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Abstract

The successful development of the mammalian cerebral neocortex is linked to numerous cog-
nitive functions such as language, voluntary movement, and episodic memory. Neocortex devel-
opment occurs when neural progenitor cells divide and produce neurons. Critically, although the
progenitor cells are able to self-renew they do not reproduce themselves endlessly. Hence, to fully
understand the development of the neocortex we are faced with the challenge of understanding
temporal changes in cell division strategy. Our approach to modelling neuronal production uses
non-autonomous ordinary di�erential equations and allows us to use a ternary coordinate system
in order to de�ne a strategy space, through which we can visualise evolving cell division strategies.
Using this strategy space, we �t the known data and use approximate Bayesian computation to
predict the founding progenitor population sizes, currently unavailable in the experimental litera-
ture. Counter-intuitively, we show that humans can generate a larger number of neurons than a
macaque's even when starting with a smaller number of progenitor cells. Accompanying the article
is a self-contained piece of software, which provides the reader with immediate simulated results
that will aid their intuition. The software can be found at www.dpag.ox.ac.uk/team/noemi-picco.

1 Introduction

Biological systems are hardly ever stationary. Indeed, as Alan Turing once said �Most of an organism,
most of the time, is developing from one pattern into another [...]. One would like to be able to follow
this more general process mathematically also. The di�culties are, however, such that one cannot
hope to have any very embracing theory of such processes, beyond the statement of the equations�
[1]. Although mathematical techniques for detecting, interrogating and simulating transient dynamical
system have been developed in the following years [2�8] it is still standard for mathematical biologists
to use autonomous equations and consider only the stable stationary states of their models as de�ning
the developmental outcomes of biological systems.

Here, we model the development of the mammalian cerebral neocortex, which is a highly dynamic
and an incredibly important biological system. The development of a fully functioning cortex is linked
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to numerous cognitive functions such as language, voluntary movement, and episodic memory [9].
Conversely, pathological development can lead to diseases, such as microcephaly [10].

The neocortex is comprised of neurons produced by neural progenitor cells [11]. Critically, although
the progenitor cells are able to self-renew (like their parent neuroepithelial stem cells) they do not
reproduce themselves endlessly. Speci�cally, they undergo a shift in division strategy. Early in the
development of the neocortex the progenitor cell populations are maintained through symmetric and
asymmetric divisions, which produce either two progenitor cells, or a progenitor and a neuron. Later
in development progenitor cell reproduction drops dramatically with neuronal production becoming
dominant. Note that some progenitor self renewal will still occur, as these cells will go on to accomplish
gliogenesis [12]. Hence, to fully understand the development of the neocortex we are faced with the
challenge of fundamentally understanding the temporal changes in cell division strategy.

Beyond the core problem described above the development of a normal cortex is further complicated
by many factors, such as [11, 13, 14]:

• the size of the founder population present at the beginning of cortical neurogenesis;

• neurogenesis duration;

• cell cycle dynamics;

• cell migration into the developing cortex;

• programmed cell death;

• the balance between self-renewing and di�erentiative divisions.

Variations in any one of these factors generally leads to an intuitive change in the resulting neuronal
number, which in the following will be referred to as neurogenic output. For example prolonging the
time devoted to ampli�cation of the founder population results in expanded neuronal number [15].
However, biological development is more than the sum of its parts and, thus, we have to provide
a mechanism that speci�es how combinations of such factors work together to ensure the cortex is
correctly formed.

Quantitative data specifying the cellular populations of the cortex, are beginning to appear [16].
However, these studies do not, as yet, provide an underlying mechanism explaining transitions in
cellular identity, as they focus preferentially on providing scaling rules that explain the correlations
between neurogenic output and factors such as brain volume and length of neurogenesis [17].

