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Summary
The success of HCMV as a lifelong pathogen is attributed at least in part to the broad 

range of encoded immune evasion molecules that inhibit the host cellular immune 

response. Indeed, HCMV has become a paradigm for immune evasion, the study of 

which has revealed a number of basic immunological processes. 

To screen for novel immune evasion genes, HCMV-specific CD8+ T-cell lines were 

grown from seropositive donors and used against a series of block deletion viruses, each 

missing a region of genes non-essential for replication in vitro. UL13-UL20 was flagged 

as important for inhibition of CD8+ T-cells. Further screening with individual gene 

knockout HCMVs showed that the published NK-cell inhibitor UL16 could inhibit CD8+ 

T-cells, but also revealed UL19 as a previously unrecognised strong immune evasin, 

inhibiting 3 separate CD8+ T-cell lines. UL19 had no effect on HLA-I downregulation 

indicating that it may affect other pathways involved with T-cell activation.

Proteomic data showed that surface TNFR2 was increased by HCMV infection. This is 

important as this would influence the response to TNF, a major inflammatory cytokine

and soluble effector molecule released by T and NK cells. Screening using different 

HCMV strains and knockout viruses identified UL148 and UL148D as responsible for the 

increase in surface TNFR2 but prevented the release of soluble TNFR2, indicating that 

UL148 and UL148D were influencing the ability of TNFR2 to be retained at the cell 

surface. Infection with HCMV Merlin profoundly downregulated surface ADAM17, the 

metalloproteinase responsible for cleaving TNFR2 from the cell surface. Deleting UL148 

and UL148D recovered ADAM17 expression, blocking the function of which returned

surface and soluble TNFR2 levels to those observed with Merlin. This was also true of 

TNFR1. HCMV infected cell lysates showed that UL148 and UL148D interfered with the 

maturation of ADAM17. Thus, UL148 and UL148D allow upregulation of TNFR2 and 

maintain TNFR1 expression during and HCMV infection by impairing surface ADAM17 

expression through impairment of ADAM17 maturation.

Given that ADAM17 is involved with the cleaving of multiple cytokines, cytokine 

receptors, adhesion molecules and immune cell receptors, this work identifies a novel 

mechanism through which HCMV can alter the surface and soluble proteome by 

preventing the shedding of inflammatory/immune receptors and mediators. More 

detailed studies will be required to define the global impact of this on the immune system. 
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1 Introduction

1.1 The discovery of the Human Cytomegalovirus 

The first report of human cytomegalovirus (HCMV) infected cells was by Hugo Ribbert in 

1881. He observed large cells in sections of kidney from a stillborn with syphilis (Ribbert, 

1904). By 1932 there had been 25 reported cases of a congenital infection characterised 

by petechiae, hepatosplenomegaly, and intracerebral calcification (Ho, 2008). At the 

time, the disease was referred to as generalised cytomegalic inclusion disease (CID). 

The first isolation of HCMV was in 1955 by Margaret Smith from the kidney of a one-

month old baby dying of CID. The virus was extracted from the adrenal gland and used 

to infect uterine tissue. The cytopathic changes “consisted of small, round or oval foci in 

which the cells were enlarged, rounded or oval, and somewhat refractile in contrast to 

the normal fibroblasts” (Smith, 1956). Strain Ad.169 (AD169) was isolated from the 

adenoid tissue of another patient by Wallace Rowe (Rowe et al., 1956), which produced 

the same cytopathic effect that Thomas Weller (Craig et al., 1957) would later observe. 

The three scientists exchanged their infective agents and concluded they were dealing 

with the same virus, which was called cytomegalovirus (Weller, 1970).

1.2 HCMV virus structure

Electron cryomicroscopy revealed that HCMV virions are between 200-230nm in 

diameter, with a capsid shell composed of hexons, pentons and triplexes (Chen et al., 

1999). From inside out, the virion consists of a double stranded DNA genome, capsid, 

tegument and envelope. The HCMV structure is characteristic of Herpesviridae. HCMV 

capsids are assembled from 162 capsomeres and 320 heterodimeric protein complexes. 

These are arranged in an icosahedral lattice (20 faced). Three types of virus particles 

can be recovered from HCMV culture medium. Virions, which are infectious, dense 

bodies and non-infectious enveloped particles (NIEPs) (Irmiere and Gibson, 1983). 

Dense bodies are composed of tegument material, but lack the capsid and genome 

(Ahlqvist and Mocarski, 2011). NIEPs are equivalent to mature HCMV virions but lack 

viral DNA.

1.3 HCMV genome

HCMV has the 38th largest genome of any virus discovered to date, but the largest of 

any virus that infects humans (strain Merlin NC_006373.2). The HCMV genome is 
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comprised of double stranded DNA. The genome is comprised of a unique long (UL) 

region and a unique short (US) region, which are flanked by inverted repeats and can be 

represented as: ab-UL-b’a’c’-US-ca where ab/b’a’ and ca/c’a’ indicate inverted repeats 

(Stanton et al., 2010). 

Our appreciation of the genetic content of HCMV was transformed by the complete 

sequencing of strain AD169 (Chee et al., 1990). The study showed that the virus 

contained at least 9 gene families and 208 designated open reading frames (ORFs). A

later comparison was performed between AD169, Towne, Toledo and five clinical 

isolates and showed that high passage lab strains such as AD169 and Towne had 

suffered major deletions in the UL/b’ region with at least 19 genes missing from AD169 

compared to Toledo (Cha et al., 1996). Further sequencing showed that AD169 

contained multiple mutations outside of the UL/b’ region with AD169-ATCC containing at 

least 31 mutations outside of UL/b’ (Bradley et al., 2009). Clinical HCMV strains have at 

least 169 genes and a genome of 235kb but only a quarter of HCMV genes are required 

for replication in vitro, with the remainder of genes having other functions (Dunn et al., 

2003b). Genes can be separated into gene families based on homology, though genes 

within the same family may not be adjacent to one another, such as UL14 and UL141 

(Figure 1.1,(Davison et al., 2003b). 

HCMV strain Merlin was isolated from a congenitally infected infant in Cardiff and was 

sequenced following 3 passages in human fibroblast cells (Tomasec et al., 2000, Dolan 

et al., 2004). This showed that UL128 was truncated by a single nucleotide, which led to 

an in-frame termination codon. Sequencing of multiple clinical and laboratory passaged 

strains revealed that certain genes exhibit a degree of inter-strain variability. These 

include genes in the RL11 family, along with important immune evasion functions such 

as UL18, UL40, UL142 and UL146, which likely reflect past and ongoing host-virus 

interactions (Sijmons et al., 2015). 

When HCMV clinical isolates are propagated in fibroblasts a mutation in one of the 

UL128, UL130 or UL131A genes (the UL128 locus; UL128L) is rapidly selected (Akter et 

al., 2003, Dolan et al., 2004). To address the selection of mutations following passage in 

vitro, the HCMV strain Merlin genome, was cloned into a self-excising bacterial artificial 

chromosome (BAC). Mutations in the RL13 and UL128 loci were acquired during even

the limited replication before cloning (Stanton et al., 2010). This allows for phenotypically 

wild type virus to be produced by placing wildtype RL13 and UL128L under a conditional 

promoter. Variants of the Merlin BAC allow researchers to work with a virus that is as 
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genetically-intact as practical, so that any observations made in vitro can be put into 

better context with clinical virus.

Aside from protein coding genes, HCMV encodes several microRNAs which are 

scattered across both strands of the genome. So far 23 miRNAs have been identified, 

though function has been ascribed to only 7 (Mocarski et al., 2013). HCMV also encodes 

polyadenylated RNA transcripts such as RNA2.7, a 5kb stable intron (RNA5.0) and a 

1.2kb RNA (RNA1.2). Of all HCMV transcripts, RNA2.7 was shown to be the most 

abundantly transcribed and highly conserved (>99%) amongst clinical isolates, although 

it is dispensable for replication in vitro (McSharry et al., 2003). RNA2.7 was shown to 

target mitochondrial complex 1, thereby preventing apoptosis, but also maintaining ATP 

production in HCMV infected cells (Reeves et al., 2007).

A comprehensive study of HCMV encoded open reading frames was undertaken by 

Stern-Ginossar and colleagues (Stern-Ginossar et al., 2012). By combining next 

generation sequencing and ribosome profiling it was shown that HCMV may encode over 

751 ORFs. This study showed that many small polypeptides are encoded by HCMV, with 

the authors suggesting that these may have a regulatory or immunological function. A 

similar approach was used to assess how the transcription of host proteins alters during 

HCMV infection in fibroblasts (Tirosh et al., 2015). The authors compared certain 

changes in host and viral RNA and correlated their data with published proteomic data. 

Genes which were transcriptionally upregulated but reduced at the whole cell protein 

level revealed proteins targeted for degradation such as BTN2A1 (butyrophilin subfamily 

2 member A1) and IGSF8 (Immunoglobulin Superfamily Member 8), which have immune 

functions. This showed how whole cell ‘omics’ approaches can be used to predict host-

cell interactions and combined to predict novel immune regulators.
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Figure 1.1 Schematic of the Merlin genome. The genome is shown from 5’ to 3’. Core 
genes are in red. ‘Betagamma ORFs’ refers to genes conserved between other 
betaherpesviruses. The gene families are colour code as in the legend. Non-coding 
RNAs are shown in white. US-unique short; UL-Unique long; GPCR G-protein coupled 
receptor; DURP-deoxyuridine triphosphatase-related protein; RL- repeat long; TRS-
terminal repeat short; IRS-internal repeat short. Figure was kindly provided by Professor 
Andrew Davison (Centre for Virus Research, Glasgow). 
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1.4 Tropism of HCMV

HCMV can be detected in a very wide range of tissues and cells in vivo. In healthy 

individuals, HCMV is found in CD14+ monocytes (Taylor-Wiedeman et al., 1991, Taylor-

Wiedeman et al., 1994). From immune deficient patients with active disease, HCMV has

been detected in the lung, colon, duodenum and stomach. In these patients, a range of 

cells were positive for HCMV including epithelial, smooth muscle, mesenchymal, 

endothelial cells and macrophages (Sinzger et al., 1995).

The core glycoproteins for entry of herpes viruses into cells comprises of gB, gH and gL, 

in addition to other accessory glycoproteins (Ryckman et al., 2008). The trimeric complex 

of gH (UL75), gL (UL115) and gO (UL74) allows for entry into fibroblasts. In HCMV 

virions, the glycoprotein complex gH, gL, UL128, pUL130, UL131 make up the 

pentameric complex, which was shown to be essential for entry of virus into epithelial 

and endothelial cells and cells of the myeloid lineage (Hahn et al., 2004, Wang and 

Shenk, 2005). Passaging of HCMV in fibroblasts results in mutations that affect RL13, 

UL128 and the UL/b’ region, and thus allows for greater entry of the virus into fibroblasts 

(Dargan et al., 2010). Additionally, UL148 was found to influence tropism by interacting 

with proteins from the pentameric complex and influencing the number of gH/gL 

complexes (Li et al., 2015a).

A genetically intact UL128 locus is required for entry into dendritic cells. Recently a co-

culture system was developed which showed that dendritic cells could be infected with 

HCMV via cell to cell transfer from infected fibroblasts (Murrell et al., 2017). Whilst 

neutralising antibody was efficient at preventing cell free infection, cell-cell spread of 

Merlin was over 400 times more resistant to neutralising antibody. A further comparison 

was performed between HCMV strains TB40-BAC4 and Merlin, with higher levels of 

pentameric complex in the latter conferring resistance to neutralising antibody (Murrell 

et al., 2017). These studies show that wildtype HCMV spreads by cell-cell contact, which 

aids in evading the humoral immune system. 

1.5 HCMV life cycle

1.5.1 Viral entry  
The first step of the HCMV life cycle is entry into the cell. Heparan Sulphate 

proteoglycans were shown to be essential for the entry of HCMV in vitro, a function 

common to herpes viruses (Compton et al., 1993). Another requirement for cell entry in 

fibroblasts, is platelet derived growth factor-alpha receptor (PDGFRa). In PDGFRa null 
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cells, HCMV is not detected, and infectivity can be completely restored upon addition of 

the PDGFRa gene (Soroceanu et al., 2008). However, monocytes do not express 

PDGFRa, and instead epidermal growth factor receptor (EGFR) can substitute as the 

receptor required for the entry of strain TB40/E into monocytes (Chan et al., 2009). This 

suggests the virus may have evolved to utilise different cell receptors to infect multiple 

cell types. Fusion of the viral envelope with the plasma membrane results in the release 

of capsids into the cytoplasm. In endothelial cells and epithelial cells this occurs after 

endocytosis of the virion. Using cytoplasmic filaments, the nucleocapsid translocates to 

the nucleus and then interacts with nuclear pores allowing the viral genome to be 

released into the nucleus (Mocarski et al., 2013).

1.5.2 Gene expression
The major immediate early genes of the HCMV genome are the first transcribed and 

include the alternate transcripts IE1 (UL123) and IE2 (UL122), which encode a 72 and 

86kDa protein respectively (Wilkinson et al., 1984). These two genes auto-regulate the 

major immediate early promoter (MIEP). IE1 acts synergistically with a transactivator 

encoded by IE2 to stimulate gene expression from viral and cellular promoters (Wilkinson 

et al., 1998). For gene expression to occur, HCMV must overcome cellular barriers. After 

entering the nucleus, viral DNA localises with nuclear structures known as nuclear 

domain 10 (ND10), which act as a defence mechanism by sequestering viral DNA. 

HCMV pp71 was shown to induce degradation of Death-associated protein 6 (Daxx), 

which is a component of ND10 (Woodhall et al., 2006). Once IE1 is expressed, it causes 

dispersal of ND10, which releases suppression and allows for gene replication and virus 

production (Kelly et al., 1995, Wilkinson et al., 1998). Histone deacetylases (HDAC) are 

enzymes which remove acetyl groups and allow histones to tightly wrap DNA. Using 

conditionally permissive cells, inhibition of MIEP expression was shown to involve 

recruitment of histone deacetylases (HDAC3) to the viral MIEP (Murphy et al., 2002).  

Fibroblasts fully permissive to HCMV contained relatively little HDAC3 suggesting that 

this is an important regulator of viral replication.

The temporal expression of HCMV gene expression can be described as immediate 

early (α), delayed early (β) and late genes (γ). Immediate early genes are those which 

are expressed in the absence of other viral genes, and include IE1/IE1, UL36, UL37, 

UL38, TRS1, IRS1 and US3 (Wilkinson et al., 1984). These genes can act synergistically 

to transactivate other viral and cellular gene expression (Colberg-Poley et al., 1992). The 

delayed early genes constitute the majority of HCMV genes and require prior de novo

expression of viral IE genes. Delayed early genes are involved in viral DNA synthesis, 

assembly of virus particles and support late gene expression (White and Spector, 2007). 
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Late genes are expressed following the onset of viral DNA replication and form viral 

structural proteins and control DNA encapsidation (Mocarski et al., 2013).

The temporal expression of host and viral proteins over the course of a productive HCMV 

infection in fibroblasts has been quantified (Weekes et al., 2014). The approach involved 

multiplexed tandem mass tag-based mass spectrometry of peptides derived from HCMV 

infected fibroblasts at different stages of the lytic cycle and was named Quantitative 

Temporal Viromics (QTV). QTC quantified changes in >8000 cellular proteins and over 

>80% of HCMV canonical genes. Analysis of the temporal expression of HCMV genes 

allowed for a new system of classifying the temporal expression of genes termed Tp1, 

Tp2, Tp3, Tp4 and Tp5 (Figure.1.2). Tp1 genes are expressed within 24h after infection 

and then decrease afterwards. Tp2 genes increase within the first 24h and are 

maintained thereafter. The expression of Tp3 genes gradually increases over the course 

of a lytic infection. Tp4 genes peak at 48h and then decrease. Tp5 genes exhibit a 

delayed expression profile, whereby the expression increases, but only after 48hpi.

From an immunological stand point, QTV predicted possible novel immune ligands which 

could be regulated by HCMV infection, such as FAT1 which was suggested to be a novel 

NK activating ligand. Immune evasion genes were shown to be expressed with all five 

temporal profiles, providing protection from the cellular immune system throughout the 

replication cycle (Figure.1.2).
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Figure.1.2 Temporal expression of HCMV genes as assessed by proteomic analysis of 
whole cell lysates. Data was generated from the resource paper Weekes et al. (2014). 
The data shows the relative amounts of HCMV proteins, which are published immune 
evasion proteins (other than UL19). Tp1 genes are expressed shortly after infection, with 
expression reducing thereafter. Tp2 genes are also expressed shortly after infection, but 
the expression is maintained. Genes exhibiting Tp3 kinetics increase gradually over the 
course of the infection. Genes expressed with Tp4 kinetics peak in abundance at 48hpi, 
but expression then decreases. Tp5 genes have delayed kinetics, with expression 
increasing after 24hpi. 
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1.5.3 DNA replication and egress
The core machinery of HCMV gene replication includes UL44 (polymerase accessory 

protein), UL54 (viral DNA polymerase), UL57 (single-stranded binding protein, UL102 

(primase-associated factor) and the DNA helicase complex trimeric complex which is 

comprised of UL105, UL70 and UL102. These components make up the replisome. 

HCMV contains a single origin for DNA replication (oriLyt). This is located upstream of 

UL57, the single-stranded DNA binding protein. Viral DNA circularises after entry to the 

nucleus prior to replication. Initiation of DNA replication is dependent on transcription 

from orilyt promoter activated by an ppUL84:ppUL122(IE2) complex. Four proteins are 

produced via alternate splicing from UL112-113. Four proteins produced via alternate 

splicing from UL112-113 (pp34, pp43, pp50 and pp84) are required to recruit the 

replisome to the viral genome (Pari, 2008). 

Formation of nucleocapsids occurs in the nucleus, which then egress to the cytoplasm. 

Nucleocapsids transiently acquire an envelope during budding through the inner nuclear 

membrane that is then lost when budding through the outer nuclear membrane, thereby 

releasing the nucleocapsid into the cytoplasm. Virus assembly takes place in the 

assembly complex, a highly vacuolated part of the cytoplasm. The assembly complex is 

comprised of the Golgi and trans-golgi network, and early endosomes, which form nested 

cylindrical layers (Das et al., 2007, Alwine, 2012). The nucleus surrounds the assembly 

complex in a kidney bean shape. As nucleocapsids emerge from the nucleus, they move 

to the centre of the assembly complex. The HCMV virion is then released by exocytosis 

to the extracellular space. Using green fluorescent tagged (GFP) tagged virus it was 

shown that the release of TB40 virions from fibroblasts is a rare event with a release rate 

of 1 infectious unit per hour per cell (Sampaio et al., 2005).

1.5.4 Latent infection
A fascinating property of HCMV, as with all herpes viruses is the ability to establish 

lifelong persistence. One form of viral persistence is latency. Viral latency is the ability of 

a virus to keep dormant within a cell with minimal viral gene expression (Sinclair and 

Sissons, 2006). By performing polymerase chain reaction (PCR) for HCMV DNA 

combined with cell sorting, CD14 monocytes were found to be a major site of latency 

(Taylor-Wiedeman et al., 1991, Larsson et al., 1998). Progenitor cells expressing CD34, 

which give rise to cells of the myeloid lineage, are also sites of latency. The level of 

latently infected cells is low, with an estimated 1 in 10000 cells containing HCMV 

genomes (Slobedman and Mocarski, 1999). As CD34+ progenitors differentiate, the 

virus is selectively carried down the myeloid lineage only, as HCMV genomes are not 



10

detectable in T or B cells (Taylor-Wiedeman et al., 1991). Latently infected cells can be 

identified by the presence of certain HCMV transcripts including UL138, UL111A, US28 

and UL81-82 and UL144 (Reeves and Sinclair, 2013). However recent work assessing 

the HCMV transcriptome in natural and experimental latent HCMV infection showed that 

the expression of HCMV transcripts in latently infected cells is similar to that observed in 

the late stage of lytic infection, albeit at lower levels (Shnayder et al., 2018).  This data 

suggests that the state of latency may be based on the quantity of HCMV transcripts, 

rather than the detection of specific viral transcripts. 

Reactivation of latent virus occurs when CD34+ cells differentiate into dendritic cells 

(DCs) or macrophages (Soderberg-Naucler et al., 1997, Reeves et al., 2005). During 

latency, the viral MIEP remains in a transcriptionally silent chromatin conformation and 

is associated with the silencing protein HP1. Upon differentiation, this association with 

HP1 is lost allowing for gene transcription. HDAC1, a transcriptional corepressor, is

reduced in during differentiation to monocyte derived DCs, showing the importance of 

HDACs in viral repression (Reeves et al., 2005).

1.6 Clinical Virology

1.6.1 Epidemiology
HCMV is one of the most widespread pathogens infecting humans, with over 95% 

prevalence in some populations. The two main correlators of HCMV infection are age 

and socioeconomic development. In the United States, the prevalence of HCMV 

increased from 36.3% in children to over 90% in those >80 years old (Staras et al., 2006). 

There was an increased incidence in ethnic minorities compared to Caucasian 

individuals. Though minority groups are often less affluent than their Caucasian 

compatriots, this increased prevalence remains even after correcting for income, family 

size, geography and country of birth (Staras et al., 2006). This suggests there may be 

other factors affecting the transmission of HCMV such as nutrition status and genetics. 

In women of child bearing age, the prevalence of HCMV is 70-80% in South East Asia, 

but only 40-50% in France, further showing that socioeconomic development is not the 

only determinant of prevalence (Manicklal et al., 2013).

Genetic correlations have been found between genes of the human leukocyte antigen 

(HLA) family and HCMV infection. One study in Iran showed that the gene HLA-B8 may 

have protective roles in preventing HCMV disease in patients who had received a renal 

transplant (Futohi et al., 2015). A study of patients in Ireland found that genes HLA-A1 

and -B8 were significantly associated with CMV seronegativity (Hassan et al., 2016). 
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This is the most common haplotype in the Irish population and it was suggested that this 

may explain the lower incidence of CMV amongst women in Ireland, compared to other 

developed countries. 

Polymorphisms in non-classical HLA molecules could also influence HCMV disease, as 

these act as ligands for NK cell receptors. In a German study assessing kidney transplant 

patients, HLA-E*01:03 was shown to increase susceptibility to HCMV and reduce 

infection free survival (Guberina et al., 2017a). In a similar cohort, HLA-G +3142 CC 

genotype was correlated with significantly reduced allograft survival, compared to those 

with the GG genotype (Guberina et al., 2017b). These data suggest that genotyping of 

non-classical as well as classical HLA molecules would provide useful information in 

finding correlatives of HCMV disease.

1.6.2 Neonatal infections
HCMV infection can only occur through transfer of bodily fluids and organs. Cannon et 

al. (2011) performed a meta-analysis of studies investigating shedding of virus and found 

that children who attend day care shed virus more frequently than those that do not. 

Importantly, peak shedding occurs in children 1-2 years of age, which shows that young 

children are important vehicles for viral transmission to seronegative parents. 

Seroconverting adults can shed virus for months after initial CMV infection in saliva and 

genital secretions (Gianella et al., 2015a, Gianella et al., 2015b). Risk factors associated 

with an increase in viral shedding, include those who attend sexually transmitted disease 

(STD) clinics and those with a previous congenital infection. In neonates, transmission 

of HCMV via breast milk is believed to be the most common route for infection. CMV is 

excreted from breast milk 4-8 weeks post-partum. Risk factors for developing postnatal 

HCMV disease include a very low birth weight and being premature (Lanzieri et al., 

2016).

A meta-analysis showed that in developed countries 0.7% of all neonates are 

congenitally infected with HCMV, making it the most common congenital and perinatal 

infection (Dollard et al., 2007). Symptomatic congenital disease may include intrauterine 

growth defects, thrombocytopenia, prematurity, hepatosplenomegaly, pneumonia, 

intracranial calcifications, microencephaly, jaundice, chorioretinitis, hearing loss and 

psychomotor retardation (Kurath et al., 2010). Nearly 90% of symptomatic neonates 

have one or more abnormality caused by damage to the central nervous system (CNS) 

or perception organs (Fowler et al., 1992). Neonates from recurrently infected mothers, 

are largely asymptomatic, however this still causes substantial morbidity. In one study 

between 40-58% of symptomatic congenitally infected neonates had permanent 
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sequelae, whilst the equivalent percentage for asymptomatic congenitally infected 

neonates was 13.5% (Dollard et al., 2007).

1.7 Transplant recipients

HCMV disease is one of the most dangerous infections that can arise following 

transplantation of solid organs or haematopoietic stem cells. In these two types of 

transplant, the donor and recipient status for these two types of transplantation 

differentially affects the outcome. Following solid organ transplants, there are three types 

of HCMV infection that can occur. Primary infection occurs when the donor is 

seropositive, and the recipient is seronegative (D+/R-). The virus is transferred in latently 

infected cells in the allograft. The second type, known as reactivation, occurs when the 

recipient is seropositive, and the virus reactivates within the host following 

transplantation from a seronegative donor (D-/R+). This occurs due to the high level of 

immunosuppressive agents that are taken by the patient. The third type, known as 

superinfection, occurs when both donor and recipient are seropositive but the reactivated 

virus is of donor origin, or when the individual is infected with multiple HCMV strains 

(Pereyra and Rubin, 2004). 

Disease usually occurs within the first 6 months following transplantation. Among the risk 

factors for developing disease is immunosuppression, which can include calcineurin 

inhibitors, corticosteroids, mycophenolate, and anti-thymocyte globulin, a T-cell 

depleting agent. HCMV disease itself is also a major risk factor in graft rejection and 

worse disease outcomes following transplantation. In a large Spanish study including 

1427 patients who had received either a kidney, liver, heart or double transplant, 7.2% 

developed CMV disease, with rejection and mortality being significantly higher in those 

patients with HCMV disease (Linares et al., 2011). 

In haematopoietic stem cell transplant (HSCT) patients, the biggest risk factor for 

developing HCMV disease is the serology of the recipient. In D-/R- there is almost no 

risk of CMV disease. In patients with intermediate risk (D+/R-), there was a 10% 

incidence in CMV disease. In D+/R+ situations, there is little risk as the recipient receives 

a graft with antigen-experienced HCMV specific T-cells.  The most problematic scenario 

occurs in D-/R+ patients because of the risk of HCMV becoming reactivated in the 

recipient. This occurs due to a HCMV naïve immune system derived from the graft of a 

seronegative donor, which is unable to suppress the latent infection in the recipient. In 

Australia 53% of seropositive HSCT recipients experienced CMV reactivation, despite 

prophylactic ganciclovir (George et al., 2010). In HSCT patients, HCMV pneumonitis 
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occurred in 10-15% of recipients and was fatal in 80% of these cases, prior to the advent 

of anti-viral therapy (Sissons and Carmichael, 2002). However, since the 1990’s there 

has been remarkable progress in reducing mortality due to prophylactic treatment, 

improved diagnosis and the incidence of HCMV disease in HSCT is <5% (de la Cámara, 

2016).

1.7.1 HIV patients
In the decade following the discovery of human immunodeficiency virus (HIV), HCMV 

end organ disease was one of the most serious complications of AIDS, occurring in up 

to 44% of patients (Gallant et al., 1992). HCMV disease occurred commonly in patients 

with advanced HIV AIDS. Historically the most common complication of HCMV in HIV 

patients was retinitis, which accounted for 75-85% of HCMV disease (Kempen et al., 

2003a). Since the introduction of highly active ant-retroviral therapy (HAART), retinitis 

rates have decreased by 75%, and additional HCMV treatment further improves survival 

(Kempen et al., 2003b). Co-exposure of HCMV in HIV+ neonates affects development 

in utero. In the USA, HCMV co-infection in the first 18 months was associated with an 

increased rate of disease progression and CNS disease, compared to those infected 

with HIV alone (Kovacs et al., 1999). In Zambia, a sub-Saharan country where HIV-2 is 

prevalent, a cohort study showed that being an HCMV seropositive HIV exposed neonate 

correlated with increased growth stunting at 18 months (Gompels et al., 2012). Thus, 

HCMV is a significant cause of morbidity at all stages of HIV infection, and interventions 

that reduce HIV disease will reduce the burden of HCMV disease.

1.7.2 Treatment
Current treatment of CMV disease is with antiviral chemotherapy with ganciclovir, 

valganciclovir, maribavir, foscarnet and cidofovir. In HCMV infected cells ganciclovir is 

initially phosphorylated by the virally encoded protein kinase UL97. Further 

phosphorylation occurs by cellular kinases. Ganciclovir triphosphate is then metabolised 

intracellularly. The inhibitory effects of ganciclovir are mediated by inhibition of viral DNA 

synthesis by either competing with deoxyguanosine triphosphate for incorporation into 

the viral DNA polymerase, or by incorporation of ganciclovir triphosphate into viral DNA, 

which causes termination or limited chain elongation. Maribavir inhibits UL97, preventing 

its action (Chou, 2008).  Valgancyclovir is a prodrug of ganciclovir with an L-valyl ester 

side chain. Following oral administration, the valine side chain allows valganciclovir to 

be absorbed by sodium dependent amino acid transporters. Once in the blood stream, 

hepatic esterases release the valine chain, releasing the pharmacologically active 

ganciclovir. Resistance to these drugs occurs through mutations in either UL97 
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(M460V/I, H520Q, C592G, A594V, L595S, C603W, M615V) or the viral polymerase 

subunit UL54 (Foulongne et al., 2004). Cidofovir is a monophosphate nucleoside 

analogue. Unlike ganciclovir, phosphorylation to the diphosphate is performed by cellular 

phosphatases. Foscarnet is another drug that targets HCMV DNA replication, though 

unlike ganciclovir and valganciclovir, it can inhibit the HCMV polymerase without 

requiring phosphorylation. As with the other antiviral drugs, mutations in UL54 can also 

impair efficacy of foscarnet (Erice, 1999). 

1.8 T-cells and HCMV

1.8.1 Overview of the adaptive immune system
Anatomical and physiological barriers prevent pathogens from entering the systemic 

circulation. Once these are breached, the pathogen faces the innate immune system. 

The major cell types of the innate immune system include macrophages, neutrophils, 

natural killer (NK) cells and DCs (Chaplin, 2010). These cells recognise pathogens 

through pattern recognition receptors (PRRs), which recognise pathogen associated 

molecular patterns (PAMPs). Macrophages and DCs possess bridging functions as they 

can activate elements of the adaptive immune system too. Include lymphoid cells include 

natural killer (NK) cells, NKT cells and gamma-delta T-cells (Vermijlen and Prinz, 2014).

Cells of the adaptive immune system include B and T lymphocytes. Antigen specificity is 

a key feature of the adaptive immune system. Unlike cells of the innate immune system, 

where the receptors are germ line encoded, the B and T-cell receptors exhibit a very high 

level of variation due to recombination of T and B cell receptor genes. When naïve B or 

T-cells interact with the antigen for which they are specific, they undergo clonal 

expansion and form immunological memory. Upon re-challenge of the pathogen, 

memory cells that recognise the pathogen will perform effector functions with a shorter 

lag time compared to the primary infection and the production of antibodies by B-cells 

and cytotoxic granules and cytokines by T-cells will be greater. This results in more 

efficient clearance of the pathogen.

The B-cell receptor is a membrane bound immunoglobulin on the surface of B-cells, 

which is able to recognise proteins from extracellular pathogens. These receptors are 

then internalised peptides from the protein are presented via HLA-II molecules. Unlike 

HLA-I molecules which are found on all nucleated cells, HLA-II molecules are found on 

thymic epithelial cells and professional antigen presenting cells such as B-cells, 

macrophages and DCs (Reith et al., 2005). HLA-II presents peptides to CD4+ T-cells 

and once activated, provide cytokines to help the B-cell proliferate. The clearance of 



15

viruses is largely mediated by CD8+ T-cells, which recognise shorter peptide fragments 

presented by HLA-I expressing cells.

1.8.2 T-cell development
T-cells are derived from haematopoietic stem cells in the bone marrow which then 

migrate to the thymus. Upon entry of the thymus, T-cells do not express CD4 or CD8 

co-receptors (double negative thymocytes). It is during this stage that re-arrangement of 

T-cell receptor (TCR) genes occurs and T-cells acquire their antigen specificity. The T-

cell receptor is composed of an alpha chain and a beta chain, each consisting of a 

cytoplasmic domain, a constant domain and a variable domain. The variable domain of 

the TCR determines the specificity of the T-cell, and which antigens it will be able to 

detect. It is composed of three regions (V, D and J) and recombination of the genes 

encoding these allows for enormous potential diversity (1015-18) in TCRs in an individual, 

although only 107 clonotypes may be present in any one individual (Laydon et al., 2015). 

Following VDJ rearrangement, T-cells become double positive and express both CD4 

and CD8. During this stage, cells are selected for their ability to recognize host HLA 

molecules, ensuring that T-cells can successfully sample HLA (positive selection), 

becoming CD4+ or CD8+ depending on whether they recognise HLA-II or HLA-I, 

respectively. During the single positive phase, T-cells are selected for their inability to 

bind HLA with host peptides with high affinity (negative selection). This ensures host 

cells are less likely to mount an immune response against host tissue, which could lead 

to autoimmune disease. Positive, and then negative selection eliminates 98% of T-cells 

by apoptosis. Mature T-cells can bind host HLA, but not HLA with commonly expressed 

host peptides. These naïve cells are then released into the periphery (Koch and Radtke, 

2011).

1.8.3 Antigen presentation
Once naïve T-cells leave the thymus, they may be activated by professional antigen 

presenting cells such as dendritic cells, macrophages and B-cells. DCs possess the 

range of co-stimulatory molecules required to activate a naïve T-cell (Banchereau et al., 

2000). The first signal required by T-cells for activation is the binding of the TCR to 

peptide-HLA (pHLA). For HLA-I, the proteasome continually produces peptides from 

intracellular proteins. Heat shock proteins transport these peptides to the ER where they 

are transferred by the transporters of antigenic peptide (TAPs) to the luminal side of the 

ER. HLA molecules are held in a semi folded state by calnexin in the ER. When 

beta-2-microglobulin binds to HLA-I, calnexin dissociates and binds to a TAP transporter 

protein. Chaperone molecules in the ER load peptides into the groove of mature HLA-I 
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molecules. The HLA peptide complex is then transported via the transgolgi network to 

the surface of the cell, where they can be inspected by CD8+ T-cells (Figure 1.3).

HLA-II presents antigenic molecules to CD4+ T-cells. Bacteria, parasites and virus 

particles are taken up by professional antigen presenting cells such as cells of the 

myeloid lineage and B-cells. Proteins are degraded by early endosomes, following fusion 

with acidic lysosomes, resulting in the production of peptides. As with HLA-I molecules, 

HLA-II molecules are held by calnexin in the ER. They associate with the invariant chain 

(Li) a portion of which (class II associated invariant chain) protects the peptide binding 

groove of the HLA-II molecule until it moves to the class II loading compartment. 

Following ER and endosome fusion the invariant chain is degraded by acid proteases, 

which allows peptides from the degraded antigen to bind into the class II groove. The 

class II endosome then fuses with the plasma membrane allowing delivery of the HLA-II 

peptide complex to the cell surface (Parkin and Cohen, 2001, Antoniou et al., 2003, Klein 

and Sato, 2000a, Klein and Sato, 2000b). 

Recognition of the pHLA by a T-cell is mediated by the T-cell receptor. For activation of 

the T-cell to occur, a threshold of activation needs to be acquired in order to fully activate. 

Viola and Lanzavecchia (1996) showed that approximately 8000 T-cell receptor-HLA 

interactions were required to activate a T-cell. Each binding of the TCR provides a signal 

via phosphorylation of the CD3 molecule and once the threshold of activation has been 

achieved a range of transcription factors initiate gene transcription. Binding of pHLA and 

TCR allows for the formation of the immunological synapse. The TCR forms at the centre 

of this and is surrounded by a ring of adhesion molecules such as LFA-1 (lymphocyte 

adhesion molecules) and CD2 which interacts with ICAM-1 (intracellular adhesion 

molecule) and CD58 respectively. These, along with other co-stimulatory molecules form 

the supramolecular adhesion complex (SMAC) which regulates the secretion of 

cytokines and cytotoxic granules (Dustin, 2014). 
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Figure 1.3 Mechanism of antigen presentation to T-cells by HLA-I and HLA-II molecules.
Foreign intracellular proteins of viral, tumoural or bacterial origin are degraded by the 
proteasome and transported into the endoplasmic reticulum via TAP (left). 
Aminopeptidases further degrade peptides to shorter length (between 8-12 amino acids). 
In the ER peptides fit into the class 1 binding groove and are then transported to the 
surface. Foreign proteins such as bacteria and viruses can be endocytosed or 
phagocytosed by APCs (right). These are degraded by acidic lysosomes forming 
antigenic peptides between 12-18 amino acids in length. HLA-II molecules are 
assembled with the invariant chain, which covers the peptide binding groove. Following 
fusion with the endosome, the invariant chain is degraded and is replaced with peptide. 
HLAII molecules are delivered to the surface following fusion of the class II compartment 
with the plasma membrane. Adapted from Neerincx et al. (2013)
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1.8.4 Co-stimulation of T-cells
The activation of T-cells is not solely dependent on the recognition of peptide-HLA 

(pHLA) by T-cells. Whilst this is the primary signal, the interaction between co-signalling 

(both activating and inhibitory) molecules on the T-cells and APC are essential for the 

determination of the outcome of TCR signalling (Chen and Flies, 2013). This is referred 

to as signal 2. Most molecules involved in this process are members of the 

immunoglobulin superfamily (IgSF) or the tumour necrosis factor receptor super family 

(TNFRSF). The IgSF co-signalling molecules includes CD28, ICOS, CTLA-4, PD1, 

TIGIT, BTLA and CD2 (Chen and Flies, 2013). TNFRSF co-signalling molecules include 

GITR, DR3, 4-1BB, TNFR2, OX40 and CD30 (Ward-Kavanagh et al., 2016). The ligands 

for these receptors are found on, or released as soluble proteins by, antigen presenting 

cells. A range of co-signalling molecules are shown in Figure 1.4 and displays a complex 

relationship, with some of the molecules present on both the T-cell and APC. 

Binding of CD28 on T-cells to B7-1(CD80) or B7-2 (CD86) on APCs is essential for full 

naive T-cell activation (Esensten et al., 2016, Hathcock et al., 1994). CD28 family 

co-stimulation reduces the threshold for TCR triggering. In the absence of CD28-B7, 

pMHC to TCR interactions result in anergy/apoptosis. Co-stimulation of T-cells leads to 

proliferation, cytokine production, memory formation and survival whereas co-inhibition 

of T-cells (such as binding of B7 family members to CTLA4) results in cell cycle inhibition, 

tolerance, exhaustion and apoptosis (Chen and Flies, 2013). 

Co-stimulation reduces the number of pHLA-TCR interactions required for activation 

from 8000 to 1500 (Viola and Lanzavecchia, 1996). Following signal 1 and signal 2, 

signal 3 is provided by inflammatory cytokines, such as interleukin-12 (IL-12) and 

interferon α/β (IFNα/β). In the absence of these cytokines, T-cells do not develop optimal 

effector functions and are less viable. These cytokines allow for proliferation, and the 

development of memory due to increased gene expression downstream of receptor 

signalling (Curtsinger and Mescher, 2010). Following activation of a naïve cell there is a 

104-105-fold expansion in a specific clone accompanied by tumour necrosis factor (TNF), 

IFNγ, perforin and granzyme production and the ability to enter nonlymphoid tissue 

(Wherry and Ahmed, 2004).
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Figure 1.4 Co-signalling of T-cells. The left shows co-stimulatory ligands and their 
receptors on the T-cells. Some of the molecules are bi-directional and are found on the 
APC and T-cell. The right shows co-inhibitory signalling molecules. Because members 
of the B7 family can bind to multiple receptors, there is competition between members 
of the B7 family ligands (B7-1, B7-2, B7-H1, B7-H2, B7-DC) for CD28 family receptors 
(CD28, CTLA-4, PD-1, ICOS). The fate of the T-cell will depend on the dominance of the 
inhibitory signals versus the activating signals. ICOS inducible T-cell co-stimulator, 
LIGHT homologous to lymphotoxin, exhibits inducible expression and competes with 
HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on 
T lymphocytes; HVEM- Herpes virus entry mediator; TL1A- TNF-like protein 1A; DR3-
Death receptor 3; GITR-glucocorticoid-induced TNFR family related gene; TIM- T-cell 
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immunoglobulin domain and mucin domain; SLAM-signalling lymphocytic activation 
molecule; LAG3-Lymphocyte-activation gene 3; CTLA4- Cytotoxic T-lymphocyte 
associated antigen 4; PD-1 Programmed cell death protein 1; BTLA-B- and T-lymphocyte 
attenuator; LAIR1 Leukocyte-associated immunoglobulin-like receptor 1; TIGIT T-cell 
immunoreceptor with Ig and ITIM domains. Figure was adapted from Chen and Flies
(2013).
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1.8.5 Development of T-cell memory
The division of naïve CD8+ cells results in extensive expansion of CD8+ T-cell numbers 

following interaction with an antigen bearing APC. This is known as clonal expansion 

and results in a few antigen specific T-cells dominating the T-cell compartment for 

several days following the initial antigen encounter. Following activation and clonal 

expansion of T-cells, 5-10% will survive and form immunological memory (Wherry and 

Ahmed, 2004). This occurs due to activation induced cell death (AICD) of most T-cells 

via extrinsic and intrinsic apoptosis pathways, showing that even in antigen limited 

conditions, memory persists and provides immunity upon re-challenge (Lau et al., 1994, 

Kaech and Ahmed, 2001). Even though the initial priming of CD8+ T-cells is independent 

of CD4+ T-cells, CD4+ T-cells are essential for the formation of memory and rapid recall 

upon re-challenge (Shedlock and Shen, 2003). 

