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Bootstrapping estimates of stability for clusters, 
observations and model selection 

 
Han Yu, Brian Chapman,  Arianna DiFlorio,  Ellen Eischen,  David Gotz,  Mathews Jacob,  
Rachael Hageman Blair* 
 
Abstract Clustering is a challenging problem in unsupervised learning. In lieu of a gold 
standard, stability has become a valuable surrogate to performance and robustness. In this 
work, we propose a non-parametric bootstrapping approach to estimating the stability of a 
clustering method, which also captures stability of the individual clusters and observations. 
This flexible framework enables different types of comparisons between clusterings and can 
be used in connection with two if possible bootstrap approaches for stability. The first 
approach, scheme 1, can be used to assess confidence (stability) around clustering from the 
original dataset based on bootstrap replications. A second approach, scheme 2, searches over 
the bootstrap clusterings for an optimally stable partitioning of the data. The two schemes 
accommodate different model assumptions that can be motivated by an investigator's trust 
(or lack thereof) in the original data and additional computational considerations. We propose 
a hierarchical visualization extrapolated from the stability profiles that give insights into the 
separation of groups, and projected visualizations for the inspection of the stability of 
individual operations. 
 
Our approaches show good performance in simulation and on real data. These approaches 
can be implemented using the R package bootcluster that is available on the Comprehensive 
R Archive Network (CRAN). 
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1 Introduction 
Clustering is used to group items in a dataset based on similarity. Generally, the clustering 
problem can be framed as an optimization problem, where the objective is to maximize the 
similarity within a group, and minimize the similarity between groups (Jain et al., 1999). 
However, performance and robustness is difficult to quantify and are very much a function of 
the data set at hand. In lieu of a gold standard, the stability of a particular clustering of a 
dataset can be used as a surrogate for performance and robustness. 
 
Various definitions, applications and estimations of stability have emerged in recent years. 
The overarching aim of stability is to capture how stable the clusterings are over several 
different representations of the data (Von Luxburg, 2009). These data representations are 
derived either through subsetting, cross-validation, data noising or re-sampling, among 
others. Different data representations have the potential to reveal different characterizations 
of stability for a clustering. Recently, Von Luxburg (2009) provided a survey on the use of 
stability for clustering data that emphasizes the sensitivity of the underlying structure to these 
data representations. Stability based on subsampling is an intuitive example of where this 
sensitivity can be readily observed, especially when the subsets are small. Another intuitive 
example is when the stability estimate is generated by adding noise to the data, which can 
easily erode any signal of structure, and give rise to misleading results (Hennig, 2007). Briey, 
we provide a basic overview of approaches to stability estimation for clustering, but refer the 
reader to Von Luxburg (2009) for a more comprehensive survey. 
 
The bootstrap (Efron and Tibshirani, 1994) has been leveraged to connect ensemble 
clustering and cluster stability estimation. Felsenstein (1985) used a non-parametric 
bootstrap (Efron et al., 1996) to infer phylogenetic trees in one of the earliest examples of re-
sampling for various summarizations over an ensemble of dendrograms. Kerr and Churchill 
(2001) proposed a residual bootstrap that shuffles residuals from an analysis of variance 
(ANOVA) model of gene expression data. Clusters from the bootstrap data were compared to 
the original clusterings to assess confidence in the various clusters. This approach is model-
based in the sense that the ANOVA model _t is required to obtain residuals, and also requires 
a suitable experimental design. Dudoit and Fridlyand (2003) propose applications of bagging 
to clustering that frames the unsupervised problem as the supervised classification problem 
of predicting cluster labels. Two bootstrapping schemes were proposed, BagClust1 
determines cluster membership by consensus from a bootstrap and permutation scheme, and 
BagClust2 derives a new dissimilarity matrix based on bootstrapped data that is then used for 
input for another round of clustering (Dudoit and Fridlyand, 2003). In both approaches, 
improvements in accuracy were observed. 
 
Fang and Wang (2012) proposed the use of the non-parametric bootstrap for the estimation 
of the number of clusters, k. The estimation of stability that they propose is a function of 
pairwise comparisons between B bootstrap samples. For each pair of bootstrap samples, the 
original data is projected onto the bootstrap clusterings, and distance between the 
projections is calculated using binary indicators, see Fang and Wang (2012) for details. The 
mapping of the data to the bootstrap clusterings is not explicitly described. For k-means, a 
possibility is to assign membership based on the distance to the closest center, but in 
hierarchical clustering, this may require the use of a pre- defined linkage. Improvements were 



observed over a cross-validation approach proposed by Wang (2010), which overestimates 
the instability of the clustering due to bias arising from the fold assignments. 
 
Clustering over various subsets of the data is another approach to stability estimation. Ben-
Hur et al. (2001) characterize stability through pairwise similarities of clusterings obtained 
from random subsets of the observations. Similarity is based on the Jaccard distance between 
cluster labels for the random subsets. High similarities between observations suggests a 
stable clustering, and the authors demonstrate that this approach is a reliable way to select 
the number of clusters, and to assess the overall lack of structure in the data (Ben-Hur et al., 
2001). 
 
Tibshirani and Walther (2005) proposed a method for estimating the number of clusters by 
re-casting the unsupervised problem into a supervised classification problem, similar in spirit 
to Dudoit and Fridlyand (2003). Framing the problem in this way enables the calculation of 
prediction strength, which quantifies how well a clustering with k groups can be predicted by 
the data. Prediction strength is used for the purpose of model selection. For each k, repeated 
cross-validation is used to form training and test datasets, and prediction strength is 
calculated pairwise for observations in the test data. Specifically, the training and test data is 
clustered separately for a fixed k. The test data is then projected onto the training clustering. 
For example, in the k-means setting, this projection amounts to membership labels based on 
the nearest centroid. For all pairs assigned to the same cluster in the test data, those pairs 
that are also assigned the same cluster (or not) in this projection are deemed to have a stable 
co-membership (or not). For each cluster, the proportion of co-members that stably map 
together when projected onto the training set is then computed, and the prediction strength 
is defined to be the minimum of these proportions. 
 
