generated in the yolk sac 

or foetal liver (reviewed in [4, 6, 21, 22]). Following recruitment into diverse tissues, 

these progenitors develop into specialized macrophages, such as microglia, Kupffer 

cells, peritoneal macrophages or Langerhans cells.  15 

Obviously, (but with the notable exception of murine dendritic epidermal T cells 

[DETCs], see below), peripheral tissue memory T cells are not derived from 

embryonic precursors but instead reflect past immune activation events involving 

effector T cells and, potentially, TMP cells [16, 17]. Tissue-homing properties are 

imprinted in part by soluble tissue-derived migration cues that effector T cells are 20 

exposed to in draining LNs. Again, and in contrast to inflammatory diseases marked 

by an array of inducible (inflammatory) chemokines, the functions of constitutively 

produced chemokines within distinct healthy peripheral tissues are not well 

understood. In this section, we will describe chemokine receptors and ligands that 

have been associated with controlling the location of peripheral tissue memory T 25 

cells (Table 1). For clarity, we will refer to the entire population of T cells present in 

healthy non-lymphoid tissues at any given time as peripheral immune surveillance T 

(TPS) cells. TPS cells include TRM cells as well as migratory memory T cells, NKT 

cells and  T cells [23]. Please note that numerous chemokines have dual functions, 

i.e. are present in healthy tissues yet become upregulated in response to 30 

inflammatory stimuli. 
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CXCR4/ACKR3 – CXCR4 is the most widely expressed chemokine receptor and 

binds the single chemokine CXCL12 that is constitutively produced in lymphoid 

organs and peripheral tissues (reviewed in [24]). It also binds gp120 envelope protein 

of HIV-1 and acts as HIV-1 co-receptor, together with CD4, for CXCR4-tropic (X4) 

HIV-1 particles (reviewed in [25]). Besides controlling the positioning of bone marrow 5 

and thymic progenitor cells during steady-state immune cell development (reviewed 

in [3, 26]), this chemokine receptor system participates in embryonic tissue 

development and wound healing (reviewed in [26, 27]). Recent work has revealed 

that ACKR3, an atypical chemokine receptor, fulfils an essential role in controlling 

homeostatic immune (and tissue) cell traffic through its ability to internalize and 10 

degrade extracellular CXCL12 (reviewed in [28]). Thus, homeostatic immune/tissue 

cell traffic is finely tuned by two opposing receptors; cell recruitment and/or retention 

of CXCR4+ cells by CXCL12 and inhibition of these CXCR4+ cell migration processes 

by ACKR3-mediated CXCL12 degradation. A role for CXCR4/ACKR3 in controlling 

TPS cell traffic has not been reported. 15 

CXCR6 – CXCR6 is found on activated and memory lymphocytes, including  T 

cells,  T cells, NK T cells, NK cells and B cells and is also present on TPS cells. 

Similar to CD8+ TRM cells, CXCR6+ memory T cells in human and mouse liver 

express CD69 and the transcription factor Hobit, that causes tissue retention by 

preventing the expression of the tissue-emigrant receptors CCR7 and S1P1R [29, 20 

30]. TRM-like CXCR6+ NK cells have also been detected in human liver [31, 32]. The 

relative contribution of soluble versus membrane-bound CXCL16 to the tissue 

residency of liver T cells and NK/NK T cells is not known although it is tempting to 

speculate that hepatocyte/cholangiocyte-associated CXCL16 plays a particular role 

in this process. Recently, CXCR6 was shown to support retention of memory T cells 25 

in mouse skin, supporting the notion that membrane-bound CXCL16 on local tissue 

cells may facilitate adhesive interactions with local CXCR6+ T cells [33]. Still, the 

CXCL16-CXCR6 axis in skin may be more relevant to inflammatory diseases since 

CXCL16 levels are low in healthy skin but become strongly upregulated during 

inflammation [34, 35]. 30 

CCR6 – CCR6 is broadly expressed on memory T cells, including Th17 cells, Treg 

cells,  T cells, and NK T cells, NK cells, B cells, DCs/LCs and neutrophils (reviewed 

in [24]). CCL20, the only selective ligand for CCR6, was reported to be present in 
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normal skin and mucosal epithelia as well as perivascular cells, suggesting a role in 

homeostatic immune cell traffic [36, 37]. However, it needs to be pointed out that 

CCL20 is prominently upregulated in inflammatory diseases of the skin and intestine, 

in agreement with the selective expression of CCR6 on distinct T helper cell subsets, 

especially Th17 cells [15]. IL-17-producing  T cells (T17) also express CCR6 5 

(together with CCR2) and are widely distributed in mouse mucosa/cutaneous tissues 

where they contribute to IL-17-driven inflammatory diseases [38]. CCR6 governs the 

retention of long-term memory  T cells in healthy tissues as well as LNs [39-41], 

linking this chemokine receptor expression with tissue immune surveillance by a 

special subset (V4+ T17) of  T cells. It is not clear whether CCR6 controls the 10 

same process in human mucosa/cutaneous tissues where  T cells are far less 

numerous than in mice. 