As a means of o�ering mechanistic insights even in the face of missing data we develop a theoretical
model of progenitor cell proliferation and neuronal production. Critically, it is suggested that there
are already over 150 di�erent mathematical models [18] of the cell cycle spanning multiple di�erent
cell types, such as frog eggs [19] and drosophila [20]. Equally, the mathematical approaches to mod-
elling di�erentiation dynamics range over many �elds, such as stochastic models [21], time delays [22]
and Boolean logic [23]. Critically, nearly all of the suggested models deal with understanding small,
often hypothetical, parts of the cycle rather than the evolution of the population size. Of the neuro
developmental models that do consider neuron population production they are usually focussed on
di�erent parts of the brain (which requires di�erent assumptions), do not include the observed time
dependent evolution of the cellular division strategy, or are involved with di�erent dynamical states
(e.g. homeostasis) [24�26].

Our approach matches closest to that seen in the work on cerebellum development [27]. Namely,
we use non-autonomous ordinary di�erential equations (ODEs) to capture the change in progenitor
cell division strategy over time during cortex development of the species of interest [28].

Since available quantitative data is minimal our model is a parsimonious representation of a minimal
set of processes and players providing a general, yet accurate, mechanism of cortical neurogenesis. Our
most counter-intuitive result is that a larger cortex does not necessarily derive from a larger initial
population of progenitor cells. Speci�cally, we show that, under the current assumptions on cell cycle

2



dynamics, humans can generate more neurons than macaques and mice even when starting with a
smaller number of progenitor cells.

The paper is structured as follows, we construct a non-autonomous ODE model of progenitor pro-
liferation and di�erentiation and use a ternary coordinate system to de�ne a strategy space, through
which we can visualise the transient behaviour of cell di�erentiation. Having created the framework
we search the strategy space to �nd the strategy, or strategies, matching the observed patterns of
neurogenic output of the mouse, macaque and human. From this point, we use approximate Bayesian
computation to predict the founding progenitor population sizes, currently unavailable in the experi-
mental literature. This is achieved via �t of the species-speci�c model to experimentally obtained �nal
neuron population sizes.

A graphical user interface (GUI) solving the presented ODE system accompanies this paper. This
provides the biological reader with immediate simulated results that can aid their intuition as to
how cortex development will progress in perturbed scenarios. Equally, the interested reader is able
to rapidly investigate the sensitivity of our results to their additional knowledge and data. Further,
where sensitivity occurs and data is lacking then we are able to direct future biological experimental
e�orts through gaining the missing data and, as such, test our hypotheses. The neurogenesis simulator
is available for download at www.dpag.ox.ac.uk/team/noemi-picco.

2 Mathematical model of cell di�erentiation

We aim to construct a minimal dynamic model linking an initial population of progenitor stem cells,
P , (which is able to reproduce itself) to a �nally di�erentiated, post-mitotic neuron population, N .
We consider three possible modes of progenitor cell division: self-amplifying (symmetric) division, Ds,
which generates two identical progenitors; asymmetric neuronal division, Da, generating one progenitor
and one neuron; symmetric neuronal division, Dn, generating two neurons (see Figure 1).

Figure 1: Schematic diagram illustrating the three types of cellular division, from progenitor, P , to
other progenitors and/or neurons, N . The transition probabilities, α, ν and 1−α−ν are also illustrated.

The progenitor population includes all pre-mitotic neural progenitor cell types involved in neo-
cortex development, for a given species, e.g. neuroepithelial stem cells, apical and basal radial glial
and intermediate progenitors [11, 14, 29, 30]. Although the cells do not act the same, there is not
enough quantitative data to accurately model each sub-population, thus, P is treated as an aggregate
compound population.

The neuron population is, similarly, a compound population encompassing all post-mitotic and
permanently di�erentiated neurons. Note that we are only interested in population dynamics local
to the cortex and, as such, exclude movement and subsequent spatial information. Critically, neuron
migration does occur, which is explicitly included in our model in terms of the �nal scaling of the data
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rather than as a physical movement term (discussed later) [31, 32].
The division rate of a progenitor, ρ, is the same, no matter the resulting outcome. However, the

transitions are not equally likely. As such, we introduce, three probabilities α, ν and σ, such that
1 = α + ν + σ. From this we de�ne: α to be the probability that the Da transition takes place; ν to
be the probability that the Dn transition takes place; and, �nally, σ = 1− α− ν to be the probability
that the Ds transition takes place.