Within the prediction strength framework, an estimate of prediction strength at the individual 
observation level is also defined (Tibshirani and Walther, 2005). Similar to calculations at the 
cluster level, the estimation of prediction strength at the individual observation level is done 
in a pairwise manner. The estimate of prediction strength for an individual, i, is estimated as 
the proportion of pairs (i; i0) in the test cluster Ak(i) that map to together with i when 
projected onto the training set, is the proportion of pairwise co-memberships for all i0 6= i, 
within the assigned cluster in the test data that stably map together when projected onto the 
training set. In this work, we also emphasize stability at the individual level, but define it as 
an estimate of how stable an individual maps to the same cluster across bootstrap samples. 
 
Hennig (2007) proposed a method to estimate cluster-wise stability through bootstrapping 
and other re-sampling approaches. In this framework, the stability of an original cluster is 
estimated by the mean maximal Jaccard coefficient. The stability measure is specific to the 
clustering of the original data, as the comparisons are made between all of the re-sampled 
clusterings, and the original data clustering. A limitation of this approach is the implicit 
requirement of mapping between the re-sampled and original clusters. Importantly, during 
the re-samplings, it is possible that an original cluster is not detected through the mapping. 
When this occurs, the method simply ignores the re-sampled clusterings for the estimation 
for that cluster. Consequently, this can potentially lead to an overestimation of stability, since 
a cluster that does not consistently emerge during re-samplings is actually an indication of 
instability that is not accounted for. In addition, as a measure of cluster similarity, the maximal 



Jaccard coefficient is not symmetric (although the Jaccard coefficient itself is symmetric). Due 
to asymmetricity, a one-to-one mapping between clusters arising from different clusterings 
is not guaranteed, thus searching for maximum will tend to result in an overestimation. 
 
In this work we propose stability estimates based on the non-parametric boot-strap. Our 
approaches offer several advantages over existing methods for stability estimation. (1) To our 
knowledge, this is the first bootstrapping approach for cluster stability that can guide in the 
determination of the number of clusters and also retains valuable interpretations of stability 
at the level of the cluster and individual observation. (2) Two bootstrapping approaches to 
stability are developed that reflect different model assumptions, which can be motivated by 
an investigator's trust (or lack thereof) in the original data. Specifically, the first approach, 
scheme 1, can be used to assess confidence (stability) around clustering from the original 
dataset based on bootstrap replications. Whereas, a second approach, scheme 2, searches 
over the bootstrap clusterings for an optimally stable partitioning of the data. (3) Both 
bootstrap approaches directly estimate the conditional stability through comparisons 
between clusterings that depend on symmetric measure of cluster similarities. (4) Different 
visualizations are proposed, such as hierarchical visualizations extrapolated from stability 
profiles that reflect separation and stability of inferred clusters and projected visualizations 
for the inspection of individual stability. In this work, we focus on k-means, but the approach 
can be generalized to other clustering methods. The R (https://www.r-project.org/) package, 
bootcluster, is available on the Comprehensive R Archive Network (CRAN) and supports 
bootstrap stability estimation using these approaches. 
 
2 Methods 
In this section, we outline different approaches to estimating cluster stability that are based 
on non-parametric bootstrapping. The objective is to estimate how stable the clustering is (1) 
overall, (2) at the cluster level, and (3) at the individual observation level. This is achieved 
through the estimation of cluster centers for the original data and bootstrapped datasets, the 
projection of the data onto the partitions estimated from the bootstrapped datasets, and the 
comparisons of these mappings. Two bootstrapping schemes are illustrated in Figure 1, which 
differ in the nature of their comparisons. Scheme 1 (Figure 1A) depicts a scenario in which the 
clusterings arising from the bootstrapped datasets are directly compared to the clustering of 
the original data. In scheme 2 (Figure 1B), the clusterings arising from the bootstrapped 
datasets are compared to the clusterings of the original data, and to each other. These 
approaches can be implemented using the R package bootcluster that is available on CRAN. 
 
In the following sections, we propose two approaches that can be used to make the 
comparisons that underly the stability estimates used in scheme 1 & 2 (Figure 1).We define 
naive stability (Section 2.1) as estimates that rely on the crude indicators (0-1) to capture a 
stable mapping, or lack thereof, when the data points are _t to the bootstrapped centers. An 
alternative approach is presented that utilizes the Jaccard index (Section 2.2) to estimate the 
stability in the same basic framework. For simplicity, we develop these approaches for the k-
means algorithm, but the methods are generalizable to other prototype and non-prototype 
methods. More-over, we describe the naive and Jaccard-based formulations within the 
scheme 1 framework, but these formulations are used in connection with both bootstrapping 
schemes, and are both implemented in our applications. 
 



2.1 Bootstrapping estimation of naive stability 
 
In this work, we define naive stability in a straightforward manner. By applying a clustering 
algorithm to a dataset, each observation included is assigned a cluster label. If we have a 
bootstrapped sample, then new cluster assignments will be obtained, which leads to a 
different partition of the feature space. This causes changes in the labels of some 
observations and also in the members of certain clusters. The observations that switch labels 
frequently across bootstrap re-samplings are regarded as unstable. Therefore, the naive 
stability of an observation can be measured by the frequency that it remains in a cluster across 
re-samplings. 
 