CCR9 – CCR9 is selective for only one chemokine, CCL25, whose expression is 

prominent in intestinal epithelia already in the steady-state but is further enhanced 

under inflammatory conditions (reviewed in [42]). CCR9 is abundant on small 15 

intestinal T cells, including intraepithelial and lamina propria  and  T cells, as 

wells IgA+ plasmablasts, plasmacytoid DCs and intestinal/hepatic macrophages, 

which is in clear contrast to peripheral blood where CCR9+ leukocytes are rare. The 

CCL25-CCR9 axis contributes to the recruitment of 47+  and  T cells to the 

small intestine, although T cell recruitment to this region does not solely depend on 20 

this chemokine system (reviewed in [43]). Despite the importance of the vast T cell 

compartment exceeding 1011 cells in the human intestinal mucosa, it is currently not 

clear how (if at all) CCR9 contributes to the immune surveillance traffic at this 

particular location.  

CCR10 – CCR10 plays a dual role in the control of mucosa/cutaneous lymphocyte 25 

traffic where it is found on subsets of  and  T cells, Treg cells, innate lymphoid 

cells (ILCs) and IgA+ plasmablasts [44, 45]. The tissue selectivity is provided by the 

two chemokines, CCL27 and CCL28 that specifically bind to CCR10. CCL27 is 

produced in the skin by basal keratinocytes and perivascular cells in the dermis, is 

highly elevated in inflammatory skin diseases but is absent in intestinal tissues [46-30 

48]. In clear contrast, CCL28 is produced by mucosal epithelial cells in the colon and 

secretory organs (salivary and mammary glands) where it orchestrated IgA+ 
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plasmablasts traffic [45, 49-52]. In addition, CCL28 was also demonstrated to control 

memory T cells traffic in the nasal mucosa where it is constitutively expressed by 

vascular endothelial cells [53]. Intriguingly, in this study CCL28 was proposed to act 

via CCR3, the second receptor for CCL28.  

The CCL27-CCR10 axis plays a redundant role in the recruitment of effector T cells 5 

to the inflamed skin [54]. Still, constitutive expression of CCL27 in human and mouse 

skin also suggests an involvement in the traffic control of TPS cells under steady-

state conditions. In addition, resident CCR10+ CD8+ T cells in murine skin were 

shown to enhance the survival of local Treg cells and, vice versa, local CCR10+ Treg 

cells affected the number of local conventional  T cells in the absence of skin 10 

inflammation [55, 56]. A similar role has been attributed to ILCs, a major cellular 

constituent of murine TPS cells in body-lining tissues, whose localization to healthy 

skin was also CCR10 dependent [57]. However, despite CCL27 expression, CCR10+ 

cells are absent in healthy human skin, denoting a species difference regarding the 

role played by the CCL27-CCR10 axis in controlling the local TPS cell compartment.  15 

CX3CR1 –Similar to CXCL16 (see above), CX3CL1, the ligand for CX3CR1, is a 

chemoattractant in its soluble form whereas membrane-bound CX3CL1 mediates 

adhesion of CX3CR1+ cells (reviewed in [24]). Besides distinct tissue macrophages, 

such as microglia, CX3CR1 is present on NK cells and T cells as well as monocytes, 

where its variation of expression distinguishes two major monocyte subsets. A 20 

function in tissue homeostasis is inferred from CX3CR1+ DCs during microbial 

surveillance in intestinal tissue and from the effect of CX3CR1+ microglia on neuronal 

plasticity and synaptic pruning [58, 59]. Of note, the CX3CL1-CX3CR1 axis has 

recently been implicated in tissue immune homeostasis. Similar to blood monocytes, 

the level of CX3CR1 expression in murine CD8+ T cells defines three subsets, TCM 25 

and TEM cells that either lack or express high level of CX3CR1, and a memory T cell 

subset with intermediate CX3CR1 expression [60]. CX3CR1int T cells are long-lived, 

recirculate through peripheral tissues (thus differing from TRM cells, which are 

sessile) and give rise to effector and TEM cells upon reinfection. Conversely, another 

group reported that LNs contain a sessile memory T cell subset characterized by 30 

CX3CR1 (and CD62L) expression with proposed pathogen surveillance function [61]. 

It is not clear at present whether the CX3CL1-CX3CR1 axis plays any role in the 

generation and/or maintenance of these novel memory T cells subsets.  
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Emerging chemokine systems with a role in tissue homeostasis – GPR15, a G-

protein coupled receptor induced on skin and colon immune cells by local TGF-1 

[62], was recently shown to facilitate the localization of fetal V3+ (alternatively called 

V+)  T cells in the embryonic epidermis of mice [63]. Fetal V3+  T cells are the 

precursors of dendritic epidermal T cells (DETCs) whose stress surveillance function 5 

in mouse skin is well described (reviewed in [64]. The  T cells equivalent to mouse 

DETCs do not exist in humans. GPR15 is also involved in the intestinal immune 

homeostasis in mice (but not humans) via its regulation of the local Treg cell 

compartment [65, 66]. The two identified ligands, a thrombomodulin-derived protein 

fragment [67] and C10ORF99-encoded protein GPR15L [68], do not mediate 10 

chemotaxis of GPR15+ cells, suggesting that a migration-unrelated mechanism 

underlies the GPR15 controlled processes in tissue immune homeostasis.  