We note that the coordinate triple, (α, ν, σ), de�nes a ternary coordinate system. Speci�cally, the
coordinate triple is valid if and only if it exists in the space de�ned in Figure 2, which we will call
the strategy space. Namely, the focus of this paper is to determine how the probabilities must evolve
in this ternary space in order to specify a developing cortex. Figure 2 illustrates a potential dotted
trajectory.

Figure 2: Illustration of the ternary coordinate system that will be used to de�ne the strategy space.
The curved, dotted line and arrow illustrates the evolution of the transition probabilities. Initially, the
probabilities of symmetric and asymmetric transition are σ = 0.7 and α = 0.3, respectively. As the
strategy evolves σ decreases, whilst α and ν increase. Finally, α and σ decrease to zero whilst ν → 1.

From these de�nitions the resulting set of ODEs de�ning this system is, thus,

dP

dt
= ρP (1− α− 2ν) , P (t0) = P0, (1)

dN

dt
= ρP (α+ 2ν) , N(t0) = 0, (2)

where t0 is the time of onset of neurogenesis and P0 is the founder progenitor population. We also �x
tF as the �nal time of neurogenesis, so equations (1) and (2) are only valid for t ∈ [t0, tF ]. Due to the
linearity of the equations, we non-dimensionalise all populations with respect to the initial progenitor
population, i.e. P 7→ P/P0 and N 7→ N/P0. We abuse notation by keeping P and N as the name
of the non-dimensionalied populations as the form of equations (1) and (2) and associated parameters
do not change. The only di�erence is that the initial condition of P is now P (t0) = 1 and, hence, P
and N represent multiples of the initial progenitor population. Although we discuss both dimensional
and dimensionless forms of the populations we will explicitly clarify which one is being considered, to
remove any ambiguity.

If α and ν are constant then due to this system being linear, the resulting solution is a trivial
superposition of exponential functions. Thus, apart from �nely tuned marginal cases, where progenitor
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populations are constant, the progenitor population must either exponentially increase, or decrease.
Since neither case is realistic [12] we extend each transition probability to be time dependent, namely
(α, ν, σ) 7→ (α(t), ν(t), σ(t)). Speci�cally, Ds is preferred early in neurogenesis in order to rapidly
create a viable population of progenitors and, hence, consequently, neurons. During neurogenesis the
probability of Da increases to a peak before both Ds and Da decrease leaving Dn as the dominant
preferred mode of division during late neurogenesis (see Figure 2).

For simplicity, we de�ne the probabilities to be piecewise functions, namely

α(t) =

{
α0 + αS−α0

tS−t0 (t− t0) t ∈ [t0, tS ],

αS

(
1− t−tS

tF−tS

)
t ∈ (tS , tF ],

(3)

ν(t) =

{
0 t ∈ [t0, tS ],

νF

(
t−tS
tF−tS

)
t ∈ (tS , tF ],

(4)

and σ(t) = 1− α(t)− ν(t) as before. This introduces four new parameters: tS , the strategy switching
time; α0 the initial probability of Da; αS , the probability of Ds at t = tS ; and νF the probability of
Dn at t = tF (see Figure 3). The time tS distinguishes two phases of the neurogenic process. Initially
Da is increasingly preferred over Ds. In a second phase Dn is introduced and gradually takes on as
the most abundant mode of division. By constraining the parameters to satisfy

0 ≤ α0 < αS ≤ 1, 0 < νF ≤ 1, t0 < tS < tF , (5)

then the four parameters always de�ne a valid trajectory in strategy space.

Figure 3: Illustrating the temporal piecewise de�nitions of (α, ν, σ) and their dependence on the
variables (tS , α0, αS , νF ).