This procedure is outlined in Algorithm 1, where X = (X1;X2; : : : ;Xn)T is the sample of size n, 
and Xb is the data set from bth re-sampling. The notation C is used to denote a clustering, 
with Cb as the clustering on the bth re-sampled data. Further, Cb i denotes the set of data 
points in the ith cluster of Cb, while C(Xi) is the set of all data points in the cluster that contains 
Xi. A limitation to the naive approach is that clusters from different re-samplings have to be 
mapped to each other. In our applications, the minimum Euclidean distance between cluster 
centers is used for the mapping. Note that in Algorithm 1 and 2, the number of clusters, k, is 
fixed for the calculation of bootstrapped stability. In practice, this algorithm should be 
implemented several times over a range of k values to estimate the number of clusters. 
 
2.2 Bootstrapping estimation of Jaccard index based stability 
 
For the naive estimation of stability proposed in Algorithm 1, we defined stability at the 
observation level as the probability of an observation consistently being as- signed to the 
same cluster. However, the naive stability estimation of Algorithm 1 requires the mapping 
between centers from different re-samplings. This can be an issue when a cluster is broken 
down into multiple smaller clusters in a re-sampled clustering. This problem can be 
circumvented by using the change in pairwise co-membership. 
 

 
 
To motivate the use of the Jaccard coffcient, let us first consider the Hamming distance 
between clusterings, which are based on such pair-wise relationships. Let C and D be two 
clustering partitions of X, which is distributed as P. We use the notation xi _C xj , when xi and 



xj belong to the same cluster of C, and xi _C xj otherwise. The Hamming clustering distance 
between two clusterings, C and D, is de_ned as: 

 
where  is the logical XOR operation. Along the same lines, the similarity between 
two clusterings can be de_ned as: 
 

 
 
 
which is constructed based on agreements on each co-membership between two 
clusterings, C and D. Let the similarity at the individual level as: 

 
Thus, the overall similarity can be decomposed in terms of each observation: 
 

 
where, Sim(xi; C;D), can be expressed as: 
 

 
Upon inspection of Sim (xi; C;D), it is immediately clear that the summation j6=i I(xi _C xj)I(xi _D xj) is expected 
to be large and dominating, which will tend to send Sim(xi; C;D) ! 1. Ignoring this part, Sim(xi; C;D) can be 
redefined as: 

 
The definition of overall similarity remains, except that the observation-wise similarity Sim(xi; C;D) is replaced 
by A(xi; C;D) in Equation(1): 
 



 
Let C0; : : : ; CB be the clusterings obtained from original data and B re-sampled data sets, then we define 
conditional observation-wise and overall stability estimated as: 
 

 
 
and unconditional overall stability: 
 

 
 
Notably, unconditional cluster-wise stability cannot be defined. Moreover, although the 
unconditional overall stability can be defined, we emphasize that it is generally not useful 
because it does not reflect the feature of a specific clustering. Therefore, all the stability 
estimates in this study are conditional on a reference clustering. By this definition, we propose 
the Jaccard index based stability, and the bootstrapping approach for estimation in Algorithm 
2. This algorithm proceeds similarly to Algorithm 1, but with some key differences. For each 
bootstrapped dataset, k-means is applied to obtain estimates of the centers mb. Note that 
each observation, xi, is then mapped to the closest center using Euclidean distance. Finally, 
the Jaccard coefficient is computed between the bootstrapped and reference clusterings. 
 
In these approaches, the fact that the bootstrapped datasets may contain repeated 
observations, and may omit some observations, is not problematic. This is because the 
bootstrapped dataset is used to update the mean estimates (centroids) in each iteration of k-
means. If multiple instances occur in a data set, then within k-means, these multiple instances 
will be assigned the same cluster membership and used to update the means accordingly. On 
the other hand, if an observation does not occur, it will not enter into the clustering of the 
bootstrapped sample. However, once the k-means clustering has been carried out until 
convergence on the bootstrapped data, the means from the clustering are used to map each 
observation in the dataset, xi, to a cluster (xi �! mb) in order to obtain its membership, Cb(x), 
which is based on the minimum distance to the mean centers. This process can be understood 
in the first couple of lines within the for loops in Algorithm 1 
and 2. 
 



 
 
2.3 Properties of Jaccard-based observation-wise stability estimation 
 
We propose that A(xi; C;D) is a valid measure of observation-wise clustering similarity. Specific 
information is quantified from A(xi; C;D) about xi, and its value ranges from 0 to 1. When C(xi) 
and D(xi) have exactly the same members, we have A(xi; C;D) = 1, meaning clusterings C and 
D are identical with respect to xi, although C and D can be very different with respect to other 
observations. When C(xi) and D(xi) have completely different members except for xi, then 
A(xi; C;D) = 1 jC(xi)[D(xi)j ! 0 as jC(xi) [ D(xi)j ! 1. On the other hand, this is not true for Sim(xi; 
C;D). For example, if we have n = 100, and jC(xi)j = jD(xi)j = 10, then in the above case we will 
have A(xi; C;D) = 1=20 = 0:05, which is close to 0, while Sim(xi; C;D) = (1 + 80)=100 = 0:81. 
Inherently, Sim(xi; C;D) is very sensitive to both sample and cluster sizes, and the 
interpretation of simiPlarity and stability would vary among different data sets. Dropping the 
term j6=i I(xi _C xj)I(xi _D xj) would have the effect of scaling the support of A(xi; C;D) to 
approximately to (0; 1], and thus maintain consistent interpretation of the similarity and 
stability across data sets. 
 