CXCL14 and CXCL17 are highly expressed at the steady-state in a broad range of 

epithelial tissues and organs, suggesting important contributions to tissue immune 

homeostasis. CXCL14 is broadly expressed in body-lining tissues and internal 15 

organs (reviewed in [69]). A large body of literature describes the pro- or anti-tumour 

effect of CXCL14, which was linked to its function in angiogenesis and tumour 

immune surveillance. Similar to CXCL12, CXCL14 is involved in tissue development 

and glucose metabolism that may explain, in part, the striking survival defects 

observed in CXCL14-KO mice [70-72]. It is a chemoattractant for myeloid cells, 20 

notably blood monocytes, and also synergizes with CXCL12 in CXCR4-mediated 

chemokine responses [73]. Slow progress in CXCL14 research is largely due to the 

fact that its receptor has remained elusive. 

CXCL17 is prominently expressed in the tongue, airways (trachea, lung) and 

stomach as well as in psoriatic (but not healthy) skin and was shown to chemoattract 25 

myeloid cells (macrophages, monocyte-derived suppressor cells) [74, 75]. CXCL17 

was recently reported to be a selective chemokine ligand for GPR35 (subsequently 

called CXCR8), although others could not confirm this finding [76, 77]. GPR35 has 

long been known for its selectivity for the tryptophan derivative kynurenic acid (and 

related compounds), linking endogenous and/or microbial amino acid metabolism 30 

with intestinal disease (reviewed in [78]). The correlation between homeostatic 

CXCL17 production and GPR35-linked intestinal disease requires further 

investigations. 
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CCR8 designates tissue-resident memory T cell in healthy human skin 

A brief history of CCR8-related chemokine research is summarized in Box 1. The 

following discussion is restricted to human  T cells, although similar mechanisms 

may underlie the generation/maintenance of other numerically minor CCR8+ 5 

lymphocyte subsets ( T cells, NKT cells, NK cells). CCR8 is found on 

approximately half of all human skin CD4+ and CD8+ T cells [79]. Considering the 

enormous number of T cells present in human skin [80], we estimate that >1010 cells 

express CCR8, which is equivalent to all (naïve and memory) T cells present in 

peripheral blood. In clear contrast, CCR8 expression is rare (approx. 5%) among 10 

peripheral blood T cells and is absent on any other type of blood leukocytes, such as 

 T cells, B cells, NK cells, monocytes and neutrophils. All peripheral blood CCR8+ T 

cells are memory cells belonging to either TCM or TEM subsets and also co-express 

cutaneous lymphocyte-associated antigen (CLA), indicating that they may be on their 

way to the skin.  15 

The presence of two memory T cells subsets of equal size in healthy human skin that 

are distinguished by CCR8 expression raises the question as of how they relate to 

each other. The hallmark of TRM cells are receptors associated with their tissue 

residency (CD69+, CD103+/-) and transcription factors (Hobithi, Blimphi, Eomeslow, T-

betlow, KLF2low) controlling their tissue location and residency as well as their long 20 

term survival [7-10, 29]. Of interest, Runx3 was recently reported to be a master 

regulator of the transcription factor landscape underpinning the generation of TRM 

cells [81]. Human skin CCR8+ T cells bear many of the hallmarks ascribed to mouse  

TRM cells [7-10], including CD69/CD103 expression, proliferation responses to 

steady-state growth factors IL-7 and IL-15 and lower expression of Eomes and T-bet. 25 

In contrast, skin T cells lacking CCR8 were more variable in phenotypic and 

functional markers, expressed inhibitory receptors, including PD-1, showed poor 

proliferative responses ex vivo and had substantially higher levels of transcripts for 

effector molecules (perforin, granzymes, CXCR3, etc.). Underscoring these striking 

differences, the two major skin populations distinguished by CCR8 also recognized 30 

different antigens as demonstrated by TCR V clonotype analyses [79].  
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How human skin CCR8+ T cells relate to their CCR8+ counterparts in blood is not 

known. Similar to the recently described “migratory” memory T cells in human and 

mouse skin [82, 83] and “circulating” memory T cells in peripheral blood of mice [60], 

it is possible that the human blood CCR8+ compartment contains a subset of 

recirculating memory cells with homing preferences for healthy skin. Peripheral Treg 5 

cells seed mouse skin very early in life [84]. Although a recent report indicated 

human skin Treg cells were non-migratory [85], studies in mice have demonstrated 

their continuous emigration from the skin in the steady state [86]. Human skin Treg 

cells uniformly express CCR8 and, likewise, human peripheral blood contains CCR8+ 