Similarly, although we initially consider ρ to be constant, we will later add a temporal dimension to
this variable to account for the experimentally observed modulation of the cell cycle length throughout
the course of neurogenesis [33]. Speci�cally, cell cycle length, Tc, and ρ are related through

ρ(t) = log

(
2

Tc(t)

)
. (6)

As above, we de�ne Tc(t) to be piecewise linear in time, using data on mouse, macaque and human to
interpolate and specify the gradients and intercepts [34].

It should be noted that a posteriori checks of the piecewise linear assumptions were made (data
not shown). Critically, using smooth functions instead of piecewise de�nitions did not change the
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qualitative results and hardly changed the quantitative �tting results. Thus, the piecewise linear
de�nitions provide a simple, robust and minimalist way of closing the system.

Finally, we notice that equation (2) does not contain a natural decay term for the neuron population.
Equally, the in�uence of migration are ignored. Surprisingly, these two e�ects nearly cancel each other
out. Indeed, post-neurogenesis, it is estimated that there is a bulk loss of 30% of adult cortical neurons
and a net increase of 25% through interneurons migrating to the cortex [35�38]. Thus, these bulk
population corrections are accounted for when integrating experimental estimates of �nal neurogenic
output into the model. Speci�cally, if N̄ is the experimentally derived estimate for �nal neuron number
then the dimensional size of N , as derived from equations (1) and (2), is

N(tF ) = N̄(1 + δ)(1− µ), (7)

where δ is the proportion of neurons lost to apoptosis (here, δ = 0.3) and µ is the proportion gained by
migration (here, µ = 0.25). Later we show that the results are robust to variations in these quantities.

3 Data �tting

Our study will focus on three mammalian species: mouse, macaque monkey, and human (Figure 4).
Although data on other mammalian species exist, we focus on these three, as previous studies have
chosen them to e�ectively illustrate neocortex development across distinct branches of the phylogenetic
tree [11].

Figure 4: Cortical development in mouse, macaque monkey, and human. Top row: the timing of
production and proportions of these neurons residing in deeper and upper layers vary in each species.
Upper layer neuron production starts at tM : E17 in mouse, E64 in monkey, E93 in human (where E
indicates embryonic day), producing a di�erent ratio of deeper layer neurons ϕ : 0.52 in mouse, 0.29
in monkey and human. Bottom row: coronal brain cross sections highlight the progressive increase in
size and convolution of the cerebral cortex (coloured region). Scale bars indicate 1 mm, 10 mm and
10 mm, respectively. Data from [39, 40].

Neural progenitors are initially positioned along the apical (inner) surface of the developing brain,
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with processes (protrusion of their cell body) extending to the pial (outer) surface. At birth neurons
move along these processes, past pre-existing neurons, to the outermost position. This �inside-�rst,
outside-last� order will eventually result in a six-layered organisation, typical of a mammalian cortex
[41]. Hence, time of birth, laminar position, and fate of a neuron, are tightly related. Initially, we �t
our non-dimensionalised model to the observed time-dependent production of the cortical layers.

We do a simple parameter search of the strategy space (possible due to its low dimension) to �nd the
strategy, or strategies, which provide the best match for experimental data. Speci�cally, observations
suggest that, to a �rst approximation, half of the total neurogenic output in mouse is produced in the
�rst half of neurogenesis and the remainder in the second half [42]. This ratio is di�erent in primates,
where the second half of neurogenesis is characterised by an increased neuronal production. The result
is a signi�cant expansion of the supergranular (upper) layers with respect to the infragranular (deeper)
layers [39] (see Figure 4, top row). Thus, we try to �nd strategies that best approximate

N(tM ) = ϕN(tF ), (8)

where ϕ is the species-speci�c ratio of neurons in deeper layers, and tM is the midpoint of neurogenesis,
de�ned as the time when production of deeper layer neurons is completed and production of upper
layer neurons starts. Of course, an exact match is highly unlikely, thus, we seek to minimise

ε =

∣∣∣∣N(tF )− N(tM )

ϕ

∣∣∣∣ . (9)

The chosen strategy is then extended to encompass the rodent- or primate-speci�c data by applying a
di�erent data derived cell cycle length, Tc, either as a constant or as a time dependent function.