The measure, A(xi; C;D) = A(xi;D; C), is a symmetric measure of similarity between C and D 
with respect to xi. This property justifies the comparison of a fixed clustering with all other 
clusterings at the observation level, by which the conditional stability is defined. We propose 
that the conditional stability is important in that it retains the specific information for the 
reference clustering. We illustrate this concept with a simple example. Let C1; C2; : : : C101 
be a set of 101 clusterings, based on the original data clustering and re-sampled clusterings. 
Suppose that C1(xi) \ Cj(xi) = fxig; j = 2; 3; : : : ; 101, and C2(xi) = _ _ _ = C101(xi). In addition, 
we assume jCj(xi)j = 10; j = 1; 2; :::; 101. The observation-wise clustering similarity is calculated 
as, A(xi; C1; Cj) _ 0:05; j = 2; : : : 101, and A(xi; Cj ; Ck) = 1, for 2 _ j 6= k _ 101. Furthermore, it 
can be shown that the conditional stability estimate (Equation 4) is Sobs(xi; C1) _ 0:05, while 
Sobs(xi; Cj) _ 0:99. The interpretation is that, the clustering of xi in C1 is unstable, but are 
stable in Cj ; j = 2; 3; : : : ; 101. However, if the unconditional overall stability (Equation 5) is 
used, then the estimates will be erroneously concluded that the results are generally stable, 
regardless of the clustering it refers to. 
 



2.4 Bootstrapped estimate description in mathematical terms 
 
The stability estimates arising from bootstrap schemes 1 and 2 (Figure 1) can be expressed as 
conditional and unconditional expectations, respectively. Let Xi be a random variable such 
that Xi _ F(x) and X = (X1;X2; : : : ;Xn)T , while Y is another independent sample drawn from 
the same distribution. Let CX denote the partition of sample space that corresponds to a 
sample X, and CX(x) denote the set of all points in sample space that are within the same 
partition of x. Then, wedefine the similarity between two partitions CX and CY with respect to 
x as: 

 
and the overall similarity as: 
 
A(CX; CY) = Ex(A(CX; CY j x)): 
 
The overall stability with respect to a sample X, which is estimated by scheme 1 (Figure 1A), 
can be defined as: 
 
Sover(CX) = EXY(A(CX; CY) j CX); 
 
where EXY takes the expectation over both X and Y. On the other hand, the unconditioned 
stability estimated by scheme 2 (Figure 1B) can be expressed as: 
 
Sover = EXY(A(CX; CY)): 
 
The individual stability is more meaningful in the conditioned scheme 2, and can be de_ned 
as: 
Sobs (x j CX) = E (A(CX; CY j x) j CX) : 
 
The cluster-wise stability is defined as the integration of Sobs(x j CX) within a corresponding 
partition with respect to x. 
 
2.5 Estimation of k 
 
The stability estimates can be used for selecting the number of clusters, k. For this purpose, 
the bootstrapping schemes should be carried out over a range of k values, resulting in a 
stability profile. However, instead of directly using the overall stability, we calculate cluster-
wise mean Jaccard index during each re-sampling, record the minimum, and then average the 
minima across the B re-samplings. This measure is defined based on observation-wise 
similarity, such that it will have a large drop when ^k is greater than the true number of 
clusters k, and be independent of the value k. The overall stability does not always have such 
desirable properties. For example, when ^k = k+1, there will always be at least one group 
randomly split into at least two clusters, leading to a drop in stability. However, when k is 
large, this drop may be washed out in the average of stability, which is calculated over 
a large number of clusters. In contrast, the proposed measure, denoted by Smin, only records 
the minimal cluster-wise similarity from each re-sampling, such that the effects of random 



splitting of groups will stand out, regardless of k. A similar minimum estimate is also utilized 
in the prediction strength method (Tibshirani and Walther, 2005). 
 
2.6 Simulations 
 
A series of simulations are used to assess and benchmark the performance of the proposed 
bootstrapping stability methods. Our first simulation sets out to examine the consequences 
from subsetting the data for stability estimation compared to the re-sampling bootstrap 
approach. We examined scheme 1 using a naive for mutation given in Algorithm 1 to compare 
estimates arising from subsets of the data of dwindling sizes. The naïve formulation given in 
Algorithm 1 allows for the direct comparison of the clustering results between the re-
sampling and subsetting approach. For visual purposes, two clusters were simulated in two 
dimensions, the clusters are standard normal variables with (50; 50) observations per group, 
centered at (0; 0) and (2; 0), respectively. 
 
Following Tibshirani and Walther (2005), we also simulated six scenarios to examine the 
performance with respect to selection of the number of clusters, k. The proposed bootstrap 
schemes were tested, along with the pairwise bootstrap pro- posed by Fang and Wang (2012) 
and prediction strength (Tibshirani and Walther, 2005). The pairwise bootstrap and prediction 
strength were implemented in the R programming language (https://www.r-project.org) 
using the package fpc. Each of the following simulations was performed 50 times. 
 
1. Null model: A null model simulation was performed using 200 data points uniformly 
distributed over the unit square in ten dimensions. 
2. Three-cluster model: Three clusters were simulated in two dimensions: the clusters are 
standard normal variables with (25; 25; 50) observations per group, centered at (0; 0), (0; 5) 
and (5;3). 
3. Random four clusters in three dimensions: Four clusters were randomly chosen to have 25 
or 50 multivariate normal observations with the covariance matrix as the identity matrix, I, 
and cluster centers randomly chosen from N(0; 5 _ I). Simulations with clusters having 
minimum distance less than 1:0 units between them were discarded. 
4. Random four clusters in ten dimensions: Four clusters were randomly chosen to have 25 or 
50 multivariate normal observations with the covariance matrix as the identity matrix, I, and 
cluster centers randomly chosen from N(0; 1:9 _ I). Simulations with clusters having minimum 
distance less than 1:0 units between them were discarded. In this and the previous scenario, 
the settings are such that about one-half of the random realizations were discarded. 
5. Two elongated clusters: Two elongated clusters were simulated in three dimensions. Each 
cluster is generated as follows: set x1 = x2 = x3 = t with taking on 100 equally spaced values 
from �0:5 to 0:5 with Gaussian noise with standard deviation 0:1 is then added to each 
feature. A second cluster is generated in the same way, except that the value 10 is then added 
to each feature. The result is two elongated clusters, stretching out along the main diagonal 
of a three-dimensional cube. 
6. Two close elongated clusters: Two close and elongated clusters were simulated in three 
dimensions. As in simulation five, a second cluster was generated in the same way as the first 
cluster. The value of 1:0 is then added to the first feature only. 
 