CD45 is a very abundant surface glycoprotein, accounting for 10% of the cell surface 

proteome of T-cells (Thomas, 1989). Naïve T-cells are CD45RO-, CD45RA+ and 

memory T-cells are CD45RA- and CD45RO+. CD45RA- Memory cells can be further 

categorised to CCR7+ (central memory) and CCR7- (peripheral memory) as CCR7 is a 

chemokine receptor that directs homing back to lymph nodes. Memory T-cells remain 

specific to the antigen from which they first responded and can be found preferentially 

compartmentalised at the site of the initial encounter between the naïve T-cell and the 

antigen presenting cell (Farber et al., 2014).

1.8.6 T-cells in HCMV patients
Memory T-cells are defined by CD45RO surface expression; however, phenotyping 

showed a large proportion of HCMV specific T-cells express CD45RA and are therefore 

referred to as TEMRA cells (effector memory expressing CD45RA)(Wills et al., 1999, 

Gillespie et al., 2000). Using tetramer technology, it was shown that a significant 

proportion of HCMV specific CD8+ T-cells expressed both CD45RO and CD45RA and 

that upon stimulation these cells could produce large amounts of effector cytokines such 

as IFNγ, MIP-1, TNF and perforin. Following primary infection in a symptomatic patient, 

the percentage of CD45RA cells increases between 3 and 8 weeks after onset of 

symptoms, though this correlates with a reduction in total CD8+ cells and reduced ex-

vivo cytotoxicity of peptide pulsed target cell (Wills et al., 1999). Also the cells lose the 

co-stimulatory molecule CD28 and are absent for CCR7 (Gillespie et al., 2000, Khan et 

al., 2002). These cells accumulate in the elderly, with increased proportions of tetramer 

specific cells in the very elderly (Ouyang et al., 2003, Olsson et al., 2000). Functionally 

cells from older individuals are less able to produce IFNγ and less responsive to peptide 
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compared to younger subjects (Ouyang et al., 2004). It has been hypothesised that this 

fills the ‘immunological space’ and reduces the repertoire of T-cells for novel antigens

(Ouyang et al., 2003).

1.8.7 Antigen specificity of CD8+ T-cells against HCMV
It has long been shown that HCMV specific cells could be grown out from the PBMCs of 

healthy HCMV seropositive patients (Borysiewicz et al., 1983). This suggested that 

despite being a latent virus, the initial HCMV infection is enough to generate a memory 

response, or that low levels of antigen are being produced from HCMV infected cells. 

Follow up studies showed that IE1, and the tegument protein phosphoprotein 65 (pp65) 

were dominating (70-90%) the specificity of HCMV-specific cytotoxic CD8+ T-cells

(McLaughlin-Taylor et al., 1994, Wills et al., 1996). Using peptide libraries, the first 

antigenic peptide sequences were identified and showed that 70-90% of HCMV specific 

T-cells could be pp65 specific in some subjects.

HCMV produces the strongest immune response of all known human viruses. This was 

exemplified in a longitudinal study which followed immunocompetent patients following 

a primary HCMV infection. In one of the patients HCMV specific cells accounted for 20% 

of the entire CD8 compartment. Eight weeks following infection, the activity of the cells 

had reduced amongst CD45RO expressing cells. Using BAC cloning of TCR’s it was 

shown that the initial response to HCMV was made of a diverse range of TCR 

segments, though over the next year, clonal focussing of the response was observed, 

and a dominant TCR prevailed following resolution of the primary infection. In a broader 

study assessing the response to the whole HCMV genome, it was shown that HCMV 

specific T-cells can make up 30% of the CD8+ compartment (Sylwester et al., 2005). Of 

the HCMV ORF’s in AD169, 81 ORFs were recognized by CD4+ T-cells and CD8+ T-

cells and 26 ORFs were recognised by CD8+T-cells alone. Whilst some HCMV genes 

are variable (Davison et al., 2003a), HCMV genes with low strain variation have the 

highest number of responders, which indicates that conserved genes produce proteins 

which trigger stronger immunological recognition (Sylwester et al., 2005). T-cells specific 

to three genes products (UL48, UL83, UL123) are recognized by T-cells from more than 

half of HCMV seropositive subjects, indicating the immunodominance of these genes.

1.8.8 The role of T-cells in HCMV disease
HCMV disease occurs in the absence of a competent immune system. A historical study 

showed that 43 out of 58 bone marrow transplant recipients developed HCMV disease, 

and of these, 12 were fatal (Quinnan et al., 1982).  From patients who survived the 

infection, the T and NK cell activity was higher than in those who succumbed to the 
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infection, as measured by specific lysis of target cells (Quinnan et al., 1982). The biggest 

threat of disease in HSCT patients is with D-/R+ transplantation as the bone marrow graft 

does not contain HCMV specific T-cells, and reactivation in the donor may occur. Using 

a range of HLA-A and HLA-B tetramers, the absence of HCMV re-activation significantly 

related to the reconstitution of at least 1 HCMV specific T-cell per 1µL of blood (Borchers 

et al., 2012). In solid organ transplantation the opposite situation arises, where D+/R-

patients are at risk of serious disease due to HCMV being transferred into a patient who 

has had no prior exposure to HCMV and is on immunosuppressive drugs.

CD4+ T-cells are essential in maintaining the memory CD8+ compartment and can 

themselves produce antiviral cytokines. In CMV+ AIDS patients, CD4+ T-cell counts of 

<50, 50-100 and >100 cells/mm3 correlated with end organ disease rates of 25%, 5.5% 

and 1.3% respectively underscoring the role of HCMV as an opportunistic pathogen 

(Gerard et al., 1997). In the pre-HAART era (1984-1996), mean CD4+T-cell count in HIV 

patients was 390 cells/mm3, compared to the 432 cells/mm3 in the post HAART analysis 

between 1997-2005 (Kim et al., 2006). The immune reconstitution resulted in a reduction 

in HCMV disease, and survival of patients with HCMV retinitis increased 93%  (Murphy 

et al., 2001, Springer and Weinberg, 2004). Using tetramers CD8+ T-cells were profiled 

in HCMV and HIV co-infection. One study showed that HCMV specific T-cells increased 

in number in chronic HIV and increased further for patients receiving HAART, though the 

functional response was not assessed (Naeger et al., 2010). In co-infected babies, 

HCMV infection increased the CD8+ count, compared to HCMV-/HIV+ babies, but this 

had no bearing on long term complications as co-infected babies had much lower CD4 

counts and worse disease progression (Kovacs et al., 1999). 

T-cells from HCMV positive Gambian babies showed a significantly higher proportion of 

cells that were CD45RO+, CD95+, CD28-, CD27-, Bcl2-, which indicated a more 

activated T-cell profile compared to HCMV negative babies. HCMV specific tetramer 

positive cells were detected in up to 7.5% of total CD8+ T-cells indicating a degree of 

expansion (Marchant et al., 2003). This was also shown in longitudinal study comparing 

T-cells between congenitally infected infants and primary infection in pregnancy. 

Compared to adults, T-cells in HCMV infected neonates displayed fewer HCMV specific 

CD8+ and CD4+ T-cells and reduced polyfunctionality suggesting that T-cell activity was 

correlated with the absence of HCMV disease. 

The importance of T-cells in controlling HCMV disease is highlighted by the success of 

adoptive immunotherapy strategies that seek to reconstitute T-cell immunity to HCMV by 

transfer of HCMV specific T-cells to transplant patients. In one study HCMV positive, 
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HLA-matched donor blood was stimulated ex-vivo with whole pp65 antigen and 

reintroduced to the patients. In 83% of patients who received treatment, HCMV infection 

was cleared or the viral burden was significantly reduced, as measured by CMV copy 

number (Feuchtinger et al., 2010). In another study, DCs stimulated with viral lysate were 

used to stimulate T-cells ex vivo, and HSCT recipients experienced large in vivo T-cell 

expansions and a significant reduction in recurring and late HCMV infection (Peggs, 

2009). 

1.9 Evasion of the cellular immune response by HCMV

Herpes viruses arose from a common ancestor approximately 350-400 million years ago. 

The family of herpes viruses are incredibly successful, being found in a huge range of 

vertebrates. Host specificity indicates that they have co-evolved with their host over a 

long time (Davison et al., 2003a). The success of HCMV as a lifelong pathogen is 

attributed at least in part to the broad range of encoded immune evasion molecules that 

inhibit the cellular immune response. Indeed, HCMV has become a paradigm for immune 

evasion, the study of which has revealed several basic immunological processes.

1.9.1 Immune evasion of T-cells
Whilst HCMV has a large genome of 226kb, most of these genes are not core genes and 

are dispensable for replication in vivo. So far, many of these dispensable genes have 

been found to be involved in immune evasion particularly of T and NK cells, which have 

essential roles in the clearance of virally infected cells. Many genes have evolved to 

combat different aspects of T-cell recognition, but despite this, HCMV still induces a 

remarkable immune response. This has been proposed to be due to the ability of DCs to 

cross present antigens, allowing non-infected DCs to activate T-cells (Sinclair, 2008).

1.9.1.1 Downregulation of HLA-I 
The main way by which HCMV infected cells are able to by-pass immune surveillance 

by CD8+ T-cells is by prevention of antigenic peptide presentation, which reduces pHLA-

TCR signalling events. The first report by Barnes and Grundy (1992) showed a gradual 

decrease in surface HLA-I when fibroblasts were infected with strain AD169, which was 

then shown to occur in whole cell lysates, indicating that the effect was not limited to 

surface protein (Yamashita et al., 1993). This downregulation occurs early in the HCMV 

cycle and is not due to reduced synthesis of HLA-I, but due to degradation of HLA-I 

heavy chains (Beersma et al., 1993, Yamashita et al., 1994). This was shown to be 

functionally relevant when in-vitro T-cell assays showed that HCMV infected cells 

became resistant to T-cell mediated lysis (Warren et al., 1994). 
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HLA-I is targeted through different mechanisms by several genes within the Us region of 

the HCMV genome (Jones et al., 1995). Shortly after the identification of HLA-I 

downregulation by HCMV, the precise mechanism of how genes in the US2-US11 region 

downregulated HLA-I was uncovered. US3 binds HLA-I heavy chains and inhibits their 

maturation by preventing egress from the endoplasmic reticulum (Jones et al., 1996). 

US2 increases the degradation of HLA-I by utilizing the cellular E3 ligase translocation 

in renal cancer from chromosome 8 (TRC8) (Jones and Sun, 1997, Stagg et al., 2009). 

US11 causes degradation of HLA-I, but unlike US2, it direct HLA-I to endoplasmic 

reticulum associated protein degradation (ERAD) by utilising the pseusoprotease Derlin-

1 (Wiertz et al., 1996, Lee et al., 2005, van den Boomen et al., 2014). Synergism between 

these genes has been reported. Co-expression of both US2 and US3 results in increased 

downregulation and degradation of HLA-I, by increasing the association of US2 and 

HLA-I (Noriega and Tortorella, 2009). 

Aside from interfering with the HLA-I heavy chain, HCMV reduces peptide translocation 

into the endoplasmic reticulum, which is required for HLA-I presentation (Hengel et al., 

1996). US6 does not target HLA-I molecules directly. Instead, it prevents peptide 

transport by binding to TAP inside the ER lumen (Ahn et al., 1997). The peptide transport 

is inversely correlated with US6 expression, which peaks at 72hpi during a lytic cycle. 

This results in a reduction in the level of surface HLA-I expression correlating with a 

reduction in CD8+ T-cell mediated lysis of target cells (Lehner et al., 1997). Orthologs of 

US6 are found in herpes simplex virus, Epstein-Barr virus and varicella-zoster virus 

(HSV, EBV and VZV), with all serving a common purpose; to prevent the transport of 

antigenic peptide to HLA-I molecules. This is a fascinating example of convergent 

evolution which shows the importance of inhibiting peptide transport for life long viral 

infection (Verweij et al., 2015). More recently the microRNA US4-1 was found to 

specifically downregulate ERAP1, a peptidase which trims long peptides to 8-9 amino 

acids in length. miRNA US4 reduces ERAP1 expression in HCMV infected cells, and 

miRNA US4-1 can impair the generation of antigenic peptides and subsequent lysis of 

HCMV infected cells by T-cell clones (Kim et al., 2011). 

Aside from genes in the Us region of the HCMV genome, other gene products have been 

found to impair T-cell mediated killing. The trafficking of mature HLA-I molecules is 

reduced by the tegument protein pp71, encoded by UL82 (Trgovcich et al., 2006). When 

expressed in isolation, pp71 does not affect HLA-I transcript levels or whole cell protein 

level, but only the surface expression. The precise mechanism remains unclear, though 

it can be concluded that pp71 affects the tracking from the ER to the surface of mature 

HLA-I. pp65 (pUL83), another tegument protein was also shown to affect T-cell mediated 
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killing. By expressing UL83 and UL121 in isolation and in combination, it was shown that 

pp65 had a large effect on the ability of IE1 specific T-cells to kill IE1 expressing cells 

(Gilbert et al., 1996). This was not the case for pp150, which suggested that pp65 

selectively prevents the processing of IE1, an early immunogenic antigen. Thus, 

tegument proteins derived from the virion provide a level of immune suppression in the 

interim period between infection of the cell and translation of other HLA-I downregulating 

genes. 

The fact that no fewer than five HCMV genes (US2, US3, miRNA-US4, US6, US11) are 

dedicated to reducing the presentation of antigenic peptide by HLA-I shows the 

importance of this pathway for allowing HCMV to maintain virulence. 
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Figure 1.5 Impairment of antigenic peptide presentation in HCMV infected cells. The 
production of mature pHLA-I is imparied in three steps; first by targetting the HLA chains 
for proteosomal degradation; secondly, by preventing the availability of antigenic 
peptide; and thirdly by preventing translocation of pHLA-I from the ER to the cell surface.
Figure was adapted from Noriega et al. (2012).
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1.9.1.2 Downregulation of other HLA molecules
Whilst there is a significant investment by HCMV in combatting the main signal for CD8+ 

T-cell activation, many of these genes are also active in the downregulation of HLA-II 

molecules, which present peptides to CD4+ T-cells. In macrophages US2 causes the 

degradation of HLA-II molecules (Tomazin et al., 1999). This was not shown on immature 

or mature DCs, suggesting that HLA-II downregulation by HCMV may be more efficient 

in certain cell types (Beck et al., 2003). As a downstream effect of impairing interferon 

signalling, HCMV interferes with the IFNγ induced JAK/STAT and class II transactivator 

(CIITA) production (Miller et al., 1998). This impairs the production of de novo HLA-II 

molecules.

Unlike classical HLA molecules, HLA-G expression is generally restricted to foetal 

trophoblasts, and the thymus (Crisa et al., 1997). As a homodimer, HLA-G binds to co-

inhibitory molecules leukocyte immunoglobulin-like receptor-1 (LIR-1), LIR-2 and 

KIR2DL4 on NK and T cells. Park et al. (2010) showed that HLA-G interacts with US2, 

resulting in degradation, similar to how US2 targets HLA-I heavy chains. HLA-G is 

destabilized by US10 in a proteasome dependent matter, resulting in its degradation. 

US10 specifically targets HLA-G via the C-terminal tail, as an HLA-G variant with the 

cytoplasmic domain of HLA-A2 was not degraded by US10 (Park et al., 2010). 

1.9.1.3 Regulation of other T-cell co-stimulatory molecules by 

HCMV
Mature DCs are the best activators of naive T-cells and can activate both CD4+ and 

CD8+ T-cells due to their expression of both HLA-I and HLA-II molecules. Upon 

maturation, DCs upregulate the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-

2), which bind CD28 and are essential for complete naïve T-cell activation. Mature and 

immature DCs were infected with endothelial cell adapted clinical HCMV strains and flow 

cytometry was performed. When immature DCs were infected, CD80 was partially down 

regulated, though CD86 was unchanged (Beck et al., 2003). Mature DCs also showed 

this pattern, suggesting that the regulation of CD80 may be a target for HCMV immune 

evasion. 

CD40 is found on the surface of APCs and binds to CD40L on T-cells, as well as B-cells 

(Elgueta et al., 2009). The signalling of CD40 leads to the maturation of DCs and the 

receptor is vital for immune function as demonstrated in patients with a mutation in the 

CD40 gene, who exhibit a defect in T-cell immunity (Fontana et al., 2003, Schneider et 

al., 2008). Although CD40 is downregulated following HCMV infection in mature DCs, in 

endothelial cells and fibroblasts HCMV infection stimulates CD40 expression (Weekes 
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et al., 2014, Maisch et al., 2002). HCMV has differential effects on CD40 depending on 

the cell type that is being infected, which could influence immune cell activation.

1.9.1.4 Regulation of T-cell signalling by HCMV 
CD45 is a tyrosine phosphatase essential for T-cell signalling. UL11 is a is member of 

the RL11 family that encodes a surface glycoprotein that binds CD45 on T-cells to 

suppress proliferation and signalling by CD4+ T-cells (Gabaev et al., 2011). 

GpUL11stimulates the production of the anti-inflammatory and immunosuppressive 

cytokine IL-10 from CD4+ T-cells, which resulted in reduced IFNγ production by T-cells. 

The effect of HCMV UL11 expression is thus immunosuppressive by affecting the 

proliferation of certain subsets of T-cells (Zischke et al., 2017). The original work was 

performed on CD4+ T-cells, however using a similar experimental set up UL11-Fc did 

not affect IFNγ production by HCMV specific CD8+ T-cells, even though the soluble 

protein was shown to bind to them (Gabaev et al., 2014). 

UL10, also a member of the RL11 gene family was shown to bind to a wide range of 

leukocytes specifically CD4, CD8, B B-cells, NK-cells, monocytes and neutrophils. 

GpUL10 binding significantly affected production of multiple cytokines from CD4+ T-

cells, though a functional effect of CD8+T-cells was not ruled out as the number of IL-17 

producing CD8+ T-cells was significantly reduced (Bruno et al., 2016).

1.9.2 Immune evasion of Natural Killer cells
A landmark case report came from America and described an adolescent girl who had 

functional deficiency of NK cells. The girl was hospitalised multiple times for herpes virus 

infections including varicella and cytomegalovirus, showing the importance of NK cells 

in preventing HCMV disease occurring in seropositive individuals (Biron et al., 1989). In 

total, there have been at least 19 individuals reported with classical NK cell deficiency 

(CNKD). Of these, 10 experienced severe consequences of herpesvirus infection 

(Orange, 2013). 

Unlike T and B cells, the receptors of NK cells are germline encoded and not subject to 

rearrangement. These receptors can be inhibitory or activating. NK cells function 

according to the ‘missing self’ hypothesis which states that they respond to cells that 

display a lack of ‘self’ (HLA-I molecules); an abnormal situation as the large majority of 

nucleated cells express MHC-I (Shifrin et al., 2014). Because HCMV impairs HLA-I 

expression to avoid detect by CD8+ T-cells, HCMV infected cells should trigger NK 

activation. To counter this HCMV has developed a range of strategies to subvert NK cell 

response. A summary of NK evasion functions is shown in (Figure 1.6).
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Figure 1.6 Relationship between NK ligands and receptors, and HCMV genes which 
affect them. The diagram shows common NK cell activating and inhibitory receptors. 
UL141, UL16, UL142, US18 and US20 act by downregulating NK cell activating receptor 
ligands. UL40 increases an NK cell inhibitory ligand HLA-E. RL11 and UL118-UL119 
were shown to inhibit NK cell function by impairing the function of Fc antibody receptors 
which affect ADCC (antibody dependant cellular cytotoxicity) (Corrales-Aguilar et al., 
2014). NKRP1A- Natural killer receptor P1A, KIR- Killer immunoglobulin like receptor; 
NKG2- natural killer group 2; TIGIT- T cell immunoreceptor with Ig and ITIM domains; 
DNAM1- DNAX Accessory Molecule-1; CRTAM- cytotoxic and regulatory T cell 
molecule; LFA-lymphocyte function associated antigen; ICAM- intercellular adhesion 
molecule; LLT1- lectin like transcript 1; Necl- nectin like molecule. Adapted from Chan et 
al. (2014)
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1.9.2.1 Regulation of NKG2D ligands
Natural-killer group 2, member D (NKG2D) is an activating receptor expressed on NK 

and T-cells and binds to MHC-I related proteins (MIC) such as MICA, MICB as well as 

the UL16 binding proteins (ULBPs). ULBPs are named so, as they bind HCMV UL16 and 

were shown to activate NK cells (Kubin et al., 2001, Cosman et al., 2001). UL16 

sequesters some of these proteins intracellularly and stabilises them in the ER and Golgi 

(Dunn et al., 2003a). This was later validated in the context of a HCMV infection using 

ΔUL16 viruses and showed that UL16 counteracts upregulation of MICB and ULBPs 

following viral infection (Rölle et al., 2003, Odeberg et al., 2003). 

Whilst UL16 binds ULBP1-2 and MICB, other NKG2D ligands such as ULBP3 and MICA 

were unaffected, even though HCMV infection was shown to downregulate MICA 

(Cosman et al., 2001). Using a series of block deletions, downregulation of MICA was 

mapped to the US18-22 region of the HCMV genome (Fielding et al., 2014). Whilst 

deleting US18 and US20 individually has small effects on surface MICA, deleting both 

causes a large increase in surface MICA indicating that these two genes act 

synergistically to prevent the surface upregulation of MICA. Microscopy of HCMV 

infected cells shows that MICA is trafficked to the lysosome, and functionally US18 and 

US20 impair NK cell recognition of HCMV infected cells.

Using UL142 sequences from high and low passage HCMV strains, and ORF prediction 

tools, the structure of UL142 was predicted to have homology to HLA-I (Wills et al., 2005). 

Cells which expressed UL142 were more resistant to NK cell mediated killing, although 

this was not the case with all PBMC donors. Whilst ectopic expression of UL142 provides 

protection against NK cells by downregulating MICA and sequestering it in the cis-Golgi 

(Chalupny et al., 2006, Ashiru et al., 2009) this function does not explain why UL142 acts 

in a donor-specific manner. 

UL142 is a highly polymorphic HCMV gene in clinical HCMV isolates (Chalupny et al., 

2006), and it has been proposed that this is to accommodate for the diversity in MIC 

alleles. Indeed, MICA*008, the most common MICA allele (25.3%), was found to be 

resistant to UL142 mediated downregulation (Wilkinson et al., 2008, Chalupny et al., 

2006). The resistance of MICA*008 to UL142, US18 and US20 can be compensated for 

by US9, which specifically targets MICA*008, without effecting other MICA or HLA 

molecules (Seidel et al., 2015). 

To assess the function of HCMV encoded miRNAs, Stern-Ginossar et al. (2007) used an 

algorithm for the prediction of mRNA targets, with miRNA-UL112 predicted to duplex with 

MICB. Ectopic expression of miRNA-UL112 reduced NKG2D binding and resulted in 
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reduced NK-cell mediated killing. It was later shown that host miRNAs (miRNA-376A and 

miRNA-433) can also reduce MICB expression and that miRNA-UL112 synergises with 

miRNA-376A to downregulate MICB expression (Nachmani et al., 2010). These data 

show that HCMV has evolved mechanisms to prevent NKG2D mediated cell activation 

both at the protein and transcriptional level. The latter is of relevance as ectopic 

expression of IE1 and IE2 can increase whole cell levels of ULBP molecules and MICA/B 

(Fielding et al., 2014). HCMV has evolved multiple mechanisms that act in concert to 

systematically combat the array of NKG2D stress ligands stimulated during virus 

infection 

1.9.2.2 Upregulation of HLA-E 
NK cell activation can be regulated via the HLA-E/CD94 axis. CD94 heterodimerises with 

NKG2A, to form an inhibitory receptor, whereas CD94/NKG2C functions as a lower 

affinity activating receptor (Beziat et al., 2012).  HLA-E, like other non-classical HLA 

molecules binds peptides. Unlike the vast  polymorphism of classical HLA molecules 

(HLA-I and HLA-II), HLA-E exhibits limited polymorphism, and is restricted to 13 alleles, 

though only two of these contribute to HLA-E function; HLA-E*01:01 and HLA-E*01:03 

(Kraemer et al., 2014). To be expressed at the surface of the cell, HLA-E must first bind 

with a nonameric peptide derived from the leader sequence of classical HLA molecules. 

This was originally determined as VMAPRTVLL although variations at position 8 occurs 

depending on the haplotype of the HLA molecule (Braud et al., 1997, Braud et al., 1998a, 

Braud et al., 1998b). The conserved interaction between HLA-E and CD94/NKG2A 

inhibits NK cell activity when cells express normal levels of HLA-I.

Comparison of amino acid sequences found that the N-terminus of HCMV UL40 from 

strain Merlin was homologous to the HLA-A2 leader sequence, VMAPRTLIL, as was the 

sequence from Toledo (Tomasec et al., 2000). UL40 to increases surface expression of 

HLA-E and decreases NK cell mediated killing. Despite the inhibition of TAP by US6, the 

UL40 peptide can be loaded to HLA-E. UL40 peptide was loaded to HLA-E and 

presented on the surface of TAP deficient cells indicating a TAP independent mechanism 

for the loading of peptide to HLA-E (Ulbrecht et al., 2000). The effect of UL40 was further 

shown in the context of a HCMV infection when it was deleted from AD169 resulting in 

increased killing by CD94+ NK cells. Blocking of CD94 increased NK killing, and PBMCs 

depleted for CD94+ cells did not kill HCMVΔUL40 infected cells (Wang et al., 2002). A 

further example of synergistic action between HCMV proteins was noted when UL40 was 

found to upregulate surface UL18. Further analysis showed that UL40 contains two 

transcriptions start sites with the first being translated to generate a signal peptide 
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capable of upregulating both HLA-E and UL18 and the second shorter signal peptide 

which can upregulate HLA-E only (Prod'homme et al., 2012). 

HCMV infections are characterised by large expansions of NKG2C+ NK cells, which 

display an altered receptor profile and are referred to as adaptive NK cells (Guma et al., 

2004). These cells are named such as they display rapid recall  response and provide 

protective immunity against HCMV(Sun et al., 2009). To assess if sequence variation of 

the UL40 peptide could influence adaptive NK cell responses, UL40 variants from 

multiple HCMV strains were used to coat HLA-E and present to NKG2C+ NK cells. It was 

found that UL40 sequence VMAPRTLFL induced greater activation of NK cells compared 

to other UL40 sequences and could drive expansion of NKG2C+ NK cells in HCMV 

seronegative subjects (Hammer et al., 2018). Regardless, the presence of HLA-E 

restricted CD8+T cells can be detected in a third of HCMV seropositive hosts and are 

active against cells expressing the UL40 peptide and HLA-E (Pietra et al., 2003, Jouand 

et al., 2018). 

1.9.2.3 Homology to HLA-I 
Before the discovery that HCMV downregulates HLA-I, gpUL18 was identified as an 

HLA-I homolog (Beck and Barrell, 1988). When both UL18 and 2-microglobulin were 

expressed in combination, both proteins were precipitated together showing an 

interaction similar to that between 2-microglobulin and HLA-I molecules. There was also 

an increase in the surface expression of UL18, indicating that UL18 requires 2-

microglobulin for surface expression. Initially it was suggested that HCMV UL18 was 

sequestering 2-microglobulin in an attempt to prevent mature HLA-I/2-microglobulin 

heterodimers (Browne et al., 1990), though this was later ruled out as high levels of free 

2-microglobulin were found on the surface of HCMV infected cells (Beersma et al., 

1993). UL18 is also able to bind peptides derived from host proteins (Fahnestock et al., 

1995). Significance of this homology to HLA-I was revealed when it was shown that 

gpUL18 inhibited NK-cell function when HLA-I deficient cells were transfected with UL18 

(Reyburn et al., 1997).

The ligand for gpUL18 was identified as leukocyte immunoglobulin-like receptor 1 (LIR-

1, CD85j) (Cosman et al., 1997). Surface plasma resonance revealed that LIR-I has a 

greater than 1000-fold higher affinity for strain AD169 gpUL18 compared to HLA-I 

(Chapman et al., 1999). A complication in understanding gpUL18 function was that the 

inhibition of NK cells by UL18 was donor specific, with only some showing a response 

against gpUL18 expressing cells. The issue was resolved by application of a CD107 

mobilisation assay which showed that whilst gpUL18 decreased the activation of LIR1+ 
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NK cells, this effect was offset by an activation of LIR1- NK cells (Prod'homme et al., 

2007). Despite exhibiting homology to HLA-I, gpUL18 is resistant to the HLA-I 

downregulating genes US2, US3, US6, and US11 (Park et al., 2002). GpUL18 can also 

decrease activation of LIR1 expressing CD8+ T-cells (Wagner et al., 2007). UL18 

restricted CD8+ T-cells have also been reported which can lyse HCMV infected cells 

independently of CD3/TCR engagement, and therefore UL18 can activate and inhibit 

both NK and T cells (Saverino et al., 2004).

1.9.2.4 Downregulation of other NK activating ligands
Decreased activation of NK-cells had been reported against cells infected with HCMV 

containing an intact UL/b’ region compared to AD169 or Towne, which lacked this region. 

Using primary NK cells and NK clones, it was found that UL141 was an NK cell evasion 

gene (Tomasec et al., 2005). Screening for changes of different NK cell activating ligands

on the surface of HCMV infected cells revealed that UL141 downregulates surface 

CD155 (poliovirus receptor/ nectin-like molecules 5) by binding and sequestering it inside 

the cell (Tomasec et al., 2005), thereby impairing signalling through its activating 

receptor, DNAM-1. 

CD112 is a second ligand for DNAM-1 and is also downregulated upon Merlin infection 

and was also rescued by deletion of UL141 (Prod'homme et al., 2010). This was due to 

proteasomal degradation. Plasma membrane profiling of cells infected with HCMV 

lacking each of the HLA-I downregulating genes (US2, US3, US6 and US11) revealed 

that US2 also downregulated CD112 by promoting TRC88 dependent degradation, the 

same mechanism by which it reduces HLA-I heavy chain degradation (Hsu et al., 2015). 

This further exemplifies how genes involved in T-cell regulation can also be involved in 

regulation of NK ligands. Further still, UL141 downregulates death receptors 4 and 5, 

which results in a reduction of TRAIL mediated killing (discussed in section 1.10.4.3).

To determine if the US12 gene family had a larger role in immune modulation, proteomic 

analysis was performed on cells infected with HCMV deletion mutants within the US12 

family. An initial experiment with a ΔUS12-21 mutant revealed that these genes are 

responsible for regulating many proteins on the plasma membrane and in whole cell 

lysates (Fielding et al., 2017). One of the proteins that was upregulated upon deletion of 

US12-21 was B7-H6 which has been identified as a ligand for the natural cytotoxicity 

receptor (NCR) NKp30 (Brandt et al., 2009). To identify the individual genes, expanded 

and proteomic analysis was performed with individual knockout viruses within the US12-

21 region, which revealed that US18 and US20 target B7-H6 for lysosomal degradation 

in addition to their previously described action on MICA (Charpak-Amikam et al., 2017, 



35

Fielding et al., 2017). This supports earlier findings that many HCMV proteins target 

multiple host proteins to aid in immune evasion. A range of immune modulatory 

molecules were shown to be regulated by US12-21 genes, including T-cell costimulatory 

molecules such as ICOS-L. 

1.9.2.5 Modification of the actin cytoskeleton
A systematic screen of genes in the UL/b’ region showed that UL135 impaired the 

degranulation of NK and T cells (Stanton et al., 2014). Cells infected with MerlinΔUL135 

were less rounded and more spread out compared to Merlin, when assessed by 

microscopy indicating that UL135 has an important role in the characteristic 

morphological changes following HCMV infection. UL135 also reduced the number of 

fibroblast-NK cell complexes. In a HCMV infection f-actin was lost from the center of the 

cell, but following MerlinΔUL135 infection, a proportion of actin remained in the center of 

the cell indicating that UL135 remodels the actin cytoskeleton. Using SILAC-IP and a 

range of RAd-UL135 variants, it was shown that UL135 interacts with AB1/AB2, which 

are involved in the formation of the WAVE regulatory complex that regulates the actin 

nucleator Arp/2 (Takenawa and Suetsugu, 2007). This interaction is critical for the 

immune evasion elicited by UL135 when assessed by NK cell degranulation and 

adhesion (Stanton et al., 2014).

In summary, the study of NK cell evasion by HCMV has revealed the importance of basic 

immunological processes and the discovery of novel immune ligands. These include 

HCMV encoded genes which activate of inhibitory pathways (LIR1, HLA-E) and the 

downregulation of activating ligands (MIC, ULBP, DNAM1, B7-H6). 

1.10 Modulation of the Tumour Necrosis Factor Receptor 

Superfamily and HCMV

1.10.1 Overview of the Tumour Necrosis Factor Superfamily
The ligands and receptors of the tumour necrosis factor (TNF) superfamily regulate many 

cellular processes such as organogenesis, apoptosis, cell differentiation and cytokine 

proliferation and co-stimulation. There are at least 26 known receptors and 31 known 

ligand receptor pairs (Figure 1.7, (Lang et al., 2016). The tissue expression of receptors 

varies greatly. For example, TNFR1 is found on most nucleated cells, whilst others have 

a more defined pattern of expression such as RANK, which is found on osteoclast 

precursor cells (Boyce and Xing, 2007) while 4-1BB is found predominantly on activated 

T-cells (Wen et al., 2002).
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Based on intracellular adaptor proteins, the family of receptors can be divided into three 

groups. The first group includes receptors whose activation causes recruitment of 

intracellular signalling molecules that express death-inducing domains such as TNFR 

associated death domain (TRADD) and first apoptosis signal (FAS)-associated death 

domain (e.g. FAS, TNFR1, and death receptor 3). The second group includes receptors 

which recruit TNF-receptor associated factor (TRAF) (e.g. TNFR2, CD40, CD27). The 

third group of receptors includes those that do not signal, but compete with other 

receptors for ligands, such as osteoprotegrin (OPG) which can bind to RANKL. 

The ligands of the family can be secreted as is the case for lymphotoxin (LT), though 

most function as transmembrane proteins that can act locally such as CD95L, TRAIL, 

GITRL, CD40L. These ligands have pleiotropic properties due to the fact they can bind 

to more than one receptor or may have different effector functions depending on where 

the receptor is expressed. A notable example is lymphotoxin which can cause necrosis 

of tumours but also is crucial in the organogenesis of secondary lymphoid organs 

(Carswell et al., 1975, De Togni et al., 1994). 

Despite the pleotropic nature of receptor ligand interactions, different TNFRSF 

receptors/ligands show high levels of amino acid homology. The majority of ligands of 

the TNFRSF are type II transmembrane proteins, which means they have intracellular 

N-terminus and extracellular C terminus domains. Ligands have a conserved C-terminal 

domain termed the TNF homology domain (THD), which is a framework of aromatic and 

hydrophobic amino acids. This domain is responsible for receptor binding and there is 

20-30% sequence homology between family members. Additionally, there is similarity in 

how ligands bind to receptors. Crystal structure of TNF bound to TNFR1 showed that 

TNF binds as a trimer to three receptors (Banner et al., 1993). This 3:3 stoichiometry 

was also observed for TRAIL binding to DR5 (Cha et al., 2000). Work by Wyzgol et al. 

(2009) showed that stabilisation of ligand trimers of CD27L, CD40L, 4-1BBL and GITRL 

improved the activity of these soluble trimers, further showing that ligand trimerization of 

TNFRSFs improves function.
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Figure 1.7 The tumour necrosis family super family of receptors and ligands. Ligands are 
shown in blue and receptors in red. The vertical dotted line represents the cell membrane 
where ligands or receptors are attached. The number of red ovals represents the number 
of cysteine rich domains. The green rectangles represent the presence of a death 
domain. TNF Tumour necrosis factor; LT lymphotoxin; BTLA B and T Lymphocyte 
Associated; TWEAK- TNF related weak inducer of apoptosis; EDA Ectodysplasin A; 
GITR; glucocorticoid-induced TNFR-related protein; APP-amyloid precursor protein; 
SPAK-Ste20-related proline-alanine-rich kinase; RELT-Receptor expressed in lymphoid 
tissues; LTβR- Lymphotoxin β receptor; Fn14- Fibroblast growth factor-inducible 14; 
BCMA- B-cell maturation antigen; TACI- transmembrane activator and CAML interactor; 
BAFFB cell-activating factor; OPR- osteoprotegrin; TRAIL TNF related apoptosis 
inducing ligand; DcR decoy receptor; XEDAR- X-linked ectodysplasin-A2 receptor; 
NGFR- Nerve growth factor receptor; DR- Death receptor. Adapted from Sonar and Lal 
(2015).
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1.10.2 Overview of TNF and TNFR1/2
As early as the 1800s, patients undergoing cancer regression were found to have 

concurrent bacterial infections and in 1893 William Coley tried to replicate this by using 

a mixture of live and dead bacteria to treat tumours (Nauts and McLaren, 1990). It wasn’t 

until 1975 when Lloyd Old’s group showed that the tumour necrotizing effects induced 

by LPS were not direct but were mediated by a soluble factor causing necrotic 

degeneration of tumours (Carswell et al., 1975). A decade later, the cDNA of tumour 

necrosis factor (TNF) was cloned and expressed. Both recombinant and natural human 

TNF were found to produce substantial necrotic responses, verifying the earlier reports 

of LPS induced tumour necrosis factor (Pennica et al., 1984, Shirai et al., 1985).

The TNF (and LT) gene are found within the MHC III region on chromosome 6p21, 

between the MHC class I and class II genes (Carroll et al., 1987, Nedwin et al., 1985). 

TNF has two forms; the 17kDa soluble form and the 26kDa membrane bound form, 

suggesting that the soluble molecule may need to be produced by cleavage of a receptor 

bound molecule (Kriegler et al., 1988). TNF was shown to be cleaved by a 

metalloproteinase at the cell surface, which releases the ectodomain of TNF into the 

supernatant. The enzyme, tumour necrosis factor activating enzyme (TACE) also known 

as A Disintegrin And Metalloproteinase (ADAM17), is a zinc metalloproteinase which is 

present on most immune cells (Mohler et al., 1994, Gearing et al., 1994, Black et al., 

1997, Moss et al., 1997). ADAM17 has been shown to be responsible for the shedding 

of other TNFRSF receptors and ligands (Scheller et al., 2011). 

After its characterisation in 1984-85, the true importance of TNF was realised as it was 

found to orchestrate a range of cellular functions including cell death, survival, 

differentiation, proliferation and cytokine production (Ashkenazi and Dixit, 1998, Waters 

et al., 2013). Upon activation of lymphocytes, TNF is one of the earliest genes to be 

transcribed with levels of TNF mRNA within lymphocytes peaking at 30min post 

stimulation (Goldfeld et al., 1992). Its rapid production shows its importance as an early 

effector molecule against pathogens.