Having parameterised the non-dimensionalised models we seek to estimate the founder populations,
P0, using approximate Bayesian computation (ABC). Speci�cally, we use an ABC rejection algorithm,
which allows us to build a discrete approximation of the posterior distribution of P0, [43]. The ABC
algorithm iteratively draws a proposed value from a uniform prior on some de�ned region. If the
dimensional model, simulated with the proposed P0, falls close to the data (within a set tolerance)
then the value is accepted, otherwise it is rejected. Critically, the tolerance is iteratively updated
to ensure that 0.02% of all parameter trials are accepted. The resulting collection of accepted values
constitutes an approximation of the posterior distribution, which provides an estimate and error bounds
for P0. Here the �t is run to match one data point, N(tF ).

4 Results

4.1 Mapping species-speci�c developmental strategies

Frequency of cell cycling is a major determinant of neurogenic output. However, experimental quan-
ti�cation of cell cycle length of human neuronal progenitors is currently unavailable. On the other
hand, cell cycle dynamics have been better characterised in mouse and macaque monkey, revealing a
di�erent age-dependent variation of the cell cycle length. The mouse progenitors show a steady cell
cycle length increase during the course of neurogenesis. In the macaque progenitors, a similar initial
trend is then reversed around mid-neurogenesis, resulting in an accelerated rate of late divisions [34].
Given the sparse evidence of cell cycle dynamics in our species of interest, we adopt two alternative
representations, constant and age-dependent model, and analyse our results in the light of these two
hypotheses. In both representations, the human progenitors are assumed to mirror the macaque cell
cycle dynamics at corresponding stages of the neurogenesis window (Figure 5).

The species-speci�c strategies predicted for the constant and age-dependent cell cycle models are
shown in Figure 6. Our estimates reveal that in the �rst phase, macaque and human favour the
prevalence of Da over Ds considerably more than the mouse (i.e. αS is larger). This prediction is
valid in both cell cycle models. In the second phase a rebound of Ds is predicted for macaque and
human (i.e. νF < αS) in the case of the constant cell cycle model, but only for human in the case
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(a) (b)

Figure 5: Cell cycle length over di�erent species assuming (a) a constant length and (b) an age-
dependent length. Order-speci�c cell cycle models are parameterized from mouse and macaque monkey
data. Mouse progenitor cell cycle duration is: 10.2 hours at E12; 18.4 hours at E16 (data from [12]).
Rhesus macaque progenitor cell cycle duration is: 23 hours at E40; 54 hours at E60; 27 hours at E80
(data from [34]). Averages are used for the constant cell cycle models. To facilitate direct comparison,
times are converted in equivalent mouse embryonic days (E).

of the age-dependent cell cycle model. Finally, the constant cell cycle model predicts a relative delay
in the strategy switching time for increasingly larger species (Figure 6(a)). The prolonged preference
for self amplifying divisions is consistent with the need of a larger progenitor pool to allow expansion
of supergranular layers produced in the later phases of neurogenesis. In the age-dependent cell cycle
model the demand for this expansion in primates is met by the acceleration of cell cycling, and does
not result in a delay in the switching time.

Since the developmental strategies are predicted on the non-dimensional system, they are valid
for di�erent absolute values of neuronal production, interneuronal migration, or post-neurogenesis cell
death. Having calibrated the species- and cell-cycle- speci�c strategies, we turn to the dimensional
model to estimate the initial conditions that match the �nal neurogenic output, in terms of absolute
cell numbers.