2.7 Applications to real data 



 
The bootstrap approaches were applied to four different datasets that range in terms of 
complexity. Each dataset can be found in the UCI machine learning repository (Lichman, 
2013). The iris and wine data are well-studied for classification and clustering. The iris data 
has 150 observations and four features. The wine data has 178 observations and 13 features. 
Iris and wine each have three classes that are not used for the clustering, but rather in a post 
hoc manner to assess performance. 
 
The NCI60 microarray data set contains 64 samples representing 12 different types of cancer 
and 6; 830 gene expression features (Ross et al., 2000). The first two principal components 
(PCs) were used for clustering. The image segmentation data set was derived by randomly 
sampling from a database of 7 outdoor images (Lichman, 2013). The images were hand-
segmented to create a classification for every pixel. The total of 2; 100 instances 
(observations) consist of 7 classes, with 300 observations per class. Although 19 features were 
present, six features were excluded due to redundancy or being uninformative. As with the 
iris and wine data sets, the class labels are not used in the clustering. To our knowledge, the 
image segmentation data has not been studied for clustering, whereas the other datasets 
have been. Linear discriminant analysis was applied to the image data in order to obtain a 
general assessment of the separability of the different classes of images (Hastie et al., 2001). 
 
For the real data examples, we constructed a hierarchical visualization of the clusters derived 
from the stability profile. The hierarchy is derived by first selecting the largest k with stability 
Smin above 0:9. These k's correspond to well-separated clusters, or the ones that can be easily 
detected by the algorithm. The second largest k with the stability Smin above 0:8 but below 
0:9 is selected to represent finer cluster structures that are more challenging to detect (for 
example, more overlapped clusters). 
 
3 Results 
Stability estimation via repetitive subsetting is performed by randomly drawing a subset of 
observations without replacement multiple times (Ben-Hur et al., 2001; Tibshirani and 
Walther, 2005). Our first simulation was motivated by the fact that stability for prototype 
methods is closely related to the variability of centroids, which in turn is a function of sample 
sizes. Subsetting leads to a smaller sample size, and subsequently to an underestimation of 
stability and larger variance in estimates. Due to differences in defining clustering distances, 
stability or other characterizations of a clustering, estimates from different approaches are 
not directly comparable. For example, prediction strength (Tibshirani and Walther, 2005) and 
Boot2012 (Fang and Wang, 2012) rely on agreements of co-memberships, while Ben-Hur et 
al. (2001) uses Jaccard distance. However, all of them depend on the changes in item 
memberships. We examined the consistency of the predicted membership of a grid of data 
points in sample space between bootstrap resampling and repetitive subsetting in a balanced 
2-cluster model (Figure 2). In this simple model, the exact mapping between resampled 
clusters and original ones is known, which enables the determination of membership switch. 
Figure 2A-C depicts the frequency of a point retaining its original membership on a gray scale. 
The light gray areas have low frequencies of membership changes, while those in darker gray 
areas tend to change membership more often. The differences between bootstrap 
resampling (Figure 2A) and repetitive subsetting with 1=2 the data (Figure 2B) are subtle, but 
the dark gray area (unstable region) for repetitive subsetting with 1=2 the data is larger than 



that of the bootstrapping. Naturally, the effect is much more striking when repetitive 
subsetting with 1=4 of the data (Figure 2C). The bias and standard errors were also found to 
be higher for the repetitive subsetting (Figure 2D-E). 
 
Bootstrapping stability based on the Jaccard index for the determination of the number of 
clusters, k, was also examined. Table 1 shows the performance of three methods for the 
selection of k for six classic simulation scenarios that were simulated 50 times and estimated 
using the prediction strength approach (Pred str) (Tibshirani and Walther, 2005), the pairwise 
bootstrap data comparisons method (Boot2012) (Fang and Wang, 2012), and our proposed 
Jaccard-based bootstrap estimate of stability using scheme 1 (Boot-min-S1) and scheme 2 
(Boot-min-S2). Results indicate that our method is comparable, and in some scenarios 
outperforms prediction strength, while generally better than Boot2012. The stability profiles 
for difference settings are shown in Figure 3. The simulation results also support our 
argument that Boot2012 usually has poor performance for asymmetric settings 
(three-cluster model and random four-cluster model) due to its criteria of maximum stability. 
Furthermore, this criteria also makes it impossible for Boot2012 to detect a null model. The 
difference between Boot-min-S1 and Boot-min-S2 is often subtle (Table 1), with Boot-min-S2 
identical or slightly superior in all settings except for the null model estimation. With the 
exception of Boot2012, the errors in the selection of k are rather conservative in the sense 
that they tend to underestimate k, rather than overestimate. The proposed bootstrapping 
schemes clearly outperform both Boot2012 and Pred Str for the two close elongated cluster 
simulations (Table 1). 
 