1.10.3 Signalling of TNF receptors
The two specific receptors for TNF share homology in the extracellular region but differ 

in their cytoplasmic motifs. TNFR1 is found on most nucleated cells, whereas the 

expression of TNFR2 is limited primarily to lymphocytes, endothelial cells and cells of 

the myeloid lineage such as DCs and macrophages, which are reservoirs for HCMV 

(Carpentier et al., 2004). TNFR1 possesses a death domain and can activate apoptotic 

pathways following the binding of TNF to TNFR1. TNFR1 signalling can also promote 
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cell survival by increasing transcription of cellular inhibitors of apoptosis (cIAP), which 

inhibit caspase 3 activation. The contrasting outcomes of apoptosis and survival was 

uncovered when Micheau and Tschopp (2003) showed that TNFR1 signalling involves 

two signalling complexes; complex 1 and complex 2. 

Death receptor signalling is complex with regards to the enzymes, and ubiquitination, 

which regulates the activation and degradation of signalling molecules (Wertz and Dixit, 

2010). The following is a simplified description of the TNF signalling pathway (Figure 

1.8). Upon binding of TNF to TNFR1, the adapter molecule TRADD (TNF receptor 

associated death domain) is recruited. TRAF2 (TNF receptor associated factor) and 

RIPK1 (receptor interacting protein kinase1) then bind to TRADD. TRAF2 is then able to 

bind cIAPs (cellular inhibitors of apoptosis) that catalyse ubiquitination of RIPK1. This

collection of molecules is referred to as complex 1. Polyubiquinated RIP1 recruits NEMO 

to the IκB kinase (IKK) complex. Activated IKK phosphorylates inhibitor of kappa B (IκB), 

which is bound to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), 

leading to IκB ubiquitination and degradation. The NF-κB heterodimer enters the 

nucleus. This allows NF-kB to bind to specific sites and increase the transcription of 

proinflammatory and anti-apoptotic genes. TNFR1 also activates p38-Mitogen Activated 

Protein Kinases (MAPK) and c-Jun N-terminal Kinases (JNK) which activate Activating 

Transcription Factor 2 (ATF2) and Activator Protein 1 (AP-1). These signalling pathways 

can potentially alter the expression of 500 genes which initiates a wide range of effector 

functions (Faustman and Davis, 2010).

The other mechanism of signalling is via complex 2, which results in apoptosis following 

binding of TNF to TNFR1. As with complex 1, TRADD is recruited to the cytoplasmic 

domain of TNFR1. However, modification occurs and TRADD dissociates from TNFR1 

and the death domain becomes available to bind FADD (Fas associated death domain), 

which in turn recruits caspase 8/10. One of the genes transcribed downstream of NF-kB 

signalling, is FAD-like IL-1beta-converting enzyme (FLICE) inhibitory protein (FLIP) and 

is a master regulator of apoptosis (Kreuz et al., 2001, Safa, 2012). FLIP binds to FADD, 

caspase 8/10, cleaves RIPK1/3, and also forms an apoptosis inhibitory complex, 

preventing complex 2 formation. Therefore, TNF mediated apoptosis can be subject to 

a checkpoint, dependent on the lack of complex-I mediated FLIP production downstream 

of NF-kB (Kreuz et al., 2001). TNFR1 is predominantly proinflammatory as long as the 

protective mechanisms of NF-kB are not impaired (Wajant, 2015).

Unlike TNFR1, TNFR2 does not have a death domain, and as such it is not considered 

to directly activate cell death pathways (Cabal-Hierro and Lazo, 2012). TNFR2 can 
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recruit TRAF2 and TRAF1, cIAP1 and cIAP2 upon activation. TRAF signalling can then 

occur as with TNFR1 with transcription factors NF-κB MAPK and AP1 entering the 

nucleus, resulting in pro-inflammatory gene expression. TNFR2 signalling can result in 

TRAF2 ubiquitination and subsequent proteasomal degradation. This suggests that 

TNFR2 signalling is controlled by an autoregulatory loop (Cabal-Hierro and Lazo, 2012). 

TNF receptors are important on myeloid cells such as macrophages and DCs, which 

express both receptors. Despite the conventional theory about TNFR2 and non-cell 

death pathways, TNFR2 activation sensitized cells to TNFR1 mediated necroptosis, a 

cell death pathway that occurs when caspase enzymes are inhibited (Siegmund et al., 

2016). Crossover of function has been reported, with increased cell death when both 

TNFR1 and TNFR2 were stimulated, compared to TNFR1 alone (Bigda et al., 1994).

Whilst the two receptors share homology in their extracellular regions, the affinity of 

binding by TNF is different. Determination of the dissociation constant at 37˚C revealed 

significantly higher affinity of soluble TNF (sTNF) for TNFR1 rather than TNFR2, which 

has designated TNFR1 as the main transducer of sTNF signalling. Binding studies have 

shown that TNF has a very high binding affinity to TNFR1 (Kd = 1.9 × 10-11M) and a 

significantly lower affinity for TNFR2 (Kd = 4.2 × 10−10M) (Grell et al., 1998). Whereas 

sTNF primarily exerts its biological activity through TNFR1, multimeric TNF (mTNF) can 

activate both TNFR1 and TNFR2 (Grell et al., 1995). 
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Figure 1.8 The TNF signalling pathway. TNF binding to TNFR1 causes conformation 
changes that allow binding of TRADD to the death domains of TNFR1.TRADD recruits 
TRAF2/5, RIP-1 and cIAPs to form complex-1. The signalling complex with RIP-1 
ubiquitination initiates activation of IKK complex, consisting of IKKα and IKKβ, regulates 
IKKγ. IKKγ phosphorylates IκBα, leading to its ubiquitination and subsequent 
degradation. This allows NF-kB, consisting of p65 and p50 to translocate to the nucleus 
and bind to NF-κB binding sites. This initiates the production of pro-inflammatory genes. 
When complex 1 fails to activate the NF-κB pathway, and cFLIP is not produced, TRADD 
and RIP dissociate from the cytoplasmic domain of TNFR1. FADD and Caspase 8 are 
recruited to complex II. This results in the apoptosis cascade and cell death. TRADD-
Tumor necrosis factor receptor type 1-associated DEATH domain; TRAF- TNF receptor 
associated factor; RIP- Receptor-interacting serine/threonine-protein kinase 1; CYLD 
Ubiquitin carboxyl-terminal hydrolase; cIAP- cellular inhibitor of apoptosis; FADD Fas-
associated protein with death domain; TAK1 Transforming growth factor beta-activated 
kinase 1; TAB- TAK1-binding protein; NF-κB - nuclear factor kappa-light-chain-enhancer 
of activated B cells. Adapted from Zhao et al. (2015).
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1.10.4 Regulation of TNFRSF members by HCMV 
TNF has a crucial role in viral infection. This is manifested by increased viral reactivation 

in patients taking anti-TNF therapy (Ali et al., 2013). Given that many members of the 

TNFRSF are co-stimulatory molecules and influence cell death/survival, this makes them 

prime targets for immune evasion and inhibition of apoptosis. Herpes viruses and HCMV 

have evolved many ways to regulate the TNF pathway, aside from modulation of the 

receptors themselves. The next section discusses the advances made relating to HCMV 

and TNFRSF members. 

1.10.4.1 Tumour necrosis factor receptor 1 (TNFRSF1A)
Initial work with AD169 showed that TNFR1 was downregulated over the course of a 

HCMV infection (Baillie et al., 2003). When TNFR regulation was examined using viruses 

containing intact UL/b’ regions, a gene responsible for the upregulation of TNFR1 was 

mapped to a gene contained within UL/b’: UL138 (Montag et al., 2011, Le et al., 2011). 

Functionally, UL138 expressing cells were shown to increase TRAF1 expression and 

increased HCMV IE1 expression upon TNF challenge. This suggested that UL138 could 

increase sensitivity to TNF mediated viral gene expression (Montag et al., 2011). It was 

also shown that HCMVΔUL138 infected cells partially recovered IκBα expression when 

challenged with TNF, which is normally completely degraded in mock infected cells upon 

TNF challenge. UL138 is expressed in latent infection and was shown to increase TNFR1 

in CD34+ THP1 cells (Weekes et al., 2013). 

1.10.4.2 Fas (TNFRSF6)
Fas can signal to cause apoptosis following ligation with Fas ligand (CD95L), which plays 

a crucial role in controlling virally infections. Our lab demonstrated that HCMV starts 

downregulating Fas at 24hpi (Seirafian et al., 2014). Infecting cells with a range of HCMV 

strains causes Fas downregulation, though this does not occur with irradiated virus 

indicating that Fas downregulation requires de novo gene synthesis (Seirafian et al., 

2014). Efforts to map the HCMV function modulating Fas using a series of HCMV block 

deletion mutants and a bank of replication deficient adenoviruses encoding all HCMV 

canonical genes were not successful (Seirafian, 2012). However Fas regulation could be 

a product of multiple HCMV genes acting together. In CD34+ myeloid cells, subversion 

of Fas induced apoptosis is mediated by the host anti-apoptotic factor PEA-15 (Poole et 

al., 2015). Moreover, the inhibition of Fas-mediated apoptosis occurs in both lytic and 

latent HCMV infected cells. FasL is increased in human retinal pigment epithelial (HRPE) 

cells infected with HCMV, and soluble FasL secreted from HCMV infected cells is 

capable of inducing apoptosis of immune cells (Chiou et al., 2001). Therefore, the 
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regulation of Fas-FasL signalling is manipulated by HCMV both at the ligand and 

receptor level.

1.10.4.3 TRAIL-R1/2 (TNFRSF10A, TNFRSF10B)
TNF-related apoptosis inducing ligand (TRAIL) receptors 1 and 2 are able to transmit 

apoptotic signals to the cell by using similar adapter molecules leading to caspase 

activation. The ligand for these receptors is TRAIL/Apo2L. Following TRAIL ligation, 

FADD is recruited, followed by caspase 8 and caspase 10, which activates the caspase 

cascade (Mahalingam et al., 2009). TRAIL binds to TRAIL-R1/2, which possess death 

domains, but it can also bind to decoy receptors such as TRAIL-R3/4 and osteoprotegrin, 

which may function to antagonise apoptosis signalling (Wang and El-Deiry, 2003). Our 

laboratory showed that the glycoprotein encoded by UL141 is responsible for 

downregulation of both TRAIL-R1/2 (Smith et al., 2013, Nemčovičová et al., 2013). 

Microscopy showed that TRAIL receptors were localised to the endoplasmic reticulum 

by UL141. Apoptosis assays showed that cells infected with HCMVΔUL141 were more 

resistant to TRAIL-dependent NK cell effector function, which expanded on the 

previously identified role of UL141 as a NK evasin targeting CD155 and CD112 (Smith 

et al., 2013). 

1.10.4.4 Herpes virus entry mediator (HVEM)
The herpes virus entry mediator (HVEM) is a TNFRSFR that has multiple ligands 

including LIGHT, CD160, B- and T-lymphocyte attenuator (BTLA) and LT. HVEM also 

acts as a receptor for the entry of herpes simplex virus (Steinberg et al., 2011). Signalling 

results in the recruitment of TRAF molecules and subsequent NF-kB activation. UL144 

was shown to encode a HVEM homologue (Benedict et al., 1999). Treatment of HCMV 

infected cells with LT and LIGHT, ligands for HVEM, resulted in reduced spread of 

HCMV, following a low MOI infection (Benedict et al., 2001). Interestingly, human 

TNFRSF ligands do not bind to UL144, but instead UL144 causes NF-kB activation in 

isolation via recruitment of TRAF-6 to the cytoplasmic domain of UL144 (Poole et al., 

2006). 

Significantly reduced proliferation of CD4+ T-cells was reported in the presence of plate 

bound UL144 (Cheung et al., 2005). This was attributed to the binding of UL144 to BTLA, 

a member of the Ig family of co-stimulatory receptors and demonstrated how virally 

regulated TNF receptor homologs can influence T-cell proliferation. Different genotypes 

of UL144 were identified from the amniotic fluid of HCMV infected mothers, though they 

did not carry any prognostic value in infected foetuses (Picone et al., 2005). 
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1.10.4.5 CD40
CD40L (CD154) is found on the surface of T-cells and binds to its cognate receptor CD40 

(TNFRSF5), which is found on APCs. This interaction leads to the activation of B-cells 

and allows them to become antibody producing plasma cells. On T-cells CD40 is 

important for co-stimulation and is essential for the generation of memory CD8+ cells by 

receiving help from the CD40L expressing CD4+ T-cells (Bourgeois et al., 2002). Upon 

infection of mature DCs with HCMV, CD40 is downregulated (Beck et al., 2003, Moutaftsi 

et al., 2002). This results in decreased production of the inflammatory cytokines IL-12 

and TNF when the HCMV infected cells are challenged with CD40L. Proteomic analysis 

of HCMV infected fibroblasts was able to show that CD40 was increased on the cell 

surface upon infection with strain Merlin (Weekes et al., 2014). Thus, the regulation of 

CD40 by HCMV may differ depending on the cell type it infects. 

1.10.4.6 Proteomic analysis of other TNFRSF receptors
Plasma membrane profiling revealed that a range of other TNFRSF members are subject 

to large changes in expression following HCMV infection of fibroblasts (Figure 1.9). The 

increase in TNFR1 correlated with cellular levels of UL138, which exhibits Tp1 kinetics. 

TNFR2 was shown to be increased dramatically on the cell surface relative to uninfected 

cells. The decoy receptors TRAIL-R3 and TRAIL-R4 were shown to be decreased, along 

with TRAIL-R1 and TRAIL-R2 (1.10.4.3). Whilst these findings are to be followed up, 

proteomic analysis of cells infected with deletion mutants from the US12-21 region did 

reveal that TWEAKR (TNFRSF12) and CD30 (TNFRSF8) involved US18 and US20 

(Fielding et al., 2017). The downregulation of LTBR was also shown to require US12 

family members US16 and US18, although this was not validated by flow cytometry. The 

functional relevance of many TNFRSF members in HCMV infection remains to be 

investigated.

1.10.4.7 Inhibition of death receptor signalling
HCMV encodes genes that can prevent apoptosis itself, downstream of FAS, TNFR1 

and TRAIL-R1/2 signalling. In HCMV, UL37  localises to the mitochondria and rescues 

cells from Fas mediated apoptosis (Goldmacher et al., 1999). Bax, a mitochondrial 

permeabilising protein, is relocated by UL37 to the mitochondrial associated membrane 

(MAM). This results in increased ubiquitination and degradation of Bcl-2 associated 

C-protein (Bax), preventing release of apoptosis inducing molecules from the 

mitochondria (Zhang 2013). The adjacent gene, UL38, is also a known apoptosis 

inhibitor, as well as being responsible for growth of the virus. Fibroblasts infected with 

AD169ΔUL38 were shown to be more susceptible to cell death, which was rescued by 
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ectopic UL38 expression (Terhune 2007). UL36 prevents apoptosis by inhibiting Fas 

mediated apoptosis by forming a complex with pro-caspase-8 and is therefore termed 

viral inhibitor of caspase-8 induced apoptosis (vICA) (Skaletskaya et al., 2001). The 

genes UL36-38 all exhibit immediate early kinetics, and therefore shows that subverting 

apoptosis is a crucial function early in the HCMV lytic cycle and allows the replication 

cycle to initiate without the threat of apoptosis. Aside from these genes, IE2 can bind to 

the c-FLIP promoter and increase cellular levels of c-FLIP, an inhibitor of caspase activity 

(Chiou et al., 2006). 

As with the range of NK and T cell evasion mechanisms, the prevention of apoptosis 

signalling affords HCMV the ability to complete the replication cycle and contributes to 

viral pathogenesis. 



46

Figure 1.9 Regulation of TNFRSF members by HCMV. Data was generated from the 
source paper Weekes et al. (2014). The relative amounts of protein at the plasma 
membrane are shown, with the maximum amount plotted as 1, with other values plotted 
as a relative value. A minimum of 3 peptides was detected for each protein, except for 
TRAIL-R1 (1 peptide).
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1.11 Hypothesis and Aims

My thesis explores and tests 2 major hypotheses. The first is that there are genes located 

within the HCMV genome, other than in the US2-11 region, that impair the activation of 

HCMV specific CD8+ T-cells. Given the wide range of co-signalling molecules (Figure 

1.4), we believed there would be HCMV-encoded genes that could target these. The 

second hypothesis is that HCMV will also target pathways triggered by effector cytokines, 

in this case TNF. Of all the TNFRSF members detected by proteomic analysis, the 

largest change in relative expression was observed with TNFR2 (Figure 1.9). It would be 

predicted this receptor should have a role in altering the response to TNF. Thus, 

uncovering the regulation of TNFR2 will help further define the response of HCMV to 

inflammatory cytokines. 

Aims

1) To identify novel immune regulatory genes encoded by HCMV that impair the 

activation of CD8+ T-cells.

2) Identify potential genes and the mechanisms that underpin the increase in 

TNFR2 during a HCMV lytic infection.

3) Assess the functional significance of increased TNFR2 on HCMV infection.
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2 Methods and materials
Ethics Statement 

Healthy adult volunteers provided blood and dermal fibroblasts for this work with 

informed consent, and sample usage was recorded following Human Tissue Act 2006 

legislation. The study was approved by the Cardiff University School of Medicine 

Research Ethics Committee (SMREC), applications 10/20 and 16/52.

2.1 Reagents

Unless stated otherwise, reagents required for tissue culture media were from Gibco 

(Thermo Fisher Scientific). Analytical grade chemicals were acquired from Fisher 

(Thermo Fisher Scientific) or Sigma.

2.1.1 Antibodies
Antibodies were used according to the manufacturers’ instructions unless otherwise 

stated. For flow cytometry, all antibodies were diluted in FACS buffer unless stated 

otherwise.
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Table 2.1 Antibodies used.

Target protein and 

fluorophore

Company and product 

code

Clone Dilution and 

use

α-CD8-APC Biolegend 301049 RPA-T8 1/100 (FC)

α-CD8-PE/Cy7 Biolegend 301012 RPA-T8 1/100 (FC)

α-CD8-APC/H7 BD Pharmingen 560273 SK1 (RUO) 1/100 (FC)

α-CD3-PE/Cy7 Biolegend 300316 HIT3a 1/100 (FC)

α-CD3-FITC Biolegend 300440 HIT3a 1/100 (FC)

α-CD107a-PerCP/Cy5.5 Biolegend 328616 H4A3 1/100 (FC)

α-CD107a-FITC BD-Pharmingen 555800 H4A3 1/100 (FC)

α-CD120b-PE Miltenyi 130-107-705 REA520 1/100 (FC)

α-CD120b-Biotin BD Pharmingen 552477 hTNFR-M1 1/100 (FC)

α-CD120a-Biotin BD Pharmingen 550900 MABTNFR1-

B1 (RUO)

1/100 (FC)

α-CD120a-PE Miltenyi REA252 1/100 (FC)

α-CD120b Abcam ab109322 EPR1653 1/10000 (WB)

α-CD120b Hycult HM2022 80M2 2μg/ml (F)

α-CD120b BioRad 0100-0288 22221(2/220) 10µg/ml (F)

α-HLA-1-AF647 Biolegend 311414 W6/32 1/100 (FC)

α-HLA-1-PE Biolegend 311406 W6/32 1/50 (FC)

α-HLA-1-FITC BD Pharmingen 555552 G46-2.6 1/20 (FC)

α-V5-FITC Invitrogen 46-0308 Polyclonal 1/500 (FC)

α-CD158b-PE BD Pharmingen 559785 CH-L 1/100 (FC)

α-RHBDF1 Invitrogen PA5-43410 Polyclonal 1/2000 (WB)

α-RHBDF2 Invitrogen PA5-48602 Polyclonal 1/2000 (WB)

α-ADAM17 Abcam ab39162 Polyclonal 1/2000 (WB)

α-ADAM17 Abcam ab39161 Polyclonal 1/1000 (WB)

α-ADAM17 R&D systems MAB9301 111633 1/200 (FC)

α-ADAM17 Abcam ab215268 D1(A12) 100nM (F)

α-TNF-APC Biolegend 502912 MAb11 1/100 (ICS)

α-IL2-BV421 Biolegend 500328 MQ1-17H12 1/100 (ICS)

α-IFNγ-FITC BD Pharmingen B27 1/100 (ICS)

goat-anti adenovirus Abcam ab1056 Polyclonal 1/500 (IF)

α-mouse IgG-AF647 A21237 Thermo AB_2535806 1/100 (FC)

α-mouse-IgG-HRP BioRad 1721011 Polyclonal 1/2000 (WB)

α-rabbit-IgG-HRP BioRad 1706515 Polyclonal 1/2000 (WB)
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α-mouse 
IgM-PerCP/Cy5.5

Biolegend 406511 RMM-1 1/100 (FC)

α-mouse-IgG2A-FITC Biolegend 407106 RMG2a-62 1/200 (FC)

Streptavidin-APC Ebiosciences 17-4317-82 - 1/300 (FC)

Streptavidin-PE Invitrogen 5866 - 1/100 (FC)

α-ICAM-1-PE Biolegend 353105 HA58 1/100 (FC)

α-VCAM-1-APC Biolegend 305809 STA 1/100 (FC)

α-LIR1-PE BD pharmingen 551053 GHI/75 1/100 (FC)

α-NKG2D-PE Ebioscience12528971 1D11 1/100 (FC)

α-DNAM1-PE Biolegend 338306 11A1 1/100 (FC)

FC - Flow cytometry, WB - Western blot, F - functional, ICS – intracellular staining, IF –

immunofluorescence 
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2.1.2 Tissue culture media
All tissue culture media were warmed to 37˚C prior to use on cells. 

Table 2.2 Table of media used for tissue culture.

Cell culture media Constituents

DMEM Dulbecco's Modified Eagles Medium (4.5ml/L glucose)

DMEM X 2 

(500ml)

250ml of sterile water ddH2O, 100ml 10x Minimal essential 

media, 100ml FCS, 30ml sodium bicarbonate 7.5% solution, 

20ml Pen/Strep (10000u/ml), 10ml L- glutamine (200mM)

DMEM10 DMEM+10% FCS, 1% L-glutamine (200mM), 2% 

penicillin/streptomycin (10000iu/ml)

Freezing media 90% FCS, 10% DMSO.

RPMI Roswell Park Memorial Institute medium

RPMI10 RPMI+10% FCS, 1% L-glutamine (200mM), 2% 

penicillin/streptomycin (10000iu/ml)

RPMIAB RPMI10 + 2% AB serum

Serum free DMEM DMEM+1% L-glutamine (200mM), 2% penicillin/streptomycin

(10000iu/ml)
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2.1.3 Buffers and Solutions

Table 2.3 Table of buffers and solutions and their constituents. All buffers and solutions 
were used at room temperature unless stated otherwise. ddH2O was obtained from 
Nanopore Diamond (Barnstead).

Buffer/Solution/ 

Media

Constituents 

Agarose Gel 

0.7%(50ml)

50ml 1xTAE buffer, 0.35g agarose. Mixture was microwaved until 

fully dissolved.

Avicel 2% 20g of Avicel and 1000ml water was mixed thoroughly until 

homogeneous, and then autoclaved

Concanavalin A 

elution buffer

250µl 4x LDS buffer, 50µl 1M DTT, 300µl 50% sucrose, 400µl 

ddH2O

Concanavalin A 

Lysis Buffer

1% NP40, 10mM 1,10-phenanthroline, 50mM Tris-HCL, 300mM 

NaCl, 5mM EDTA, 1 mM MgCl2, 1 mM CaCl2.

Crystal violet/

formaldehyde 

fix/stain 100ml

10ml 37-40% Formalin, 90ml water, 0.4g NaH2PO4, 0.65 

Na2HPO4, 0.1g crystal violet

CsCl heavy 

solution

1.45g/ml CsCl. (3.6M) solution in 5mM Tris-HCL, pH 7.8

CsCl light solution 1.33g/ml CsCl (2.6M) solution in 1mM EDTA, 5mM Tris-HCL, pH 

7.8

Dialysis buffer 1mM MgCl2, 135mM NaCl, 10mM Tris HCl, 10% glycerol, pH7.8

DNA Loading 

buffer

30% (v/v) glycerol, 0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol FF

FACS buffer PBS+1% FCS

Luria-Bertani (LB)

agar (500ml)

10g LB powder, 7.5g agar, 500ml ddH2O. Mixture was 

autoclaved

LB Broth (500ml):  10g LB powder, 500ml ddH2O, 500μl chloramphenicol 

(12.5mg/ml stock). Mixture was autoclaved.

Negative selection 

plates (500ml)

500ml liquid LB agar, 500μl chloramphenicol (12.5mg/ml stock), 

1ml streptomycin, 1ml IPTG (100mM stock), 1ml X-Gal (40mg/ml 

stock). 

PBST PBS+0.1%Tween20 and 0.1%TritonX



53

Positive Selection 

Plates (500ml)

500ml liquid LB agar, 500μl chloramphenicol (12.5mg/ml stock), 

300μl Kanamycin (15mg/ml stock), 1ml IPTG (100mM stock), 1ml 

X-Gal (40mg/ml stock). 

50xTAE buffer Tris (hydroxymethyl) aminomethane: 2M, Acetic Acid: 1M EDTA, 

Disodium Salt Dihydrate: 50mM (Melford)

TAE buffer 1x (5L) 50ml of 50xTAE buffer, 4950ml ddH2O

Transfer buffer

(500ml)

50ml NuPage transfer buffer, 50ml methanol, 400ml ddH2O
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2.2 Cell culture

2.2.1 Preparation of Human AB serum
Serum from AB donors was obtained from the Welsh Blood Transfusion Service and 

stored at -80˚C until preparation. Plastic Sorvall tubes (11529944, Fisher Scientific) were 

sterilised by autoclaving and 30ml of serum was pipetted into each tube. The tubes were 

balanced to within 0.01g. The tubes were inserted into a JA-25.50 rotor (Beckman 

Coulter) and were centrifuged at 53300x g at 4˚C for 1h. In a class II tissue culture hood, 

the layer of fat was moved aside, and the serum was removed from the centrifuge tubes. 

Sera from tubes were pooled and filtered through 0.45μm bottle top filters (Millipore 

DuraporeTM 0.45 µm). Filters were changed if clogging occurred. Filtration was repeated 

with 0.22μm filters (Millipore Express TM Plus 0.22μm). Filtered sera were aliquoted into 

10ml volumes and heat inactivated in a water bath at 56˚C for 30min. Tubes were stored 

at -20˚C.

2.2.2 Established adherent cell lines
Human foetal foreskin fibroblasts were provided by Dr Graham Farrar (Porton Down) 

and were immortalised using human telomerase reverse transcriptase (hTERT) by Brian 

McSharry as previously described (McSharry et al., 2001). These are referred to as HF-

TERT cells. Transduction of HF-TERT cells with a retrovirus expressing the Coxsackie 

adenovirus receptor was carried out by Brian McSharry (McSharry et al., 2008) and 

referred to as HF-CAR cells throughout. Donor derived skin fibroblasts (SFi) were 

generated from skin biopsies taken by Dr Stephen Siebert or Dr Tom Pembroke. Cell 

lines were established by Dr Eddie Wang and immortalisation by Sian Llewellyn-Lacey

or Dawn Roberts as previously described (McSharry et al., 2001). Adenovirus 

transformed human embryonic kidney cells (HEK-293) cells (Graham et al., 1977), stably 

expressing the tetraycline (Tet) repressor were purchased from Invitrogen (T-REx™-

293, Cat No. R71007). MRC-5 fibroblasts were purchased from the European Collection 

of Authenticated Cell Cultures.

2.2.3 Passage of adherent cells
Unless stated otherwise, adherent cells were maintained in DMEM10. All cells were

stored in an incubator at 37˚C with 5% CO2. Once cells had reached 90% confluency, 

the media was aspirated, and cells were washed in PBS. Trypsin was added (4ml for 

T150, 2ml for T75 and 1ml for T25) and incubated at 37°C for 3-5min until all cells had 

detached. The trypsin was neutralised with DMEM10 and a proportion of cells were 
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discarded to maintain 30-40% confluency. HF-TERT cells were passaged at 1/3-1/4, 

HF-CAR cells 1/4-1/6, SFi cells 1/2-1/3 and TREX-293 cells 1/6-1/8.

2.2.4 Cryopreservation of cells
Adherent cells were washed and detached with trypsin before being centrifuged at 

470x-g for 3min. Cells were then resuspended in freezing media at a density of 

0.5-1x106/ml and aliquoted into cryovials. Cryovials were placed in Mr Frosty freezing 

pots (Nalgene) and stored at -70°C to reduce the temperature by 1˚C per minute. The 

following day cells were transferred in to liquid nitrogen storage. To recover cells from 

liquid nitrogen, vials were thawed in a water bath at 37°C. To wash off freezing media,

cells were transferred to a Falcon tube and 10ml of media (DMEM10 for adherent cells 

and RPMI10 for T-cells) was added to cells dropwise. Cells were centrifuged at 209 x g 

for 5min. Media was removed, and the cells were resuspended in the appropriate media 

and seeded into a T25 flask for adherent cells or a 24 well plate for T-cells. 

2.2.5 Counting of cells
Following detachment and neutralisation with DMEM10, cells were mixed with a stripette 

to ensure a single cell homogenous suspension. T-cells were resuspended with a 

pipette. For both adherent and non-adherent cells, 10μl of cells were added to the 

chamber of a Neubauer haemocytometer. The number of cells within each of at least 3 

large grid squares were counted and the average was taken. This number was then 

multiplied by 104 to give the number of cells per ml of suspension. Where viability staining 

was required, an equal volume of cells and Trypan Blue (Sigma) was mixed and 10μl of 

this suspension was added to the haemocytometer chamber. Dead cells appeared dark

blue under white light due to uptake of the Trypan Blue.

2.3 Generation of HCMV specific T cells lines. 

2.3.1 Isolation of PBMCs
Blood from donors was transferred into a Falcon tube and 10iu of heparin was added to 

each 1ml of blood. Blood was carefully layered onto histopaque 1.077g/ml (Sigma). 

Blood was centrifuged at 470 x g for 20mins without brake. The buffy coat (PBMCs) was 

transferred into a Falcon tube and 20ml of PBS was added to each tube as a washing 

step. PBMC’s were centrifuged at 470 x g for 7 mins. The cells were then washed twice 

in 15ml of PBS at 209 x g for 5min. Cells were maintained in RPMI10.
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2.3.2 Generation of CD8+ T cell lines
Immortalised skin fibroblasts were trypsinised, washed and resuspended in DMEM10. 

Cells were irradiated at 6000Gy and then coated in peptide (Severn Biotech) at 10 µg/ml 

in DMEM10 for 1h at 37°C. Peptides were of at least 90% purity as stated by the 

manufacturer. PBMC’s were co-cultured with peptide coated fibroblasts at a 10:1 ratio in 

RPMI10 + 2% AB serum (RPMIAB), 25iu/ml IL-15 (Peprotech), and 30iu/ml IL-2 (Roche) 

at a density of 2-3x106 PBMC per well of a 24-well plate. Cells were split based on cell 

density and media discolouration, with media becoming yellow upon acidification. 

Cytokines were added every 3-4 days keeping total concentration of IL-15 at 25iu/ml and 

IL-2 at 30IU/ml. When passaging was required on non-feed days, RPMIAB was used, 

without cytokines. Growth of peptide specific CD8+ T cells was measured by flow 

cytometry. Functional responsiveness was measured by CD107a degranulation assay

against peptide coated autologous fibroblasts.
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Table 2.4 HLA class I restricted HCMV epitopes used to generate T-cell lines (Wills et 
al., 2013).

Donora HLA-restriction HCMV antigen Epitope sequence

D3, D43 HLA-A11 pp65 501-ATVQGQNLK-509

D7 HLA-A2 IE1 316-VLEETSVML-324

D7, D8 HLA-A2 pp65 495-NLVPMVATV-506

D9 HLA-A1 pp50 245-VTEHDTLLY-253

D9 HLA-B8 IE1 198-ELRRKMMYM-207

D9 HLA-A24 pp65 341-QYDPVAALF-349

D43 HLA-B15 pp65 215-KMQVIGDDQY-223
a Number designates identity of the donor
b Numbers show start and end positions of the peptide sequence within the antigen
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Figure 2.1 Schematic showing the generation of HCMV specific T-cells.Immortalized skin 
fibroblasts and PBMCs were generated from HCMV positive donors. Skin fibroblasts 
were irradiated and coated with peptide, prior to co-culture with PBMCs. Culture was 
refed with cytokines every 3-4 days. Flow cytometry was performed periodically to check 
proportion of CD8+ cells.
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2.4 HCMV culture

2.4.1 Generation of recombinant HCMV from HCMV bacterial 

artificial chromosomes (BAC)
All HCMV manipulation was performed under class II conditions. HF-TERT cells were 

trypsinised, and 106 cells were put into a 15ml tube and centrifuged at 75 x g for 5 mins. 

Medium was removed to form a dry pellet. Nucleofector Solution (VPI-1002) was warmed 

and HF-TERT cells were resuspended in 100µl of Nucleofector Solution. Cells were put 

into a cuvette provided with the kit. BAC DNA (3000μg) was added to the cuvette and 

gently mixed. Less (2000μg) was used if the concentration of BAC was low. Cells were 

electroporated using the Nucleofector II (Amaxa). Cells were recovered in 5ml of 

DMEM10 and transferred to a T25 flask. The following day, 5x105 HF-TERT cells were 

added to the flask to ensure a confluent monolayer. Cells were fed every 3-4 days with 

fresh DMEM10 as plaques enlarged. Medium (passage 1 of virus) was collected and 

stored at -80°C once there was complete infection of the monolayer.

2.4.2 Growth of HCMV stocks
HF-TERT cells from 4 confluent T150 flasks was seeded into a Nunc™ EasyFill™ Cell 

Factory™ (ThermoFisher Scientific) with DMEM10. Once 70-80% confluency was 

reached, cells were infected at a MOI of 0.003. The factory was re-fed every 3-4 days 

with fresh DMEM10. Once the entire monolayer had become infected, the supernatant 

was collected, and the virus was pelleted at 29416x g for 2h. The pellet was resuspended 

in 1ml of DMEM10 and a syringe (22-gauge) was used to release virus from the cellular 

debris. Cellular debris was removed by centrifugation at 836 x g for 2min and the virus 

containing supernatant was frozen at -70°C. This was repeated every alternate day until 

the monolayer was dead. The virus stocks from different days were thawed, then pooled 

and and stored at -80°C in 300μL.

2.4.3 Titration of HCMV stocks by plaque assay. 
HF-TERT cells were seeded into a 6-well plate in serum free DMEM at a density of 

2.5x105 cells per well. The following day, 10-4,10-5 and 10-6 virus dilutions were made in 

serum free DMEM. Medium was removed from the plate and 100μl of each virus dilution 

was added to each well in duplicate and 900μl of serum free medium was added. The 

plate was put on a rocker (Stuart See-saw rocker SSl-4) at 10 RPM, in an incubator at 

37˚C in 5%CO2 for 2h. Overlay medium was made by mixing 2 % Avicel and 2x medium 

at a 1:1 ratio. Following the 2h incubation the virus inoculum was removed, and 8ml of 

overlay medium was added to each well. The plate was incubated at 37˚C in 5%CO2. 
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After 14 days the overlay medium was removed, and the monolayers were washed well 

with PBS. 2ml of crystal violet. Plaques were counted, and the titre was calculated.

2.4.4 HCMV infections
Fibroblasts were seeded in serum free DMEM at 106/25cm2 flask. This number was 

adjusted based on the surface area of other flasks used. The following day, virus aliquots 

were thawed in a water bath at 37˚C and cells were infected with virus in serum free 

DMEM for 2h on a rocker at 37˚C in 5%CO2. The inoculum was then replaced with 

DMEM10. Cells were infected at a MOI 10, or 20 for viruses which infected less 

efficiently.
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Table 2.5 HCMV variants used and contributions by other lab members. 

HCMV 
number

Strain Deletions/mutations Creator

1111 Merlin (Tomasec et 
al., 2000)

Mutations in RL13 and UL128 locus (present in all Merlin derived 
viruses used in this work). Stanton et al. (2010)

N/A

1819 Merlin ΔUL131A Eva Ruckova
1821 Merlin ΔUL132 Eva Ruckova
1823 Merlin ΔUL133 Eva Ruckova
1151 Merlin ΔUL135 Virginie Prod’homme
1825 Merlin ΔUL136 Eva Ruckova
1847 Merlin ΔUL138 Eva Ruckova
1849 Merlin ΔUL139 Eva Ruckova
1851 Merlin ΔUL140 Eva Ruckova
1149 Merlin ΔUL141 Virginie Prod’homme
1812 Merlin ΔUL142 Eva Ruckova
1853 Merlin ΔUL144 Eva Ruckova
1835 Merlin ΔUL145 Eva Ruckova
1837 Merlin ΔUL146/US11 Eva Ruckova
1814 Merlin ΔUL147 Eva Ruckova
1855 Merlin ΔUL147A Eva Ruckova
2035 Merlin ΔUL148 Ceri Fielding
1839 Merlin ΔUL148A Eva Ruckova
1841 Merlin ΔUL148B Eva Ruckova
1843 Merlin ΔUL148 Eva Ruckova
1845 Merlin ΔUL148D Eva Ruckova
1857 Merlin ΔUL150a Eva Ruckova
1267 Merlin ΔUL16+GFP upstream of UL32 Rich Stanton
1642 Merlin ΔUL18+GFP upstream of UL32 Rich Stanton
1278 Merlin ΔUL18+UL16, GFP upstream of UL32, Rich Stanton
1332 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔRL1-RL6 Rich Stanton
1333 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔRL10-UL1 Rich Stanton
1293 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUL2-UL11 Rich Stanton
1294 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUL13-UL20 Rich Stanton
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1295 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUL22A-UL25 Rich Stanton
1528 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUS1-US11 Dan Sugrue
1297 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUS12-US17 Rich Stanton
1318 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUS18-US22 Rich Stanton
1299 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUS27-US28 Rich Stanton
1300 Merlin ΔUL18+UL16, GFP upstream of UL32, ΔUS29A-US34A Rich Stanton
2393 Merlin ΔUL148+UL148D Mihil Patel
2445 Merlin V5 tag at C-terminus of UL148 Mihil Patel
2474 Merlin V5 tag at C-terminus of UL148, His Tag N-terminus UL148D Mihil Patel
2193 Merlin ΔRL11 Sepehr Seirafian
2194 Merlin ΔRL12 Sepehr Seirafian
2199 Merlin ΔUL19 Sepehr Seirafian
2209 Merlin ΔRL11-UL11 Hester Nichols
N/A AD169-varUK 

(Rowe et al., 1956)
Mutated: RL5A, RL13, UL36, UL131A. Deleted: UL133-UL150 
(Bradley et al., 2009)

N/A

N/A Towne (Plotkin et 
al., 1975)

Mutated: RL13 Deleted: 13kb deletion UL133-UL145, UL148-
UL150/A

N/A

N/A Toledo (Quinnan et 
al., 1984)

Mutations in RL13 and UL128 locus. Frame shift in UL140, UL141, 
UL145, UL150 (Dolan et al., 2004)

N/A
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2.5 Adenovirus Culture 

2.5.1 Growth of adenovirus
TREx-293 cells were seeded into each of 5 x T150 Cellbind flasks (6x106 per flask). At 

90% confluency, cells were infected at an MOI of 0.2. Media was changed when the pH 

was low, as determined by yellowing of DMEM10. Sodium bicarbonate was added to 

buffer acidic conditions. When all cells displayed cytopathic effect (between 48-120hpi), 

cells were harvested by banging the flask. The cell pellet was formed by centrifuging in 

a 50ml Falcon tube at 470 x g for 5min. The supernatant was discarded, and cells were 

washed by resuspending in PBS and pelleting at 470x g for 5min.The PBS was 

discarded, and the cell pellet was frozen at -70˚C. 

2.5.2 Purification of adenovirus on caesium chloride gradient
Cell pellets were thawed and resuspended in PBS. An equal volume of 

tetrachloroethylene was added. Suspensions were shaken vigorously for 30s, forming a 

single phase to lyse and release virions from the cells. Falcons were centrifuged at 836 

x g for 20 min, creating two phases, with the upper aqueous phase containing virions. 