4.2 The founder population does not necessarily scale with neurogenic out-

put

The number of progenitor cells present at the onset of neurogenesis is unknown. Experimental mea-
surements are limited to the size of the developing cortex which, at this stage, is almost exclusively
occupied by progenitor cells [26, 40]. However, spatial heterogeneity, and cross-species variation in cell
size and density makes it impossible to estimate cell numbers for this founder population. We there-
fore use the model, calibrated to the species-speci�c developmental strategy, to estimate this number.
The model prediction is that the size of the founder population for species of increasingly larger brain
size, does not necessarily scale accordingly. Posteriors for P0 estimates are shown as `violin' plots in
Figure 7 (see dashed gray line), where the vertical width of each distribution represents the support of
the posterior, whilst the horizontal width of each distribution represents the density of the posterior.
Finally, the horizontal black line across each distribution represents the point estimate giving the best
�t to N(tF ). Critically, for both cell cycle models, the estimated human P0 is unexpectedly lower than
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(a) (b)

(c) (d)

Figure 6: Left column: constant cell cycle model. Right column: age-dependent cell cycle model. (a-
b) Species- and cell-cycle-model- speci�c estimates of the time of switch tS , represented in equivalent
mouse embryonic days. (c-d) Evolution of the transition probabilities in the strategy space. Illustrated
strategies are species- and cell-cycle-model- speci�c estimates. The arrows provide the direction of the
trajectory and the big point on the α axis is the initial condition.

both mouse and macaque. Following an allometric scaling argument we would have expected the size
of the founder population in humans, to be larger than the macaque and mouse.

4.3 Changes in human progenitor cell cycle length can justify P0 increase

In order to address this counterintuitive prediction, we challenge the key modelling assumption that
could have led us to underestimate the human founder population. The lack of human-speci�c data
required us to introduce the key assumption that the cell cycle is the same in all primates. While in
the absence of evidence for the contrary it is sensible to assume that the change in monotonicity of
the cell cycle is species-dependent (monotonically increasing in rodents; increasing then decreasing for
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(a) (b)

Figure 7: Approximated posterior distributions of species- and cell-cycle-model- speci�c estimated
founder population. Violin plots show symmetric probability density functions of parameter values
(y-axis), across species (x-axis). The width of the plot speci�es the probability density of providing a
given estimate for P0. Thus, the wider the plot is at a given value on the y-axis the more likely the
given value is to be chosen as the estimate. The horizontal black line indicates the P0 point estimate
(best �t). The dashed gray line indicates the predictions based on the current assumption (cell cycle
length is conserved across primates). Distributions corresponding to assumption of an ampli�ed Tc
(cell cycle length) in human are also shown (see legend).

primates), there is evidence that cells in larger species cycle more slowly [44]. Since no quantitative
data on the expansion of the cell cycle in human progenitor cells compared to the macaque is available,
we repeat the ABC estimates for representative values of cell cycle ampli�cation in human progenitors,
with respect to the baseline macaque values. The additional posteriors for the human P0 in Figure 7
correspond to ampli�cations of 1.5 and 2 fold. We �nd that in both cell cycle models, the estimated
founder population scales with the size of the species, when we assume a 2 fold ampli�cation of the
human progenitor cell cycle length.

It is worth noting that we used a two-step model calibration. We initially searched the strategy
space to capture the qualitative temporal pattern of neurogenic output in the non-dimensional model,
speci�ed by the dataset (tM , ϕ). The chosen strategy accounts for species-speci�c factors: duration of
neurogenesis, distribution of time of birth and laminar position of neurons, and cell cycle dynamics.
However, having used the non-dimensional system, it does not depend on the initial size of the progen-
itor population. We then estimated the founder population P0 to quantitatively match the absolute
value of neurogenic output, corresponding to the dataset

(
N̄ , δ, µ

)
. Indeed, given the linearity of the

system, changes in the rate of post-neurogenesis death and interneuronal migration, will only o�set
the P0 estimate, and will not a�ect the estimated strategy (see equations (7) and (8)).

Finally, we note that the P0 estimate for the age-dependent cell cycle model changes considerably
when going from the baseline to the 1.5 fold ampli�cation, but not as much to the 2 fold ampli�cation
(see Figure 7). An intuitive explanation of this result can be given as follows. The predicted P0 will
mostly depend on the number of progenitor self-amplifying divisions happening before tS . Afterwards
most divisions will be neurogenic. The predicted time of switch for the 1.5 and 2 fold ampli�cations
is tS = E84.5 and tS = E56, after and before the change in monotonicity of the cell cycle length,
respectively (see Figure 8). Hence, the 2 fold ampli�cation strategy reduces production of progenitors
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earlier, in the phase where divisions are less frequent. The 1.5 ampli�cation strategy switches at a later
stage where divisions are speeding up. However, at these stages the cell cycle length is approximately
the same. For the baseline strategy the predicted time of switch is at tS = E90, when cells are cycling
almost twice as fast. Given this enhanced ampli�cation of the P population in the baseline case, the
founder population that matches the neurogenic output result is considerably smaller.