Boot-min-S1 and Boot-min-S2 were applied to the iris data, which has three classes. Boot-
min-S2 suggests the correct number of clusters (k = 3) (Figure 4A), whereas Boot-min-S1 
selects k = 2, with only a marginal difference in stability from Boot-min-S2. Comparatively, 
both prediction strength and Boot2012 imply two clusters due to the severe overlapping 
between species Virginica and Versi color in feature space (data not shown). This further 
illustrates the advantage of our method in dealing with asymmetrically distributed and 
overlapping clusters. 
 
The individual stability plot includes three categories of stability, high (> 0:9), moderate (0:8 
� 0:9) and low (< 0:8) (Figure 4C). The stability of the observa- tions for Boot-min-S2 (k = 3) 
naturally reveals more unstable points towards the boundaries of the clusters. For the iris 
data, we also considered two different representations of the data, one based on the first two 
PCs, and another using only sepal width and length. Visualizations of individual stability 
suggest that the less stable clusters (Supplemental Figure 1E) contain a higher proportion of 
unstable points (Supplemental Figure 1 C-D), as expected, which is a trend we will see in the 
other datasets. 
 
With a pairwise distance, the clustering results can be projected into a clustering space using 
multi-dimensional scaling (MDS), where each clustering is represented as a point, and the 
clustering space can be visualized to observe the regions of high (black) and low (white) 
density (Figure 4E). Note that Equation (3) provides a Jaccard index based similarity that is a 
symmetric measure for each pair of the clusterings, A(Ci; Cj ), where 0 _ i; j _ B. Therefore, the 
distance between the clusterings can be de_ned as 1 � A(Ci; Cj ). 
 



The three classes in the wine data are approximately Gaussian distributed. Pred str, Boot2012, 
Boot-min-S1, and Boot-min-S2, all correctly indicate three clusters. Figure 4B shows the 
profile across different values of k for Boot-min-S1 and Boot-min-S2, respectively. The 
individual observation stability is viewed on PC axes (Figure 4D), although the clustering was 
done using all 13 features. The instabilities are naturally occurring at the boundaries, as these 
observations are more likely to change labels during repetitive re-sampling from the 
population. On the contrary, points in well separated clusters generally have higher stability 
levels. Figure 4F shows the re-sampled clusters using MDS. The clusterings selected by scheme 
2 generally locate at the center of the points. Analogous to the minimization of average 
Euclidean distances by sample mean, scheme 2 can be viewed as an approach to obtaining an 
average of the bootstrapped clusterings, or a version of bagging. 
 
The first two PCs of the NCI data were used to cluster the cancer samples. Application of the 
Boot-min-S2 method revealed three clusters (Figure 5A-B). Prediction strength (Tibshirani and 
Walther, 2005) indicated no cluster structure (1 cluster), which may be due in part to the 
smaller sample size and heterogeneity of the tumor samples. The effect of subsetting on 
exaggerating the variability of cluster centers is more severe for a small data set. Boot2012 
(Fang and Wang, 2012) suggests _ 20 clusters. Figure 5C-E indicate that all melanoma samples 
cluster together (Cluster 3) with high stability, while the samples at the boundary of Cluster 2 
and 3 are less stable. The cluster assignments tend to keep samples from the same cancer 
together, with the exception of breast which is almost evenly spread over the three clusters 
(Figure 5E). Examination of individual bootstrap samples (Supplemental Figure 3) reveals 
known challenges for the k-means algorithm due to the disparity in cluster shape, specifically 
elongation and imbalance between groups. Notably, the NCI microarray data does not show 
any clear cluster structure if the genes are used instead of a PCs. In this case, both prediction 
strength and Boot-min-S2 again indicate k = 1, and Boot2012 suggests k _ 20. 
 
The image segmentation dataset consists of overlapping features and a larger number of 
classes (seven). The stability analysis suggests four clusters by a criteria of 0:9 (Figure 6A). This 
threshold is very stringent, and is more suitable for better separated cases, as was seen in the 
simulation settings. If we relax it to 0:8 to allow larger extent of overlap, then six clusters will 
be detected (Figure 6A). Figure 6B shows the clustering result in a PC space. It has been 
reported that the k-means clustering may not be optimal for image dataset, because even 
when the true number of classes is used (k = 7), the agreement between cluster and class 
labels is still low (Falasconi et al., 2010). This is also apparent in our clustering result (Figure 
6E) Individual observation stability (Figure 6C) and cluster stability (Figure 6D) indicates that 
clusters 5 and 6 have highest stability, which corresponds to a 
large proportion of sky and grass samples (Figure 6E). Visualizing these points, it becomes 
more apparent that the stability of a cluster depends on the proportion of unstable points 
and the degree of their instability. The least stable cluster (cluster 1 in Figure 6B) is comprised 
of nearly all points in a moderate stability range, it is thus clear that the stability of this cluster 
would be in the moderate range (_ 0:81). Clusters 2-4 also have lower stabilities, and pairs 
(Clusters 1 and 3, and Clusters 2 and 4), are more similar (Figure 6E). This may be due to the 
fact that these classes are less separable. To further investigate this, we performed linear 
discriminant analysis and found that cement, foliage and window are poorly classified when 
compared to sky and grass (Supplemental Table 1). 
 



4 Discussion 
 
The stability of a clustering captures the uncertainty of groupings and has been widely used 
to characterize the results, primarily in the context of model selection. Stability has been 
defined in a variety of ways that derive from different data representations such as 
bootstrapping, subsetting, or cross-validation. In this work, we have proposed two schemes 
for estimating stability via non-parametric bootstrap. A major advantage of both schemes is 
that stability can be estimated overall, as well as at the cluster and individual observation 
levels, which offers deeper insights into cluster structure and enables higher flexibility in 
model selection (e.g., Smin estimation). Moreover, because of the symmetric measure of 
observation-wise clustering similarity, it becomes possible to condition all levels of stability 
on a reference clustering. Therefore, all stability-related results are with respect to the 
reference. 
 