Treg cells that co-express the skin-homing marker CLA and account for between one 10 

third and one half of all circulating FoxP3+ Treg cells [79, 87]. Interestingly, human 

CCR8+ Treg cells have also been found in skin-unrelated tumours, such as breast, 

lung and colorectal tumours, and their presence has been associated with a poorer 

prognosis [88, 89]. One group reported that triggering of CCR8 signalling enhanced 

the suppressive function of Treg cells [90]; however, a similar pro-Treg cell effect was 15 

not found by another group [88]. Since alternatively activated M2 macrophages 

frequently found in tumour tissue and Treg cells themselves produce CCL1, it is 

possible that the CCR8/CCL1 axis has been co-opted by the tumour to promote local 

immune suppression [91, 92]. How tumour and skin Treg cells relate to each other is 

not known but CCR8 expression may indicate shared localisation properties. 20 

Collectively, we propose that CCR8 may serve one or several roles in the localisation 

of CCR8+ TRM cells in human skin as discussed in Figure 1. Our understanding of 

CCR8 expression on mouse lymphocytes is rudimentary. In support of our model, 

CCR8 mRNA was detected late during anti-viral immune responses in mouse skin 

CD8+ TRM cells [93]. Also, lack of CCR8 did not prevent T cell recruitment to skin 25 

infection, suggesting that in mice CCR8 may be more important in steady-state 

immune surveillance processes [33]. A role for CCR8 in effector T cell traffic was also 

recently reported in a mouse model of atopic dermatitis [94]. 

 

The critical role of the tissue microenvironment in TPS generation  30 

It is becoming increasingly clear that the tissue itself regulates the localization and 

residency of immune cells in peripheral tissues. For instance, homing to distinct 



  McCully, Kouzeli and Moser 

Page 11 

tissue sites, especially those with restricted access (i.e. skin, intestinal tract) requires 

specific migration cues to be imprinted in tissue draining lymph nodes and not 

elsewhere (reviewed in [95, 96]). Each tissue produces a characteristic set of soluble 

factors under steady-state conditions that are necessary to induce changes in gene 

expression. Human skin epidermis releases factors that induce CCR8 (together with 5 

CLA) in TCR-activated (but not resting) naïve  T cells during ex vivo culture [97]; 

and these factors were subsequently determined to be keratinocyte-derived PGE2 

and 1,25-dihydroxyvitamin D3, the active metabolite of vitamin D [98] (Figure 2). In 

addition, vitamin D also plays a role in the generation of CCR10+ T cells for migration 

to epidermal layers, but instead of PGE2 this requires the presence of IL-12 [99]. 10 

Likewise, in the gut, the local environment licenses resident CD103+ dendritic cells 

with the ability to produce the vitamin A metabolite all-trans retinoic acid (atRA; 

reviewed in [100]). atRA in turn imprints a gut-tropism, defined by expression of 

CCR9 and integrin 47, in responding T cells [101], IgA-secreting B cells [102] as 

well as ILCs [103].  15 

Interestingly, vitamin metabolites have also been shown to affect the transcriptional 

programme in tissue macrophages. In the peritoneum, locally produced atRA was 

shown to regulate the anatomical localization of peritoneal macrophages by inducing 

of GATA6 and downstream transcriptional changes [104, 105]. Whether vitamin A (in 

the gut) or vitamin D (in the skin) induce similar transcriptional programmes in TPS 20 

cells has not yet been explored. Still, it is worth noting that Treg cell generation is 

influenced by the presence of both vitamin A and D metabolites acting either directly 

[106] or via DCs [107, 108].  

Vitamin A and D induce signal transduction by binding to specific nuclear receptors, 

RAR (retinoic acid receptor) and VDR (vitamin D receptor), respectively, which form 25 

heterodimers with the RXR (retinoic X receptor) nuclear receptor family members. In 

adipose tissue, the differentiation of Treg cells requires activation of PPAR 

(peroxisome proliferator-activated receptor gamma), a nuclear receptor that also 

pairs with RXR to induce transcription. More importantly, PPAR signalling was 

recently shown to increase survival of mouse and human skin CD8+ TRM cells, linking 30 

nuclear receptor signalling with homeostasis of TPS cells [109]. Similar to vitamins A 

and D, the ligands for PPAR are present in the tissues and, together with other local 

mediators like PGE2, IL-15 or TGF, may significantly alter the phenotype and 



  McCully, Kouzeli and Moser 

Page 12 

function of T cells that enter the tissue [98, 110, 111]. The relative contribution of 

each nuclear receptor will likely depend on the site of T cell differentiation as 

availability of the functional vitamin metabolites (i.e. atRA in gut, 1,25-

dihydroxyvitamin D3 in skin) varies across tissue sites. Together, via sensing of 

diverse tissue metabolites, these data suggest that RXR-containing heterodimeric 5 

nuclear receptors play an important role in the localization and functional 

specialisation of TPS cells and other types of tissue immune surveillance cells. 