Figure 8: Age-dependent cell cycle length model for human progenitors. Ampli�cations are colour
coded as in Figure 7. Vertical dashed lines indicate the time of switch tS of the developmental strategy
predicted for the given ampli�cation.

4.4 Timing of strategy switch is key

We are interested in testing the robustness of the model to small variations of the estimated develop-
mental strategies. Local sensitivity analysis links the variation of model output y, to variations in the
parameter θ:

S =

∣∣∣∣ (y − y∗) /y∗

(θ − θ∗) /θ∗

∣∣∣∣ , (10)

where the asterisks denote the values of the parameter and solution at the �tted point.
Here the output of interest is the timely distribution of neurons between deeper and upper layers

according to (8):

y =

∣∣∣∣N(tF )− N(tF )

ϕ

∣∣∣∣ . (11)

and S is calculated for each one of the model parameters (α0, αS , νF , tS). Across species- and cell-
cycle-model- speci�c strategies, we consistently �nd the highest sensitivity to variations in the time
of strategy switch tS , and lower sensitivities to variations in the absolute prevalence of di�erent types
of divisions α0, αS , and νF . A representative example of local sensitivity (for the constant cell cycle
mouse strategy) is shown in Figure 9.

4.5 Analytical conditions on an expanding-then-shrinking proliferative zone

Experimental observations have consistently found that an initial expansion of the proliferating region
occupied by neural progenitors is followed by a progressive shrinkage [34]. As previously noted, if α
and ν are constant, the model would not be able to capture such time-dependent behaviour. We ask
under which parameter conditions can our time-dependent transition probabilities capture the non-
monotonic behaviour expected of the progenitor population, P . Restricting the analysis to a de�ned

11



Figure 9: Parameter sensitivity for mouse strategy with constant cell cycle. θ∗ indicates the reference
value for the corresponding parameter in the predicted strategy. Variations in the ±10% range are
considered.

region of the four-dimensional parameter space satisfying equation (5), it is possible to �nd a su�cient
condition for non-monotonicity.

Lemma 4.1 If 1/2 < νF < 1 then P (t) attains a maximum at t∗ ∈ (tS , tF ) , where

t∗ = tS +
αS − 1

αS − 2νF
(tF − tS) . (12)

In all other parameter regimes, P (t) is monotonically increasing for all t ∈ [t0, tF ] .

Coincidentally, the estimated strategies all are within this region. This means that the strategy pre-
dicted mathematically, by �tting the very limited temporal data available, is also biologically realistic.
Figure 10 shows the temporal evolution of the progenitor and neuronal populations in the mouse,
macaque and human neurogenesis models. In all species and both cell cycle models the progeni-
tor population follows the expected qualitative behaviour, recapitulating the expansion followed by
shrinkage of the proliferating region of the developing cortex.

An additional model prediction which �nds support in the biology is that at the end of neurogenesis
there is a remaining non-depleted progenitor population, i.e. P (tF ) � 0. Consecutive to the time
window of our interest is a gliogenic period, when the remaining progenitor population, following
a process similar to the neurogenic one, terminally di�erentiates in glia cells. Glia cells, including
astrocytes and oligodendrocytes, are essential for the maintenance of homeostasis, and are present in
the adult brain in numbers comparable to the neurons. Essential to their correct formation is the
presence of a non-depleted progenitor population at the onset of gliogenesis [45], which our model
reproduces.