The difference between the two schemes for stability estimation is the clusterings that are 
compared. In scheme 1, the original data clustering is trusted in the sense that the stability is 
conditional on the inferred clusters from the original data. This scheme mimics classical 
applications of the bootstrap that aim to assess confidence of an estimate (Efron et al., 1996). 
However, in practice this may be not be ideal for noisy data. In scheme 2, the clustering of 
the original data is not trusted to the same degree. On the contrary, the data is bootstrapped 
to find the most representative clusters, which is determined through the pairwise 
comparisons of bootstrapped clusterings. Additional factors may play into deciding between 
scheme 1 and 2. From the point of view of stability estimates, scheme 2 will always produce 
more stable clusters, as it selects the most optimal from the exhaustive set of pairwise 
companions between clusterings. However, this requires massive computation. For model 
selection, scheme 2 will also always capture the overall stability calculated with scheme 1 by 
design. However, we hypothesize that there will be additional bias' in the stability estimates 
at the cluster and individual level using scheme 2. An area of future research will assess the 
utility of these approaches with out of bag estimates of stability to capture the generalization 
and predictive capabilities of clustering method to assign group membership to new samples 
(Breiman, 1996). 
 
Within the bootstrapping schemes, the comparison between clustering can be made via naive 
or Jaccard-based estimates of stability. These have relatively similar formulations. However, 
the ways in which they compare clustering capture different features of the stability. The 
naive approach uses 0-1 indicators to record whether an observation changes cluster 
membership, and it relies on the mapping between clusters from different clustering results. 
In the case of k-means, this can be achieved through the minimal Euclidean distance between 
centroids. An important limitation of the naive approach is with respect to mapping and the 
inaccuracies that can arise when the clusters are nested, e.g., a cluster is broken into two 
smaller clusters in the bootstrapped clustering of the data. This issue arises because the 
similarity between clusterings is asymmetric for naive stability estimates. These can be 
avoided by tracking the changes in co-memberships be- tween different clusterings, as in Ben-
Hur et al. (2001); Tibshirani and Walther (2005), among others. Our implementation of 
Jaccard-based stability is motivated by the idea of monitoring changes of co-memberships, 
and reflects our confidence in a clustering at various levels of the method, clusters, and 
individual samples. 



 
A limitation of our approaches is the need to set a threshold for estimating k. In practice, a 
threshold of 0:9 works well when the clusters are well separated or mildly overlapped 
(Supplemental Figure 4). In our real data applications, when the boundaries are less clear, it 
is advantageous to take a more liberal threshold of 0:8. However, stability ranges and profiles 
may vary due to different characteristics of the data. In application, we strongly suggest a 
coupling of the stability profiles with a visualization of the hierarchical organization via a 
dendrogram, which may provide insights into the separations (or lack thereof) of a complex 
feature space. Taken together with the stability estimates of the individual clusters and 
samples, additional insight can be gained for the selection of k. Note that prediction strength 
(Tibshirani and Walther, 2005), also requires a similar form of thresholding for model 
selection. In fact, the same thresholds, 0:9 and 0:8, are used in their 
examples. 
 
In terms of comparisons, our methods are closest to the bootstrapping approach described 
in Fang and Wang (2012). The performance differences between our method and Boot2012 
is due in part to the underlying definitions of stability and the distinct criteria for determining 
k. Boot2012 does not require thresholding, but suffers from other drawbacks. In our 
approach, we define stability at the observation level, which provides higher flexibility on the 
criteria. In particular, it enables estimation of Smin and the usage of a criteria similar to the 
prediction strength approach (Tibshirani and Walther, 2005). On the other hand, the usage of 
maximum stability as criteria for estimating k in Boot2012 makes it impossible to detect null 
structure, as the stability will always be 1 when ^k = 1. Such criteria also tends to be 
conservative when the data structure is asymmetric (Von Luxburg, 2009). This can be 
overcome by using other criteria such as thresholding. However, as discussed in Section 2.5, 
the change in overall stability when ^k > k depends on sample size and the drop in overall 
stability can be washed out in averaging, which may pose challenges in model selection. The 
definition of Boot2012 stability by using an overall measure precludes its usage of a threshold 
criteria. 
 
The prediction strength approach can provide an estimate for the individual observation 
(Tibshirani and Walther, 2005). However, due to repeated k-fold cross validation, these 
estimate may be inaccurate. For example, in the case of k-means, the feature space is 
partitioned according to the minimum distance of a point to cluster centers. Therefore, there 
are two factors affecting the individual stability: location of true cluster centers and variation 
of the estimates for the centers. The variation of an estimator is usually a function of sample 
sizes. However, by only sampling a part from the original sample, as is done repeatedly in 
prediction strength, the variation of the estimates for centers are expected to be over-
estimated, and result in an under-estimation in stability. This is not an issue for prediction 
strength when used for the selection of the number of clusters, k, because it takes the 
minimum (least stable cluster) as the conservative prediction strength estimate. However, at 
the individual level, this is not a possibility. We therefore believe that our approach offers less 
bias with respect to stability estimation of an individual observation, although investigation 
through a controlled simulation would be challenging. Notably, if we view the prediction 
strength as a surrogate for stability, then the measure on the similarity between two 
clusterings is asymmetric, which precludes the definition of conditional stability as in this 
study. 