 

Concluding Remarks 

Tissue health is the prevailing physiological state of our body whereas tissue disease 10 

is commonly short-lived (e.g. acute infections) and only rarely life-threatening and/or 

unremitting (chronic inflammation, cancer). Tissue health is governed by homeostatic 

chemokines with tissue-specific expression profiles that retain immune surveillance 

cells, including TRM cells and migratory TPS cells, which express the corresponding 

chemokine receptors and adhesion molecules. The peripheral tissue immune cell 15 

compartments are vast in terms of complexity and cellularity as best exemplified by 

the superficial skin or mucosal epithelia in humans. At these locations, homeostatic 

chemokines can function in different ways as discussed in Figure 1 for CCR8 in 

human skin TRM cells. In essence, tissue-specific homeostatic chemokines could act 

on effector T cells by retaining these cells within the tissue following resolution of the 20 

infection or they could specifically act on memory precursor T cells that have 

survived the retraction phase of an immune response. Alternatively, homeostatic 

chemokines could contribute to the longevity of TPS cells by controlling their 

sequestration to distinct niches within non-lymphoid tissues rich in survival factors, as 

reported for virus-specific TRM cells in the genital mucosa [112]. Finally, since 25 

memory T cells continuously survey the local tissue environment [113, 114], 

homeostatic chemokines could enable co-localization of TPS cells with local antigen-

presenting cells (APCs) as a means of mounting immediate responses to pathogens 

that local TPS cells have been trained to recognize.  

Many questions remain to be addressed (see Outstanding Questions) as we are only 30 

beginning to unravel which chemokine networks are at play in distinct tissues and 

how they affect the resulting local immune compartment under steady-state 
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conditions. For instance, we do know that TRM persist for many years/decades in 

tissues, but we don’t know whether local tissue-specific homeostatic chemokines are 

important for their long-term localization and/or function. We also need to determine 

whether there is any redundancy in these roles. For example, CXCR6 is expressed 

by TRM in many tissues, excluding a role in tissue-specific immune cell localization, 5 

yet it may contribute to immune surveillance of micro-infections in response to 

unregulated CCL20. In fact, some peripheral tissue chemokines fulfill a dual function: 

homeostatic immune cell localization under steady-state conditions and control of 

immune cell traffic during brief episodes of local infections. 

It is clear that distinct tissue factors, especially metabolites such as vitamins and lipid 10 

derivatives, act to imprint tissue residency. In human skin,  T cells are not the only 

lymphocyte subset expressing CCR8. In fact, minor fractions of TPS cells constituting 

skin-resident  T cells, NKT cells and ILCs, also express CCR8. This finding 

illustrates that factors governing tissue residence do not discriminate between 

different subsets of TPS cells within the same tissue.  15 

Finally, as for inflammatory chemokines, homeostatic chemokine networks may be 

targeted for vaccine purposes to promote long-lived, tissue specific protection. Not 

only could the presence of receptors for peripheral tissue chemokines on TRM cells 

(such as CCR8 on cutaneous TRM cells) serve as a marker for successful 

vaccination regimens, it may be possible to promote T cell recruitment and survival 20 

by modulating their tissue expression. Clearly, future investigations of peripheral 

tissue chemokines will help us to identify novel pathways for interventions that control 

cellular processes underpinning tissue health and, in effect, long life. 
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Box 1. Summary of CCR8-related research 

 History of CCL1 and CCR8 – CCL1, the first identified CC chemokine, was 

discovered in the late 1980’s in humans [115] and mice [116] and was originally 

reported to be a chemoattractant for blood monocytes [117]. CCR8, the 

receptor for CCL1, was discovered in 1997 and, in agreement with the original 5 

description of CCL1 activity [117], CCR8 transcripts were found in human blood 

monocytes [118]. The second group who cloned CCR8 was unable to detect 

CCR8 mRNA in human blood monocytes and did not find monocyte migration in 

response to CCL1 [119]. Identification of murine CCR8 was reported in 1998 

[120]. 10 

 Additional ligands for CCR8 – Murine (but not human) CCL8 controls 

inflammatory T cell recruitment in mouse model of atopic dermatitis [94]; human 

CCL18 was reported to be a lower potency ligand for human CCR8 with 

overproduction in inflammatory skin lesions [121].  

 CCR8-KO mice – Early reports were inconclusive regarding the role of CCR8 in 15 

inflammation [122-124] but more recent data revealed that CCR8 modulates 

Treg cell and myeloid DC function in allergic airway disease [125] as well as 

Th2 cell recruitment in a mouse model of atopic dermatitis [94].  

 DC generation/localization – Role of CCR8 in DC/LC function was inferred from 

studies showing a positive effect on DC differentiation during in vitro reverse 20 

transendothelial migration of human monocytes [126] yet showing a inhibitory 

(and possibly indirect) effect on skin DC emigration and LC repopulation in 

mouse models of skin inflammation and stress [127, 128]. 