The upper layer was carefully pipetted off. To prepare the CsCl gradient, 1.6ml of CsCl 

heavy solution was pipetted into 14x89mm ultraclear Beckman centrifuge tubes and 3ml 

of a less dense CsCl solution light solution was carefully overlayered. Extracted virus 

was carefully laid on top of the gradient and PBS was added until the tubes were filled 

to within 2.5mm of the top. Tubes were loaded into a SW41 Ti rotor and centrifuged at 

90000 x g for 2h at room temperature in an Ultra Beckman L8-M ultracentrifuge

(Beckman). After 2h the virus appeared as an opalescent layer resting between the 

higher and lower density CsCl solution. The virus was harvested by puncturing the tube 

just beneath the virus band with a 21-gauge needle (BD) and gently pulling the virus into 

a 2ml syringe (BD). 

2.5.3 Dialysis of purified virus
CsCl extracted virus was made up to 2ml with dialysis buffer. Dialysis tubing (Medicell 

International Ltd, DTV12000.01.000) was sterilised beforehand by submerging in boiled 

dialysis buffer and allowing to cool. Tubing was flushed with dialysis buffer and then tied 

at one end before loading with virus solution. The other end of the tubing was tied, and 

the tube was placed in one litre of dialysis buffer. The beaker was dialysed at 4˚C 

overnight with one change of dialysis buffer in between. Dialysed virus was removed 

from the tubing the next morning by cutting the dialysis tubing below the knot and then 

decanting into a 15ml tube. Virus was aliquoted and stored at -80˚C.
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2.5.4 Titration of adenovirus by immunofluorescence
A 12 well plate was seeded with TREx-293 at 5x105 cells/well in a 1ml volume and 

allowed to adhere overnight. The next day serial dilutions were used to prepare 10-4 and

10-5 virus, and 100μl of each dilution was added to a well in duplicate. At 48hpi, the media 

was aspirated and the plate was allowed to dry. Ice cold 50/50 v/v acetone and methanol 

(1ml/well) was added to each well and incubated at -20˚C for 10min. The 

acetone/methanol was aspirated and washed 3 times in PBS+1% BSA. To each well, 

500μl of 1/500 goat-anti adenovirus was added and incubated on a rocker (10 RPM) at 

37˚C. The antibody was aspirated and washed 3 times in PBS+1% BSA. To each well, 

0.5ml of 1/500 donkey anti-goat HRP was added, and the plate was incubated on a 

rocker at 37˚C at 10 RPM. The antibody was discarded and washed 3 times with 

PBS+1% BSA. DAB (3, 3'-diaminobenzidine) substrate kit for peroxidase (Vector 

Laboratories SK-4100) was used to prepare a working stock of DAB solution as per 

manufacturer’s instructions. To each well, 1ml of DAB solution was added and incubated 

at room temperature for 10min. Adenovirus infected cells (PFU) appeared brown under 

white light. The titre of adenovirus stock was calculated using the below formula. 

Titer (PFU/ml) = (average number of infected cells per field of view x number of fields 

per well) / (virus volume used (ml) x dilution factor)

2.5.5 Infections with adenovirus
Fibroblasts were seeded in DMEM10. The following day, virus aliquots were thawed on 

ice and cells were infected with virus in DMEM10 for 2h on a rocker at 37˚C in 5%CO2. 

The inoculum was then replaced with DMEM10. Cells were infected at MOI 10 for 

HF-CAR cells or reduced to MOI 5 if toxicity occurred. Skin fibroblast cells were infected 

at a MOI of 500. For reconstitution experiment, adenovirus and HCMV was added to the 

same inoculum. MRC-5 fibroblasts were infected at MOI of 20. These were based on 

titrations using RAd-GFP (Figure 2.2) and previous work performed by other lab 

members ((Seirafian, 2012, Aicheler, 2005)). Adenoviruses used in this thesis were 

recombineered by Dr Sepehr Seirafian, Dr James Davies and Dr Richard Stanton. All 

Merlin derived HCMV genes had previously been clones into the AdZ vector with HCMV 

genes being downstream of the HCMV MIE promoter, resulting in constitutively driven 

transgene expression (Seirafian, 2012). Adenoviruses used in this work were 

recombineered by Dr Sepehr Seirafian, Dr James Davies and Dr Richard Stanton.
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Figure 2.2 Infection efficiency of GFP expressing adenovirus. (A) MRC5 and (B) D7 skin 
fibroblasts were infected at different MOIs. The proportion of GFP positive cells is shown. 
Cells were incubated for 48hpi and then harvested, fixed and analysed by flow cytometry. 
Experiments were performed for D8 and D9 fibroblasts with comparable results to (B) 
(data not shown).
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2.6 Standard molecular biology techniques

2.6.1 Polymerase Chain Reaction 
Recombineering relied on the incorporation of the ribosomal S12 protein gene, which 

confers streptomycin resistance from M. tuberculosis (referred to as rpsL cassette). 

Amplification of the rpsL cassette was performed using Roche-Expand Hi-Fi. Primer 

mixes were made as follows - per 50μl; 40μl H2O, 5μl 10x buffer 2, 1μl dNTPs, 1.5μl 

DMSO, 2.5μl of primer mix (1/10 of each forward and backward primer, 100mM stock), 

1μl of cassette, 0.5μl of Roche-Expand Hi-Fi polymerase. The forward and backward 

primer were designed with arms of homology to the regions of insertion in the HCMV 

BAC. The following program was used for expansion using BioMetra T3000 

Thermocycler.

95oC: 2min.

95oC: 30s, 55oC 30s, 68oC 4m30s (10 cycles)

95 oC:30s, 55oC 30s, 68oC 4m30s+20s/cycle (25 cycles)

68oC:15min

4oC Hold

2.6.2 Electrophoresis of DNA
DNA was separated on a 0.7% Agaraose-TAE gel (Tris-acetate-EDTA). To stain DNA, 

2.5μl of ethidium bromide (10mg/ml) was added per 50ml of liquid agarose gel. The 

mixture was then poured into a cassette with a comb and allowed to cool. Once solidified, 

the gel was placed into a tank of TAE buffer. HighRanger 1 kb DNA Ladder (Norgen Cat. 

11900) was added to the first well. Loading buffer (1/6) was added to each sample and 

then mixed. The sample was loaded into wells of the agarose gel with gel filling tips. DNA 

was electrophoresed at 100V for 45-60min. 

2.6.3 Purification of DNA
Following resolution of DNA, the gel was visualised under UV light. The relevant band 

was cut out and placed into a 1.5ml Eppendorf tube. Geneflow Q-Spin Gel 

Extraction/PCR Purification Kit was used to isolate DNA. The gel fragment was weighed 

and an equivalent amount (volume per weight) of DNA binding buffer was added (e.g. 

100μl per 100mg of gel). The gel fragment was incubated and vortexed occasionally for 

5-10min in a water bath (50-65˚C) until the gel was completely dissolved. The mixture 

was added to the spin column and incubated at room temperature for 2min.The solution 
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was centrifuged for 1min (16000 x g) and the flow-through was discarded. The column 

was washed twice with wash solution and then transferred to a 1.5ml Eppendorf tube 

and 30μl was added to the centre of the membrane of the column and incubated for 2min 

at room temperature. DNA was eluted by centrifuging the column for 1min at 16000 x g. 

DNA was stored at -20°C.

2.6.4 Determination of DNA concentration
A NanoDrop ND1000 spectrophotometer was used for determining DNA concentration. 

Prior to running samples, ddH2O was run through. The instrument was calibrated by 

running the DNA solvent (elution buffer or 10mM TRIS-HCl). DNA samples were thawed 

and equilibrated to room temperature and 2μl was used for measurement. The 

instrument was cleaned between each sample with microfibre paper. Absorbance was 

measured at 260/280nm. 

2.6.5 Isolation of Virus DNA
Viral DNA was extracted using QIAamp® MinElute® Virus Spin kits (Quigen) as per 

manufacturers specifications. Briefly, virus was thawed (200μl) and mixed with 25μl of 

protease to breakdown viral proteins. Lysis was carried out by adding 200μl of buffer AL 

and mixing. The mixture was incubated at 56˚C for 15min. Ethanol was added, and the 

mixture incubated for 5min at room temperature. Lysate was added to the QIAamp 

MinElute column and centrifuged (16000 x g). Buffer AW1, AW2 and ethanol were added 

and then centrifuged (16000 x g) with the flow through being discarded each time. The 

membrane was dried and the 50μl of Buffer AVE was added to the membrane. The 

column was centrifuged (16000 x g) 1min with the flow through being frozen for analysis. 

2.6.6 Sequencing of DNA
Sequencing of DNA was performed using the Mix2Seq kit (Eurofins). Recombineered 

sequences were amplified by PCR, gel purified and quantified as described as per the 

sections above. DNA was diluted to 10ng/ml with ddH2O and 15μl was added to each 

tube along with 2μl of either the forward or reverse primer (100µM). Tubes were sealed, 

vortexed briefly and pulse centrifuged. Tubes were sent to Eurofins Genomics for 

sequencing. For whole genome sequencing, viral DNA was extracted as described in 

2.6.5 and sent to Professor Andrew Davison (Centre for Virus Research, Glasgow).
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2.7 Recombineering of HCMV BAC

2.7.1 Cassette insertion-First round
The rpsL cassette was amplified by PCR and gel purified as described in the section

2.6.1. SW102 Escherichia Coli were inoculated into 5ml of LB broth. Bacteria were 

incubated overnight in at 32˚C shaking incubator (200 RPM). The next day 0.5ml of 

overnight culture were seeded into 25ml of fresh LB broth and incubated at 32˚C in a 

shaking incubator to an optical density (OD) of 0.6. When O.D of 0.6 was reached, 

bacteria were put into a 42˚C water bath for 15min to activate the Lambda red genes. 

The Falcon tube was shaken on ice for 15min to cool. Bacteria were pelleted (3345x g, 

5min, 0°C) and washed twice in ice cold ddH2O. After the last wash, bacteria were 

resuspended to 400μl of ddH2O and 25μl was transferred to a 1.5ml Eppendorf tube and 

mixed with 4μl of PCR product or H2O as a negative control. Bacteria and PCR product 

was transferred to a pre-chilled cuvette and allowed to stand for 5min. Cuvettes were 

electroporated at 2.5kV. Bacteria were recovered in 1ml of LB for 1h at 32˚C (200RPM). 

Bacteria were pelleted, resuspended in 150μl LB and spread onto LB plates with 

kanamycin, IPTG, X-Gal and chloramphenicol (positive selection plates). Where 

bacterial uptake of cassette had occurred, blue colonies formed. Colonies (6-8) were 

then streaked on to positive selection plates and negative selection plates. Colonies 

which grew only on positive selection plates, but not on negative selection plates, were

seeded as overnight cultures for mini-prepping and PCR.

2.7.2 Minipreparation of BAC DNA
Qiagen Spin miniprep kits were used for miniprep DNA generation, with solutions being 

prepared as per manufacturers’ instructions. Overnight cultures were pelleted, and a dry 

pellet was formed. The pellet was resuspended in 250μl of resuspension buffer P1 and 

transferred to a 1.5ml tube. Lysis buffer P2 (250μl) was added and mixed, to release 

DNA and incubated for 5min followed by 250μl of wash buffer N3. After mixing, the tube 

was centrifuged for 16000 x g for 10min and the supernatant was transferred to a new 

tube. DNA was precipitated by adding and mixing of 750μl isopropanol. The DNA was 

centrifuged at 16000 x g for 10min at 4˚C. The supernatant was discarded and 500μl of 

70% ethanol was added. The tube was centrifuged for 10min at 16000 x g. The 

supernatant was removed, and the tube was air dried for 20min, leaving a dry DNA pellet. 

The DNA pellet was dissolved in 30μl of 10mM TRIS-HCl pH8. 
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2.7.3 Restriction Digest
To confirm the recombineering process had not affected the integrity of the HCMV BAC, 

DNA was digested and compared against a reference HCMV BAC. In a PCR tube, 8μl 

of miniprepped DNA, 1μl of NE buffer 2 (New England Biolabs) and 1μl of HindIII (NE 

Biolabs) was added, pulse vortexed and pulse centrifuged. The tube was incubated for 

1h at 37˚C. Loading buffer (1/6) was added and the 12μl was loaded onto a 0.7% agarose 

gel. The gel was electrophoresed at 100V for 45min. The gel was visualised under UV 

light. Recombineered BAC was compared alongside a positive control (1111 BAC).

2.7.4 Second round of recombineering
Colonies that gave the correct digest pattern and PCR product were selected for a 2nd 

round of recombineering. PCR products had a higher molecular weight due to the 

presence of the cassette when compared to the negative control (Figure 2.3). Overnight 

cultures were set up as before with SW102 bacteria containing HCMV BAC with the 

cassette. Production of competent bacteria was carried out as per 1st round of 

recombineering (2.7.1) and 25μl of bacteria and 1μl of oligo was mixed in a 1.5ml tube

before transferring to a cuvette and electroporating. Bacteria were recovered in 5ml LB 

for 4h at 32˚C. Bacteria were pelleted (3345x g, 5min, 0°C), resuspended in 150μl of LB 

and spread on to positive and negative selection. If the proportion of white colonies to 

blue colonies was greater on streptomycin containing plates, then the removal of the 

cassette was likely successful. Colonies from these plates were grown over night and 

then miniprepped the next day. The DNA was digested with HindIII. If the pattern was 

correct, the region of interest was amplified by PCR and the number of base pairs was 

assessed by gel electrophoreses. If the region gave the correct PCR product size (fewer 

base pairs for knockout viruses, compared to control), then the PCR product was gel 

purified and sequenced. If the correct sequence was present than the BAC was maxi-

prepped.
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Figure 2.3 Principle of recombineering the HCMV BAC.By PCR, the rpsL Cassette was 
amplified with primers having homology toward the ends of the cassette and the gene of 
interest. Success of 1st round recombineering, was verified by picking a blue colony from 
the positive selection plate and then ensuring the PCR product was larger than that of a 
control, unmodified virus and exhibiting the correct DNA digest pattern. Primers for 
deleting or tagging, were used for the second round, with removal of the cassette being 
verified by PCR, DNA digest and sequencing.
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2.7.5 Maxipreparation of BAC DNA 
Large scale preparation of BAC DNA suitable for transfection, was maxi-prepped using 

the Nucleobond BAC100 kit (Macherery Nagel). Following overnight growth of bacteria 

(those shown to be correct following two rounds of recombineering) in 500ml of LB + 

chloramphenicol. Bacteria were pelleted at 6000g for 15min at 4˚C. Cells were lysed by 

resuspending the pellet in 24ml of resuspension buffer S1 followed by 24ml of lysis buffer 

S2. The suspension was incubated for 3min, after which 24ml of chilled neutralisation 

buffer S3 was added. The flocculate was inverted 8 times until a homogenous 

suspension was formed with an off-white flocculate. The Nucleobond column was 

equilibrated with 6ml of equilibration buffer N2 and allowed to empty by gravity. A funnel 

was placed above the column with some filter paper wetted with buffer N2. The lysate 

was loaded on to the column and allowed to empty by gravity. Washing was performed 

twice with 18ml of wash buffer N3. DNA was eluted with 15ml of elution buffer N5 which 

had been pre-heated to 50˚C to aid elution. DNA was precipitated with 11ml of 

isopropanol followed by mixing and centrifugation at 5000g for 30min at 4˚C. The 

supernatant was discarded, and the DNA pellet was washed with 5ml of 70% ethanol 

and centrifugation at 5000 x g for 10min. The ethanol was carefully removed, and the 

DNA pellet was dissolved in 100µl 10mM TRIS-HCl (pH 8.1) overnight at 4˚C. The next 

day the DNA was transferred to a sterile tube and stored at -20˚C. 

2.8 Flow cytometry

All flow cytometry was performed on a BD Accuri (BD) or Attune NxT Flow Cytometer

(Thermo Fisher Scientific). Compensation was performed manually for experiments 

analysed using the BD Accuri. For experiments using Attune NxT, compensation was 

automatically calculated by Attune NxT software.

2.8.1 Surface staining procedure
Cells were detached from the plate/flask using HyQTaseTM (GE Healthcare) or TrypLE 

Express (Thermo), in place of trypsin, which can cleave surface proteins. Detachment 

reagent was neutralised with DMEM10 and cells were kept on ice. Cells were transferred 

to 96 well V-bottom plates and washed by centrifuging (470x g for 2min) in cold FACS 

buffer. Cells were resuspended in 100μl of antibody solution and staining was carried 

out for 20min at 4˚C in a darkened environment. Cells were washed 3 times with FACS 

buffer (470x g for 2min, 4°C). The process of staining and washing was repeated if a 

secondary antibody was used. Fixing was performed with 4% paraformaldehyde (10min). 
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2.8.2 Intracellular Staining
Cells were harvested as with surface staining and washed in PBS (470x g for 2min). For

live/dead cell staining, cells were incubated with 100μl of 1/1000 Live/dead EF660 stain 

(eBioscience). After 15min and cells were washed twice (470x g for 2min) and 

resuspended with 100µl BD CytoFix/CytoPerm solution. Cells were incubated for 20 

mins at 4˚C. The cells were washed once in 100μl 1x BD Perm/Wash Buffer, made fresh

on the day. Antibodies for intracellular staining were diluted in 1x BD Perm/Wash and 

100μl of antibody master-mix was added to each well. Cells were incubated for 30min at

4˚C. Washing was carried out twice in 1xBDPerm/Wash and cells were resuspended in 

200μl of PBS before flow cytometry.

2.8.3 Gating strategy for T-cells
T-cells were gated using FSC-area vs SSC-area gate. Doublets were excluded by

comparing FSC-height vs FSC-area of cells. Whenever used, a live/dead gate was 

applied to these cells, with cells having incorporated the dye being excluded from further 

analysis. Cells which were CD8+ and CD3+ were analysed.

2.8.4 Gating strategy for fibroblasts
Fibroblasts were gated by forward scatter (FSC) area vs Side scatter (SSC) area. When 

using the NxT Attune flow cytometer, the forward scatter voltage was lowered and SSC

Area vs FSC height was used to gate on HCMV-infected fibroblasts due to the 

enlargement of cells. Anti-HLA-I antibody was used to distinguish infected cells from 

non-infected cells. 
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Figure 2.4 Flow cytometry gating strategy. (A) Gating of CD8+ T-cells. Cells were gated 
by side scatter vs forward scatter. Doublet cells were eliminated by gating on cells which 
proportionally increased FSC-area, compared to FSC-height. Viable cells were then 
selected through exclusion of a live/dead dye. Cells positive for CD8 and CD3 were 
analysed. (B) Fibroblasts were gated on by comparing SSC-Area vs FSC-Height. 
Infection efficiency was determined by performing HLA-I staining with HLA-I low cells 
deemed infected.
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2.9 Proteomic analysis of cellular proteins by mass 

spectrometry

All sample preparation was performed by Dr Peter Tomasec. Mass spectrometry was 

performed by Dr Michael Weekes (Cambridge) as described in (Weekes et al., 2014).

2.10 Immunoblotting of cell proteins

2.10.1 Preparation of lysates
1.5x106 HF-TERT cells were infected or mock infected with HCMV. At 72hpi, cells were 

washed in ice cold PBS, and then ice cold PBS+ 10mM-phenanthroline. Cells were

scraped into a 15 ml Falcon tube. In a chilled centrifuge, cells were pelleted at 470g to 

form a dry pellet. Cells were lysed in 100µl of 25% NuPage LDS lysis buffer + 1% 

complete protease inhibitor (Sigma). Cell lysates were sonicated to break up the 

chromosomal DNA. Lysates were aliquoted and stored at -80˚C.

2.10.2 Enrichment of glycoproteins by concanavalin A
This method was used for detection of ADAM17 protein in cells. In 25cm2 flasks, 1.5x106

HF-TERT cells were seeded and infected or mock infected. At harvesting point, cells 

were washed twice in ice-cold PBS and then lysed for 10min on a rocker (10 RPM) on 

ice in 1ml of Concanavalin A lysis buffer, containing 1% complete protease inhibitor 

(Sigma). This was added to the buffer to prevent autocatalysis of ADAM17. After 10min, 

cells were scraped into a 1.5ml tube and lysates were clarified at 20,000x g for 1min. 

Lysates were mixed with 50µl of Concanavalin A beads (Sigma) washed in lysis buffer. 

Capture of glycoproteins was performed at 4˚C on a 360˚ rotor overnight. The following 

morning beads were washed 3 times in lysis buffer by centrifuging at 470g for 3min, 

removing the supernatant with a pipette and then resuspended by adding 1ml of lysis 

buffer and then placing on the rotor for 5min. Glycoprotein elution was carried out by 

adding 60µl of ConA elution buffer and incubating for 15min at 65˚C. Samples were 

frozen at -70˚C until resolution by SDS-PAGE.

2.10.3 Separation of polypeptides by electrophoresis
Samples were thawed and DTT was added (1 in 10 of >97% pure DTT ) for sample 

reduction. Samples were heated in a waterbath (65˚C for 15 min) for reduction. Samples 

were centrifuged at 16000 x g for 1min to pellet cellular debris. NuPage 10% Bis-Tris 

gels (Invitrogen) were assembled in the XCell4 SureLock system and submerged in 

MOPS buffer. Sample (20μl) was added into each well and 10μl of Novex™ Sharp 
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Pre-stained Protein Standard (Invitrogen) was used for determination of protein size. 

Resolution was carried out for 1h at 200V. 

2.10.4 Transfer of proteins on to membrane
Transfer of proteins was carried out under semi dry conditions. PVDF membranes 

(Amersham Hybond P 0.45 PVDF) were soaked in methanol for 10min. PVDF and 2 

sheets of blotting paper were then soaked in transfer buffer for 10min. From bottom up,

the transfer stack was layered; blotting paper, PVDF membrane, gel, blotting paper. Air 

bubbles were removed by rolling a stripette over the top of the blotting paper. The 

remainder of the transfer buffer was poured over to ensure adequate wetting. Transfer 

was performed in a Novex semi dry blotter (Invitrogen) for 2h at 10V, after which the 

stack was deconstructed and the PVDF membrane was rinsed in ddH2O. 

2.10.5 Blotting of transferred proteins
The PVDF membrane was dried in an incubator to allow the methanol to evaporate and 

therefore prevent any further protein binding. After drying, the membrane was re-wetted 

in PBST with 1%BSA. Antibodies were diluted in PBST+1% BSA as per manufacturers’ 

instructions and staining with primary antibody was carried out overnight at 4˚C. Washing 

(3 x 5min) was performed in PBST. Staining with HRP conjugated secondary antibody 

was carried out for 1h at room temperature. The membrane was washed (5 x 5min) in 

PBST. Signal generation from antibody bound proteins was visualised with a Super 

Signal West Pico Chemiluminescent Substrate (Pierce). Equal amounts of each 

component were mixed thoroughly and added on to the membrane for 5min. Signals 

were recorded by visualising the PVDF membrane under UV light using a GelDoc system

(Syngene). Exposure was continued until bands of intermediate strength were produced, 

but without saturation of the signal.

2.11 Cytokine detection

2.11.1 Enzyme linked Immunosorbent Assay (ELISA)
For TNFR2 ELISA, 1.6x105 HF-TERT cells were infected in each well of a 12-well plate 

at MOI 10. After the 2h incubation period, 1ml of DMEM10 was overlaid. For ADAM17

blocking experiments, media was replaced with 1ml of DMEM10 containing the ADAM17 

blocking antibody D1(A12) or isotype control (human IgG) at 48hpi. At 72hpi, the media 

was removed and centrifuged at 16000 x g for 1min to pellet cellular debris. 

Human TNFR2 Quantikine ELISA (R&D systems DRT200) was used. Dilutions of 

supernatant were made in calibrator diluent RD5-5 to ensure that recorded values would 
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fall within the range of the calibration curve. Standards were prepared as per the 

manufacturer’s instructions and 50μl of assay diluent (RD1-6) was added to each well of 

the plate followed by 200μl of sample. Wells were mixed with a multichannel pipette. The 

plate was incubated for 2h at room temperature in the dark. The plate was then aspirated 

and washed 3 times with wash buffer and 200μl of human sTNFR2 conjugate was added 

to each well. The plate was incubated for 1h. Washing was repeated as before and 200μl 

of substrate solution was added to each well. The plate was incubated until differences 

between the calibration standards was visible, at which point 50μl of Stop Solution (2M 

sulphuric acid) was added to each well to quench the reaction. The wells were mixed 

well with a multichannel to ensure a homogenous colour. Optical density was measured 

on a FLUOstar Omega microplate reader (BMG-LABTECH) at 540nm and 450nm. 

Wavelength correction was made by subtracting values at 540nm from 450nm. A 

standard curve was generated using a four-parameter logistic curve fit, as per the 

manufacturer’s instructions. 

2.11.2 Cytometric bead array
In a 24-well plate, 0.8x105 HF-TERT cells were seeded per well. Cells were infected with 

HCMV at MOI 10, or mock infected and 0.5ml of DMEM10 was overlaid after infection. 

At 48hpi, media was exchanged with 0.5 ml of DMEM10 containing 100nM of D1(A12)

or hIgG. At 54hpi, TNF was added to wells to give a final concentration of 30ng/ml. At 

72hpi, samples were collected and stored at -80˚C. A LEGENDplex (Biolgend) was used 

for multi-analyte quantification of cytokines in supernatant (IL-8, IL-6, GM-CSF, IL-1, 

CXCL-10, CCL-2, CXCL-1, RANTES). Calibration standards were prepared as per the 

manufacturer’s instructions. Samples were defrosted and warmed to room temperature. 

Samples were vortexed to homogenise tissue culture supernatants and then centrifuged 

at 16000 x g for 1min to pellet debris. To each well of a V-bottom plate, 25μl of assay 

buffer was added and 25μl of sample or standard. Capture beads were vortexed and 

25μl was added to each well. The plate was sealed in aluminium foil and placed on a 

plate shaker (KS 130 basic, IKA) at 400RPM for 2h at room temperature. The plate was 

centrifuged at 250 x g for 5min and the supernatant was discarded. The plate was 

washed with 200μl of wash buffer and centrifuges as before. Detection antibodies (25μl) 

was added to each well. The plate was sealed in foil and shook as before for 1h. SA-PE 

(25μl) was added to each well directly. The plate was sealed and shook for 30min. A 

washing step was performed, and the beads were resuspended in 150μl of wash buffer. 

Beads were analysed by flow cytometry on the Attune NxT flow cytometer, as per 

manufacturer’s instructions. Data was analysed using LEGENDplex data analysis. 
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2.12 T-cell activation assay

2.12.1 Preparation of target cells
Target cells consisted of autologous skin fibroblast cells or MRC-5 cells (HLA-A2+). Cells 

were infected with HCMV or adenovirus and harvested at 72h or 48hpi respectively by 

using HyQtase. Cells were washed in DMEM10 (470 g x, 2 min), and the cell pellet was 

and resuspended in DMEM10 containing peptide at the indicated concentrations. Cells 

were pulsed with peptide for 1h at 37˚C. Cells were washed twice in DMEM10 (470 g x, 

2 min) and counted. Cell suspensions were made up to a concentration of 105 per ml. 

For all assays 104 target cells were used per well which equated to 100μl. 

2.12.2 Preparation of effector cells. 
T-cells were cultured for 10 days prior to use in activation assays. The required number 

of cells was calculated by mixing T-cell cultures to achieve a single cell suspension and 

then counted using a haemocytometer, staining with Trypan blue to distinguish between 

live cells and dead cells. The required number of cells was transferred into a falcon tube 

and T-cells were washed and resuspended in RPMI10 to a concentration of 106/ml. 

Monensin (BD GolgiStop, 0.26% monensin) was added to the culture at a final dilution 

of 1/400. For intracellular staining, brefeldin-A solution was added at a 1 in 1000 dilution 

(eBioscience 00-4506-51). 

2.12.3 Assay set up
For performing the assay 100μl of targets was plates into each well 4 or 5 times (1 

fluorescence minus one (FMO) and 3 or 4 replicate test wells for each condition). T-cell 

suspensions were aliquoted such that 1 part had IgG1 added to it and anti-CD107a to

the other 4 parts (or 3 parts if doing triplicates). T-cells (100 µl) plus isotype/anti-CD107a 

was added to each well of target cells. The outer wells were filled with sterile PBS to 

abrogate the effect of evaporation in the incubator. The plate was put in a plastic 

container and then incubated at 37˚C for 5h without being moved. After 5h, the cells were 

washed in cold FACS buffer in a chilled centrifuge (4˚C, 470 x g, 2min). Staining was 

carried out as described in section 2.12.3.

2.13 Apoptosis assays

2.13.1 Annexin-V staining
HF-TERT cells were seeded into a 12-well plate (1.6x104/well). Cells were infected with 

HCMV at MOI 10. At 72hpi, the supernatant was removed and replaced with 1ml 
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DMEM10 or DMEM10 with 30ng/ml TNF. At 120hpi, cells were washed twice and 

detached with TryplE Express. Detaching agent was then neutralised with DMEM10 and 

cells were aliquoted into a 96 well V-bottom plate. Cells were washed with Annexin V 

binding buffer (Biolegend 422201) and resuspended in 100μl of 1/100 Annexin V-FITC 

(Biolegend) and 1/1000 L/D EFlour660 (eBioscience). Cells were incubated for 15min at 

room temperature. Cells were then washed twice in Annexin V binding buffer and then

fixed in 2% PFA. Cells were analysed by flow cytometry. 

2.13.2 Caspase 3/7 Cell Event
HF-TERT cells were infected with HCMV, treated with TNF, harvested and aliquoted into 

a 96 well V bottom plate as per Annexin V staining (2.13.1). Cells were washed in PBS.

CellEvent™ Caspase 3/7 Green Detection Reagent (Thermo) was thawed at room 

temperature and diluted 1/1000 in PBS. Live/Dead Eflour660 was added (1/1000) to the 

staining solution and 100μl of this solution was added to each well. The plate was then 

placed on a rocker at 10RPM at 37˚C for 1h. After the incubation cells were then washed 

once in PBS and the fixed in 2% PFA. Cells were analysed by flow cytometry.
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3 Modulation of the CD8+ T-cell response by HCMV

3.1 Introduction

The aim was to screen the HCMV genome in order to identify novel viral genes involved 

in evading the CD8+ T-cell response. Given the range of co-signalling receptors that are 

involved with T-cell activation and inhibition, we believed that HCMV may encode 

immune evasion functions targeting these molecules. When this investigation began, 

data generated from our laboratory had shown that HCMV pUL148 targets the 

co-stimulatory molecule CD58 (LFA3), reducing the activation of CD8+ T-cells (Wang et 

al., 2018). This result indicated that CD8+ T-cell evasion mechanisms are not limited to 

the direct inhibition of peptide presentation by MHC-I in the host cell. The HCMV group 

in Cardiff has generated a panel of HCMV mutants deleted in blocks of non-essential 

genes to specifically facilitate the identification and mapping of novel immune evasion 

functions. Using this approach has recently demonstrated that US18 and US20 retain 

the NK cell activating ligands MICA (Fielding et al., 2014) and B7-H6 (Fielding et al., 

2017) inside the infected cell and target them, and other host molecules, for lysosomal 

degradation. Using the block-deleted HCMVs was an attractive approach to mapping 

areas involved with CD8+ T-cell evasion strategies independent of HLA-I peptide 

presentation. By finding new viral immune evasion genes, this work could further our 

knowledge of how HCMV remains as a life-long pathogen.

3.2 Production of HCMV specific CD8+ T-cell lines

3.2.1 Testing peptide responses of HCMV seropositive donors
HCMV positive donors were bled and their PBMCs were co-cultured with irradiated, 

autologous fibroblasts, pulsed with peptide as described in the Materials & Methods. The 

peptide used for each individual was based on previously defined dominant peptide 

specificities for HLA-I haplotypes (Wills et al., 2013). Expansions of cells were assessed 

over a minimum period of two weeks to allow CD8+ T-cells to proliferate. Each T-cell line 

was identified using the donor number followed by 3 letters indicating the peptide 

specificity of the T-cell line, referring to the first three amino acids of the HLA-I restricted 

peptide. For three of the donor-peptide combinations tested, large expansions of CD8+ 

T-cells were recorded; D7-VLE (97% CD8+), D7-NLV (82% CD8+) and D9-VTE (94% 

CD8+) (Figure 3.1).
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This level of CD8+ T-cell expansion did not occur with all peptide-donor combinations, 

suggesting some combinations were not dominant peptide responses for those donors. 

To provide a readout, HCMV-specific CD8+ T-cell lines were used as effector cells to 

screen HCMV knockout viruses using primarily CD107a recycling to measure 

degranulation. CD107a is a protein found in cytotoxic granules that migrates to the cell 

surface following CD8+ T-cell degranulation, as a result of fusion of cytotoxic vesicles 

with the plasma membrane. Surface exposure of CD107a can thus be used as a readout 

of T-cell activation. For these non-responsive T-cell lines, the level of degranulation was 

<8% CD107a+ of the CD8+ compartment (Appendix). The D9-ELR response had 

previously been detected by tetramer (Aicheler, 2005). Whilst this culture did reach 56% 

CD8+ T-cells at 2 weeks post stimulation (Figure 3.1), this proportion decreased 

afterwards, and the T-cell line contained only 35% CD8+ T-cells by 3 weeks post 

stimulation. 
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Figure 3.1. Proportions of CD8+ T-cells in lines generated from HCMV seropositive 
donors. PBMCs were stimulated with irradiated autologous skin fibroblasts pulsed with 
the indicated peptides. The proportion of CD8+ T-cells was assessed by flow cytometry 
between 2-3 weeks post-stimulation. Unstained cells are shown in orange, with cells 
stained for CD8 and CD3 overlaid in blue. Donor number, first three amino acids of 
peptide used for stimulation and days post stimulation are shown above the flow 
cytometry dot plots. Proportion of CD3+, CD8+ T-cells are shown within the plots.
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3.2.2 Assessing responsiveness of CD8+ T-cell lines
T-cell receptors recognise peptide in the context of HLA-I with the strength of activation 

signal received by the T-cell dependent on the number of cognate peptide-HLA 

complexes they encounter on their targets. To determine the activation range of each 

T-cell line, dose response experiments were performed measuring activation as a 

function of exogenous peptide concentration used to coat HLA-I on autologous target 

fibroblasts.

Of the 5 lines tested (D7-VLE, D7-NLV, D8-NLV, D9-ELR, D9-VTE) all responded to 

peptide pulsed autologous fibroblasts in a dose-dependent manner, with degranulation 

increasing in response to increasing concentrations of exogenous peptide used for 

pulsing cells (Figure 3.2). The responsiveness to peptide was noticeably lower for D9-

ELR, with CD8+ cells being just 15% CD107a+ when targets were pulsed with 10µg/ml 

of exogenous peptide.

With D8-NLV, responses plateaued at 1μg/ml of exogenous peptide such that increasing 

the peptide concentration to 10μg/ml did not increase degranulation. Lines D7-VLE, 

D7-NLV, and D9-VTE showed a s-shaped degranulation profile versus peptide 

concentration, though responses had not plateaued by 10µg/ml. At concentrations of 

peptide below 0.001μg/ml, the level of stimulation was not great enough to induce 

detectable surface CD107a recycling. This system for activating T-cells was the most 

sensitive to exogenous peptide between 0.1-1μg/ml as reflected by the steepest gradient 

of the curve. For D9-VTE, IFNγ and TNF production was also assessed by intracellular 

cytokine staining (ICS). This was performed following the acquisition of the Attune NxT 

flow cytometer and allowed me to determine further functionality of this T-cell line as 

assessed by effector cytokine production. The data showed that detection of TNF 

production by this T-cell line was at least as sensitive as CD107a. IFNγ was detected in 

a smaller proportion of CD8+ T-cells. The pattern in the increase in detection of both 

cytokines was similar to CD107a, with the largest increase being measured between 0.1 

and 10µg/ml of peptide.

Of these T-cell lines, D7-VLE, D7-NLV, and D9-VTE were used for all experiments in this 

chapter as these cells were able to degranulate over a wide range of peptide 

concentrations. Additionally, these T-cell lines also maintained a high proportion (>80%) 

of CD8+ cells. D8-NLV was not used as I was unable to grow out large quantities of the 

cells. Neither was D9-ELR as degranulation of CD8+ cells above 15% was not achieved, 

even at 10μg/ml of peptide, indicating low sensitivity of this T-cell line to the targets used 

to stimulate it. These data indicated that coating target T-cells between 1 and 0.1μg/ml 
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would induce enough degranulation of T-cells to allow differences in activation across 

conditions to become discernible, without saturating the positive signal to T-cells, and 

preventing detection of increases in activation. 
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Figure 3.2 Dose response experiments assessing degranulation of HCMV-specific T-cell 
lines against peptide pulsed autologous fibroblasts. SFi cells (D7, D8 and D9) were 
pulsed with the indicated peptide concentrations. These cells were then used as targets 
in a CD107a degranulation assay. T-cell lines used are shown in each panel. Cytokine 
production was assessed with D9-VTE, with the proportion of cells producing IFNγ and 
TNF also being measured. Data shows mean %CD107a+ of CD8+ cells ±SEM of 
quadruplicate values. For D9-VTE, data shows mean %CD107a+/IFNγ+/TNF+ of CD8+ 
cells ±SEM of quadruplicate values.
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3.3 Screening of the HCMV genome for regions involved 

with CD8+ T-cell evasion

3.3.1 Effect of block deleted HCMV variants on CD8+ T-cell 

responses
Having generated functionally active peptide-specific T-cells, experiments were 

performed comparing responses to target cells infected with HCMV deletion variants. 

These variants each contained a deletion in regions of the HCMV genome not required 

for replication (Figure 3.3). These viruses were made so that NK cell evasion genes could 

be mapped to specific regions of the HCMV genome. The block deletions were made on 

a ΔUL16/UL18 background in order to detect additional NK evasion genes that may be 

masked by the suppression caused by UL16 and UL18. Both genes have been well 

described as NK cell evasion genes, with UL16 binding to MICA, ULBP1 and ULBP2 

which are ligands for the activating receptor NKG2D (Dunn et al., 2003a) and UL18 

binding to LIR1 on NK cells (Chapman et al., 1999). This was performed in order to 

provide an intermediate levels of NK cell degranulation, which could increase upon the 

deletion of NK inhibitory genes or decrease upon deletion of NK activating genes. Using 

this loss of function system, the first aim was to investigate whether any of these deletion 

variants were able to significantly alter the activation of T-cells in the absence of 

exogenous peptide, relative to parent virus.

Initial experiments were performed with the D7-VLE and D7-NLV lines as effector cells, 

against D7-SFi cells (Figure 3.4A and B. Experiments were performed by Dr Eddie 

Wang). An initial screen without exogenous peptide, showed no differences in CD8+ 

T-cell activation against mock, Merlin and AD169 infected targets, indicating that HCMV 

infection in itself did not increase recognition by either T-cell line. Deleting US2-11 

increased degranulation to levels comparable to mock infected cells coated with peptide. 

This was expected as this region includes the HLA-I downregulating genes US2, US3, 

US6 and US11 (Jackson et al., 2011). This showed that in the absence of exogenous 

peptide, HCMV induced CD8+ T-cell activation is difficult to measure as assessed by 

CD107a expression and that recovery of peptide presentation by HLA-I greatly increased 

activation without the need for additional peptide pulsing.