 
Hennig (2007) proposed an approach to estimate cluster-wise stability through using mean 
maximal Jaccard coffcient. However, the estimation can be inaccurate, because it implicitly 
requires mapping between re-sampled and original clusters, and as discussed, the maximal 
Jaccard coffcient as a cluster-wise similarity measure is asymmetric. Also, it does not provide 
any information of the stability of individual observation. On the other hand, our approach 
does not require this re-mapping and uses a symmetric measure of similarity. Moreover, the 
exibility of our approach enables the user to calculate stability with respect to the initial data 
clustering, as in Hennig (2007), but also enables a search over the bootstrap replicates for a 
more likely clustering (scheme 2). 
 
In this work, we focus on k-means for simplicity. However, the methods described can be 
generalized to other clustering methods. In the case of k-means, observations are mapped to 
the prototypes (estimated means from bootstrappeddata b) xi �! mb estimated to obtain 
bootstrapped membership Cb(xi). Alternative methods can be used as long as the mappings 
are well-dined, e.g., linkage in hierarchical clustering. In fact, the bootstrap can be used as a 
means to bench-mark and select the best suited clustering methods for a particular data set 
via the overall stability estimates. An area of future research is to combine results across 
different clustering methods in an ensemble fashion. A hypothesis is that different methods 
capture different features of the population better than others, combinations across methods 
may improved cluster assignment if coupled or weighted by stability estimates. 
 
In conclusion, the stability of a clustering offers insights into the quality of a method and 
clustering for a dataset. We have developed novel methods for stability estimates based on 
the non-parametric bootstrap. Our approaches perform well in the selection of the number 
of clusters, but also offer an additional layer of model interpretation at the cluster and 
individual level. The two proposed bootstrapping schemes provide stability estimates that 
react different forms of uncertainty in the data, which may reflect an investigator's lack of 
trust in the original data clustering and the data itself. Visual interpretations of stability have 
been proposed to complement the estimates and guide the investigator in assessing the 
results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Tables 
Table 1 Performance for identifying the number of clusters, k, for six different simulations of 
50 datasets each. Results are shown for prediction strength (pred str), bootstrapping 
proposed by Fang et al. (Boot2012), and bootstrapping scheme 1 (Boot-min-S1) and 2 (Boot-
min-S2). The asterisk * indicates the true number of clusters. 
 

 

 
 

 

 



Figure Legends 
Figure 1: Schematics for bootstrapping schemes for estimating clustering stability. (A) Clusters 
are estimated from the data, C0. Bootstrap data sets are sampled from the data with 
replacement (B1; : : : ;Bp) and clustered (C1; : : : ;Cp). The bootstrap clusterings are compared 
only to the original clustering of the data, C_ 0, using a naive 0-1 approach to membership, or 
a Jaccard coefficient. (B) Similar to scheme A, clusters are estimated from the data and 
bootstrapped datasets. However, in addition to comparing the original data clustering to the 
bootstrapped clusterings, each of the bootstrapped clusterings is compared with each other, 
and the original data clustering. 
 
Figure 2: Simulation of a simple balanced 2-cluster model that illustrates the bias and 
standard error captured by the naive bootstrapped stability and repeated subsetting stability 
approach. Heatmap depiction of frequencies of data points retaining their original 
memberships for (A) bootstrap resampling, (B) 1/2 sub-setting (middle), and (C) 1/4 
subsetting (right). Blue is unstable and red is stable. The (D) bias and (E) standard errors of 
naive stability for bootstrap resampling and subsetting. 
 
Figure 3: Stability profiles based on minimal cluster similarity from each resampling (Smin) for 
the different simulation experiments estimated via Jaccard based bootstrapping. For each 
simulated scenario, 50 simulations were performed across k = 1 : : : 7 using scheme 2. The 
vertical lines indicate the true cluster numbers and horizontal lines indicate a threshold 
criteria of 0:9 Simulation scenarios are for a (A) null model, (B) three-cluster model, (C) four 
clusters in three dimensions, (D) four clusters in ten dimensions, (E) two elongated clusters, 
and (F)two elongated close clusters. 
 
Figure 4: Results for the iris and wine data. Stability profiles based on minimal cluster 
similarity from each re-sampling (Smin) for the two bootstrapping schemes for the (A) iris and 
(B) wine data. Individual stability for (C) iris and (D) wine are shown for stable (> 0:9), 
moderately stable (0:8 � 0:9) and unstable (< 0:8) points. Note that the stability is visualized 
on PC axis, although the clustering and stability estimation was performed using the entire 
datasets. MDS representation of the results for (E) iris and (F) wine data that is based on the 
symmetric distance measure for each pair of clusterings arising from bootstrapped samples. 
The density plots are constructed according to the Jaccard index-based distance between 
resampled cluster labels. The asterisk indicates the final clustering result from scheme 2, 
which resides near the center of the cloud, which may be interpreted as an average 
representation of the clusterings. 
 
Figure 5: Results of the NCI dataset clustering. (A) Stability profile based on minimal cluster 
similarity from each re-sampling (Smin) for the NCI dataset. (B) Inferred cluster assignment 
from stability analysis. (C) Individual stability is shown for stable (> 0:9), moderately stable 
(0:8 � 0:9) and unstable (< 0:8) points. (D) Visual hierarchy depicts the three clusters that are 
well separated and their memberships. The cluster specific stability is indicated. 
 
Figure 6: Results of the image dataset clustering. (A) Stability profile based on minimal cluster 
similarity from each re-sampling (Smin) for the image dataset. (B) Inferred cluster assignment 
from stability analysis. (C) Individual stability is shown for stable (> 0:9), moderately stable 
(0:8�0:9) and unstable (< 0:8) points. 



(D) Stability of the inferred clusters. (E) Two-layer hierarchy constructed from the stability 
profile. The hierarchy reveals the data contains four well-separated clusters, while two among 
them can be further partitioned into two less separable ones (red dashed clades), 
respectively. The cluster specific stability is indicated. 
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