 T cell traffic – Based on earlier work and studies with CCR8-KO mice, Th2 cells, 

notably IL-5 producing Th2 and Treg cells are targets for human CCL1 (and 25 

mouse CCL8) [87, 94, 129-137]. In addition, based on novel CCR8-specific 

antibodies, it is now known that human CCR8+ T cells include 50% of all TPS 

cells present in healthy human skin, including TRM cells, (V2neg)  T cells, 

NKT cells and NK cells [79, 97, 138, 139]. In human blood, CCR8 is found on 

minor (5%) subsets of TCM and TEM cells and very few (V2neg)  T cells [79, 30 
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139, 140]. In addition, CCR8 is present on all skin Treg cells and on all blood 

Treg cells that also co-express CLA.  

 Expression of CCL1 – At steady-state, CCL1 is produced by human skin LCs 

and dermal perivascular cells [134, 139]. Under stimulatory conditions, and in 

agreement with original findings [116], CCL1 is a product of activated T cells, 5 

including human TRM cells [139] and Treg cells [90, 91] in addition to activated 

mast cells [135, 141, 142], macrophages [92, 134, 143, 144] and 

vascular/lymphatic endothelial cells [126, 145]. 

 Viral CCR8 ligands – Molluscum contagiosum virus-encoded MC148 [146] and 

Herpes virus HHV8-encoded vMIP-II [147] are two CCR8 antagonists. Of note, 10 

molluscum contagiosum virus is a human skin-tropic poxvirus and its early 

secreted MC148 protein is a highly selective CCR8, conceptually linking viral 

infection with evasion of human skin CCR8+ TRM and other skin-specific 

immune surveillance cells. 

 15 
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(Figure legends) 

Figure 1. Hypothesis: CCR8+ TRM cells contribute to tissue health by prevent 

excessive tissue inflammation. Primary infection: Microbes that have penetrated 

the skin are processed by local APCs, including epidermal LCs and dermal DCs. In 

case of first-time exposure, microbe-specific memory T cells are not present at the 5 

site of pathogen entry, thus enabling the initiation of a local inflammatory cascade 

through the interaction of microbial antigens with TLRs on macrophages and tissue 

cells. This in turn leads to rapid secretion of inflammatory chemokines as well as 

maturation of LN-homing of CCR7+ DCs/LCs. CCR8 is expressed on T cells within 

the draining LNs as a consequence of TCR signalling induced during interaction with 10 

microbial antigen-presenting DCs/LCs in combination with skin-derived tissue factors 

(vitamin D, PGE2). Besides CCR8, newly generated effector T cells express receptor 

for inflammatory chemokines (CXCR3, CCR2, CCR5, etc.) as well as skin-homing 

adhesion molecules (CLA, integrins) guiding the effector T cells selectively to the site 

of skin inflammation. CCR8 on effector T cells is probably not necessary in the 15 

recruitment phase of effector T cells. Tissue recovery: Following the resolution of 

infection and inflammation, surviving memory precursor T TMP) cells give rise to long-

lived CCR8+ TRM cells that co-localize with cells constitutively producing CCL1 in the 

epidermis or in perivascular niches of the dermis. Some TMP cells may acquire 

CCR7, which enables their tissue exit and potential survival as circulating TCM cells. 20 

Whether local tissue factors (vitamin D, PGE2) are sufficient for maintaining CCR8 

expression on skin TRM cells or whether TRM cells need to recirculate through 

draining LNs in order to maintain CCR8 expression is not clear. Immune surveillance: 

CCR8+ TRM cells survey healthy skin by continuously interacting with local APCs 

(epidermal LCs, dermal DCs) in search of their cognate antigen. In case of re-25 

infection, microbe-specific TRM cells become activated leading to two separate 

events. First, activated CCR8+ TRM cells immediately release CCL1 enabling an 

amplification of the anti-microbial response by mobilizing additional CCR8+ TRM cells. 

Second, activated CCR8+ TRM cells turn into effector cells capable of neutralizing the 

infectious particles. This “memory” response quickly deals with micro-infections 30 

circumventing the need for an inflammatory response involving a new wave of 

circulating effector T cells. Such quick action of local TRM cells may indeed hold the 

key for maintaining tissue health and longevity. Finally, since all skin Treg cells 
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express CCR8, auto-reactive effector T cells may be inhibited by Treg cells following 

their mobilization in response to CCR8+ TRM cell-secreted CCL1. 

 

Figure 2. Tissue environments control local memory T cell compartments. 

Expression of the skin-homing markers CCR8 and cutaneous lymphocyte-associated 5 

antigen (CLA) on memory T cells is controlled by TCR stimulation in the presence of 

the CCR8-inducing factors 1,25(OH)2D3 (calcitriol) and prostaglandin E2 (PGE2). In 

addition to dietary supplementation, sunshine (UVB irradiation) in the epidermis of 

sun-exposed skin converts cholesterol into vitamin D3, which is further processed by 

intracellular hydroxylases into bioactive 1,25(OH)2D3. PGE2 is continuously formed in 10 

the upper layers of the epidermis where end-stage keratinocytes undergo apoptosis. 