5 Discussion

A complete biological system spans many temporal scales, from the di�usion of proteins across mem-
branes taking microseconds to the age related transitions of hair colour taking decades (see Figure 11).
Of course, when investigating a single phenomenon many of these time scales will decouple through
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Figure 10: Population dynamics resulting from di�erent species- and cell-cycle-model- speci�c devel-
opmental programmes.

the use of quasi-steady state assumptions, such that phenomena on faster time scales are always in
equilibrium within the current system state, whilst activities on slower time scales e�ectively do not
change over the time period of interest [46].

Figure 11: A visual example of biological time scales and their in�uence on hair colour. Left to right:
author Dr Thomas E. Woolley, Prof. Philip K. Maini and Prof. Jim D. Murray.

Here, we have considered the development of the mammalian cerebral neocortex, in which temporal
changes in cellular division strategy cannot be ignored. Namely, neural progenitor cells initially tend
to reproduce themselves through symmetric and asymmetric division, whilst later in development they
produce terminally di�erentiated neurons.

Despite the limited resolution of the experimental data currently available, we could recapitulate the
key temporal dynamics of cortical neurogenesis. Starting from a limited set of representative species,
we aimed at shedding light on the evolution of the mammalian cortex, by means of branching from
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a communal developmental process. In drawing conclusions regarding such divergent mechanisms, we
are highly constrained by the lack of experimental quanti�cation.

We highlighted the drawbacks in introducing a priori scaling assumptions on unknown quantities
such as the size of the founder population and the cell cycle length. Carrying out experimental quan-
ti�cations in brains of larger species, in particular the human, is challenging, costly, time-consuming
and at times limited by ethical considerations. As a result, the biological community studying cortical
development often adopts simplifying assumptions, invoking order-speci�c similarities (e.g. assuming
that all primates have similar cell cycle dynamics) or a priori scaling rules (e.g. extrapolating the rela-
tive increase in cell cycle length between mouse and macaque, deducing an even larger cell cycle length
in human progenitors). Since we intend to build a model that can mechanistically explain the cross-
species variation, we do not simply adopt scaling rules, but consider di�erent levels of ampli�cation of
the cell cycle length of human progenitors with respect to the macaque baseline. We then determine
the e�ects of di�erent levels of such ampli�cation on the predicted size of the founder population.
The high variation in the model prediction highlights the need to focus experimental resources on the
quanti�cation of cell cycle dynamics in human progenitors. Conversely sensitivity analysis suggests
that relative proportions of division modes are not as important as the switching time. The latter could
be important for developmental disorders, often associated with a mistimed switch between prolifera-
tive and di�erentiative divisions. An example is primary microcephaly, characterised by centrosomal
abnormalities that a�ect mitosis and cell fate speci�cation [47].

Further, although constrained by the lack of data, mathematical modelling has provided a number
of key insights that either clarify mechanisms, or direct future experimentation. For example, the
sensitivity analysis has allowed us to pinpoint exactly the parameters that need to be �nely tuned and,
thus, accurately derived from experimental observations. For the reader interested in understanding
the in�uence of perturbations to these �nely tuned parameters we o�er the neurogenesis simulator,
which can be used to quickly and easily calculate the outcomes as model parameters and assumptions
are varied.

Finally, we must question the reality of our result that humans have lower founder progenitor pop-
ulations when compared to macaques. Currently, this result �ts all experimental insights provided
by neurobiological colleagues [Pers. Comms, see acknowledgements] and accounts for all known data
[11, 12, 15, 16, 33, 34, 48, 49]. Moreover, there are evolutionary arguments in favour of this result.
Namely, our results regarding progenitor populations suggests that the developmental variations of
di�erent species simply arise from using the same conserved raw biological materials under di�erent
strategies, rather than demanding a di�erent set, or amount of, raw materials for each species. Con-
versely, if the neurogenic output correlated to founder population size then brains of larger animals
would be prohibitively large and not possible to produce.

In the future we intend to use our strategy space as means of mapping evolutionary trajectories
that describe neurogenesis in di�erent species. Further, we aim to use deviations from such strategies
as a means of diagnosing brain diseases that appear when the developmental program goes awry.
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