Screening of the block deletions showed small statistically significant differences from a 

number of variants, but ΔRL10-UL1 was the only deletion that caused a significant 

increase in degranulation by both lines. This suggested that the RL10-UL1 region 

encodes a potential T-cell inhibitor. ΔUL22A-25 reduced the CD107a signal with the NLV 
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line but increased it with the VLE line. Deep sequencing would later reveal bacterial DNA 

incorporated into the BAC of this HCMV deletion mutant. The assay was repeated with 

certain mutants with both T-cell lines in parallel to further show differences between the 

parent HCMV and the deletion variants. In both experiments ΔUS18-22 increased 

activation (Figure 3.4C and D). ΔUS27-28 also increased degranulation, but only with 

the NLV line. These data show that in the absence of exogenous peptide, RL10-UL1 can 

decrease the activation of T-cells and that the US18-US22 region may also have an 

inhibitory effect on CD8+ T-cells.
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Figure 3.3 Genetic map of Merlin genome and genes missing in block deletions. Block 
deletions are shown in rectangles. Coloured arrows indicate protein-coding regions and 
direction refers to 5’ to 3’. Conservation across the Herpes viruses are designated ‘core’
genes. Non-core genes are grouped into gene families and are colour coded. The 
diagram was provided by Prof Andrew Davison (MRC-University of Glasgow Centre for 
Virus Research, Glasgow, UK).
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Figure 3.4 Degranulation of HCMV specific CD8+ T-cells against fibroblasts infected with 
HCMV block mutants. D7-SFi were infected with the indicated HCMV or mock infected. 
At 72hpi, D7-SFi cells were used as targets in a CD107a degranulation assay with T-cell 
lines (A) D7-NLV or (B) D7-VLE as effectors. A and B were performed separately. 
Experiments C and D were performed in parallel. Data shows mean %CD107a of CD8+ 
cells and +SEM of quadruplicate samples. Statistical analysis was performed comparing 
the HCMV ‘parent’ with all other block mutants except ΔUS1-11, which served as a 
positive control alongside mock + peptide (1µg/ml). One-way ANOVA with Tukey multiple 
comparison post-hoc tests showed significant differences at **** p<0.0001, ***p<0.001, 
**p<0.01, *p<0.05. Assays were performed without peptide pulsing.
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3.3.2 Effect of block deleted HCMV variants with peptide on CD8+ 

T-cell responses
Measuring degranulation of HCMV specific T-cells against HCMV infected cells without 

exogenous peptide indicated that RL10-UL1 and US18-22 may be regions containing 

T-cell evasins. Using the same block deletions, the screen performed in section 3.3.1

was repeated, but with the addition of peptide. This allowed me to investigate whether 

increasing the strength of TCR signal could reveal functions otherwise hidden by the 

considerable inhibition of CD8+T-cell activation that is induced by HCMV-encoded genes 

targeting HLA-I surface expression and antigen processing.

With all assays performed with HCMV variants, levels of surface HLA-I were used to 

determine the extent of infection within target fibroblast cultures. This was particularly 

important in assays involving addition of exogenous peptide, as a large proportion of 

uninfected cells with normal levels of HLA-I would induce a false positive signal from 

CD8+ T-cell assays where exogenous peptide was added. Further, any functions that 

affected HLA-I expression would also be revealed. D7-SFi cells were infected with HCMV 

block deletion variants and at 72hpi, cells were stained for HLA-I (Figure 3.5A,B). The 

experiment showed that for the majority of HCMV deletion variants used, HLA-I 

expression did not alter compared to the parent HCMV, indicating no HLA-I 

downregulating genes in these deletion mutants. One exception was ΔUS1-US11 (a 

region containing multiple HLA-I downregulating functions), with cells infected with this 

virus unsurprisingly having more HLA-I on the surface compared to the parent strain. 

Another exception was ΔUS29-34A, in which a population of HLA-I high cells (showed 

by arrow in Figure 3.5) suggested partial infection of the fibroblast culture. For all T-cell 

assays where exogenous peptide was added, target cells showing less than 95% of cells 

with low levels of surface HLA-I were excluded, because this implied an insufficient level 

of HCMV infection.

In my first assay, D7-SFi cells infected with block deletions. At 72hpi, cells were were 

pulsed with 0.1μg/ml of VLE peptide. The HLA-I expressions from this experiment is 

shown in Figure 3.5. The experiment showed that deleting UL13-UL20 increased the 

activation of T-cells far beyond the parent HCMV (21% vs 45% CD107a+ of CD8+ cells) 

or any other mutants (Figure 3.6A). Other deletion mutants that significantly increased 

activation above parent, but to a lesser extent than ΔUL13-20, included ΔUS27-28, 

ΔUS18-22 and ΔUS29-34A. The assay was performed in parallel without peptide to see 

whether the initial findings that suggested ΔRL10-UL1 increased CD8+ T-cell activation 

could be repeated (3.3.1). In contrast though, no significant increases were observed 
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beyond the parent HCMV. Except for ΔUS1-11, the mean %CD107a of CD8+ cells 

induced by HCMV infected cells was <1%, which indicated the inability of this T-cell line 

to recognise and degranulate against cells in the absence of exogenous peptide (Figure 

3.6B). This contrasted with the previous data set (Figure 3.4) which did show significant 

increases in degranulation against targets infected with these block mutants. 

In summary UL13-20, US27-28, and US18-22 were flagged as other regions of the 

HCMV genome, which could encode CD8+ T-cell evasion genes once a small dose of 

exogenous peptide was used to coat targets.
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Figure 3.5 Effect of Merlin block deletions on HLA-I downregulation. D7-SFi cells were 
infected with HCMV block-deletion variants or mock infected. At 72hpi cells were stained 
for HLA-I and analysed by flow cytometry. (A) Overlay histograms comparing parent 
HCMV with block deletions, Towne and Merlin. (B) Data from (A) plotted as relative 
median fluorescence intensity (MFI). HLA-I MFI from mock infected cells was set as 1, 
with other values plotted as a relative value.
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Figure 3.6 Effect of deleting regions of the HCMV genome on CD8+ T-cell activation.
D7-SFi cells were infected with HCMV or mock infected. At 72hpi, cells were (A) pulsed 
with 0.1μg of VLE peptide or (B) left un-pulsed and used as targets in a CD107a 
degranulation assay. Data shows mean %CD107a+ of CD8+ T-cells ±SEM of 
quadruplicate samples. Statistical analysis was performed comparing HCMV ‘parent’ 
with all other block mutants, but not including ΔUS1-11, which served as a positive 
control. One-way ANOVA with Tukey multiple comparison post-hoc tests showed 
significant differences at ****p<0.0001.
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3.3.3 Effect of block deleted HCMV variants on CD8+ T-cell 

response at multiple peptide concentrations
Following the experiment with the deletion variants at a single peptide concentration, the 

screen was extended by using a range of peptide concentrations from 0.008 to 1µg/ml 

using a second HCMV-specific CD8+ T-cell line, D7-NLV. This was performed to see if, 

firstly, a different CD8+ T-cell line flagged the same regions; secondly, if regions flagged 

at a single peptide dose could act over a wider range of T-cell receptor signalling, and 

thirdly, whether there were genes that acted over a narrow peptide range that may have 

been missed by the single peptide concentration screen, as has been described for 

UL148 (Wang et al., 2018). 

The top 4 panels in Figure 3.7 (ΔRL10-UL1, ΔUL13-20, ΔUL22-25A, ΔUL2-11) were 

performed in parallel. Whilst there were statistically significant increases in CD107a 

induction by all four of these variants compared to the parent HCMV at a peptide 

concentration of 1μg/ml, the increase in CD8+ T-cell degranulation induced by ΔUL13-20 

was much higher than the other deletion mutants (59% vs 38%). The difference between 

parent and ΔUL13-20 was significant at all lower peptide concentrations too. The result 

further strengthened the data suggesting that UL13-20 contains other T-cell evasins 

other than UL16 and UL18 (absent from the parent and all HCMV block mutants). 

In a second screen performed separately but with the same effector T-cell line (lower 4 

panels Figure 1.7), significant increases in CD8+ T-cell activation were observed over a 

limited range of peptide concentrations with ΔUS27-28 (0.2µg/ml) and ΔUS18-22 (0.2, 

0.04µg/ml), with no significant differences at the highest and lowest peptide 

concentrations (0.008 and 1µg/ml respectively). No increase in CD107a+, CD8+ cells 

was detected at any peptide concentration with ΔUS29-34A. 

Compared to the previous experiment described in section 3.3.2, which was performed 

with the D7-VLE at 1μg/ml, the same mutants that induced an increase in CD107a 

expression (ΔUL13-20, ΔUS27-28, ΔUS18-22) also resulted in increased degranulation 

with the D7-NLV line, though no difference was observed using ΔUS29-34A.

3.3.4 Summary of screening with HCMV deletion mutants
Screening of the HCMV genome showed that in the presence of peptide, deleting the 

genes UL13-20 induced the largest increase in CD8+ T-cell activation. Deleting 

RL10-UL1 also induced an increase in the CD8+ T-cell response against HCMV-infected 

cells though this was only observed without peptide with 2 different CD8+ T-cell lines. 

Increases in degranulation were also recorded with ΔUS18-22, both with and without 
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peptide pulsing. This region was not investigated in further detail as the aim of this screen 

was to identify novel regions of immune evasion, and ongoing work had already identified 

US18 and US20 as immune evasins (Fielding et al., 2014, Fielding et al., 2017). From 

these data, the two regions that were investigated further were UL13-20 and RL10-UL1 

as the largest response with peptide was measured with ΔUL13-20 and the largest 

response without peptide was measured with ΔRL10-UL1. In both cases the levels of 

HLA-I were comparable to the parent HCMV, indicating that the genes within these two 

regions were not impacting on the level of expression of HLA-I and that any immune 

evasion mechanism was most likely occurring by other means.
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Figure 3.7 Assessing the effect of deleting regions of the HCMV genome on CD8+ T-cell 
activation at multiple peptide concentrations. D7-SFi cells were infected with parent 
HCMV (blue) or the indicated block-deletion mutants (orange). At 72hpi, cells were 
pulsed with the indicated concentration of NLV peptide and T-cell assays were performed
using D7-NLV as effector T-cells. Following the assay, cells were analysed by flow 
cytometry. Infections with ΔRL10-UL1, ΔUL22A-25, ΔUL13-20 and ΔUL2-11 deletion 
mutants was performed in one experiment and ΔUS27-28, ΔUS29-34A and ΔUS18-22 
deletions was performed in another separate experiment. Data shows mean %CD107a+ 
of CD8+ T-cells and SEM of quadruplicate values. Two-way ANOVA with Bonferroni 
multiple comparison post-hoc tests showed significant differences at **** p<0.0001, 
***p<0.001, **p<0.01, *p<0.05.
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3.4 Impact of RL11 family on CD8+ T-cell responses

The data from Figure 3.4 indicated that in the absence of exogenous peptide and in the 

context of a HCMV infection, genes within the RL10-UL1 region can reduce 

degranulation of T-cells as measured by CD107a surface recycling. These genes encode 

a series of cell surface glycoproteins and are part of the larger RL11 family (Davison et 

al., 2003a). The RL11 family consists of RL5A, RL6, RL11, RL12, RL13, UL1 and 

UL4-UL11 (Fig 1.3). Whilst many genes within HCMV are necessary for replication and 

are well conserve amongst Herpes viruses, RL11 family genes are dispensable for 

replication in vitro (Dolan et al., 2004). Furthermore, members of the RL11 family are 

amongst the most genetically divergent HCMV genes (Sijmons et al., 2015). Experiments 

using block deletions showed cells infected with ΔRL10-UL1 consistently increased NK 

cell degranulation compared to parent HCMV (personal communication, Dr Ceri Fielding) 

using PBMC from several donors. This, combined with the data in the previous section 

encouraged further experiments designed to identify the specific genes within the RL11 

family region responsible for reducing CD8+ T-cell activation. 

3.4.1 Use of block deletion viruses to assess the role of the RL11 

family genes CD8+ T-cell activation
To assess the overall impact of the RL11 family on activation of degranulation of T-cells, 

an experiment was performed utilising three block deletions (MerlinΔRL11-UL11, 

ΔRL10-UL1 and ΔUL2-11). The aim was to map potential immune modulators to one of

two regions within the gene family. The summary data from Figure 3.8B showed that the 

addition of peptide had no consistent effect on the activation of ΔRL10-UL1 infected cells. 

Given that all the block mutants were on a genetic background of ΔUL16/UL18, I 

hypothesised that the removal of these genes may have been masking other smaller 

effects induced by the deletion of other regions in the HCMV genome. By testing ΔRL11-

UL11, the intention was to assess the effect of removing a larger proportion of the RL11 

family on CD8+ T-cell activation. The ΔUL2-11 block deletion was included alongside 

the ΔRL10-UL1 mutant as previous data showed that cells infected with ΔUL2-UL11 

induced a small, but significant increase in CD8+ T-cell degranulation (section 3.3.3). 

Deleting ΔRL11-UL11 resulted in decreased degranulation of CD8+ T-cells (Figure 3.8A 

and B). This result was the same for both D7-NLV and D7-VLE T-cell lines. Compared 

to the parent HCMV, deleting RL10-UL1 did not increase degranulation, and with both 

T-cell lines, deleting UL2-UL11 significantly decreased degranulation. This decrease 

was of a similar magnitude to that recorded between Merlin and MerlinΔRL11-UL11 

(black bars).
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Additional experiments were performed using the ΔRL10-UL1 block deletion, with and 

without peptide pulsing. This was so that I could generate enough data to statistically 

assess if the average CD107a values were consistently different when using two T-cells 

lines. The summary data includes all experiments with both D7-VLE and D7-NLV T-cell 

lines. Figure 3.8C showed that in the absence of peptide, deleting RL10-UL1 caused a 

significant increase in CD107a expression compared to the parent HCMV, when the 

means were compared by a Wilcoxon matched-pairs signed rank test (1.66±0.46 vs 

2.78±0.88%, p=0.023, data was not normally distributed). The same analysis was 

performed with data from experiments with peptide pulsing (Figure 3.8D). This graph 

included data points where HCMV targets were coated with ≥0.1µg/ml of peptide (NLV 

or VLE). A small but significant difference in activation induced by the ΔRL10-UL1 

infected cells (37.5±4.7 vs 40.5±4.4%, p=0.018). In summary, this data suggests that 

genes within the RL10-UL1 regions may have a role in reducing T-cell degranulation, but 

this was more consistent in the absence of exogenous peptide.
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Figure 3.8 Assessing the effect of deleting HCMV genes within the RL11 family on CD8 
T-cell activation. D7-SFI cells were infected with HCMV variants and used as targets in 
CD107a degranulation assays at 72hpi. Experiments from an assay performed 
comparing Merlin, MerlinΔRL11-UL11, parent and ΔRL10-UL1 using (A) D7-NLV and 
(B) D7-VLE. Data was analysed with one-way ANOVA with Tukey multiple comparison 
post-hoc tests. Summary data for all experiments comparing parent HCMV with ΔRL10-
UL1 showing mean degranulation from experiments when (C) no exogenous peptide 
was used (analysed using Wilcoxon matched-pairs signed rank test was used as the 
data was non-parametric as assessed by) and where HCMV infected cells were (D) 
pulsed with ≥ 0.1µg/ml of NLV or VLE peptide (a paired two tailed t-test as the data was 
parametric). Each point shows mean %CD107a+ of CD8+ T-cells. Significant differences 
are shown at **** p<0.0001, ***p<0.001, **p<0.01.
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3.4.2 Effect of individually expressing HCMV genes RL10-UL1 on 

CD8+ T-cell activation
The data from section 3.4.1 indicated that the genes within the RL10-UL1 region could 

reduce degranulation of CD8+ T-cells in the absence of peptide. Activation by 

ΔRL10-UL1 was not consistently observed in assays with peptide. One explanation could 

be that this region encodes genes with multiple competing effects including those that 

increase activation of some CD8+ T-cells, which could mask the effects of possible 

immune evasins. To test if these genes could affect T-cell activation in a positive 

expression system, HCMV genes were expressed with RAds, which allowed me to 

assess the genes in the RL10-UL1 region individually. In this system, expression of the 

transgenes is driven by the strong constitutive HCMV major IE promoter essentially in 

the absence of replication of the Ad vector (Materials and Methods). D7-SFi cells were 

infected with RAds and used as targets for a CD107a degranulation assay at 48hpi. 

T-cell activation was significantly lower against cells expressing RL11 and UL1 (Figure 

3.9A). Other differences were not significant. These results indicate that UL1 and RL11 

genes may be T-cell evasion functions.

With these experiments, one consideration was that the decrease in degranulation could 

be due to altered effector cell responsiveness due to toxicity in the target cells resulting 

from high MOI RAd infections. To address this, an experiment was performed using 

D7-SFi cells and MRC-5 fibroblasts in parallel (Figure 3.9B and C respectively), both of 

which are positive for the HLA-A2, the HLA-I that presents the cognate peptide to the 

effector D7-VLE T-cell line. Whilst an MOI of 500 is required for complete infection of 

D7-SFi cells, efficient infection of MRC-5 cells with RAds was achievable at MOI of 20, 

as shown in Material and Methods (section 2.5.5). With both cells lines the result was 

similar, with a significant reduction in degranulation observed with RAd-UL1 and 

RAd-RL11 infected cells compared to RAd-CTRL infected cell. There was also a 

significant increase in degranulation with RAd-RL10 infected cells. The data from these 

two experiments showed that both RL11 and UL1 could independently reduce activation 

of CD8+ T-cells in a positive expression system.
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Figure 3.9 Assessing effect of genes RL10-UL1 on CD8+ T-cell activation. (A) and (B) 
were infected with adenoviruses expressing genes from the RL10-UL1 region. At 48hpi, 
cells were pulsed with 1μg/ml of peptide and used as targets in a CD107a degranulation 
assay. Experiment (C) was performed with MRC-5 fibroblasts. Bars show mean 
%CD107a+ of CD8+ cells ±SEM of quadruplicate values. Compared to RAd-CTRL, one-
way ANOVA with Tukey multiple comparison post-hoc tests showed significance 
compared at ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. 
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3.4.3 Assessing impact of deleting HCMV RL11 on CD8+ T-cell 

function
Whilst performing screens with the RAds (section 3.4.2) ongoing work in the laboratory 

resulted in the generation of a MerlinΔRL11 virus. The RL11 gene was deleted from the 

virus to test its role as an immunevasin in the context of a productive HCMV infection. 

Results from NK assays using primary NK cell cultures from ≥3 donors had shown a 

consistent decrease in NK cell degranulation when RL11 was expressed in HF-CAR cells 

using RAd-RL11 as compared with an Ad vector control (personal communication, Dr 

Rebecca Aicheler). By assessing MerlinΔRL11, I could assess the effect of RL11 on 

T-cell activation in the context of an HCMV infection.

In two experiments, D7-SFi cells were infected with Merlin, MerlinΔRL11, parent 

(MerlinΔUL16/UL18) and parentΔRL10-UL1. These cells were used as targets for a 

CD107a degranulation assay at 72hpi. Both D7-VLE and D7-NLV were used as effector 

cells. Whilst there was a significant increase in degranulation between parent and 

ΔRL10-UL1 with both T-cell lines there was no increase in degranulation between Merlin 

and MerlinΔRL11 (Figure 3.10A and B). This experiment was repeated, though the 

converse was seen. There was a significant increase in degranulation between Merlin 

and MerlinΔRL11, but there was no increase in degranulation induced by ΔRL10-UL1 

compared to the parent HCMV (Figure 3.10C and D). One consideration was that the 

level of infection for MerlinΔRL11 was 92%, as measured by HLA-I downregulation, with 

the HLA-I on non-infected cells potentially influencing the result, by increasing the 

presentation of exogenous peptide.

To test if there were any effects of deleting RL11 over a wider range of T-cell receptor 

signalling, an assay was performed comparing Merlin and MerlinΔRL11, and a range of 

different peptide concentrations (0.5-0.0005µg/ml). D7-SFi cells were infected with 

Merlin or MerlinΔRL11 and were used in a standard degranulation assay at 72hpi. In this 

experiment, the infection was complete for both viruses. Both D7-NLV and D7-VLE were 

used as effectors. With both T-cell lines, there was a significant difference between 

Merlin and MerlinΔRL11 at 0.5μg/ml of peptide (Figure 3.10). The difference was greater 

with the NLV line (21.2 vs 27.0%). The degranulation of D7-VLE induced by Merlin 

versus ΔRL11 was significant, but small (15.7% vs 17.6%). At lower peptide 

concentrations, the absence of RL11 decreased degranulation. This data showed that 

RL11 may act as a T-cell evasin, increasing degranulation, however the magnitude of 

this, as measured by CD107a expression varied between the T-cell lines.



102

Figure 3.10 Assessing the effect of deleting RL11 from the HCMV genome on CD8+ 
T-cell activation. D7-SFi cells were infected with Merlin or MerlinΔRL11. At 72hpi, cells 
were pulsed with NLV or VLE peptide and used as targets in a CD107a degranulation 
assay. Experiments (A) and (B) were performed in parallel, as were (C) and (D). Data 
was analysed with a one-way ANOVA. (E and F) The experiment was repeated at 
multiple peptide concentrations. Data was analysed with a two-way ANOVA with a 
Bonferroni multiple comparison post-hoc test. In all experiments bars/points show mean 
%CD107a+ of CD8+ cells ± SEM of quadruplicate values with significance shown at 
****p<0.0001, ***p<0.001, **p<0.01.
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3.4.4 Summary of screens performed with RL11 family knockouts
Table 3.1 summarises the main findings from this section of work, showing data from 

experiments with knockout HCMV viruses. The table shows the number of assays where 

cells infected with the knockout virus resulted in ‘activation’ of the effector cells line 

compared to the parental HCMV. Activation was assigned as significant if the %CD107a+ 

of CD8+ cells induced by the knockout HCMV was ≥1.15x that induced by the control 

HCMV infected cells and showed significance by statistical testing. This criterion was 

used to take into consideration assays which produced a significant difference due to 

very tight data points in the quadruplicate, but where the difference was very small.

Considering all the data, cells infected with ΔRL10-UL1 resulted in activation of CD8+ T-

cells in 75% of experiments performed without peptide. On average, degranulation 

increased 1.7-fold (p=0.023). The table shows that when peptide was added, the 

experiments were more variable. In 6/17 experiments there was significant activation of 

T-cells induced by ΔRL10-UL1 infected cells. When the mean CD107a+ of CD8+% from 

all experiments were compared using a paired t-test, there was also a significant 

difference, although on average there was only a 1.1-fold increase in the proportion of 

degranulating CD8+ T-cells. I also performed this analysis for ΔUL2-UL11. Whilst there 

was a small increase in degranulation in one experiment (Figure 3.7), relative to the 

parent, none of the other experiments revealed an increase in degranulation induced by 

ΔUL2-UL11 infected cells.

When the genes RL10-UL1 were overexpressed with adenoviruses, in two experiments 

RL11 and UL1 resulted in a reduction in degranulation. This suggested that both RL11 

and UL1 may function as immune evasins. To assess the ability of RL11 to impair 

activation of T-cells against HCMV infected cells, experiments were conducted using 

MerlinΔRL11. Based on six experiments, MerlinΔRL11 induced a non-significant 

1.15-fold increase in degranulation. Another consideration was that in two of these 

experiments the level of infection was incomplete, which could have adversely affected 

results.  
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Table 3.1 Summary of data from experiments showing potential immune evasion 
capability of RL11 genes. The table includes all data using both D7-VLE and D7-NLV.

Mean degranulation
%CD107a+ of CD8+ cellsb

Knockout Activationa Parental 
HCMVc

Knockout Mean fold 
changed

p-valuee

No 
peptide ΔRL10-UL1 6/8

(75%) 1.7 ± 0.5 2.8 ± 0.9 1.7 0.023

Peptidef ΔRL10-UL1 6/17
(35%) 38.7 ± 4.5 42.3 ± 4.4 1.1 0.018

ΔUL2-UL11 2/6
(33%) 38.5± 7.3 37.1± 5.7 1.0 0.84

MerlinΔRL11 3/6
(50%) 31.2 ± 7.2 35.6± 7.9 1.1 0.09

a Activation was assigned if the difference was statistically significant, and was greater 
than a 1.15x the mean %CD107a of CD8+ cells induced by the comparator.
b Equivalent data from experiments were pooled and averaged. Values show mean 
%CD107a+ of CD8+ cells ±SEM.
c Parental HCMV was parent (ΔUL16/UL18) for assays with ΔRL10-UL1 and 
ΔUL2-UL11, or Merlin for MerlinΔRL11.
d For each individual experiment the mean CD107a+,CD8+ value from parent HCMV was 
set as 1 and the fold change in degranulation was  calculated.
e The p-value was determined by a paired two-tailed t-test. Normality of data was 
determined by D’Agostino Pearson omnibus normality test. Where n≤6 or data was non-
parametric, a two tailed a Wilcoxon signed rank test was performed.
f Peptide data included data from all experiments where ≥ 0.1μg/ml of peptide was used 
to pulse cells.
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3.4.5 Impact of HCMV genes UL13-UL20 on CD8+ T-cell 

response
Screening of the HCMV genome showed that deleting genes UL13-UL20 increased 

activation of CD8+ T-cells far more than any other deletion mutant in assays using 

exogenous peptide. The assays in the previous sections (section 3.3, 3.4) showed an 

increase between Merlin and the parent HCMV. This indicated that deleting UL16 and/or 

UL18 was influencing T-cell activation and at least one other gene in the UL13-20 region 

was acting as a CD8+ T-cell evasin. The previous section (3.4.2) showed that even 

though a reduction in degranulation was observed with RAd-RL11, the role of RL11 as 

a T-cell evasin was not entirely supported with a complementary increase in T-cell 

activation when MerlinΔRL11 was used. This informed my decision to not use RAds as 

a primary screen, preferring knockout HCMV viruses, as: firstly, they provide a more 

physiological context to study the function of an HCMV gene during HCMV infection; 

secondly, one can easily control for levels of infection by measuring the proportion of 

cells downregulated for HLA-I, and; thirdly, they avoid toxicity in cell cultures due to over 

expression of certain HCMV genes, as has been observed with some RAds (Seirafian, 

2012).

3.4.6 Effect of UL16 and UL18 on the CD8+ T-cell response
Firstly, I wanted to assess the difference in degranulation between Merlin and parent 

(referred to as ΔUL16/UL18 in this section). A dose response experiment was performed 

comparing the activation of T-cells induced by uninfected (Mock), Merlin and 

ΔUL16/UL18 infected targets. This was to assess whether there were differences 

depending on the strength of signal received by the T-cell receptor. D7-SFi cells were 

infected with Merlin, ΔUL16/UL18 and at 72hpi, cells were pulsed with different peptide 

concentrations and used as targets in a CD107a degranulation assay. Removing these 

genes resulted in an increase in CD8+ T-cell activation at concentrations of 1 and 

0.1μg/ml (Figure 3.11A). At 10μg/ml of peptide there was no difference between Merlin 

and ΔUL16/UL18, indicating that the inhibitory effects of UL16/UL18 observed at the 

lower concentrations could be overcome by an excess of exogenous peptide. Multiple 

experiments were performed using Merlin and ΔUL16/UL18 and I analysed the 

differences in the responses of CD8+ T-cells as a whole to assess if these two genes 

were consistently affecting degranulation. In 10/11 experiments ΔUL16/UL18 infected 

cells significantly increased degranulation compared to Merlin. When the mean 

degranulation values from each experiment were pooled and analysed there was a 
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significant and consistent increase in activation of CD8+ T-cells against cells infected 

with ΔUL16/UL18 (2.0±0.8% vs 3.8±1.0%, p=0.0002, Figure 3.11B).

A similar approach was taken with data from 18 assays performed with exogenous 

peptide (≥0.1μg/ml) to coat HCMV-infected cells (Figure 3.11C). In 12/18 experiments 

there was a significant increase in degranulation against ΔUL16/UL18 infected cells. 

When considering all data points, degranulation between Merlin and ΔUL16/UL18 

infected cells was significantly higher (34.1±3.6 vs 42.7±3.8% p=0.0025, Figure 3.11C). 

In summary, these experiments show that UL16/UL18 reduced activation of CD8+ T-

cells as the deletion of genes from HCMV increased the ability of T-cell to degranulate 

against HCMV infected cells in the presence and absence of exogenous peptide.

I wanted to assess how each of these genes were contributing to this effect. To assess 

this, I performed a T-cell assay using individual ΔUL16 and ΔUL18 knockout viruses. 

MFI was assessed as well as the proportion of cells expressing each marker. Assessing 

the MFI shows how much of each cytokine is being produced by the activated population. 

Of the cytokines analysed, T-cells activated by ΔUL16 produced significantly more TNF, 

compared to Merlin. The differences in the level of IFNγ, IL-2 and MIP-1β production by 

D9-VTE was the same against Merlin, ΔUL16 and ΔUL18 infected cells. 

The proportion of activated T-cells was also assessed. The data presented in Figure 

3.12B showed that UL16 significantly increased the activation of CD8+ T-cells as 

assessed by degranulation (CD107a) and cytokine production (TNF, IFNγ, and MIP-1β). 

No significant increase in IL-2 production was recorded. In contrast, deleting UL18 did 

not result in an increase in any T-cell activation markers, and there was a significant 

decrease in MIP-1β production. This showed that infecting cells with ΔUL16 resulted in 

more activation D9-VTE T-cells, and that the responding cells produced more TNF. This 

showed that UL16 is likely involved with downregulation of T-cell activity.

This experiment was not repeated with the other T-cell lines, but flow cytometry for 

NKG2D and LIR1 was performed, which are the ligands for UL16 and UL18 respectively. 

This was carried out to provide potential mechanism as to how UL16 may affect T-cells. 

Figure 3.12C showed that D9-VTE lacked LIR1, but uniformly expressed NKG2D. In 

summary this suggests that UL16 impairs T-cells, and that sequestering of NKG2D 

ligands, a known function of UL16, may contribute to reduced CD8+ T-cell activation.
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Figure 3.11 Effect of deleting HCMV genes UL16 /UL18 on degranulation of HCMV 
specific T-cells. (A) D7-Sfi cells were infected with Merlin or ΔUL16/UL18 and used as 
targets in a CD107a degranulation assay at 72hpi. Dose response showing changes in 
degranulation induced by mock, Merlin or ΔUL16/UL18 infected fibroblasts. Data points 
show mean %CD107a+ of CD8+ cells ±SEM of quadruplicate values and were analysed 
with a two-way ANOVA with Bonferroni multiple comparison post-hoc tests. Significant 
differences are shown at ****p<0.0001, **p<0.01. Summary data is shown for all 
experiments comparing Merlin and ΔUL16/UL18 comparing mean %CD107a+ of CD8+ 
cells from experiments when (B) no exogenous peptide was used (analysed using 
Wilcoxon matched-pairs signed rank test, data was non-parametric, as assessed by a 
D’agostino Pearson omnibus normality test) and where HCMV infected cells were (C) 
pulsed with ≥ 0.1µg/ml of NLV or VLE peptide (paired two tailed t-test was used as the 
data was parametric). 
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Figure 3.12 T-cell activation assay assessing the effect of deleting genes UL16 and UL18 
on CD8+ T-cell activation. D9-SFi cells were mock infected or infected with the indicated 
HCMV viruses. At 72h cells were pulsed with 1μg/ml of VTE peptide. Intracellular staining 
for IL-2, IFNγ, MIP-1β and TNF was performed after the 5-hour incubation period. Data 
shows mean (A) MFI of cytokine by activated CD8+ T-cells and (B) % positive for each 
readout, +SEM of quadruplicate values. One-way ANOVA with Tukey post-test showed 
significance at **** p<0.0001, ***p<0.001, **p<0.01, *p<0.05. (C) Flow cytometry 
histograms showing NKG2D and LIR1 expression on D9-VTE T-cell line (isotype control 
shown in grey).
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3.4.7 Screening of deletion mutants within the UL13-UL20 region 

on the CD8+ T-cell response
Screening with the block deletions showed that deleting the UL13-20 region increased 

CD8+ T-cell activation compared to parent HCMV. A summary graph is shown displaying 

the mean data from all experiments with peptide (≥ 0.1μg/ml) (Figure 3.13A). This 

showed that cells infected with ΔUL13-20 induced significantly large increases in T-cell 

degranulation, compared to the parent HCMV (38.4±6.7% vs 51.7±5.2% p=0.0026). This 

data indicated other genes in the UL13-20 regions (UL13, UL14, UL15A, UL17, UL19 

and UL20) function as T-cell evasins. Additional deletions available for testing in this 

region included ΔUL14 and ΔUL19.

D9-SFi cells were infected with Merlin, ΔUL14 and ΔUL19, as these were the only 

deletion mutants available within the UL13-20 region, other than ΔUL16 and UL18. At 

72hpi, cells were coated with 1μg/ml of peptide and were used as targets in a standard 

T-cell activation assay. Along with CD107a, cytokine production was assessed (TNF, 

IFNγ, MIP-1β and IL-2). Amongst the activated T-cells, the MFI from each cytokine was 

not altered by UL19 or UL14 (Figure 3.13B). When the proportions of activated cells were 

assessed, the experiment showed that ΔUL19 induced a significant increase in 

degranulation of CD8+ T-cells (10.4±0.4 vs 12.6±0.4% CD107a+CD8+, p=0.05), whilst 

ΔUL14 did not alter the proportion of degranulating cells compared to Merlin. ΔUL19 did 

induce a significant increase in the proportion of MIP-1β producing CD8+ T-cells, but 

only by 2% (26.0±0.2 vs 28.0±0.5% p=0.04). TNF and IFNγ were not significantly 

increased. This data indicated that UL19 may be an additional immune evasion gene, 

reducing the activation and degranulation of CD8+ T-cells, and impairing production of 

some cytokines (MIP-1β), but not others.
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Figure 3.13. Affect of other genes in the UL13-20 region, distinct from UL16 and UL18, 
on CD8+ T-cell activation. (A) Summary data is shown for all experiments including 
ΔUL16/UL18 vs ΔUL13-20 with peptide at ≥0.1μg/ml showing mean %CD107a+ of CD8+ 
cells. Data was analysed with a paired, two-tailed t-test. (B and C) T-cell activation assay 
assessing the effect of deleting genes UL14 and UL19 on activation of D9 VTE T-cell 
line. D9-SFi cells were mock infected or infected with the indicated HCMV viruses. At 
72h cells were pulsed with 1μg/ml of VTE peptide. Intracellular staining for IL-2, IFNγ, 
MIP-1β and TNF was performed after the 5-hour incubation period. Data shows (A) mean 
MFI of cytokine by activated CD8+ T-cells and (B) mean %positive for each readout, 
+SEM of quadruplicate values. One-way ANOVA with Tukey post-test comparing 
showed significance at *p<0.05.
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3.4.8 Effect of UL19 on CD8+ T-cell response
The next set of experiments focussed on UL19, as the previous screen suggested it was 

acting as a T-cell evasin, with no previous descriptions of function in the literature. 

Additionally, preliminary data using RAd-UL19 suggested that UL19 could inhibit 

NK-cells (personal communication Dr Rebecca Aicheler). To further describe the role of 

UL19 as an immune evasin, experiments were performed with three T-cell lines 

(D7-NLV, D7-VLE and D9-VTE). In each experiment, skin fibroblasts (D7, D9) were 

infected and pulsed at different peptide concentrations covering from 0.008 to 10μg/ml. 

Across a range of peptide concentrations, deleting UL19 induced an increase in T-cell 

activation compared to Merlin infected cells (Figure 3.14). Each experiment was 

performed independently. With both D7 derived T-cell lines, ΔUL19 induced a significant 

increase in degranulation at all peptide concentrations (Figure 3.14A and B). CD107a 

expression was recovered to mock levels at 3/4 peptide concentrations (5.0,1.0 and 0.2 

µg/ml). The magnitude of the difference between Merlin and ΔUL19 was less with 

D9-VTE compared to the other two T-cell lines though still significant (Figure 3.14C). At 

0.04µg/ml, the difference in degranulation was non-significant, unlike the experiments 

with D7-NLV and VLE T-cells which were inhibited by UL19 at all concentrations. At all 

higher peptide concentrations there was significantly higher degranulation induced by 

ΔUL19 compared to Merlin. HLA-I expression of ΔUL19 infected cells was comparable

to Merlin infected cell at 72hpi indicating that UL19 did not affect the surface expression 

of HLA-I (Figure 3.14D), in line with the result which showed that deleting the UL13-20 

block did not affect HLA-I expression (Figure 3.5A). This data provided strong evidence 

that UL19 is a CD8+ T-cell evasion molecule.
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Figure 3.14 Dose response curves showing effect of deleting UL19 on CD8+T-cell 
activation at different peptide concentrations. Skin fibroblast-cells (D7, D9) were mock 
infected or infected with Merlin, or ΔUL19. At 72hpi, cells were pulsed with (A) NLV, (B) 
VLE, or (C) VTE peptide at different concentrations and used as target in a CD107a 
degranulation assay. Experiments were performed independently. Experiments B and C 
were performed by Dr Simone Forbes. Points show mean %CD107a+ of CD8+ cells and 
±SEM of quadruplicate values. A two-way ANOVA with Bonferroni multiple comparison 
post-hoc tests showed significance at **** p<0.0001, ***p<0.001. (D) Flow cytometric 
histograms showing HLA-I expression of infected cells.
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3.4.9 Summary of screens performed with UL13-20 knockouts
Data from this section is summarised in Table 3.2. Deleting UL16 and UL18 significantly 

increased activation by CD8+T-cells in assays performed with and without peptide 

pulsing. This was observed in almost all experiments without peptide (10/11). In 12/18 

experiments performed with peptide, significant activation was recorded, as determined 

by a significant increase in CD107a+ CD8+ T-cells ≥1.15x induced by Merlin infected 

target cells. On average deleting UL16 and UL18 increased degranulation 1.4-fold with 

peptide. Further screening with single deletion mutants showed that this effect could be 

attributable to UL16, which when deleted from Merlin resulted in a significant increase in 

4/5 activation markers (CD107a, TNF, IFNγ and MIP-1). This experiment was 

performed once, and therefore the individual effect of UL18 on D7-NLV and D7-VLE 

T-cells lines was not determined. The largest increase was observed when UL13-20 was 

deleted, which increased degranulation 1.5-fold above ΔUL16/UL18. Six of the nine 

assays resulted in activation, and in those that did not, the level of degranulation of the 

parent HCMV was at or above 60%, which was close to the saturation point of the assay, 

where addition of more peptide often did not increase the proportion of CD107a 

expressing T-cells (e.g. Figure 3.14B).

Deleting UL19 resulted in significantly increased degranulation across a range of peptide 

concentration. In all experiments performed with >0.1μg/ml of peptide, with all T-cell lines

(D7-NLV, D7-VLE and D9-VTE), there was activation of CD8+ T-cells compared to 

Merlin. Cells infected with ΔUL19 increased degranulation by 1.3-fold. This data 

indicated UL19 can function as CD8+ T-cell evasins across multiple T-cells lines derived 

from different donors. 
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Table 3.2 Summary data from experiments showing potential immune evasion genes in 
UL13-20 region. The table included all data using both D7-VLE, D7-NLV and D9-VTE.

Mean degranulation
%CD107a+ CD8+ cells b

Knockout Activationa Parental 
HCMVc

Knockout Mean fold 
change d

p-value e

No 
Peptide

Merlin 
ΔUL16/UL18

10/11
(91%) 2.0 ± 0.8 3.75 ± 1.0 2.2 0.0002

Peptidef ΔUL13-UL20 6/9
(67%) 38.4 ± 6.7 51.7 ± 5.2 1.5 0.0026

Merlin
ΔUL19

9/9 
(100%) 34.2 ± 3.0 44.5 ± 3.7 1.3 0.0004

Merlin 
ΔUL16/UL18

12/18 
(67%) 34.1 ± 3.6 42.7 ± 3.8 1.4 <0.0001

a Activation was assigned if the difference was statistically significant, and was greater 
than 1.15x the mean %CD107a of CD8+ cells induced by the parent HCMV.
b Equivalent data from experiments were averaged. Values show mean %CD107a+ 
CD8+ cells ±SEM.
c Parental HCMV is parent (ΔUL16/UL18) for assays with ΔUL13-UL20, or Merlin for 
other assays.
d For each individual experiment the mean %CD107a+, CD8+ value from parent HCMV 
was set as 1 and the fold change in degranulation was calculated for the knockout.
e The p-value was determined by a paired two-tailed t-test. Normality of the data was 
determined by D’Agostino Pearson omnibus normality test. If the data was 
non-parametric, a two tailed a Wilcoxon signed rank test was performed. 
f Peptide data included data from all valid experiments where ≥ 0.1μg/ml of peptide was 
used to pulse cells.
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3.5 Summary of findings

The main aim of this chapter was to identify candidate HCMV CD8+ T-cell evasion 

genes. The majority of experiments utilised two HLA-A2 restricted T-cell lines; D7-VLE 

and D7-NLV. When used as effector cells against fibroblasts infected with a series of 

HCMV block deletions in the absence of peptide, a significantly higher proportion of these 

cells degranulated against ΔRL10-UL1 infected fibroblasts compared to the parent 

HCMV. This result was shown in 6/8 of all experiments with both T-cell lines but 

experiments with peptide were less conclusive. Whilst the average degranulation of 

T-cells against ΔRL10-UL1 was significantly increased, this only equated to a 1.1-fold 

increase in CD107a expression. Significant activation was recorded in 6/17 experiments. 