1,25(OH)2D3 and PGE2 act on T cells during their engagement with DCs either in the 

skin or in skin-draining lymph nodes by means of engaging the nuclear receptor 

VDR-RXR and cell surface receptor EP4, respectively. The gut-homing markers 

CCR9 and integrin 47 on intestinal memory T cells are controlled by food-derived 15 

vitamin A metabolites. The subset of CD103+ DCs in the intestine is capable of 

converting the inactive metabolite retinol through intracellular reduction and oxidation 

reactions into bioactive all-trans retinoic acid (atRA) that acts on the nuclear receptor 

RAR-RXR. Induction of CCR9 and 47 expression occurs during engagement of T 

cells with CD103+ DCs in the mesenteric lymph nodes, and the development of T cell 20 

subsets such as TH17 cells and Tregs is further controlled by additional cytokines 

(IL-6, TGF-, etc.) 
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Glossary 

Naive T cells (TN cells): Antigen-inexperienced circulating CD4+ and CD8+  T 

cells that are excluded from healthy and inflamed peripheral tissues. Expression of 

CCR7 and CD62L enables naïve T cells to continuously enter secondary lymphoid 

tissues (e.g LNs) via high-endothelial venules. In the T-zone of LNs naïve T cells 5 

make multiple contacts with DCs, screen the repertoire of presented antigenic 

peptide-MHC complexes and, in case of cognate interaction, proliferate and develop 

into effector T cells. 

Effector T cells (TE cells): Effector T cells are produced in response to microbial 

challenges, are quickly recruited to sites of inflammation in response to locally 10 

produced inflammatory cytokines and provide immediate defensive functions during 

local re-challenge. Effector T cells are short lived (KLRG1+, CD127-) and disappear 

during the immune response contraction phase.  

Helper T cells (TH cells): Circulating effector or memory CD4+  T cells 

distinguished by the profile of cytokines they secrete upon re-stimulation. TH subsets 15 

include TH1, TH2, TH9, TH17, TH22, etc. and express characteristic combinations of 

chemokine receptors that enable their selective recruitment to inflammatory sites 

where the distinct cytokines are needed. 

Follicular B helper T cells (TFH cells): Circulating memory CD4+  T cells 

specialised in providing B cell help to T cell-dependent antigens during the germinal 20 

centre reaction in the B cell compartments of LNs. TFH cells express CXCR5, which 

guides them to the B cells at the follicular-medullary junctions where CXCL13 is 

being produced. 

Regulatory T cells (Treg cells): CD4+  T cells specialised in dampening T cell 

responses through engagement of inhibitory receptors (e.g. CTLA-4), secretion of 25 

anti-inflammatory stimuli (IL-10, IL-35, nucleotides) or depletion (CD25) of IL-2. Treg 

cells are distinguished by the transcription factor FoxP3 and high levels of CD25, 

which are generally absent in resting conventional T cells. 

Central memory T cells (TCM cells): Circulating memory CD4+ and CD8+ TCM cells 

continuously enter secondary lymphoid tissues (e.g LNs) via high-endothelial venules 30 
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and survey local dendritic cells for the presence of cognate antigen. TCM cells 

express CCR7 and CD62L enabling their entry and localisation within LNs. 

Effector memory T cells (TEM cells): Circulating memory CD4+ and CD8+ TEM cells 

that do not express CCR7 and CD62L and, therefore, are excluded from secondary 

lymphoid tissues. TEM cells are also excluded from healthy peripheral tissues but 5 

express variable combinations of receptors for inflammatory chemokines guiding 

them to site of inflammation where the corresponding chemokines are produced. 

Memory precursor T cells (TMP cells): Alternatively called stem-cell memory T 

(TSCM) cells and memory precursor effector T (TMPEC) cells). TMP cells share a 

KLRG1lowT-betlowIL-7Rahi phenotype, survive contraction phase of adaptive immune 10 

responses, and give rise to long-lived circulating and possibly tissue-resident 

memory T cells.  

Peripheral tissue immune surveillance T cells (TPS cells): The combination of 

CD3+ T cells present in healthy peripheral tissues, including tissue resident memory 

and circulating  T cells,  T cells and NK T cells. 15 

Resident memory T cells (TRM cells): CD4+ and CD8+ T cells with long-term 

residence in healthy tissues forming part of the local immune surveillance system. 

TRM cells often express CD69 ± CD103, are generated during ongoing adaptive 

immune responses and are in disequilibrium with circulating memory T cells.  

  20 
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Highlights 

Chemokines orchestrate immune cell trafficking, and thus the site of chemokine 

production can define the local immune cell composition.  

Healthy peripheral tissues host a highly complex network of immune surveillance 

cells, including macrophages, antigen-presenting cells and functionally diverse 5 

subsets of T cells and innate lymphoid cells. Homeostatic chemokines responsible 

for their recruitment, tissue retention and/or immune effector function have remained 

ill-defined. 