Gain of function experiments using RAd expressing HCMV genes showed that RL11 and 

UL1 could reduce T-cell activation. Despite this, loss of function experiments using 

MerlinΔRL11 were variable, with activation of T-cells induced in 3/6 experiments when 

compared to Merlin. The 1.15-fold increase was not considered significant. 

I found that ΔUL16/UL18 infected cells increased the proportion of degranulating CD8+ 

effectors, compared to Merlin infected cells. The mean degranulation of CD8+ T-cells 

increased 2.2-fold and 1.4-fold in experiments without and with peptide respectively. To 

explore this further an experiment performed with single knockout viruses showed that 

UL16 was able to downregulate D9-VTE T-cells, as ΔUL16 infected cells significantly 

increased degranulation (CD107a) and cytokine (TNF, IFNγ and MIP-1β) expression by 

CD8+ T-cells. Surface staining of T-cells showed that line D9-VTE expressed NKG2D, 

but not LIR1, suggesting UL16 could be affecting T-cells in a similar way to how it affects 

NK-cells. 

Experiments using D7-VLE and D7-NLV T-cell lines showed that ΔUL13/UL20 infected 

cells caused a further significant increase in CD107a expressing T-cells compared to 

ΔUL16/UL18 infected cells. The mean increase in the proportion of activating cells was 

1.5-fold. Screening with further knockout viruses showed that this effect is likely 

attributable in part to UL19. Experiments with three different T-cell lines at multiple 

peptide concentrations showed that deleting UL19 significantly increased the mean 

proportion of CD107a expressing T-cells by 1.3-fold, showing that UL19 had a strong 

effect on inhibiting CD8+T-cell activation against HCMV infected cells.
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4 Identification of HCMV genes regulating TNF 

receptor expression

4.1 Introduction

The aim of this chapter was to identify genes further regulating TNFR1/2, as this would 

influence how HCMV infected cells respond to TNF. This was inspired by proteomic data 

which showed that TNFR2 is increased on the cell surface during lytic HCMV infection 

(Weekes et al., 2014). Receptor expression should influence how HCMV infected cells 

respond to TNF, and the remaining two chapters of work were devoted to identifying how 

TNFR1/2 are regulated by HCMV. HCMV infected cells would be influenced by TNF, an 

inflammatory cytokine released by lymphoid cells including HCMV specific T-cells and 

NK cells (Lachmann et al., 2012). Whilst HCMV UL138 is known to maintain TNFR1 on 

the surface of HCMV infected cells (Montag et al., 2011), there are no published studies 

investigating TNFR2 on HCMV infected cells, which is why this warranted investigation.

4.2 Identifying genes involved in TNFR2 upregulation 

4.2.1 Comparison of TNF receptor expression between high and 

low passage HCMV strains
Initial work investigating the effect of HCMV on TNFR1 reported an unpublished 

observation which stated that TNFR2 surface expression did not change upon infection 

with HCMV strain AD169 (Baillie et al., 2003). Our laboratory, in partnership with 

collaborators at Cambridge University used mass spectrometry to assess the temporal 

expression of host and viral proteins over the course of a HCMV infection in fibroblasts 

(Weekes et al., 2014). BAC derived Merlin was used in this study had intact copies of as 

all the HCMV canonical genes excepting for natural in RL13 and UL128L selected by in 

vitro propagation (Stanton et al., 2010). Following infection with strain Merlin, TNFR1 

surface expression increased and peaked at 18-24hpi, and then returned to mock levels 

at 48hpi. The increase at 24hpi correlated with UL138 expression (Figure 4.1A). TNFR2 

though was present in relatively small amounts on the surface of fibroblasts (0hpi) with 

expression increasing and peaking at 72hpi (Figure 4.1B). This information, led to the 

hypothesis that TNFR2 is upregulated by genes encoded by Merlin, but not by AD169.

To test the reported differences in TNFR2 expression by different HCMV strains, 

HF-TERT cells were infected with high passage HCMV strains lacking the UL/b’ region 
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(AD169 and Towne) and low passage HCMV strains (Merlin and Toledo). At 72hpi, cells 

were stained with anti-TNFR2 mAbs and flow cytometry was used to assess TNFR2 

expression. At 72hpi, cells infected with Merlin and Toledo expressed more TNFR2, 

though there was a minimal increase in cells infected with Towne and AD169 (

Figure 4.1C). To assess the temporal profile of TNFR2 expression, a time course 

experiment was performed by infecting HF-TERT cells at the same time and performing 

flow cytometry at different points along the 72h time course. The largest increase in 

surface TNFR2 occurred between 48 and 72hpi which correlated with proteomic data 

(Figure 4.1B). In summary, this data showed that infection with low passage HCMV 

strains Merlin and Toledo resulted in an increase in surface TNFR2, which did not occur 

following infection with AD169 or Towne.
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Figure 4.1 Effect of infection with high and low passage HCMV strains on TNFR2 
expression. (A) Proteomic data showing the temporal plasma membrane profiles of 
TNFR1 (blue) and whole cell levels of UL138 (orange). Surface levels of TNFR2 are 
shown in (B). Red rhombus shows data following infection with gamma-irradiated virus 
at 12hpi. Data were derived from the resource paper (Weekes et al., 2014). (C) HF-TERT 
cells were infected with Towne, AD169, Toledo and Merlin and flow cytometry for TNFR2 
was performed at 72hpi. (D) HF-TERTs were infected with the indicated HCMV strains 
and flow cytometry was performed at the indicated timepoints. Maximum MFI was set as 
1, with other values plotted as a relative value. Data points show mean ± SEM of triplicate 
infections. 
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4.2.2 Analysing the UL/b’ region for genes regulating TNFR2 

expression
HCMV strains Towne and AD169 have accumulated mutations during in vitro passage, 

the most prominent being a 13-15kb deletion of the UL/b’ gene region (UL132-UL150A)

(Bradley et al., 2009). I hypothesised that the gene or genes responsible for TNFR2 

upregulation were likely to be within this region of the HCMV genome. To test this, I used 

a series of HCMV strain Merlin mutants, each deleted for one gene of the UL/b’ region. 

Flow cytometry for TNFR2 and HLA-I was performed at 72hpi, which is when surface 

TNFR2 was shown to peak. Only infected cells demonstrating HLA-I downregulation 

were gated on for assessing TNFR2 expression. The data showed that whilst there was 

some variation amongst the mutants, the UL148 and UL148D deletion mutants clearly 

did not upregulate TNFR2 as much compared to the parental Merlin control (

Figure 4.2A). ΔUL138 did not differentially regulate TNFR2 upregulation, thus the UL138 

mechanism of TNFR1 upregulation appears not to impact TNFR2. ΔUL150A may also 

have had a minor effect on TNFR2 expression. To assess this further, the experiment 

was repeated with several of the knockout viruses (ΔUL138, ΔUL148, ΔUL148D and 

ΔUL150A) in triplicate. The data in Figure 4.2C showed that the absence of TNFR2 

upregulation seen in Figure 4.2B were consistent, with ΔUL150A causing a small 

downregulation in TNFR2 expression (this will be discussed in 4.2.3).
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Figure 4.2 Screening of the UL/b’ region for regulators of TNFR2 expression.(A) 
HF-TERT were infected with HCMV strains missing the indicated UL/b’ genes. Flow 
cytometry for (A)TNFR2 was performed at 72hpi. TNFR2 MFI for Merlin was set at 1 with 
other values plotted as a relative value. (B) HLA-I staining on cells from the same 
experiment was used to measure the level of infection. HLA-I low cells were gated on to 
identify those infected with HCMV. MFI of mock HLA-I was set as 1, with other values 
plotted as a relative value. (C) The experiment was repeated with selected knockouts. 
Bars show mean relative MFI of TNFR2 +SEM of triplicate infections. 
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4.2.3 Proteomic analysis of UL148 and UL148D deficient HCMV
A comprehensive proteomic analysis was performed on the series of individual HCMV 

gene knockout viruses across the UL/b’ region in a project headed by Dr Peter Tomasec 

and Dr Michael Weekes. Infections with HCMV ΔUL148 and ΔUL148D revealed a 

reduction in surface TNFR2 compared to Merlin infected cells consistent with the flow 

cytometric screen (section 4.2). When the data from the proteomic analysis is presented 

as dot plots, multiple changes in cell surfaces proteins are evident on HCMV ΔUL148 

and ΔUL148D infected cells (Figure 4.3). Proteins with a negative Log2 change meant 

there was less of the protein on the surface of infected cells compared to Merlin infected 

cells. The Log2 change in TNFR2 expression from ΔUL148 and ΔUL148D infected cells 

was -0.81 and -1.40 respectively. These were the only two knockout viruses which 

altered relative TNFR2 expression more than -Log20.5. Infection with ΔUL150/A resulted 

in a Log2 change of TNFR2 of -0.47 (p<0.0005), which suggested that this gene may 

have a small effect on TNFR2 expression, as suggested by the small decrease in TNFR2 

expression observed with the flow cytometric screen (Figure 4.2). Deletion of UL150 also 

significantly affected UL148D expression by decreasing the expression of UL148D, 

causing a -Log21.33 reduction in UL148D expression (Appendix). Therefore, the change 

in TNFR2 following deletion of UL150/A was likely caused by a knock-on effect of 

reduced UL148D expression. Other proteins which were significantly downregulated with 

both ΔUL148 and ΔUL148D included NRG1, MEGF10 and GFRA2. This indicated that 

UL148 and UL148D can both independently regulate TNFR2 levels on the surface of 

HCMV infected cells, and that these genes may also regulate other cellular proteins too.
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Figure 4.3 Plasma membrane profiling of ΔUL148 and ΔUL148D infected cells.HF-TERT 
cells infected with Merlin or UL/b’ knockout virus were processed to give plasma 
membrane or whole cell fractions and analyzed by TMT mass spectrometry. Scatter plot 
of proteins is shown for (A) ΔUL148 and (B) ΔUL148D. Fold change (ΔUL148 or 
ΔUL148D/ Merlin infected cells) is shown as the log2 ratio on the x-axis and the 
signal:noise on the y-axis as log10. Proteins unaltered by the deletion are at the center of 
the plots (0 log2), whereas proteins to the left or right of center represent proteins down 
regulated or upregulated respectively by the deletion of UL148 or UL148D. P values are 
for for the ratios of expression from each mutant compared to HCMV Merlin using 
Benjamini-Hochberg corrected Significance B values. Experiment and data analysis 
were performed by Dr Peter Tomasec and Dr Michael Weekes.
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4.3 Effects of deleting both UL148 and UL148D on TNF 

receptor expression

4.3.1 Recombineering of ΔUL148/UL148D virus
The screen of the UL/b’ region showed that UL148 and UL148D were responsible for 

upregulating TNFR2. This suggested that the two genes may be acting synergistically 

as the impairment of upregulation was not to the level observed with strains AD169 or 

Towne (section 4.2.1). To test this hypothesis, a double knockout virus 

(ΔUL148/UL148D) was recombineered to see whether the TNFR2 phenotype of strains 

Towne or AD169 could be replicated. The recombineering process is described in the 

Materials and Methods section 1.7 (Stanton et al., 2010). UL148D was deleted from the 

ΔUL148 BAC (Wang et al., 2018). The rpsL cassette was amplified by PCR with arms of 

homology to UL148D (Figure 4.4A and B, red base pairs) and to the rpsL cassette (green 

base pairs). The insertion of the cassette into ΔUL148 BAC conferred resistance to 

kanamycin and caused bacteria to grow in blue colonies due to the presence of X-Gal. 

Blue colonies were chosen, and DNA was extracted from minipreps. The DNA was 

digested by HindIII to check that recombination had not altered other areas of the HCMV 

BAC (Figure 2.3). A PCR was performed to amplify the UL148D region, and the size was 

assessed by separation on an agarose gel. If the cassette had been incorporated, then 

this region would be larger than the equivalent region from the Merlin BAC. Removal of 

the cassette was performed by utilising the remove primer (Figure 4.4D), with 50bps 

having homology upstream of the UL148D start codon and the other 50 having homology 

to a region of UL148D and part of UL150A. If the remove primer had replaced the rpsL 

cassette than bacteria would grow in white colonies on streptomycin containing plates 

as the cassette confers streptomycin susceptibility. The BAC was digested with HindIII 

and compared to the digest pattern of the Merlin HCMV BAC. If the pattern of digested 

DNA from the manipulated BAC was the same as Merlin, then the UL148D region was 

amplified by PCR. If the cassette had been removed, then the fragment was smaller than 

that of the Merlin BAC. The fragment was then gel purified and sent for sequencing. After 

showing that the purified sequence was the same as the predicted sequence (Figure 

4.4E), the ΔUL148/UL148D BAC amplified and transfected into HF-TERT cells.
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Figure 4.4 Recombineering of ΔUL148/UL148D. (A) Forward and (B) reverse primers for 
amplification of rpsL cassette. Homology to UL148 is shown in red and homology to the 
rpsL cassette is in green. (C) UL148D region from Merlin (GenBank GU179001) showing 
the homology of primers to UL148D. (D) UL148D remove primer. The blue sequence 
shows 50bp with homology to the sequence upstream of UL148D. The pink sequence 
corresponds to a truncated region of UL148D and a region of UL150. (E) Consensus 
sequence of UL148D region from pAL2393 (ΔUL148/UL148D) compared to the 
predicted sequence.
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4.3.2 Effect of deleting UL148 and UL148D on TNFR2 expression
After generation of ΔUL148/UL148D, flow cytometry was used to assess if deleting both 

genes would further impair TNFR2 upregulation compare to the single deletion mutants. 

HF-TERT cells were infected in triplicate with HCMV strains Merlin, ΔUL138, ΔUL148, 

ΔUL148D, ΔUL148/UL148D, AD169 or mock infected. At 24h intervals, flow cytometry 

for surface TNFR2 was performed (Figure 4.5). The increase in surface TNFR2 by Merlin 

was similar to that shown in Figure 4.1A. At 48hpi, TNFR2 levels were comparable for 

ΔUL148 and ΔUL148D. At 72hpi, levels of TNFR2 were half that of Merlin, as assessed 

by MFI. There was no difference in the expression pattern of TNFR2 between Merlin and 

ΔUL138. As with AD169, there was no increase in TNFR2 surface expression following 

infection with ΔUL148/UL148D, indicating that both UL148 and UL148D are required for 

the upregulation of TNFR2 observed with Merlin infected fibroblasts.

4.3.3 Effect of deleting UL148 and UL148D on TNFR1 expression
To assess the effect of deleting UL148 and UL148D on TNFR1 expression, the 

experiment performed in 4.3.1 was repeated. HF-TERT infected with HCMV strains 

Merlin, ΔUL138, ΔUL148, ΔUL148D, ΔUL148/UL148D, AD169. At 24h intervals, flow 

cytometry for surface TNFR1 was performed. Unlike TNFR2, TNFR1 is constitutively 

expressed on fibroblasts. From cell surface proteomics (Figure 4.1A), it was shown that 

TNFR1 was upregulated at 24hpi. This experiment also showed this, with TNFR1 

upregulated at 24hpi compared to mock infected cells, but then reducing to levels 

observed on uninfected cells by 48hpi. UL138 has previously been reported as 

maintaining TNFR1 expression on the surface of HCMV infected cells (Montag et al., 

2011). Here, its deletion reduced TNFR1 surface expression to levels observed on 

uninfected cells at 24hpi. TNFR1 remained consistently lower than uninfected cells at 48 

and 72hpi (Figure 4.6). The deletion of UL148 had no effect on TNFR1 expression 

compared to Merlin. The absence of UL148D did however affect TNFR1 expression. 

TNFR1 was reduced on the surface of ΔUL148D infected cells, compared to Merlin. 

Between 48 and 72hpi, there was an increase in surface TNFR1, though levels were still 

lower than mock and Merlin infected cells. Deleting ΔUL148/UL148D caused a reduction 

in TNFR1 expression. Surface levels of TNFR1 were reduced by 24hpi and remained 

low at 48 and 72hpi. This showed that despite the presence of UL138, the genes UL148 

and UL148D had a dominant effect and the removal of both impaired TNFR1 expression 

altogether. This shows that UL148 and UL148D are required for TNFR1 maintenance.
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Figure 4.5 Effect of deleting UL148 and UL148D on TNFR2 expression.(A) 
Representative flow cytometric histograms of TNFR2 surface expression following 
infection with the indicated HCMV variants. Cells were infected at the same time with 
flow cytometry being performed at each time point. (B) Relative surface TNFR2
expression over the 72h infection. In each case the maximum TNFR2 MFI of Merlin at 
72hpi was set at 1.0 with other values plotted relative to this. Data points show mean 
relative TNFR2 and SEM of triplicate infections.
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Figure 4.6 Effect of deleting UL148 and UL148D on TNFR1 expression.(A) 
Representative flow cytometric histograms of TNFR1 surface expression following 
infection with indicated HCMV variants. Cells were infected at the same time with flow 
cytometry being performed at each time point. (B) Relative surface TNFR1 expression 
over the 72h infection. In each case the maximum TNFR1 MFI (Merlin, 24hpi) was set at 
1.0 with other values plotted relative to this. Data points show mean relative TNFR1 ± 
SEM of triplicate infections.



128

4.4 Effect of RAd-UL148/UL148D on TNFR2 expression

Having identified UL148 and UL148D as genes involved with TNFR2 upregulation, I 

sought to further explore this effect in a positive expression system by expressing these 

two genes from adenovirus vectors. This would provide information as to whether the 

proteins UL148 and UL148D can function in isolation, or whether other HCMV induced 

changes are required in addition to the expression of these genes. HF-CAR cells were 

used as the CAR receptor allows for less virus to be used to achieve efficient infection 

of adenovirus. There was no increase in TNFR2 expression at 48hpi (data not shown). 

One possibility was that higher levels of protein were needed to elicit an effect. As 

expression from RAd vectors tend to increase substantially (‘ramp’) over time, cells were 

left for 72h to increase the level of expression driven by the IE1 promoter in the 

constructs. Figure 4.7A shows the expression of TNFR2 following infection with RAd into 

HF-CAR cells. This data showed that isolated expression of UL148 increased TNFR2 

expression, though the effect was small (Figure 4.7A). UL148D stimulated TNFR2 

surface expression marginally more than did RAd-UL148 (Figure 4.7A). When both 

RAd-UL148 and RAd-UL148D were expressed in the same cell culture, there was no 

additional increase in TNFR2 expression above that of RAd-UL148D. Merlin + 

RAd-CTRL is shown in grown in this panel as a comparator. This indicated that UL148 

and UL148D, individually or together, did not induce TNFR2 expression to the same 

degree as Merlin infection.

One theory was that UL148 and UL148D may function more efficiently in the context of 

an HCMV infection. To test this possibility, a reconstitution experiment was performed in 

which cells were infected with knockout HCMV variants and RAds in the same inoculum. 

Staining for TNFR2 was performed at 72hpi. Figure 4.7B showed that adding Rad-UL148 

or UL148D had no effect on TNFR2 upregulation even in the context of a 

ΔUL148/UL148D HCMV infection. Furthermore, the addition of RAd-UL148 significantly 

decreased TNFR2 expression in a HCMVΔUL148 infection. This indicated that in the 

context of a HCMV infection, co-infection with an adenovirus impaired TNFR2 

upregulation.

The partial upregulation of TNFR2 by RAd-UL148D could have been nonspecific, so all 

adenoviruses expressing genes in the UL/b’ region were tested, to assess if other HCMV 

genes expressed through RAds did the same. This indeed was the case and several 

RAd expressed HCMV genes did partially increase TNFR2, such as UL138, UL136 and 

UL148A (Figure 4.7C). These increases were unlikely to be due to the gene expression 

itself as knockout HCMV viruses lacking these genes did not result in reduced TNFR2 
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expression (Figure 4.2A). Therefore, the small increase in surface TNFR2 upon RAd-

UL148D infection was considered a non-specific effect. In summary, when expressed 

from an adenovirus, UL148 and UL148D failed to substantially upregulate TNFR2 in 

mock and HCMV infected fibroblasts, as was observed with Merlin infection alone.

4.5 Effect of irradiated HCMV on TNF receptor expression

To determine if the regulation of TNF receptors was linked to virion proteins or if this 

required an active HCMV infection, an experiment was performed with irradiated virus. 

HCMV was gamma irradiated, which denatures viral DNA, but allows for virus entry. An 

early time point of 24h was chosen to assess if changes in TNFR expression were a 

result of an innate immune response, which would be induced soon after entry of the 

virion. HF-TERT cells were infected with either Merlin, or irradiated Merlin and flow 

cytometry for TNFR1 and TNFR2 was performed at 24hpi. HLA-I was again used to 

assess infection as an active HCMV infected would reduce surface HLA-I, whereas 

activation of intrinsic immune defences irradiated HCMV could potentially increase HLA-I 

expression. As with previous experiments there was an increase in surface TNFR1 and 

TNFR2 on Merlin infected cells at 24hpi (Figure 4.8). At the same timepoint, there was 

no difference in surface TNFR1/2 expression between uninfected cells and irradiated 

Merlin treated cells. This result indicated that active HCMV infection, rather than virion 

components delivered on entry, were required to upregulate TNFR2.
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Figure 4.7 Effect of ectopically expressing UL148 and UL148D in isolation and in the 
context of a HCMV infection. HF-CAR cells were infected with single or combined 
RAd-UL148, RAd-UL148D or both RAds. The cells were then infected with Merlin, 
ΔUL148, ΔUL148D, or ΔUL148/UL148D. Each condition was performed in triplicate. At 
72hpi, cells were stained for TNFR2. Representative flow cytometric histograms are 
shown for (A) mock and (B) ΔUL148/UL148D. (C) TNFR2 expression in RAd infected 
HF-CAR cells. Flow cytometry was performed at 48hpi.
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Figure 4.8 Effect of irradiated HCMV virions on TNFR1/2 expression. HF-TERT cells 
were infected with Merlin or treated with irradiated Merlin. (3500gy of gamma irradiation), 
or mock infected. Data shows flow cytometric histograms for TNFR1, TNFR2 and HLA-I 
performed at 24hpi.
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4.6 Regulation of TNFR2 protein at a whole cell level

4.6.1 Analysis of whole cell TNFR2 by western blotting
To assess the impact of HCMV infection on the total level of TNFR2 protein in cells, a 

Western blot was performed. HF-TERT cells were left uninfected (mock) or infected with 

Merlin or ΔUL148/UL148D. At 72hpi, cells were harvested and lysed. Proteins were 

separated by SDS-PAGE under reduced denaturing conditions, before blotting for 

TNFR2 and actin (loading control). The low abundance 55kDa protein in uninfected cell 

lysates was due to TNFR2 and corresponds with data shown on the manufacturers 

website (Abcam (2018),Figure 4.9). This is indicated by a red arrow and correlated with 

the low surface expression shown by flow cytometry (Figure 4.1). From Merlin infected 

cells, more TNFR2 was detected as shown by a more intense band at the same 

molecular weight. Deleting UL148 and UL148D had no effect on total TNFR2 levels 

compared to Merlin. At 50kDa, a fainter band was observed, which was consistent in 

intensity across all three samples and was considered to be a non-specific signal. In 

summary, this indicated that the amount of TNFR2 was low in uninfected fibroblasts. 

Upon HCMV infection, the whole cell level of TNFR2 increased. Deletion of HCMV 

UL148/UL148D did not influence the whole cell increase in TNFR2. 
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Figure 4.9 Effect of HCMV infection on total TNFR2 protein levels.HF-TERT cells were 
infected with Merlin, ΔUL148/UL148D or mock infected. Whole cell lysates were 
prepared at 72hpi. Proteins were separated by SDS-PAGE then transferred to a PVDF 
membrane and probed with α-TNFR2 primary antibody and HRP conjugated secondary 
antibody. Signal was visualised by chemiluminescence. Actin was used as a loading 
control.
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4.6.2 Analysis of TNFR1/2 mRNA during HCMV infection
Having shown that HCMV infection increased TNFR2 within the cell, data was assessed 

to ascertain if HCMV was affecting levels of steady state TNFR2 mRNA. To investigate 

if HCMV was altering steady state TNFR2 mRNA, transcriptomic data from various 

sources was assessed. Table 4.1 (experiment performed by Dr Peter Tomasec, and 

Professor Andrew Davison) and Table 4.2 (data taken from Tirosh et al. (2015)) both 

show that the whole cell mRNA of TNFR2 increased following a HCMV infection with 

Merlin. There was no increase measured with UV inactivated virus or interferon treated 

cells. This indicated the increase in TNFR2 mRNA is not mediated by HCMV virions 

alone but requires a productive HCMV infection (Table 4.2). At 24hpi, there was twice 

the amount of TNFR1 mRNA, though this reduced back to mock levels at 72hpi. UV 

irradiated Merlin, and IFN alone, had no effect on TNFR1 mRNA, with levels within two-

fold of untreated cells. 

HF-TERT cells were infected in triplicate and harvested at 24 and 72hpi, and the RNA 

sequences for host and cellular proteins were analysed (experiment was performed by 

Dr Peter Tomasec and Dr Michael Weekes). As with the other two sets of data, which 

were from a single source, when performed in triplicate, mRNA of TNFR2 increased over 

the course of the lytic cycle (Figure 4.10B). This was not the case for TNFR1 RNA, which 

remained constant over the course of the infection (Figure 4.10A). These data indicate 

that an increase in steady state TNFR2 correlates with increased cells surface and whole 

cell TNFR2, though levels of TNFR1 mRNA were unaffected.
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Table 4.1 Copy number of TNFR2 mRNA transcripts in HCMV infected cells.HF-TERT 
cells were mock infected or infected with Merlin. Values show reads per kilobase of 
transcript per million (RPKM) at 72hpi. Unpublished data kindly provided by Professor
Andrew Davison (Centre for Virus Research, Glasgow).

Mock Merlin ΔUL148
TNFR2 2.18 12.57 15.58

Table 4.2 Timecourse of TNFR2 mRNA transcripts in HCMV infected cells.HFFF cells 
were infected with Merlin or UV treated Merlin and harvested at the indicated timepoints. 
Cells were also treated with IFN and harvested after 5h. Values show reads per kilobase 
of transcript per million (RPKM). Data taken from source paper (Tirosh et al., 2015).

Mock Merlin (12h) Merlin 
(24h)

Merlin 
(72h)

UV Merlin 
(5h)

IFN (5h)

TNFR1 73.021 58.06 112.16 63.11 49.99 76.80

TNFR2 0.55 1.48 7.77 14.05 0.53 1.03

Figure 4.10. RNAseq data for TNF receptor transcripts in HCMV infected cells.HF-TERT 
cells were infected and harvested at 0, 24 and 72hpi. The data shows relative abundance 
of (A) TNFR1 and (B) TNFR2 mRNA ± SEM of triplicate infections. Experiment was 
performed by Dr Michael Weekes and Dr Peter Tomasec. Unpublished data kindly 
provided by Dr Michael Weekes. 
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4.7 Effect of block mutants on TNFR2 expression

The Western blot and flow cytometry data indicated that UL148 and UL148D had no 

effect on the whole cell levels of TNFR2 protein, but profoundly affected surface 

expression. Transcriptome data showed that HCMV infection induced an increase in 

TNFR2 mRNA. This could have been mediated by another gene within the HCMV 

genome. To assess this, screening for other modulators of TNFR2 surface expression 

was performed with the block deletions. HF-TERT cells were infected with block 

deletions and these were stained for TNFR2 at 72hpi. Whilst the expression levels varied 

slightly between the different mutants, ΔUL13-20 impaired upregulation of TNFR2. This 

was repeated, with both results showing a clear shift in TNFR2 expression (Figure 4.11). 

Given that the parent HCMV is deleted for UL16 and UL18, this result implies that one 

or more genes within UL13, UL14, UL15, UL17, UL19 or UL20 also contributes to TNFR2 

upregulation.



137

Figure 4.11 Effect of deleting blocks of HCMV genes on TNFR2 expression. HF-TERT 
cells were infected with block deletions or mock infected. At 72hpi, cells were stained for 
TNFR2. As block deletions and parent HCMV all encode GFP, gating was performed on
GFP high, HLA-I low cells to identify those infected with HCMV. (A) Flow cytometry 
histograms and (B) Relative median fluorescence of TNFR2. MFI of parent HCMV was 
set at 1 with other values plotted relative to this.
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4.8 Summary

The aim of this chapter was to identify the mechanism of TNFR2 upregulation during a 

HCMV infection. At the mRNA level, HCMV infection resulted in more steady state 

TNFR2 mRNA over the course of the lytic infection. Western blotting showed that HCMV 

induced an increase in whole cell TNFR2 protein too. At the cell surface, TNFR2 

increased the most between 48-72hpi.

The most striking difference in TNFR2 surface expression amongst HCMV strains was 

with AD169 and Towne. These strains resulted in minimal change in surface TNFR2 

expression compared to Merlin or Toledo. Screening with single UL/b’ gene knockout 

viruses revealed that UL148 and UL148D upregulate TNFR2. When both genes were 

knocked out (ΔUL148/UL148D), upregulation of cell surface TNFR2 did not occur, 

indicating that these two genes may act together to produce the large upregulation in 

TNFR2 observed with a Merlin infection. UL148 and UL148D did not impact on whole 

cell levels of TNFR2. This would suggest that UL148 and UL148D effect TNFR2 at the 

surface and likely encode a specific mechanism that allows for TNFR2 to accumulate or 

be stabilised at the cell surface. Additionally, adenoviruses expressing UL148/UL148D 

were not able to achieve the upregulation of TNFR2 observed on Merlin infected cells 

indicating that other cellular changes induced by HCMV may be required for TNFR2 

upregulation.

Deleting both UL148 and UL148D had a similar effect on TNFR1, in that the presence of 

these two HCMV genes were required for sustained TNFR1 expression. Deletion of both 

genes decreased TNFR1 expression at 24hpi, with surface levels remaining low, despite 

UL138 expression, which has been shown to stabilise TNFR1 at the cell surface (Montag 

et al., 2011). This data indicated that UL148 and UL148D are essential for sustained 

expression of TNFR1/2 during a HCMV lytic infection.
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5 Mechanism of TNFR2 upregulation and its 

functional impact

5.1 Introduction

The findings to date indicate that UL148 and UL148D have an additive effect, with both 

genes upregulating TNFR2 and allow for TNFR1 to be maintained on the surface of 

HCMV infected cells (Chapter 4). However, the precise mechanism by which these 

genes regulate cell surface expression of TNFR1/2, and the functional significance of 

TNFR1/2 during HCMV infection had yet to be addressed. Ectopic expression of UL148 

and UL148D failed to upregulate TNFR2, indicating an indirect mechanism which was 

deemed worthy of further investigation.

TNFR1 was shown to be constitutively expressed on fibroblasts, but TNFR2 was present 

in very low amounts on the surface and within the cell (section 4.3). Therefore, it would 

seem that TNFR2 may have a specific function which could be utilised by HCMV in order 

to prevent cell death or influence the inflammatory response to TNF. The working 

hypothesis was that HCMV upregulates TNFR2 in order to re-route the apoptotic signal 

delivered to the cell upon treatment with TNF. This would therefore confer a survival 

advantage to the cell when challenged with TNF from leukocytes, or other TNF 

producing cells. 

5.2 Identifying ADAM17 as a target for UL148 and UL148D

5.2.1 Proteomic analysis of ADAM17 during HCMV infection 
The increase in TNFR2 on HCMV infected cells was accompanied by a transcriptional 

increase in mRNA of TNFR2 and an increase in the whole cell levels of TNFR2. 

However, Western blotting showed that knocking out UL148/UL148D had no effect on 

the whole cell levels of TNFR2 during HCMV infection (Figure 4.9), even though surface 

TNFR2 levels changed substantially (Figure 4.5). Surface TNFR2 was also not affected 

by ectopic expression of UL148 and UL148D (Figure 4.7), suggesting the mechanism of 

action of these genes was indirect and post-translational. Thus, the data from chapter 4 

would suggests that UL148 and UL148D act at the cell surface. In this context, it is 

interesting that TNFR2 can be cleaved from the cell surface by a disintegrin and 

metalloproteinase 17 (ADAM17), generating a soluble receptor lacking the 

transmembrane domain (Solomon et al., 1999). It was therefore hypothesized that 
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UL148 and UL148D may act by causing dysregulation of TNFR2 cleavage from the cell 

surface.

To provide initial information, the expression of ADAM17 over the course of a HCMV 

infection was assessed using multiple available proteomics datasets. A comparison 

between mock and Merlin infected cells showed that ADAM17 was downregulated, with 

most of the surface downregulation occurring by 24hpi (Figure 5.1A). The 

downregulation was rapid, with less than half of the initial abundance recorded at 12hpi. 

The proteomic data comparing knockout viruses with Merlin was assessed to see if 

UL148 or UL148D could affect surface ADAM17 on HCMV infected cells. Compared to 

Merlin infected cells, ΔUL148 and ΔUL148D infected cells had significantly more 

ADAM17 on the surface (Log22.18 and Log21.81 respectively, Figure 4.3), indicating that 

the removal of these two genes rescued ADAM17 expression. 

Data obtained from whole cell lysates showed ADAM17 protein levels increasing over 

the first 16 hours of infection before rapidly falling, correlating with its surface 

downregulation (Figure 5.1). This data would fit the hypothesis that a reduction of 

ADAM17 allows for increased stabilisation of TNFR2 on the cell surface. It also 

suggested that a reduction in surface ADAM17 may in part be due to reduced overall 

levels of ADAM17 protein.
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Figure 5.1 Proteomic analysis of ADAM17 following infection with HCMV.Data generated 
from the resource paper Weekes et al. (2014). HF-TERT cells were infected with Merlin. 
Cells were harvested and (A) plasma membrane (PM) or (B) whole cell lysates (WCL) 
were prepared prior to sample preparation and mass spectrometry. Data shows relative 
expression of ADAM17 over a 96h timecourse. The number of ADAM17 specific 
peptides quantified is shown within the graph. 
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5.2.2 Effect of HCMV on ADAM17 expression
A limitation of proteomic data is that it compares relative protein levels between different 

sets of preparations and therefore, combined with its high sensitivity, can lead to false 

positives if starting levels of a target protein are low. Consequently, it was important to 

be able to validate the plasma membrane profiling data for ADAM17 by an independent 

method.

Flow cytometry was used to assess to what extent HCMV affected ADAM17 expression, 

and the potential influence of UL148 and UL148D. HF-TERT cells were infected with

Merlin, ΔUL148, ΔUL148D, and ΔUL148/UL148D, and flow cytometry for ADAM17 was 

performed at 24-hour intervals. HCMV infection resulted in a rapid downregulation of 

ADAM17, with anti-ADAM17 staining being identical to isotype staining levels by 48hpi 

(Figure 5.2A). At 24hpi there was little difference in ADAM17 expression between Merlin 

and ΔUL148 infected cells however a recovery of ADAM17 was discernible by 48hpi. 

This was more apparent at 72hpi, with a clear distinction between isotype and 

anti-ADAM17 staining. Compared to Merlin infected cells, ADAM17 was not 

downregulated to the same degree on ΔUL148D infected cells at 24hpi. A decrease in 

surface ADAM17 did occur at 48 and 72hpi and the expression profile of ADAM17 was 

reduced on ΔUL148D infected cells, though still above isotype levels. On 

ΔUL148/UL148D infected cells, surface ADAM17 expression remained stable 

throughout the 72h timecourse, albeit lower than on mock infected cells. At 24hpi, 

ADAM17 expression was similar between ΔUL148D and ΔUL148/UL148D infected cells, 

indicating that of the two genes, UL148D is responsible for ADAM17 downregulation at 

an earlier stage in the lytic cycle. In summary, the deletion of UL148 and UL148D act 

synergistically to suppress surface ADAM17 expression following Merlin infection.

At 72hpi, ΔUL148/UL148D infected cells showed comparable levels of surface ADAM17 

to AD169 infected cells, suggesting these 2 genes are primarily responsible for the 

differences in ADAM17 expression observed between AD169 and Merlin (Figure 5.2C). 

Interestingly, surface ADAM17 was not recovered to mock levels at any timepoint and 

was reduced compared to uninfected cells at 24hpi. This indicates other factors are 

affecting ADAM17 at an early timepoint, independent of UL148 and UL148D.
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Figure 5.2 Timecourse of ADAM17 expression during HCMV infection.HF-TERT cells 
were infected with HCMV variants or mock infected. At 24h intervals cells were stained 
for ADAM17. (A) Representative flow cytometry histograms comparing HCMV to mock 
infected cells. (B) Relative fluorescence of ADAM17 for HCMV mutants. Each point 
shows mean relative ADAM17 ±SEM of triplicate infections. ADAM17 MFI of mock 
infected cells was set at 1.0 with other values plotted as a relative value (C) Comparison 
between AD169 and ΔUL148/UL148D infected cells at 72hpi.
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5.2.3 Effects of ectopic expression of UL148 and UL148D on 

surface ADAM17
Timecourse experiments showed that UL148 and UL148D affect ADAM17 at different 

points during a lytic HCMV infection, with UL148D impacting on ADAM17 expression 

prior to 24h post infection. This suggested that both these genes were capable of 

affecting ADAM17 independently. To test if UL148 and UL148D could downregulate 

surface ADAM17 in isolation, these genes were expressed in HF-CAR cells with 

RAd-UL148 and RAd-UL148D. HF-CAR cells were used to allow for lower PFU 

infections that reduce potential toxicity from high amounts of input virus. Flow cytometry 

for ADAM17 was performed at 72hpi. The experiment showed that UL148 and UL148D 

both reduced ADAM17 in isolation (Figure 5.3A). Overexpression of either gene alone 

partially reduced surface ADAM17 expression, while both RAds together resulted in a 

further decrease in surface ADAM17, indicating an additive effect (Figure 5.3A, right 

panel). The MFI data is quantified in Figure 5.3D. 

To assess whether the effect of UL148 and UL148D could be reconstituted in the context 

of a HCMV infection, a co-infection with RAds and knockout HCMV viruses was 

performed. This experiment showed that addition of RAd-UL148 and RAd-UL148D to 

ΔUL148 and ΔUL148D infected cells respectively, reduced ADAM17 expression close 

to isotype levels, and recapitulated the ADAM17 phenotype observed with Merlin 

infected HF-CAR cells (Figure 5.3B).

When both RAd UL148 and RAd-UL148D were used in the context of the double 

knockout virus (ΔUL148/UL148D), individually the RAds caused a partial downregulation 

of ADAM17, but when both RAd-UL148/UL148D were used, there was a significantly 

greater downregulation of ADAM17(Figure 5.3D, right). In summary, ectopically 

expressed UL148 and UL148D can downregulate ADAM17. It was further shown that 

UL148 and UL148D act together, resulting in greater downregulation of surface 

ADAM17.
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Figure 5.3 Effect on surface ADAM17 of expressing UL148 and UL148 in isolation, and 
in the context of a HCMV infection.HF-CAR cells were infected with single or combined 
RAd-UL148, RAd-UL148D. The cells were then infected with Merlin, ΔUL148, ΔUL148D, 
ΔUL148/UL148D. Each condition was performed in triplicate. At 72hpi, cells were 
stained for ADAM17. Representative flow cytometric histograms are shown for (A) mock 
and (B) ΔUL148 and ΔUL148D and (C) ΔUL148/UL148D. (D) The maximum ADAM17
MFI (Mock, RAd-CTRL) was set at 1, with other values plotted as a relative value. Bars 
show mean relative ADAM17 MFI +SEM of triplicate infections. One-way ANOVA with 
Sidak multiple comparison post-hoc tests showed significant differences at **** 
p<0.0001.



146

5.2.4 Assessing the effect of HCMV virions on ADAM17
Downregulation of ADAM17 occurred by 24hpi and part of this effect was attributable to 

UL148/UL148D (Figure 5.2). Given how early the downregulation was post-infection, this 

suggested that part of the effect could be mediated by an innate response to HCMV

virions. To test this HCMV variants were gamma irradiated to denature viral DNA. This 

leaves virions intact, and able to enter cells, though unable to replicate and inhibit the 

interferon, or other host innate immune responses. All deletion variants were tested as 

UL148 is found in the virion (Murrell, 2014) and therefore it was possible that virion 

derived UL148 could have been affecting ADAM17 surface levels at early timepoints.

HF-TERT cells were infected with HCMV or irradiated HCMV deletion variants and flow 

cytometry for ADAM17 was performed at 6,12 and 24hpi. Within the first 6hpi the 

expression of ADAM17 on Merlin and ΔUL148 infected cells was similar, with rapid 

downregulation occurring. As irradiated Merlin did not affect surface ADAM17, this 

suggested that virion derived UL148 was not affecting surface ADAM17. At 6hpi, the 

expression of ADAM17 was similar between ΔUL148D and ΔUL148/UL148D infected 

cells (Figure 5.4A and B).Even at 6hpi, in the absence of both UL148/UL148D, ADAM17 

was still downregulated compared to uninfected cells (Figure 5.4C). At 24hpi, surface 

ADAM17 expression on ΔUL148D began to decrease compared to ΔUL148/UL148D 

infected cells. This showed that whilst UL148D is responsible for most of the 

downregulation of ADAM17 prior to 24hpi, there are other factors involved, independent 

of UL148 and UL148D. The block mutants (Figure 3.3) were screened for the ability of 

other genes to affect ADAM17 at two time points (24 and 72hpi), but there was no 

difference between any of the mutants and the parent HCMV (Appendix).

In summary virion binding and virion proteins do not affect ADAM17 expression. This 

affirms that de novo UL148 and UL148D expression are required for ADAM17 

downregulation. 
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Figure 5.4 Effect of HCMV on ADAM17 expression at early timepoints. (A) Merlin, 
ΔUL148, ΔUL148D and ΔUL148/UL148D were left unirradiated or irradiated (3500Gy). 
HF-TERT cells were infected with these viruses and surface ADAM17 was assessed by 
flow cytometry at the indicated timepoints. (B) Cells were stained for HLA-I at 72hpi to 
assess infection efficiency. (C) Relative expression of ADAM17 across 24h time course. 
ADAM17 MFI from mock infected cells was set as 1 with other values plotted relative to 
this.
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5.3 Assessing the effect of ADAM17 on TNFR2 expression 

5.3.1 Measuring soluble TNFR2 in response to HCMV
Section 5.2 showed that the downregulation of ADAM17 was in large part due to UL148 

and U148D. My working hypothesis was that a reduction in ADAM17 prevented cleavage 

of surface TNFR2, therefore allowing it to accumulate on the cell surface. A concomitant 

effect of this would be alterations in the product of this cleavage, soluble TNFR2

(sTNFR2). To pursue this hypothesis, the supernatants of cell cultures were tested for 

sTNFR2.

HF-TERT cells were mock infected or infected with Merlin, ΔUL148, ΔUL148D and 

ΔUL148/UL148D. The supernatant was taken at 72hpi and an ELISA was performed. 

There was a significant increase in sTNFR2 production between mock and Merlin 

(11.3±0.5 vs 96±1.6pg/ml p<0.05) infected cultures, showing that a HCMV infection

increased both surface and soluble TNFR2. This showed that some TNFR2 is shed from 

the surface of HCMV infected cells, even in the presence of very low levels of surface 

ADAM17 (Figure 5.5). Deleting UL148D resulted in significantly more TNFR2 being shed 

compared to deleting UL148 (504.7±8.6 vs 313.9±8.5pg/ml, p<0.0001). This occurred 

despite there being less ADAM17 on the surface of the ΔUL148D, compared to ΔUL148 

infected cells at 72hpi, as shown in the previous section (Figure 5.2). Deleting both genes 

resulted in significantly more sTNFR2 being released into the medium (574.5±5.5pg/ml), 

compared to either single knockout virus. Interestingly, there was only a small increase 

in sTNFR2 between ΔUL148D and ΔUL148/UL148D, even though there was far more 

surface ADAM17 on ΔUL148/UL148D infected cells (Figure 5.2). This data further 

supported the idea that the increase in surface TNFR2 mediated by UL148 and UL148D 

is due to reduced shedding of the TNFR2 from the surface of the cell.
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. 

Figure 5.5 Levels of soluble TNFR2 in tissue culture medium following infection with 
HCMV. HF-TERT cells were mock infected or infected with Merlin, ΔUL148, ΔUL148D 
or ΔUL148/UL148D. At 72hpi the supernatant was analysed for sTNFR2 by ELISA. Bars 
shows mean sTNFR2 +SEM of duplicate supernatants. A one-way ANOVA with Tukey 
multiple comparison post-hoc tests showed significance at **** p<0.0001, ***p<0.001, 
**p<0.01.
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5.3.2 Effect of blocking ADAM17 on soluble and surface TNFR2
Section 5.3.1 showed that TNFR2 could be accumulating on the surface of HCMV 

infected cells due to decreased cleavage. To test whether the shedding of sTNFR2 by 

ΔUL148, ΔUL148D and ΔUL148/UL148D infected cells was due to ADAM17, a blocking 

experiment was performed. The antibody used, D1(A12), only blocks ADAM17 without 

affecting other members of the ADAM family of metalloproteinases (Tape et al., 2011). 

D1(A12) is a human antibody, therefore human IgG was used as an isotype control. 

Chapter 4 showed the main increase in surface TNFR2 occurred between 48 and 72h, 

and therefore it was reasoned that blocking ADAM17 at 48hpi should provide enough 

time for levels of TNFR2 to re-accumulate on ΔUL148/UL148D infected cells and be 

measurable by flow cytometry. Additionally, the antagonism of ADAM17 needed to occur 

early enough in the lytic cycle to prevent release of sTNFR2 into the supernatant. 

HF-TERT cells were mock infected or infected with HCMV. At 48hpi the media was 

replaced with fresh media containing D1(A12) or hIgG (both at 100nM). At 72hpi, the 

supernatant was collected and analysed by ELISA and flow cytometry was performed

for TNFR1 and TNFR2 on cells. TNFR1 was included in the analysis as it is also an 

ADAM17 substrate.

Supernatant collected at 48hpi was tested for sTNFR2, to assess the temporal profile of 

HCMV TNFR2 shedding. By 48hpi, there was a significant difference in sTNFR2 

production between Mock and Merlin infected cells (5.6±0.3pg/ml vs 26±3pg/ml p=0.01, 

Figure 5.5A). Deleting UL148/UL148D increased TNFR2 shedding though there was no

significant difference between ΔUL148D (159±4pg/ml) and ΔUL148/UL148D 

(155±6pg/ml) at this timepoint. Supernatant from ΔUL148 infected cells had levels of 

sTNFR2 lower than ΔUL148/UL148D, or ΔUL148D, though still significantly higher than 

from Merlin infected cells (61±2 vs 26±3pg/ml p<0.001).

An experiment was performed comparing cells treated with DMEM10 or hIgG at 48hpi, 

but no difference was observed in the levels of sTNFR2 indicating that the hIgG was not 

affecting sTNFR2 production (Appendix). Without blocking ADAM17, the production of 

sTNFR2 between 48 and 72hpi followed a similar pattern to that shown in Figure 5.5. 

Merlin infected cells produced sTNFR2, while deleting UL148 increased its production, 

with further significant increases measured within ΔUL148D and ΔUL148/UL148D

supernatants. Deleting both UL148 and UL148D resulted in the most soluble TNFR2 

production. Comparing sTNFR2 released by ΔUL148/UL148D infected cells in Figure 

5.5 and Figure 5.6B (454 vs 579pg/ml) revealed that most (78%) of sTNFR2 was 

produced between 48 and 72hpi.
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Blocking of ADAM17 at 48hpi resulted in no difference in soluble TNFR2 in mock infected 

cells. Blocking of ADAM17 on Merlin infected cells partially reduced sTNFR2 (70.3±4.5 

vs 38.7±1.3pg/ml), which suggested some active ADAM17 present on the HCMV 

infected cells, even though the flow cytometry data was unable to detect any ADAM17 

on Merlin infected cells at 48hpi (Figure 5.2). Blocking of ADAM17 on ΔUL148, 

ΔUL148D, and ΔUL148/UL148D infected cells resulted in reduction of sTNFR2 

production to levels detected in Merlin supernatant. This result was consistent with

sTNFR2 from knockout viruses being produced by ADAM17 mediated shedding of 

TNFR2 from the surface of ΔUL148/UL148D infected cells.

Flow cytometry for surface TNFR1/2 was also performed on cells with or without 

ADAM17 blocking, to assess if blocking was resulting in recovery of TNFR1/2 at the cell 

surface (Figure 5.6C and D). Following treatment with D1(A12), both TNFR1 and TNFR2 

were recovered on the surface of ΔUL148/UL148D infected cells. Expression of both 

these receptors increased to levels comparable to those found on Merlin infected cells. 

This showed that downregulation of ADAM17 is necessary for maintaining TNFR1 

expression throughout the course of a HCMV infection, and for the increase in TNFR2 

expression. In summary, these data show that TNFR2 upregulation is dependent on 

UL148/UL148D mediated ADAM17 downregulation.



152

Figure 5.6 Effect of blocking ADAM17 function on soluble and surface TNFR2. HF-TERT 
cells were infected with HCMV variants. At 48hpi, the supernatant was replaced with 
fresh medium containing 100nM hIgG or D1(A12). Supernatant was collected at 72hpi. 
Supernatant collected at (A) 48hpi and (B) 72hpi was quantified in the same ELISA. Bars 
shown mean sTNFR2 and SEM of triplicate samples. A two-way ANOVA with a 
Bonferroni post test showed significance at **** p<0.0001, ***p<0.001, *p<0.05. The cells 
from the experiment were analysed for (C) surface TNFR1 and (D) surface TNFR2 by 
flow cytometry. Grey shows isotype staining. ADAM17 signal from cells treated with hIgG 
or D1(A12) is shown in orange and blue respectively.
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5.4 Cellular regulation of ADAM17

The efficiency with which ADAM17 was downregulated by HCMV was quite remarkable 

and it was felt that this warranted further investigation as to how UL148 and UL148D 

achieve this. Proteomics had already suggested that whole cell levels of ADAM17 are 

reduced following HCMV infection (Figure 5.1A). One hypothesis was that HCMV could 

be inducing the degradation of ADAM17 inside the cell. ADAM17 is synthesised as an 

enzymatically inactive, immature form in the endoplasmic reticulum. Removal of the 

N-terminal pro-domain by furin protease is required to produce enzymatically active 

mature ADAM17 (Schlondorff et al., 2000). I wanted to assess the effect of HCMV 

infection on the mature and immature forms of ADAM17, as this would provide 

information about whether the processing pathway is being targeted by HCMV. 

5.4.1 Analysis of whole cell ADAM17 by western blotting
HF-TERT cells were infected with Merlin, ΔUL148/UL148D or mock infected. At 72hpi 

cells were harvested, samples prepared, and proteins were separated under reduced

denaturing conditions. Following transfer to a PVDF membrane, the membrane was 

probed for ADAM17 and the lysate was tested for actin. The strongest signal was at 

90kDa, which is likely to be the mature form of ADAM17 (Figure 5.7; Grieve et al. (2017)). 

A band of higher molecular weight was seen at 120kDa, which most likely corresponded 

to the immature form of ADAM17. In mock infected cells, there was more mature

ADAM17 present compared to the immature form. When cells were infected with Merlin,

the band corresponding to mature ADAM17 was not present indicating the absence of 

mature ADAM17 in HCMV infected cells. The band corresponding to immature ADAM17 

was more intense compared to uninfected cells. Lysates from ΔUL148/UL148D infected 

cells showed a partial recovery in mature ADAM17, though not to the level observed

from uninfected cells. There was also a reduction in immature ADAM17, comparable to 

levels observed from mock infected cell lysates. This showed that UL148 and UL148 

were influencing the conversion of immature ADAM17 to mature ADAM17.

One possibility was that HCMV was inducing degradation of ADAM17 by cellular 

proteases. Recent work by Grieve et al. (2017), showed that the N-terminus of iRhom2, 

an ADAM17 chaperone, is required for the interaction with ADAM17. Data in the paper 

showed that the N-terminus of iRhom2 is required for binding of iRhom2 to mature 

ADAM17. In the absence of this iRhom2-ADAM17 interaction, mature ADAM17 is 

degraded by lysosomes (Grieve et al., 2017).
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I analysed proteomic data (Fielding et al., 2017) which compared Merlin infected cells 

treated with leupeptin, a protease inhibitor. As with previous proteomic (Figure 5.1) and 

flow cytometry data (Figure 5.2), there was a large reduction in surface ADAM17, though

addition of leupeptin to cultures did not rescue surface ADAM17 (Figure 5.7B). Leupeptin 

did not influence whole cell ADAM17 at any timepoint. There was still an increase at 

24hpi, relative to mock infected cells, with a gradual decrease over the next 48h, with 

levels comparable to uninfected cells at 72hpi (Figure 5.7C).

In summary, this data suggests that HCMV induces a decrease in total ADAM17, though 

the key finding was that the mature form of ADAM17 was absent in HCMV infected cells 

and there was more immature ADAM17. Deleting UL148 and UL148D partially 

recovered the whole cell levels of mature ADAM17, suggesting that these genes alter 

the maturation of ADAM17, rather than affecting total levels of cellular ADAM17.
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Figure 5.7 Effect of HCMV on whole cell ADAM17. HF-TERT cells were mock infected 
or infected with Merlin, or ΔUL148/UL148D. At 72hpi cells were washed and lysed. 
ADAM17 was captured overnight with concanavalin A (ConA) beads and eluted the 
following day. Proteins were separated under reduced denatured conditions by SDS-
PAGE and transferred to a PVDF membrane and probed form ADAM17. Signal was 
visualized by chemiluminescence. Black arrow corresponds to immature ADAM17 (i), 
and the red arrow (m) indicates the mature form. Experiment 1 and 2 were performed 
independently, with 20% of ConA eluted sample being loaded (10μl) and 2% (20μl) of 
lysate being loaded for actin staining. (B, C) Effect of proteasomal inhibition on whole
and surface ADAM17 expression. Data generated from the resource paper (Fielding et 
al., 2017). HF-TERT cells were infected with Merlin. For lysosome inhibitor studies, cells 
were treated with leupeptin 12h prior to harvesting. (A) Plasma membrane or (B) whole 
cell lysates were prepared. The number of peptides quantified are shown in each plot.
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5.4.2 Regulation of iRhom1 and iRhom2 by HCMV
Figure 5.7 provided evidence that UL148 and UL148D may impair the maturation of 

ADAM17. One possibility was that UL14/UL148D could affect levels of the chaperone 

proteins iRhom1/2. Recent work has highlighted the role of iRhom1 and iRhom2 in 

ADAM17 regulation (Adrain et al., 2012, Li et al., 2015b, Grieve et al., 2017). These 

proteins have been identified as essential regulators of ADAM17 maturation, controlling 

ER to Golgi transport. Recently Grieve et al. (2017), showed that iRhom2 remains binds 

to ADAM17 throughout the secretory pathway and stabilises ADAM17 on the cellular 

surface. A possible mechanism by which UL148 and UL148D could affect ADAM17 

maturation by reducing iRhom1/2 within infected cells, thereby preventing maturation of 

ADAM17.

I referred to the proteomic data to assess WCL levels of iRhoms. The results suggested 

a gradual decrease in relative amounts of both iRhom1 and iRhom2 over the course of 

lytic infection (Figure 5.8A). To validate this using western blotting, HF-TERT cells were 

mock infected or infected with Merlin or ΔUL148/UL148D. At 72hpi, cells were lysed, and 

SDS-PAGE was used to separate proteins, followed by transfer to a PVDF membrane. 

The membrane was probed for iRhom1 and iRhom2. The expected Mw of iRhom1 is 

97401Da and 96686Da for iRhom2, based on amino acid sequences. Bands 

corresponding to these proteins are denoted by the red arrow (Figure 5.8B). Unlike the 

proteomic data, Western blotting did not reveal large changes in iRhom1/2 expression 

upon infection with Merlin (lanes 1 and 2). There was no difference in iRhom1/2 

expression between Merlin or ΔUL148/UL148D infected cells. Overall these results show 

that HCMV does not impact on whole cell levels of iRhom1/2 proteins, with Western blots 

suggesting there was no substantial change in iRhom1/2 levels upon HCMV infection.
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Figure 5.8 Regulation of iRhom1 and iRhom2 by HCMV. (A) Whole cell lysate 
proteomics was performed over the course of the lytic infection. The green line shows 
iRhom1 (4 peptides) and the blue line shows iRhom2 (3 peptides). Data was taken from
Weekes et al. (2014). (B) Western blot for iRhom1 and 2. HF-TERT cells were mock 
infected or infected with Merlin or ΔUL148/UL148D. At 72hpi, lysates were prepared and
separated under reducing denatured conditions by SDS-PAGE. Proteins were 
transferred to a PVDF membrane and probed for iRhom1/2. Red arrows indicate bands 
corresponding to iRhom proteins. Actin was used as a loading control.
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5.4.3 Analysis of ADAM17 mRNA during HCMV infection
Having found that the mature form of ADAM17 was reduced in cell lysates in HCMV 

infected cells, it was possible that HCMV infection induced changes in ADAM17 mRNA. 

HF-TERT cells were infected with Merlin or ΔUL148, RNA extracted for transcriptional 

analysis (performed by Dr Peter Tomasec and Professor Andrew Davison). At 72hpi, 

there was a reduction in ADAM17 mRNA by 72hpi in Merlin infected cells, compared to 

mock infected cells (11.49 vs 3.49 RPKM, Table 5.1). This showed that within HCMV, a 

potential reduction in steady state mRNA of ADAM17 could contribute to the overall 

reduction in ADAM17.

Published transcriptome data from Tirosh et al. (2015), (Table 5.2) suggested a smaller 

reduction in ADAM17 mRNA at 72hpi (12.48 vs 9.08 RPKM). The data also suggested 

that by 24hpi, ADAM17 transcription was increased. When cells were treated with IFN 

or UV irradiated Merlin, there was also an increase in ADAM17 mRNA at 5 hours post 

treatment (14.05 and 17.48 RPKM respectively), suggesting that the initial increase ins 

ADAM17 transcription may be an innate immune response. RNAseq data was analysed 

from Merlin infected HF-TERT cells in triplicate (Dr Pete Tomasec and Dr Mike Weekes). 

As with the data in Table 5.2, there was an increase at 24hpi, but at 72hpi, ADAM17 

mRNA was similar to levels in uninfected cells (Figure 5.9). 

In summary, these datasets show that HCMV causes a modest increase in ADAM17 

transcription at 24hpi, which correlated with an increase in whole cell ADAM17 at 24hpi 

(Figure 5.1, Figure 5.7). Regardless, this had no effect on surface ADAM17, which was 

downregulated at 6hpi (Figure 5.4), and by 72hpi, the level of ADAM17 mRNA level was 

comparable to uninfected cells.
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Table 5.1 Copy number of ADAM17 mRNA transcripts in HCMV infected cells.HF-TERT 
cells were mock infected or infected with Merlin. Values show reads per kilobase of 
transcript per million (RPKM) at 72hpi. Unpublished data kindly provided by Professor
Andrew Davison (Centre for Virus Research, Glasgow). 

Mock Merlin ΔUL148

ADAM17 (RPKM) 11.19 3.49 3.51

Table 5.2 Timecourse of ADAM17 mRNA transcripts in HCMV infected cells.HFF cells 
were infected with Merlin or UV treated Merlin and harvested at the indicated timepoints. 
Cells were also treated with IFN and harvested after 5h. Values show reads per kilobase 
of transcript per million (RPKM). Data taken from source paper Tirosh et al. (2015).

Mock Merlin 
(24h)

Merlin 
(72h)

UV Merlin 
(5h)

IFN (5h)

ADAM17
(RPKM)

12.18 20.23 9.08 14.05 17.48

Figure 5.9 RNAseq data for TNF receptor transcripts in HCMV infected.HF-TERT cells 
were infected and harvested at 0,24 and 72hpi. The data shows relative abundance of 
ADAM17 mRNA ± SEM of triplicate infections. Experiment was performed by Dr Mike 
Weekes and Dr Pete Tomasec.
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5.5 Effect of UL148/UL148D on CD8+ T-cell activation

To assess functional effects of UL148/UL148D, a T-cell assay was performed with 

ΔUL148, ΔUL148D and ΔUL148/UL148D. We have recently demonstrated that UL148 

impairs T-cell activation by downregulating CD58, a co-stimulatory molecule which binds 

CD2 on T-cells (Wang et al., 2018). An increase in degranulation and cytokine 

expression with ΔUL148 was expected, but it was possible that the synergistic activity 

between UL148 and UL148D could further affect the ability of T-cells to recognise HCMV 

infected cells. Many co-stimulatory, co-inhibitory and adhesion molecules are also 

ADAM17 substrates (Scheller et al., 2011, Moss and Minond, 2017). When both genes 

are present, it was predicted that a reduction of ADAM17 would allow certain co-

inhibitory molecules to increase on the surface of the HCMV infected cell. These 

molecules may then be cleaved off when ADAM17 is recovered on ΔUL148/UL148D 

infected cells. Whilst proteomic data from ΔUL148 and ΔUL148D was available, other 

than CD58, no other obvious T-cell co-signalling molecules appeared to be affected 

(Figure 4.3). However, it could be that the combined deletion had a larger effect on 

molecules, which was not detectable when assessing the individual mutants.

D9-SFi cells were mock infected or infected with Merlin, ΔUL148, ΔUL148D and 

ΔUL148/UL148D. The cells were used as targets for a T-cell activation assay at 72hpi. 

Using ICS, cytokine production (TNF, IFNγ, IL-2 and MIP-1β) was assessed alongside 

CD107a surface exposure. UL148 acted to suppress TNF, MIP-1β and IFNγ production 

against HCMV infected targets by CD8+ T-cells, as assessed by MFI (Figure 5.10A).

UL148D did not significantly affect cytokine induction by T-cells: there was no significant 

difference in TNF, IFNγ and MIP-1β levels between ΔUL148D and Merlin nor between 

ΔUL148 and ΔUL148/UL148D. IL-2 induction was suppressed by HCMV infection, but 

not impacted by either UL148 or UL148D. 

The proportion of cells activated was analysed and showed that compared to Merlin 

infected cells, ΔUL148 infected cells increased the number of activated T-cells as 

measured by a significant increase in the proportion of cells expressing each marker 

(CD107a, TNF, IFNγ, IL-2 and MIP-1β, Figure 5.10B). Compared to Merlin, deleting 

UL148D alone had no significant effect on T-cell activation other than significantly 

increasing the MIP-1 producing cells, though the difference was small (26.0±0.2 vs 

28.5±0.5% MIP-1β+CD8+, p=0.02). Cells infected with ΔUL148/UL148D induced a 

significant increase in all activation markers compared to Merlin (Figure 5.10B). To 

assess what effect the absence of UL148/UL148D was having compared to UL148, the 

data from these two infections were also compared. ΔUL148/UL148D induced a 
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marginal increase in the proportion of degranulating (CD107a+) and TNF producing cells 

compared to ΔUL148 (17.4±0.5 vs 19.9±0.7% CD107a+CD8+ p=0.02, 16.2±0.6 vs 

18.5±0.6% TNF+CD8+ p=0.01). The proportion of cells producing IFNγ, MIP-1β and IL-2 

was not significantly different between ΔUL148 vs ΔUL148/UL148D.

In summary, UL148D had no appreciable effect on T-cell activation compared with 

UL148, which is established as a T-cell evasin. ΔUL148/UL148D induced higher T-cell 

activation and cytokine degranulation compared to Merlin, though this was comparable 

to ΔUL148. Therefore, the deletion of UL148D did not affect T-cell activation and effect 

function.
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Figure 5.10 T-cell activation assay assessing the effect of deleting UL148 and UL148D 
on activation of D9 VTE T-cell line.At 72hpi, cells were pulsed with 1μg/ml of VTE peptide
and used as targets in a T-cell activation assay. Intracellular staining for IL-2, IFNγ, 
MIP-1β and TNF was performed after the 5-hour incubation period. Data shows (A) MFI 
of each cytokine amongst activated cells and (B) % positive CD8+ T-cells, +SEM of 
quadruplicate values. A one-way ANOVA with Tukey multiple comparison post-hoc tests 
showed significance at **** p<0.0001, ***p<0.001, *p<0.05. 
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5.6 Effect of UL148 and UL148D on TNF mediated cell 

death

As UL148 and UL148D affected the surface levels of TNF receptors, the response of 

HCMV infected cells to their ligand TNF was investigated. Activation of TNFR1/2 initiates 

intracellular pathways including the I-kB kinase (IKK), c-Jun N-terminal kinase (JNK) and 

p38 mitogen activated protein kinase (p38 MAPK) pathways which control 

proinflammatory gene expression via the transcription factors NF-kB and AP-1 

(Varfolomeev and Ashkenazi, 2004). Whilst TNF is a mediator of apoptosis by triggering 

of caspase pathways, NF-kB drives the production of anti-apoptotic proteins such as 

cIAP1, cIAP2 and c-FLIP (Wang et al., 2008). This balance between apoptosis and cell 

survival suggested that TNF receptors may influence HCMV cell viability upon challenge 

with TNF. 

The hypothesis was that the presence of TNF receptors would result in TNF mediated 

cell death, and that TNF signalling through TNFR2 could act to prevent apoptosis (Naude 

et al., 2011). Annexin-V binds to phosphatidylserine, which is normally maintained inside 

live cells through the action of a flippase, but it becomes exposed during cell death due 

to the action of a scramblase (Nagata et al., 2016); Live/Dead EF660 is an amine binding 

dye that is excluded from live cells. Cells positive for both were considered dead. 

HF-TERT cells were mock infected or infected with Merlin, ΔUL148/UL148D and 

ΔUL138. TNF was added at 72hpi, as this is when there is maximum TNFR2 expression

on Merlin infected cells. a multimeric form of TNF (mTNF) was assessed in parallel as 

this was reported by the manufacturer to signal through both TNFR1 and TNFR2, 

compared to sTNF which primarily signals through TNFR1 (Grell et al., 1995, Grell et al., 

1998). Following 48h of TNF treatment (120hpi), cells were stained with annexin-V and 

Live/Dead EF660.

Without TNF treatment, all HCMV infected cells showed the same proportion of dead

cells (black bars, Figure 5.11A). This suggested that during lytic cycle, UL138 and

UL148/UL148D were not influencing intrinsic cell death in the absence of TNF. Low cell 

death (<2%) was observed with mock infected cells, even following TNF treatment. The 

proportion of Merlin infected that were dead following sTNF treatment was significantly 

increased (9.2±0.1 to 18.0±0.5% p<0.0001). Whilst there was a significant increase in 

cell death of ΔUL138 infected cells upon TNF treatment (8.4±0.8 vs 14.3±0.75%, 

p<0.0001), the proportion of dead cells was significantly lower than with Merlin infected 

cells treated with sTNF (14.3±0.75 vs 18.0±0.5% p<0.01). There was minimal increase 
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in cell death of ΔUL148/UL148D infected cells when sTNF was added. Across the 

conditions tested, significantly less cell death was achieved with ΔUL148/UL148D, 

compared to ΔUL138 and Merlin. In an attempt to increase TNFR2 signalling, 80M2, a 

TNFR2 receptor trimerizing antibody was used in conjunction with mTNF. The 

combination of TNF and 80M2 has been shown to activate TNFR2 signalling (Krippner-

Heidenreich et al., 2002). This combination had no effect on the cell death compared to

sTNF or mTNF treated cells (purple bars).

To confirm that the cells were dying due to TNF induced apoptosis, a second readout 

was used that included a dye that fluoresced upon cleavage by activated caspase-3. As 

with the previous experiment, a very similar pattern was observed, and caspase 

activation was significantly higher in Merlin infected cells treated with sTNF compared to 

untreated control cells (8.2±0.5 vs 19.6±0.9% p<0.0001). Whilst there was a significant 

increase in apoptosing cells infected with ΔUL138 following sTNF treatment (7.4±0.5 vs 

14.3±1.6% p<0.01), the proportion was significantly lower than with Merlin infected cells 

(19.6±0.9 vs 14.3±1.6, p<0.05). This showed that UL138 increased the susceptibility to 

TNF mediated apoptosis. There was no significant change in apoptosing cell when 

ΔUL148/UL148D were treated with sTNF. Use of mTNF or mTNF+80M2 did not alter 

the proportion of apoptosing cells.

In summary, upon HCMV infection, cells became sensitive to TNF induced apoptosis. 

Attempts to rescue cells from apoptosis by using mTNF and 80M2, which should 

increase TNFR2 signalling, were not successful. Apoptosis was the highest amongst 

Merlin infected cells, then ΔUL138 infected cells, with ΔUL148/UL148D almost 

unaffected by TNF. These cells were shown to have high, intermediate and low levels of 

TNFR1 respectively (Figure 4.6). This suggests that the protection against TNF induced 

cell death primarily relates to TNFR1 expression, with minimal impact of altered TNFR2 

expression in HCMV infected cells (Figure 4.6).
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Figure 5.11Effect of HCMV infection on TNF induced cell death. HF-TERT cells were 
mock infected or infected with HCMV mutants. At 72hpi, the media was removed, and 
cells were treated with 30ng/ml of sTNF, mTNF or mTNF+80M2. At 120hpi cells were 
detached and stained for (A) annexin-V and live/dead EF660 or (B) activated caspase 3 
and Live/dead EF660 before analysis by flow cytometry. Bars show mean +SEM of 
triplicate infections. A two-way ANOVA with Tukey multiple comparison post-hoc tests 
showed significance at **** p<0.0001, ***p<0.001, **p<0.01, *p<0.05.
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5.7 Effect of UL148 and UL148 on TNF mediated cytokine 

production

The previous section showed that TNF receptor expression correlated with increased 

TNF mediated apoptosis (section 5.6). This result did not fit the hypothesis that 

increased TNFR2 signalling could prevent TNF induced apoptosis. This suggested that 

the receptor may induce another function. TNF induced cytokine production by HCMV 

infected cells was assessed. It was hypothesised that knocking out UL148/UL148D

would reduce TNF mediated signalling due to reduced TNFR1/2, as a result of receptor 

shedding by ADAM17 and therefore result in lower cytokine induction. The list of 

cytokines downstream of TNF receptor signalling selected for investigation included 

CXCL10, CCL2, IL-6, IL-8, GM-CSF, CXCL1 and RANTES (Pang et al., 1994). 

5.7.1 Effect of HCMV infection on cytokine production
To assess cytokines produced from fibroblasts infected with HCMV, HF-TERTS cells 

were mock infected or infected with Merlin or ΔUL148/UL148D. Cells were left for 72hpi 

and a cytometric bead array was used to assess cytokine levels (experiment 1, Figure 

5.12A). From uninfected cells, RANTES levels were low and were close to the lowest 

calibration standard (2.5pg/ml) whereas IL-8 and CCL2 were above the limit of 

calibration (>10000pg/ml). Mock levels of CXCL10, IL-6, GM-CSF, CXCL1 were within 

2-fold of that produced by Merlin infected cells, indicating that HCMV infection was not 

markedly affecting the production of these cytokines. In contrast, the level of IL-8 

recorded was 2633±427pg/ml. The level of CCL2 from Merlin infected cells was 

50±2pg/ml. Given that IL-8 and CCL2 were too high to be quantified from uninfected 

fibroblasts, this suggests that HCMV lytic function impairs IL-8 and CCL2 secretion in 

fibroblasts. Following the deletion of UL148/UL148D, the levels of CXCL10, IL-6, 

GM-CSF, CXCL1 and IL-8 in the supernatant were within 2-fold of the levels produced 

by Merlin, indicating that these genes were not having a large effect on the general 

production of these cytokines. CCL2 production increased from 51±2 to 278±24pg/ml as 

a result of deleting UL148/UL148D, though this recovery was not large when considering 

that the mock level was >10000pg/ml.
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Figure 5.12 Effect of HCMV infection on cytokine production. (A) HF-TERTS were 
infected and supernatant was collected 72hpi (experiment 1). (B) Cytokine production 
from cells infected with Merlin, ΔUL148/UL148D or mock infected cells (experiment 1, 
duplicate infections) NQ- Not quantified. This denotes values which were above or below 
the limit of quantification. All other values were in the linear range.
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5.7.2 Impact of HCMV on TNF induced cytokine production
A further experiment was performed to assess the effect of sTNF, mTNF and the 

additional effect of blocking ADAM17. Cells were infected with Merlin or with

ΔUL148/UL148D and at 48hpi the supernatant was removed and was replaced with 

DMEM10 containing 100nM D1(A12) or hIgG. Blocking of ADAM17 was performed for 

6h to recover surface TNFR1/2; studies had shown complete inhibition of shedding of 

ADAM17 ligands after only one hour of treatment (Tape et al., 2011). At 54hpi sTNF, 

mTNF (both at 30ng/ml) or an equivalent volume of media was added (Figure 5.12A). At 

72hpi, the supernatant was kept and frozen. This provided six conditions; hIgG + no TNF

(referred to as control), +sTNF, +mTNF, D1(A12), D1(A12)+sTNF, and D1(A12)+mTNF. 

All conditions for experiment 2 were performed in triplicate. All cytokine levels produced 

from HCMV infected cells were within the linear limit of detection.

The levels of cytokines from TNF treated cells is presented as a fold change over non-

treated cells. Upon addition of mTNF IL-8 was increased 2.6-fold, but none of the other 

cytokines were increase by more than 2-fold. In contrast, treatment of ΔUL148/UL148D

resulted induced an 18-fold increase in IL-8 production. There was also a significant 5.5-

fold increase in CCL2 production. There was a 5-fold increase in GM-CSF, but due to 

the variability across all GM-CSF data meant this was not statistically significant 

(p=0.051). IL-6 was increased 2.5-fold, though this was non-significant.

This data showed that fibroblasts infected with HCMV Merlin are not able to respond to 

TNF, when using cytokine release as a readout, but cells infected with ΔUL148/UL148D 

were able to increase production of IL-8, CCL2 and GM-CSF. This result was not 

expected as the expression of TNFR1/2 is lower on ΔUL148/UL148D compared to Merlin 

infected cells. Therefore, this this data suggests that UL148 and UL148D are involved in 

modulating the response to TNF or influencing IL-8 release independent of their effect 

on surface TNFR1/2 expression. 
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Figure 5.13 Effect of TNF on production of cytokines within HCMV infected cells.(A) 
HF-TERT cells were infected with Merlin or ΔUL148/UL148D. At 48hpi the media was 
replaced with fresh media. At 54hpi sTNF, mTNF or media were added. At 72hpi, the 
supernatant was collected, and cytokines levels were quantified using a cytometric bead 
array. (B) Cytokine levels between 48-72h without TNF treatment were set as control 
levels. (C) Effect of mTNF on cytokine production by HCMV infected cells. Data is 
displayed as fold change compared to control supernatant shown in (B). Bars show 
mean +SEM of triplicates. Data from the Merlin and ΔUL148/UL148D infected cells from 
the whole experiment was pooled. A 2-way ANOVA with Tukey multiple comparison 
post-hoc tests showed significance at **** p<0.0001, **p<0.01. 
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5.7.3 Effect of blocking ADAM17 on TNF responsiveness of 

HCMV 
To assess if recovering TNF receptors on the surface of ΔUL148/UL148D could have an 

effect on TNF induced cytokine production, ADAM17 was blocked at 48hpi, which would 

recover TNFR1/2 on the cell surface. At 54hpi, sTNF or mTNF was added to cultures 

(Figure 5.14B). Blocking of ADAM17 was performed for 6h to recover surface TNFR1/2; 

studies had shown complete inhibition of shedding of ADAM17 ligands after only one 

hour of treatment (Tape et al., 2011). It was predicted that the recovery in TNF receptors 

due to ADAM17 blocking (Figure 5.6) would increase TNF induced cytokine production 

on ΔUL148/UL148D due to increased TNF signalling. Cytokine levels were compared to 

the supernatant was were not treated with D1(A12) or TNF (Figure 5.13B) and 

represented as fold changes.

Blocking of ADAM17 by D1(A12) had no effect on cytokine production from Merlin or 

ΔUL148/UL148D infected cells (Figure 5.14B). This result showed that any differences 

following the addition of TNF following blocking of ADAM17 would be due to a difference 

in TNF mediated signalling, and not due to an off-target effect of D1(A12) or blocking 

ADAM17 function.

A statistical comparison was made between cells treated with mTNF with and without 

D1(A12) pre-treatment (Figure 5.14C). This shows that upon adding mTNF there were

no significant increases in cytokine production from D1(A12) pre-treated Merlin infected 

cells compare to cells treated with mTNF alone. Apart from IL-8 (4-fold increase), none 

of the other cytokines measured were increased more than 2-fold compared to control 

cytokine levels. D1(A12) pre-treatment had a significant effect on cytokine production 

from ΔUL148/UL148D infected cells treated with mTNF. There were significant 

increases in CXCL10, CCL2, CXCL1, IL-6, IL-8 and GM-CSF compared to cells treated 

with mTNF. Most striking was the 45-fold increase in IL-8 by D1(A12)+mTNF treated 

cells, which was increase 18-fold by mTNF alone. There was a 10 and 12-fold increase 

in GM-CSF and CCL2 production respectively. IL-6, CXCL1, GM-CSF were also 

significantly increased but less than 5-fold. RANTES levels were unaffected by D1(A12) 

and mTNF treatment. This showed that D1(A12) pre-treatment did not affect cytokine 

production by Merlin infected cells but increased multiple cytokines produced in 

response to mTNF by ΔUL148/UL148D infected cells. 

As mTNF was reported by the manufacturer to have a greater signalling capacity through 

TNFR2 and act through TNFR1, it was not possible to assign the cytokine output shown 

by Figure 5.14 to either receptor. However, sTNF predominantly binds to and activates 
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TNFR1. Therefore, any difference in cytokine production between sTNF and mTNF 

could theoretically be attributed to the greater activity of mTNF on TNFR2. To assess 

this, a statistical comparison of cytokine release was made between D1(A12)+sTNF and 

D1(A12)+mTNF treated cells. The TNF response of Merlin infected cells was 

comparable between sTNF and mTNF treated cells (Figure 5.14D), with no significant 

differences in cytokine production. In contrast the production of CXCL10, CCL2, CXCL1, 

IL-6, IL-8 and GM-CSF was significantly higher from D1(A12)+mTNF treated cells 

compared to D1(A12)+sTNF treated cells. This suggests functional signalling of TNFR2, 

but only in the context of a ΔUL148/UL148D infected cell.

In summary the data in section 5.7 shows HCMV alters the profile of cytokine production 

by fibroblasts. Baseline CCL2 production by fibroblasts was impaired upon HCMV 

infection. Treatment of Merlin infected cells did not significantly increase cytokine 

production, however cells infected with ΔUL148/UL148D significantly increased IL-8 

production upon TNF challenge. Recovery of TNFR1/2, by blocking ADAM17 function 

on ΔUL148/UL148D infected cells resulted in a further increase in CXCL10, IL-6, CCL, 

GM-CSF, IL-8 and GM-CSF production, with a 45-fold increase in IL-8, compared to 

control supernatant. This data shows functional response of TNF receptors in HCMV 

infected cells in response to TNF treatment, but only when UL148 and UL148D were 

deleted.



172



173

Figure 5.14 Assessing the effect of blocking ADAM17 on TNF induced cytokine 
production.(A)HF-TERT cells were infected with Merlin or ΔUL148/UL148D. At 48hpi the 
media was replaced with fresh media containing 100ng/ml of D1(A12). At 54hpi sTNF 
and mTNF (30ng/ml) were added. At 72hpi, the supernatant was collected, and 
cytokines levels were quantified using a cytometric bead array. Data is displayed as fold 
change compared to control supernatant (levels from Figure 5.13B). (B) Effect of 
D1(A12) on cytokine release (C) Effect of D1(A12) pre-treatment on mTNF induced 
cytokine production (D) Comparison between sTNF and mTNF, on cells treated with 
D1(A12). Bars show mean and SEM of triplicates. Data from the Merlin and 
ΔUL148/UL148D infected cells from the whole experiment was pooled. A 2-way ANOVA
with Tukey multiple comparison post test showed significance at **** p<0.0001, 
***p<0.001, **p<0.01, *p<0.05.
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5.8 Summary

The aim of this chapter was to understand how UL148/UL148D act to upregulate TNFR2 

over the course of a HCMV infection and the functional significance of increased TNF 

receptor expression on infected cells. Proteomics predicted that ADAM17, the sheddase 

of TNFR2, is downregulated during HCMV infection and this is in part by UL148 and 

UL148D. HCMV efficiently downregulated surface ADAM17, which was rescued by 

deleting UL148 and UL148D. This was a synergistic effect as whilst deleting each gene 

in isolation had a small effect, deleting both led to a large recovery in surface ADAM17. 