Peripheral tissue chemokines orchestrate the function of the local immune 

surveillance system and, therefore, are essential contributors to tissue health and 10 

longevity. 

In human skin, CCR8 and its ligand CCL1 are thought to play a critical role in the 

migration and maintenance of resident immune surveillance cells. 
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Outstanding Questions 

- Are homeostatic chemokine systems, such as CCL1-CCR8 in human skin, 

necessary for TRM recruitment, localization and/or retention, survival or 

memory responses to local antigens? 

- What is the role of tissue non-specific chemokine receptors present on TRM 5 

cells? Do they synergize with receptors for homeostatic chemokines or are 

they mainly involved in controlling immune cell mobilization in response to 

local infections? 

- How do tissue factors, including vitamins, imprint tissue residency / survival? 

Do they also work on other lymphocyte populations (e.g. ILCs,  T cells)? 10 

- Since numerous memory  T cells in human skin are not tissue-resident (i.e. 

do not express tissue residence markers CD69 ± CD103), what chemokine 

networks regulate their recirculation?  

- Can peripheral tissue chemokine networks be manipulated to promote tissue-

specific immunity, e.g. Treg cell recruitment in the case of autoimmune 15 

diseases or localization and/or maintenance of memory T cells in response to 

vaccination? 

 

Revision Outstanding Questions



  McCully, Kouzeli and Moser 

Page 1 

Table 1. Chemokine receptors involved in peripheral tissue T cell traffic 

Chemoki
ne 
receptor 

Cellular 
expression 

Ligands Function in tissue lymphocyte traffic Refs 

CXCR4 
(ACKR3) 

Haematopoietic 
and non-
haematopoietic 
stem cells, 
thymocytes, 
leukocytes, tissue 
cells 

CXCL12 CXCR4 is a chemokine receptor whereas 
ACKR3 binds and internalizes CXCL12, 
thereby regulating extracellular CXCL12 
concentrations. The CXCL12-
CXCR4/ACKR3 axis controls bone 
marrow stem cell and progenitor 
localization, thymocyte development, 
plasma B cell homing as well as tissue 
(brain, heart, vasculature) development 
and repair. CXCR4 also functions as co-
receptor for HIV-1  

[3, 25, 26, 
28] 

CXCR6  T,  T, NKT, 
NK, plasma cells 

CXCL16 CXCL16 is either membrane-bound (cell-
cell adhesion) or soluble (chemotaxis).  
CXCR6 associated with memory T cell 
and /NK cell compartments in liver and 
skin. 

[30-33] 

CCR6  T,  T, Treg, 
ILCs, NKT, NK, B, 
immature DCs 

CCL20 CCL20 is present at low levels in healthy 
skin but is massively upregulated during 
inflammation. 
Besides inflammatory involvement, CCR6 
contributes to the maintenance of 

memory T17 cells in healthy skin and 
draining LNs. 

[39-41] 

CCR8 Human skin 

lymphocytes ( 

T,  T, NKT, NK).  
Mouse 
thymocytes, TH2 
and Treg 

CCL1 
CCL8 (mouse) 
CCL18 (human) 

CCL1, the primary ligand for CCR8, is 
constitutively expressed in human skin 
and rapidly released by activated skin 
TRM cells. Murine CCL8 and human 
CCL18 are alternative ligands for mouse 
and human CCR8, respectively. Murine 
CCR8 is primarily a T cell-associated 
chemokine receptor with expression on 
skin-homing Th2 and Treg cells. CCR8 
on human skin T cells is discussed in the 
main text. 

[94, 121, 
138, 139] 

CCR9 Thymocytes, 

intestinal ( T,  
T) 

CCL25 CCL25 is primarily produced in small 
intestinal tissues. 
CCR9 is present almost exclusively on 

intestinal  T cells,  T cells and 
plasmablasts but its function in intestinal 
T cell traffic, including T cell recruitment 
and maintenance of memory T cell 
compartment appears to be redundant. 

[43] 

CCR10 Effector T, B, 
ILCs, melanocytes 

CCL27 
CCL28 

CCL27 and CCL28 share mutually 
exclusive expression pattern, CCL27 
being present in the skin whereas CCL28 
is being expressed in colon and secretary 
organs. CCR10 expressing CD8+ T cells 
and Treg cells support survival of T cells 
as well as CCR10+ ILCs. CCR10 on 
melanocytes/melanoma cells may control 
their skin retention. 

[55-57] 
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CX3CR1 Monos, LCs, m, 

NK,  T,  T, 
platelets, neurons 

CX3CL16 CX3CL1 exists in two forms, membrane-
bound (cell adhesion) or secreted 
(chemotaxis). 
Expression of CX3CR1 on macrophages 
(microglia, LCs) and intestinal DCs was 
shown to support local immune 
surveillance functions. Graded surface 
levels of CX3CR1 were used to 
distinguish effector/memory T cells 
subsets, including long-lived recirculating 
and LN-sessile memory T cells. 

[60, 61] 
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