Increased ADAM17 was accompanied by a large increase in soluble TNFR2 detected in 

the supernatant from ΔUL148/UL148D compared to Merlin infected cells. Blocking 

ADAM17 on ΔUL148/UL148D infected cells, led to a recovery of surface TNFR2 

expression and a reduction of sTNFR2 production, showing that surface TNFR2 

expression was dependent on ADAM17 downregulation.

Western blots showed that the mature form of ADAM17 was not detectable in cell lysates 

from Merlin infected cells, and the immature form was increased compared to mock 

infected cells. Mature ADAM17 was partially recovered in ΔUL148/UL148D infected cell 

lysates indicating that UL148 and UL148D likely affect the maturation of ADAM17. 

Western blots for the ADAM17 chaperone proteins iRhom1 and iRhom2 showed no 

difference between Mock, Merlin and ΔUL148/UL148D cell lysates. Proteomic analysis 

of HCMV infected cells showed that degradation by proteases was unlikely to be 

contributing to the reduction in ADAM17. Thus, the precise mechanism by which UL148 

and UL148D affect ADAM17 within the cell remains unclear, though a preliminary 

hypothesis would be that these genes interfere with ADAM17 maturation.

When assessing the functional significance of TNFR on cells, it was shown that Merlin 

infected cells became susceptible to TNF induced apoptosis though attempts to rescue 

cell death by increasing TNFR2 signalling were unsuccessful. Deletion of 

UL148/UL148D prevented TNF induced cell death, which correlated with reduced 

surface TNFR1 expression. When cytokine production was assessed, HCMV was found 

to have a suppressive effect on the ability of fibroblasts to produce cytokines following 

TNF treatment. Even though fewer TNF receptors were present on the surface of 

ΔUL148/UL148D infected cells, TNF induced significant increases in cytokine 

production, particularly IL-8. This was further increased when ADAM17 was blocked. 

Collectively this data showed that HCMV genes UL148 and UL148D affects TNF 

signalling, impacting on cell death and cytokine release by cells.



175

6 Discussion
This thesis describes a number of novel findings. In a screen of HCMV genes non-

essential for replication, UL19 was identified as a novel T-cell inhibitor with further 

demonstration of the RL10-UL1 region as encoding novel T-cell inhibitors. The last two 

chapters demonstrated that UL148 and UL148D were shown to increase TNFR2 on the 

surface of HCMV infected cells. This was achieved through impairment of ADAM17 

maturation and downregulated surface expression, thereby allowing TNFR2 to 

accumulate, and TNFR1 to be maintained, at the cell surface. This impacted on cell 

death, and cytokine production, induced by TNF. 

6.1 Screening for genes regulating T-cell activation

6.1.1 Growth of HCMV specific T-cells
In section 3.1, the growth and degranulation potential of HCMV specific T-cell lines was 

studied. Of the three T-cells lines used in this thesis (D7-VLE, D7-NLV and D9-VTE), two 

were from an HLA-A2 positive donor (D7) and the third was from a HLA-A1 individual 

(D9). As the majority of published HCMV research has been performed in Europe and 

America this has led to an abundance of information concerning HLA-A2 restricted T-cell 

responses, as this is very common in Caucasian individuals. This may does not reflect 

the immune response to HCMV across the world given the vast heterogeneity in HLA 

haplotype among different ethnic groups. Whilst HLA-A2 is present in half of all Welsh 

people, in Vietnam HLA-A11 is the most common HLA-A gene (Gonzalez-Galarza et al., 

2015). The use of multiple T-cell lines with different HLA specificities would provide more 

information about the response to HCMV around the world and could provide a causal 

link as to why certain populations or patients deal with HCMV infection better than others. 

Certain individuals have been shown to be resistant to HCMV-encoded immune 

regulating genes. For example, US9 was shown to specifically target MICA*008, which 

escapes UL142 targeting (Seidel et al., 2015). Additionally, the heavy chain of HLA*B07 

was found to escape US2 mediated degradation, so presentation of antigenic peptides 

should be theoretically increased (Llano et al., 2003, Barel et al., 2003).

Future work would utilise T-cell line lines from donors with different HLA haplotypes and 

from a range of ethnicities, to ensure broader coverage of polymorphic immune genes 

such as HLA-I molecules, but also KIR (killer-cell immunoglobulin-like receptors) which 

are also on the surface of CD8+ T-cells and are subject to allelic variation (Wills et al., 
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2013, Sylwester et al., 2005). Experiments could also be performed ex-vivo, allowing for 

assessment of T-cell responses in a more physiological setting. 

6.1.2 Role of HCMV UL16 and UL18 in T-cell evasion
In experiments performed with and without exogenous peptide, fibroblasts infected with 

ΔUL16/UL18 induced increased degranulation of CD8+ T-cells. Since its discovery, the 

role of NKG2D in CD8+ T-cell activation is well established, with blocking of NKG2D able 

to reduce lysis of target cells (Bauer et al., 1999, Verneris et al., 2004). On T-cells, the 

receptor acts in a co-stimulatory manner and was unable to activate the cell with a cross 

linking antibody, in the absence of T-cell receptor signalling (Jamieson et al., 2002). In 

this thesis, one T-cell line (D9) was activated by ΔUL16 with peptide suggesting that 

UL16 may be involved in T-cell evasion.  Whilst only one T-cell assay was performed the 

presence of NKG2D on the T-cells and the increased activation upon deletion of UL16 

would imply that UL16 can reduce the activation of NKG2D positive T-cells as it does 

with NKG2D+ NK cells, although another mechanism has not been ruled out. NKG2D 

blocking experiments with antagonising antibodies would validate function directly.

Whilst D9-VTE was negative for LIR1, a conclusion cannot be made about the effect of 

UL18 on T-cells from this one experiment. Using a range of tetramers, LIR1 expression 

on CD8+ T-cells was shown to be higher in HCMV seropositive individuals (Antrobus et 

al., 2005). Ex vivo assays from HCMV positive donors showed that antagonising LIR1 

on HCMV specific T-cells increased proliferation, which is in line with the role of LIR1 as 

an inhibitory receptor (Gustafson et al., 2017). However, blocking LIR1 did not cause an 

increase in cytokine production, suggesting that the role of UL18 could be restricted to 

limiting the proliferation of cells responding to HCMV infection. A soluble form of UL18 

decreased IFNγ production by LIR1+ T-cells (Wagner et al., 2007). This contrasted with 

data which showed that HCMVΔUL18 virus resulted in impaired IFN production 

(Antrobus et al., 2005). Thus, as with NK cells, UL18 may have activating and inhibitory 

functions on different T-cell subsets. Complications arise when considering the potential 

role of UL18 in T-cell evasion. In HCMV isolates, the amino acid sequence of UL18 was 

found to vary by up to 20 amino acids (Valés-Gómez et al., 2005). Unlike classical HLA 

molecules, where allelic polymorphism is observed within the peptide binding groove, 

variability in UL18 was mapped to areas outside this region (Yang and Bjorkman, 2008). 

Thus, a lack of interactions between Merlin UL18 and a donor  T/NK cell may not replicate 

what occurs in vivo as the strength of UL18-LIR1 interaction may be different due to 

sequence variation of UL18 within clinical strains. Furthermore, there is diversity in the 

LIR1 gene itself which can affect the strength of UL18 binding (Kuroki et al., 2005). This 

was shown to be clinically relevant when Yu and colleagues (Yu et al., 2018)
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demonstrated that different LIR1 genotypes can control HCMV disease in renal 

transplant patients and alter NK cell killing. Both UL18 and LIR-1 variation could therefore 

affect the response of LIR1 expressing T-cells to HCMV infected cells in vivo.

The role of co-stimulatory molecules in T-cell evasion was highlighted in recent work 

from our group which showed UL148 sequestered CD58 (LFA-3) inside the cell (Wang 

et al., 2018). CD58 binds to CD2, which is found on all T and NK cells. Functionally, 

HCMV infected cells lacking UL148, and therefore expressing more CD58, induced 

greater degranulation of NK and CD8+ T-cells. This was blocked upon antagonism of 

CD58. Interestingly, blocking of CD58 did not influence degranulation against uninfected 

target cells. This suggests that co-stimulatory pathways may become of greater 

relevance when general activation signals are reduced, as is the case following HCMV 

infection (Wang et al., 2018). In turn, HCMV has developed multiple strategies to target 

these mechanisms of activation. The ability of the immune system to exploit non-HLA-I 

mediated activation of CD8+ T-cells was demonstrated with CMV vaccines, which have 

been reported to drive unconventional HLA-II and HLA-E restricted CD8+ T-cell 

responses and produce SIV clearance in rhesus macaques (Hansen et al., 2013, Hansen 

et al., 2016).

Our laboratory has also shown that the US12 family target other co-signalling immune 

ligands for degradation, including those involved with formation of the immune synapse 

and activation of T-cells such as ALCAM, CXADR, B7-H2 (ICOSL) and B7-H3 (Fielding 

et al., 2014, Fielding et al., 2017). Intriguingly, B7-H2 is co-stimulatory whist B7-H3 is co-

inhibitory. It is possible that the targeting of different immune ligands could have evolved 

as counter mechanisms against different immune subsets, or as a way of driving other 

responses. An example is the UL40 mediated upregulation of HLA-E (Tomasec et al., 

2000). The second transcriptional start sites of UL40 was shown to be responsible for 

the upregulation of UL18 (Prod'homme et al., 2012). Additionally, UL18 can impair LIR1+ 

NK cells, but activates LIR1- NK cells (Prod'homme et al., 2007). It is possible that there 

are additional genes which drive immunosuppressive T-cell subsets, as with UL11 which 

was shown to drive immunosuppressive IL-10 production by CD4+ T-cells (Zischke et 

al., 2017). This has been observed with other herpes viruses such as with HHV-6 which 

was shown to induce CD4 and CD8 T-reg expansions, which could impair the overall T-

cell response due to production of immunosuppressive cytokines (Wang et al., 2014). 

This has also been demonstrated between NK and T-cells in HCMV. HLA-I 

downregulation largely affects HLA-A and HLA-B, though HLA-C is relatively resistant. 

As a result, HLA-A/B restricted T-cell clones were shown to be less effective than HLA-C 

specific restricted clones which recognized and killed virally infected cells (Ameres et al., 
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2013). This allowed HLA-C expressing cells to escape killing from NK cells expressing 

KIR2DL3, an inhibitory receptor which binds HLA-C. These findings suggest that the 

ability of HCMV to regulate immune ligands may reflect the need of the virus to impair 

multiple immune activation pathways used by anti-viral T and NK cells, resulting in a 

compromise that impairs the overall immune response to HCMV. 

6.1.3 Identification of HCMV UL19 as a T-cell evasion gene
UL19 was shown to be a potent T-cell evasin across a range of peptide concentrations.

Data from our lab showed that UL19 can also impair NK cell activation (personal 

communication; Rebecca Aicheler). It is possible that the same mechanism of inhibition 

affects both T and NK cells, although distinct mechanisms for immune evasion cannot 

be discounted at this stage. Proteomic analysis of HCMVΔUL19 infected cells showed 

that UL19 did not alter the expression of cell surface proteins significantly compared to 

the parental strain (unpublished data; Dr Pete Tomasec, Dr Mike Weekes). However, 

PMP only detects glycoproteins, therefore an effect on a cell surface protein cannot be 

ruled out. UL19 may act by binding to and preventing the function of another protein, 

rather than causing a change in the whole cell level of the target protein. Currently, there 

is no published information on UL19 and proteomics was not able to determine if it is on 

the cell surface (Weekes et al., 2014). A BLAST search revealed no obvious homologues 

with any human proteins, though UL19 orthologues are found in chimp and macaque 

CMVs. This suggests that UL19 may target a conserved activation pathway.

UL19 had no effect on surface HLA-I downregulation though it could be possible that it 

augments the ability of HLA to bind to the TCR. An important observation was that UL19 

was able to induce an inhibitory effect when the strength of the T-cell receptor signal was 

varied. Whilst US2-11 genes downregulated HLA-I, this effect is not complete, and 

residual HLA-I molecules are present on HCMV infected cells. It is possible that UL19 

could bind to HLA-I molecules that have escaped degradation and impair the ability of 

the TCR on CD8+ T-cells and activating KIRs or LIRs on NK cells to bind to HLA-I. This 

would be analogous to the murine CMV protein m4/gp34, which forms a complex with 

MHC-I molecules in the Golgi, which is then exported to the cell surface (Kavanagh et 

al., 2001). This is seen with EBV gp42, which impairs the reaction between HLA-II and 

TCR, which impaired the activation of CD4+ T-cells (Ressing et al., 2003). This principle 

of impairing function rather than the presentation of a molecule could also apply to co-

signalling molecule too. Imaging of UL19, whether by ectopic expression (Seirafian, 

2012), or in tagged HCMV constructs (Yang, 2011) were consistent in their observation 

that UL19 is diffusely localised within the cytosol. Therefore, UL19 could bind to a protein 

to the cytosolic domain of HLA-I or a costimulatory molecule that is being trafficked 
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between the Golgi and the plasma membrane. In this regard, it is interesting to note that 

UL19 is similar to UL135, which is largely expressed in the cytosol (Stanton et al., 2014). 

Whilst UL135 was found to alter the actin cytoskeleton and impair synapse formation 

between infected cells and T/NK cells, other HCMV proteins were not ruled out and it is 

possible that UL19 could affect structural proteins involved with synapse formation.

6.1.4 Role of RL11 family in T-cell activation
The RL11 family is an example of a genomic accordion, which is proposed as a series 

of related genes that have arisen due to gene duplication and mutation in order to deal 

with a constantly evolving host defence system (Elde et al., 2012). As with the US12 

family, this would suggest that this family includes multiple immune modulatory functions.

Degranulation by CD8+ T-cells against HCMVΔUL2-11 infected cells was not increased 

compared to the parent HCMV in chapter 3. Immune evasion genes have been reported 

in the UL2-UL11 region of the RL11 family. UL10 is a secreted protein and binds to 

immune cells, reducing inflammatory cytokine production from CD4+ T-cells (Bruno et 

al., 2016). UL11 binds to and activates CD45 on IL-10 producing CD4+ cells, which 

increased the production of immunosuppressive IL-10, and therefore reduced IFNy 

production (Zischke et al., 2017). UL7, and more recently UL8 were found to be soluble 

glycoproteins and impaired cytokine production by myeloid cells (Engel et al., 2011, 

Perez-Carmona et al., 2018). Our lab also showed that UL4, another soluble 

glycoprotein, has NK inhibitory effects (Seirafian, 2012). This growing body of work on 

the RL11 family of proteins indicates that the T-cell modulatory activity of genes in the 

UL2-UL11 region may be dependent on the proteins being present in the supernatant, 

which can impair immune cell recognition prior to immune synapse formation. In the 

assays presented in chapter 3, HCMV infected cells were washed multiple times in fresh 

media prior to co-culture with effector cells. Therefore, determining the effect of UL2-11 

genes from my data could be considered a moot point as soluble UL4, UL7, UL8 and 

UL10 were removed from the experimental setup. In the above cited studies soluble 

forms of UL11, UL10 and UL8 were all found to bind to CD8+ T-cells. Our assays would 

need to be modified to assess how these genes affect CD8+ T-cells. 

In the absence of peptide, deleting the RL10-UL1 region reduced degranulation by 

HCMV specific CD8+ T-cells, occurring more frequently than in assays when HCMV 

infected cells were pulsed with peptide, which gave quite variable results. This suggests 

that the activation signal provided by exogenous peptide concealed a subtler effect that 

may not be dependent on pHLA-TCR. It is possible that RL10-UL1 genes activate 

inhibitory KIR or inhibit activating KIRs. Whilst the role of KIRs was not investigated in 
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this work, flow cytometry showed that the D7-VLE T-cell line is positive for inhibitory 

KIR2DL3, 3DL1 and 3DL2 (personal communication Dr Simon Kollnberger). It is possible 

that in vivo, in the absence of strong pHLA-TCR signal, co-stimulatory molecules and NK 

receptors on CD8+ T-cells become more important for activation by providing additional 

avidity for their HCMV infected targets. 

Using RL11 and UL1 expressing vectors, these genes were flagged as possible immune 

evasins as they reduced T-cell degranulation. RL11 was shown to be toxic and therefore 

its ability to suppress T-cell activation when expressed ectopically could be questioned. 

In assays performed with peptide, the deletion of RL11 had limited effect on T-cell 

activation. Even when significant increases in degranulation was observed with ΔRL11

infected cells, these were modest compared to those observed with ∆UL19 and ∆UL148 

(Wang et al., 2018). RL11 has been shown to bind to FcYIII on NK cells and inhibit ADCC 

(Corrales-Aguilar et al., 2014). It is possible that if RL11 is involved in impairing T-cell 

activation, then it is binding to an immune receptor on the surface of T-cells. High levels 

of UL1 can only be expressed when it is codon optimised (personal communication, Dr 

Ceri Fielding), therefore the increased degranulation that was measured from RAd-UL1 

infected cells was unlikely to be due to toxicity from transgene expression, and more 

likely due to an effect of UL1 itself. UL1 has significant homology with members of the 

human carcinoembryonic antigen (CEA) family, which primarily mediate cell adhesion 

and act as receptors for bacteria and viruses (Kuespert et al., 2006). UL1 could act as a 

decoy receptor for effector cells and prevent cell adhesion. It has been shown that 

blocking of homotypic CEACAM1/CEACAM1 interactions result in increased CD8+ T-

cell activation, suggesting an inhibitory receptor function. If UL1 can bind to the 

CEACAM1, this could potentiate the inhibition of CEACAM1 on T-cells. UL1 is thought 

to have arisen out of RL11-RL13 gene duplication but is also mutated in up to 10% of 

clinical strains (Sijmons et al., 2015). It is possible that the variability in the RL11 gene 

family members, such as UL1, reflects the interplay between host and virus and the 

selection pressures exerted on these genes to mutate. 

6.1.5 Future directions
The main limitation of this work was the inability to find mechanism by which UL19 or 

RL10-UL1 genes may function, therefore this would be focussed to uncover how these 

genes impair CD8+T-cell activation. To assess how UL19 functions mechanistically, 

SILAC-IP could be performed with a tagged UL19 variant to identify the proteins to which 

UL19 binds. Detailed phenotyping of the T and NK cell lines sensitive to UL19 mediated 

inhibition could provide clues as to how UL19 functions as an immune evasin. To assess 

the immune evasion capacity of HCMV genes within the RL11 family, functional readouts 
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should also be expanded to include inflammatory cytokine production and T-cell 

proliferation. A range of proteomic approaches could be used including SILAC-IP and 

mass spectrometry to identify binding partners for these proteins, although this approach 

may be limited if they are acting as ligands for inhibitory receptors on effector cells. 

Ectopically expressing HCMV genes and assessing binding using a range of reporter 

lines would inform if members of the RL11 family can bind KIRs or other 

inhibitory/activating receptors. Previous studies have used Fc fusion proteins to elucidate 

the binding capacity and mechanism of other RL11 family proteins, therefore this would 

be an attractive approach for studying the whole family of RL11 family proteins as thus 

could allow for isolation of ligands on CD8+ T-cells. Demonstration of an interaction could 

be shown using the yeast-2 hybrid assay which was utilised for identifying UL135 binding 

proteins (Stanton et al., 2014).

6.2 Function and Mechanism of TNFR2 upregulation

6.2.1 HCMV UL148 and UL148D upregulation of TNFR2
Chapter 4 showed that TNFR2 upregulation on HCMV infected cells was due to UL148 

and UL148D mediated downregulation of ADAM17. The impairment of ectodomain 

shedding allowed TNFR2 to accumulate on the surface of infected cells. Genes UL148 

and UL148D were also necessary for surface expression of TNFR1 and deletion of both 

genes caused a reduction in TNFR1 expression. TNFR2 joins the growing list of 

receptors regulated by genes of the UL/b’ region. Whilst UL138 co-precipitates with 

TNFR1 (Le et al., 2011), UL138 deletion did not affect TNFR2 surface. Although my 

results are consistent with UL138 increasing TNFR1 expression during lytic infection, 

UL148 and UL148D are necessary for UL138 to function; otherwise TNFR1/2 would be 

cleaved by ADAM17 and released from the surface.

The upregulation in TNFR2 protein occurred at the cell surface and whole cell level. This 

was preceded by an increase in TNFR2 mRNA. The whole cell increase was 

independent of UL148/UL148D, and could be a host response to HCMV infection, or 

mediated by other HCMV genes. Whilst this was not the focus of the project it is 

interesting to note that TNFR1 was not transcriptionally upregulated upon HCMV 

infection. Cells treated with irradiated virus did not upregulate TNFR2 or TNFR1 showing 

that virus binding, virion proteins or innate interferon signalling do not affect TNFR2. This 

is in keeping with published data (Tirosh et al., 2015). Given that TNFR2 was upregulated 

as early as 24hpi, this would suggest that the initial transcriptional increase may be 

regulated by an early HCMV gene. It is possible that the whole cell increase in TNFR2 
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protein could be induced by IE1/IE2, which were shown to induce upregulation of 

immune ligands such as ULBPs and MICA (Fielding et al., 2014). 

Western blotting showed that whole cell TNFR2 was increased independently of UL148 

and UL148D, thus these genes regulate TNFR2 at the cell surface only. When knockout 

viruses were assessed, comparable effects on surface TNFR2 were observed between 

UL148/UL148D using flow cytometry. Interestingly, when ADAM17 blocking experiments 

were performed, soluble TNFR2 was not completely removed from the supernatant. A 

spliced variant of TNFR2 that encodes a soluble form of TNFR2 has been reported which 

could explain this observation (Lainez et al., 2004).  

6.2.2 HCMV downregulates ADAM17
This work reports the first function for UL148D and a novel function for UL148. These 

two proteins act synergistically to downregulate ADAM17 over the course of a lytic 

infection. It was shown that infection with Merlin prevented the formation of the mature 

form of ADAM17. An increase in pro-ADAM17 was detected, indicating that HCMV may 

interfere with the maturation of the enzyme. In macrophages, maturation of ADAM17 is 

regulated by iRhom2, which binds ADAM17 and promotes its exit from the ER (Adrain et 

al., 2012). Western blotting showed no discernible change in the expression of iRhom1/2 

proteins upon HCMV infection. It is possible that UL148/UL148D could influence the 

activity of these molecules without influencing their overall levels within the cell. 

Regulation of ADAM17 was also shown to be influenced by PACS-2, which sustains 

ADAM17 expression by diverting it away from degradative pathways (Dombernowsky et 

al., 2015). This is a less likely function for UL148/UL148D as Western blotting and 

multiple proteomic datasets showed that ADAM17 was not being degraded.

Even in the absence of UL148 and UL148D (ΔUL148/UL148D), ADAM17 was still 

partially downregulated and enzymatically active. This was not due to the virion itself as 

irradiated HCMV did not affect surface ADAM17. When blocking of ADAM17 was 

performed there was no increase in the cell or soluble TNFR1 on uninfected cells. This 

suggested that HCMV infection induces a physiological switch from inactive to active

ADAM17. Early studies showed that infections with HCMV strains lacking UL/b’ resulted 

in a suppression of TNFR1 expression (Baillie et al., 2003, Montag et al., 2006). In the 

absence of the UL/b’ region, not only would UL138 not be there to stimulate TNFR1 

expression, but enzymatically active ADAM17 would remain on the surface in the 

absence of UL148/UL148D.

The activation of ADAM17 to the enzymatically form at the cell surface was shown to 

occur upon LPS treatment of cells which induced iRhom2 phosphorylation and the 
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recruitment of 14-3-3 proteins to relieve the inhibitory interaction between iRhom2 and 

mature ADAM17 (Grieve et al., 2017, Cavadas et al., 2017). As a consequence, 

ADAM17 becomes phosphorylated (Adrian, 2012). Moreover, the activation of STING 

can lead to ADAM17 activation and subsequent substrate shedding (Motani and Kosako, 

2018). It is possible that upon HCMV entry into the cell, DNA sensing mechanisms could 

induce phosphorylation of iRhom2, releasing it from ADAM17, resulting in cleavage of 

cell surface substrates.  One model for the mode of action UL148 and/or UL148D is that 

they could be acting on iRhom2 by impairing its regulatory role in ADAM17 expression, 

rather than effecting whole cell levels. 

Understanding how UL148 and UL148D affect ADAM17 would be of interest as it could 

uncover key regulatory steps involved with ADAM17 biology. This is of importance as 

ADAM17 is a master regulator of inflammatory and developmental pathways such as 

TNFR1/2, EGFR and IL-6 signalling (Scheller et al., 2011). 

6.2.3 Regulation of other ADAM17 substrates by HCMV
The downregulation of ADAM17 rationally leads to a prediction UL148/UL148D will 

impact the expression of additional cellular receptors, specifically those known to be 

modulated by the metallopeptidase. Over 80 substrates have been shown to be cleaved 

by ADAM17 (Moss and Minond, 2017). Indeed, proteomics comparing Merlin infected 

cells with ∆UL148 and ∆UL148D, showed that in addition to TNFR2, NRG1, MEGF10, 

and GFRA2 were downregulated. NRG1 is a known ADAM17 substrate, and therefore 

its upregulation may be dependent on ADAM17 downregulation. Although ICAM1 is 

upregulated on the surface of HCMV infected cells, this was independent of 

UL148/UL148D (Appendix) (Bentz et al., 2006). 

The accumulation of certain ADAM17 substrates on the cell surface may not necessarily 

be compatible with virus persistence in vivo.  The HCMV US12 family plays a major role 

in modulating the expression of immune ligands on the cell surface, those known to be 

ADAM17 substrates include B7-H6, MICA, MICB, TWEAK receptor, JAM3, ALCAM, 

SDC4 and ICOSL (Fielding et al., 2017). Thus, a complex scenario emerges in a HCMV 

infected cell where certain ADAM17 substrates are permitted to the surface (such as 

TNFR2, TNFR1 and NRG1), whereas other molecules with distinct immune functions 

are prevented from accumulation by the US12 genes family and potentially other HCMV 

immunevasins. Even further complexity is introduced by the upregulation of ADAM10 on 

HCMV infected cells (Fielding et al., 2014, Weekes et al., 2014), which can cleave a 

number of the same targets as ADAM17. HCMV infects an exceptionally wide range of 

cell types in vivo and ADAM17 expression is ubiquitous. HCMV UL148/UL148D can be 
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expected to impact on additional cell-specific immune and inflammatory pathways 

regulated by ADAM17 in endothelial cells, dendritic cells, macrophages and other cell 

types.

6.2.4 Effect of HCMV on TNF induced cell death
TNF was shown to induce apoptosis in HCMV infected cells. This in itself is an important 

finding as uninfected fibroblasts treated with TNF did not undergo apoptosis. This 

suggests that the cellular mechanisms that prevent TNF induced apoptosis in a healthy 

cell may be impaired during HCMV infection. Indeed, proteomics shows that cIAP is 

reduced during a lytic infection (Weekes et al., 2014), which could reflect a host response 

of increased sensitivity to apoptosis inducing molecules during infection. 

Whilst TNF was able to kill Merlin infected cells, when UL148 and UL148D were deleted 

from the virus, infected cells were less susceptible to TNF induced apoptosis. This result 

could be predicted as ΔUL148/UL148D cells have less surface TNFR1, consistent with 

an inverse correlation between the amount of TNFR1 and susceptibility to TNF induced 

apoptosis. Another contributory factor could be that sTNFR2 from UL148/UL148D 

infected cells can bind to TNF and prevent binding to membrane bound TNFR1/2. As the 

presence of TNFR1 was increasing the sensitivity of cells to TNF induced apoptosis, this 

is counterintuitive. Why does the virus maintain TNFR1 in a lytic infection if it increases 

apoptosis? It is possible that the host induces the increase in TNFR2 at the mRNA level, 

and that this is beneficial for the host in clearance of virally infected cells. On 

macrophages, cellular upregulation of TNFR2 sensitizes cells to TNF induced 

necroptosis (Siegmund et al., 2016). This could act as an alternative death pathway that

bypasses the inhibition of caspase pathways by UL36 (McCormick et al., 2010). This 

seems unlikely as HCMV has evolved many mechanisms to downregulate receptors that 

induce apoptosis such as FAS and TRAIL-R1/R2 (Seirafian et al., 2014, Smith et al., 

2013), and if TNFR2 was a threat to infected cells then the virus may have evolved 

mechanisms to subvert this. The relevance of TNFR1/2 in HCMV infection may be 

uncovered in cells of the myeloid lineage. Further work is needed to assess the functional 

significance of these receptors including the study of HCMV infected DCs, where 

TNFR1/2 signalling differentially regulate DC maturation and survival (Maney et al., 

2014). 

Another possibility is that the dose of TNF used was too high, therefore any activity of 

mTNF of TNFR2, could have been masked by an overwhelming apoptotic signal through 

TNFR1. A dose response incorporating lower doses of TNF would be important for future 

studies. An important consideration is that TNF can bind to both receptors, but it is 
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generally considered that signalling is more efficient through TNFR1, due to an increased 

binding affinity (Grell et al., 1998). To identify the role of TNFR2 here, specific TNF 

mutants that only activate TNFR2 or agonistic antibodies could be used to rescue TNF 

induced apoptosis. These have been shown to increase activation of TNFR2 without 

affecting TNFR1 and would allow any affects to be attributed to one or other receptor 

(Fischer et al., 2017, Nguyen and Ehrenstein, 2016). 

6.2.5 Effect of HCMV on cytokine production
HCMV infection results in a reduction in constitutive cytokine production. CCL2 

production by fibroblasts was substantially impaired. A previous study showed that 

HCMV infection increased CCL2 mRNA and protein within the supernatant, though 

different cells (MRC-5), virus (low MOI AD169) and cell culture media were used 

(Hamilton et al., 2013). CCL2 is a chemoattractant and whilst it was suggested that 

increased CCL2 may allow for monocyte attraction and viral dissemination, the data in 

Chapter 5 would suggest that during replication, CCL2 production is prevented. IL-8 

levels were similar to those in mock infected cells. This contrasts with other studies that 

have assessed the HCMV secretome. In these studies IL-8 was one of many cytokines 

increased compared to uninfected cells (Dumortier et al., 2008, Botto et al., 2011, Mason 

et al., 2012). These studies all showed a different cytokine profile which can be attributed 

to differences in cell type (endothelial cells), HCMV strain (VR1814) and culture methods. 

I showed that in fibroblasts, in a productive infection, cytokine levels did not increase. In 

HF-TERT cells infected with Merlin, IL-6 and IL-8 mRNA has been reported by others to 

increase after HCMV infection compared to uninfected cells (Tirosh et al., 2015). This 

also occurred upon treatment of cells with UV inactivated virus indicating that the host 

cell probably releases these cytokines as an intrinsic response to infection. It has been 

suggested that IL-8 production by HCMV infected cells may aid in viral dissemination by 

infection of neutrophils, which are chemotactically attracted to cells releasing IL-8 (Costa 

et al., 2013).

Merlin infected cells did not increase cytokine production upon TNF treatment and it was 

expected that ∆UL148/UL148D infected cells would result in reduced cytokine production 

upon TNF challenge due to the reduced expression of TNFR1/2, but the opposite was 

observed. IL-8 and CCL-2 production were increased in ∆UL148/UL148D infected cells. 

This would indicate that UL148 and UL148D have a role in preventing TNF signalling or 

cytokine release independent of their effect on TNFR1/2. Whilst there is less TNFR1/2 

on the surface of ∆UL148/UL148D infected cells as assessed by flow cytometry, enough 

receptors could still be present on the surface of the cells before cleavage by ADAM17. 

Only a few seconds of TNF exposure can activate the NF-kB pathway in HeLa cells (Lee 
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et al., 2016). In a similar experimental setup to the one I performed, in which TNF treated 

HCMV infected fibroblasts were assessed, TNF induced IL-8, IL-6, CCL-2 and CXCL1 

mRNA were reduced compared to uninfected cells (Jarvis et al., 2006). 

Immunofluorescence showed that impairment of IL-8 production by HCMV infected cells 

occurred with the low passage strain TR and high passage AD169-ATCC, which lacks 

UL148 and UL148D, though this study did not assess the release of IL-8. This suggests 

that the impairment of HCMV infected cells to produce IL-8 could be dependent on a 

conserved viral gene present in all HCMV strains or reflect the diversion of cellular 

resources that occurs in a lytic infection to accommodate virus replication. However, the 

release of IL-8 from the cell could still be influenced by other genes such as UL148 and 

UL148D as demonstrated here. 

Of all the cytokines assessed, RANTES was the only one which was not detectable in 

HCMV supernatant, across all conditions. This could be explained by other HCMV genes 

which have been shown to target RANTES such as miRNA-UL148D (encoded by the 

UL150 ORF) and US28 (Kim et al., 2012, Billstrom et al., 1999). This in theory would 

result in reduced homing of lymphocytes to virally infected cells. Prevention of RANTES 

release, even following TNF treatment suggests that RANTES is an important chemokine 

for inhibition by HCMV. Clinically this could be important as defects in RANTES have 

been reported to result in impaired responses to chronic viral infections (Crawford et al., 

2011). The cytokine multiplex presented in chapter 5 would suggest that IL-8 and other 

TNF induced cytokines are subject to suppression in HCMV infected fibroblasts, and that 

UL148/UL148D may be responsible for this.

One explanation for the inability of Merlin infected fibroblasts to increase cytokine 

production upon TNF challenge is that elements of NF-B signalling are impaired and 

that deleting UL148/UL148D could have released this suppression. Data concerning 

NF-B and HCMV infections is mixed. Some studies have shown that HCMV increased 

NF-B activation. Other proteins have been shown to impair NF-B signalling such as 

pp65, UL26 and IE1 (Hancock and Nelson, 2017). Proteomic analysis and Western 

blotting suggests reduced NF-B in HCMV infected cells (Weekes et al., 2014). Pathway 

analysis suggested that other TNF induced pathways were also affected such as MAPK 

signalling. HCMV impairs interferon signalling by a number of mechanisms, such as 

downregulating IRFs, and regulating interferon receptors (Marshall and Geballe, 2009). 

This implies that HCMV employs multiple strategies to inhibit the response to 

inflammatory cytokines such as TNF and IFN.  
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When Toledo infected cells were treated with TNF, there was an increase in NF-B 

expression as with uninfected cells (Montag et al., 2011). This suggests that the 

impairment of cytokine production from TNF treated HCMV infected cells may be due to 

an overall impairment in cytokine release, rather than an impairment in TNF signalling. 

TNF treatment normally results in degradation of IB, which allows NF-B to enter the 

nucleus. TNF caused IB degradation in HCMV infected cells, further suggesting that 

if UL148/UL148D are affecting TNF signalling, then this is not occurring via the NF-B 

pathway (Le et al., 2011). This contrasted with previous data which showed that HCMV 

was impairing TNF induced IB degradation (Jarvis et al., 2006).  Regardless of what 

occurs at the signalling level, functionally this thesis showed that TNF induced cytokine 

production is certainly impaired during a HCMV lytic infection.

6.3 Future directions

To assess functionally how TNFR1/2 could affect HCMV infected dendritic cells, a 

co-culture assay could be utilised to infect DCs (Murrell et al., 2017). This could be 

followed by treatment with TNF and subsequent phenotyping for maturation markers and 

assessment of cell death. The mechanisms by which ADAM17 molecules are trafficked 

and regulated are complex. Further work assessing how it is downregulated by HCMV 

would require the use of tagged UL148 and UL148D. SILAC-IP coupled with mass 

spectrometry would show the proteins to which UL148 and UL148D binding within the 

cell. Co-IP experiments with iRhom1 and iRhom2 would show if UL148 and UL148D 

interfere with the trafficking of ADAM17. To assess what other substrates are regulated 

by HCMV, plasma membrane profiling could be performed on ΔUL148/UL148D infected 

cells and compared to ΔUL148/UL148D infected cells treated with D1(A12). Flow 

cytometry showed that TNFR1/2 were recovered on the latter, and therefore it would be 

expected that other ADAM17 substrates would be recovered as well. This could also 

identify novel ADAM17 substrates. Finally, a comprehensive secretomics study could be 

performed to uncover how HCMV infection alters the level of soluble molecules and the 

cytokine mileau during a lytic infection, but also in response to cytokine treatment.
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6.4 Conclusions

This thesis firstly aimed to identify novel HCMV-encoded genes that could impair T-cell 

degranulation. My research achieved this by identifying UL19 and genes within the RL10-

UL1 region in controlling activation of CD8+ T-cells against HCMV infected cells. 

Whilst our lab has historically investigated HCMV encoded NK evasion genes, this work 

adds to a growing body of evidence that suggests that immune evasion mechanisms 

may be applicable to both T and NK cells. UL135 and UL148 both influence T and NK 

cells. US12-21 has been shown to degrade both T and NK cell activating ligands. UL16 

and UL18 likely impact T-cells that express their respective receptors; NKG2D and LIR1. 

Flow cytometry also showed D9-VTE uniformly expressed DNAM-1 (Appendix), 

therefore UL141 could target activation of this T-cell lines. This work showed that UL19 

and RL10-UL1 can regulate T-cell activation and we have data showing that these genes 

suppress NK cell degranulation too (Dr Ceri Fielding and Dr Rebecca Aicheler).

Therefore, evidence is mounting suggesting that immune evasion genes have converged 

on receptors and mechanisms that impair both NK cells and CD8+ T cells. Genome-wide 

DNA methylation analyses revealed a strikingly similar pattern of DNA methylation 

between expanded NK and CD8+T cells from HCMV+ donors (Schlums et al., 2015). 

This showed CD8+ T cells and adaptive NK cells share pathogen driven differentiation 

pathways, that help these cells to control HCMV infection.

The second aim was also achieved as the genes responsible for TNFR2 upregulation 

were identified. UL148 and UL148D were shown to upregulate TNFR2 by synergistically 

downregulating surface ADAM17 and preventing the cleavage of TNFR2 (and TNFR1) 

by ADAM17. UL148/UL148D were shown to impair the maturation of ADAM17. The 

efficiency with which ADAM17 is downregulated suggests there is a clear benefit to the 

virus to not having this protein on the cell surface over the course of the lytic cycle. 

Thirdly the response of HCMV infected cells to TNF was assessed. The presence of 

UL148/UL148D made cells more sensitive to TNF induced apoptosis, which was 

attributed to TNFR1. Cytokine production showed that these genes have an anti-

inflammatory effect by inhibiting IL-8 production upon TNF challenge. This suggests that 

UL148/UL148D may be involved with regulating elements of TNF signalling or cytokine 

release independent of their effect on ADAM17. The control of ADAM17 surface 

expression is likely to affect how HCMV infected cells respond to immune cells and 

inflammatory cytokines given that ADAM17 is responsible for controlling multiple 

cytokines, cytokine receptors, adhesion molecules and immune cell receptors.
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Appendix

Appendix I Results

Degranulation potential of T-cell lines as assessed by degranulation of CD8+T-cells 
against peptide pulsed autologous fibroblasts. SFi cells were pulsed with the indicated 
peptide concentrations. These cells were then used as targets in a CD107a 
degranulation assay. Data shows mean %CD107a+ of CD8+ cells ±SEM of 
quadruplicate values.

Proteomic analysis of ΔUL150/A infected HF-TERT cells. Data from Dr Pete Tomasec 
and Dr Michael Weekes. Proteins unaltered by the deletion are at the center of the plots 
(0 log2), whereas proteins to the left or right of center represent proteins down regulated 
or upregulated respectively by the deletion of UL150/A. P values are for for the ratios of 
expression from each mutant compared to HCMV Merlin using Benjamini-Hochberg 
corrected Significance B values.
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Effect of HCMV block mutants on ADAM17 expression. HF-TERTS were infected with 
indicated viruses. Flow cytometry was performed at (A) 24hpi and (B) 72hpi.
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Flow cytometry for DNAM-1 on D9-VTE T-cell line.

Assessing the effect of UL148/UL148D on ICAM1 expression. HF-TERT cells were 
infected Merlin or ΔUL148/UL148D. Flow cytometry for ICAM-1 was performed at 72hpi.
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Assessing the effect of hIgG on sTNFR2 release. HF-TERT cells were infected Merlin or 
ΔUL148/UL148D. At 48hpi, the media was changed for fresh media (No TTx) or hIgG 
(100nM). An ELISA was for sTNFR2 was performed with supernatant at 72hpi.
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Appendix II Publications


