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ABSTRACT 

With a large penetration of low carbon technologies (LCTs) (E.g. solar photovoltaics, wind 

turbines and electric vehicles) at medium voltage and low voltage levels, electricity distribution 

networks (EDNs) are undergoing rapid changes. Research has been carried out to analyse and 

quantify the impacts of LCTs on EDNs. Most of these previous studies are based on either real 

or synthetic network samples. The results and conclusions derived from these studies have 

limited applicability to other networks, thus making it difficult to arrive at generalised and robust 

conclusions on the impact of LCTs on EDNs. One of the main reasons for using a case study or 

synthetic networks in research is limited accessibility to real-world network data.  

To bridge this research gap, the rationale and the development of a network modelling tool that 

can generate random-realistic representations of different types (sub-urban/urban) of EDNs in 

aiding statistical analysis of the power networks is presented in this thesis. The ability to 

generate ensembles of statistically-similar distribution networks is one of the key properties of 

the proposed tool. Statistically-similar distribution networks are a set networks with a similar 

set of topological and electrical properties as defined by the user with some given values or 

ranges of values.  As part of this thesis four key contributions are presented. 

(i) An investigation of the topological properties of real-world EDNs: The key topological 

properties that characterise different types of EDNs were identified and quantified. A novel 

depth dependent approach was developed to investigate the network topologies. 

(ii) An investigation of electrical properties of real-world EDNs: The key electrical properties 

that characterise different types of EDNs were identified and quantified. A novel depth 

dependent approach was developed to investigate the electrical properties of EDNs. 

(iii) Development of a statistically-similar networks generator (SSNG): A SSNG was developed 

as a data driven model. Real-world network properties as characterised by the previous 

topological and electrical investigations and the corresponding network planning and 

design guidelines were used in the development of the SSNG. 

(iv) The application of the SSNG to analyse the impacts of soft open points (SOPs) on EDNs: A 

statistical analysis of the impact of Soft Open Points (SOPs) on a set of statistical-similar 

EDNs with variable distributed generation penetration was presented.  

The developed SSNG has been validated through a statistical analysis of the impact of SOPs, and 

the results showed that the SSNG is able to provide robust and generalised conclusions on 

distribution network studies.  
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𝑦 Random variable used in the kernel density estimation 

𝑦 Mean/expected value of the random variable y 

𝑧(𝑖, 𝑗) Per km impedance of the distribution line connecting 
nodes 𝑖 and 𝑗 

𝑍, 𝑅, 𝑋 Impedance, resistance and reactance (Ohms) 

𝑧, 𝑟, 𝑥 Per km impedance, resistance and reactance of the 
conductors (Ohms/km) 

φ Angle between voltage and current (degrees) 

Parameters and variables in Chapter 5 

𝑓𝑖(𝑘) PMF of the depth dependent degree distribution at level 𝑖 

𝑓(𝑙, 𝛼) PDF of the depth dependent edge length distributions 

f(n) PMF of the distribution of nodes among the levels of a 
network 

𝑖 Level of the network 

𝑘𝑚𝑎𝑥 Maximum node degree in the network 

𝑘𝑠 degree of the source node s 

𝐿𝐷 load density (MVA/km2) 

𝐿𝑚𝑎𝑥 Maximum feeder length of the network (km) 

𝑙min , 𝑙max Minimum and maximum edge lengths observed at each 
level of the network 

𝑀𝒊 Number of nodes in the network up to level 𝑖 

𝑁 Total number of nodes in a network 

𝑛𝑙𝑒𝑎𝑓 Number of leaf nodes in a network 

𝑝 Path from source node to a leaf node along the feeders of 
the network 

𝑝𝑓  Power factor 

𝑝𝑖𝑘  Probability that a degree of a node in the network level 𝑖 is 
equal to 𝑘 
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𝑃𝐿𝑜𝑠𝑠𝑝𝑎𝑡ℎ_𝑝 Active power loss occurs in the path 𝑝 (kW) 

𝑞𝑖 Probability that a given node in the network is in level 𝑖 

𝑟𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑎𝑥 Maximum supply radius of a primary substation (km) 

Std.Err. Standard error of the exponential distribution compared to 
the mean of the actual dataset 

𝑡 Network type 

𝑉𝑑_𝑚𝑎𝑥 Maximum allowable voltage drop of the network (V) 

𝛼 Mean of the exponential distribution 

𝜎𝑎𝑝𝑝𝑟𝑜𝑥 Approximate load density (MW/km2) 

Parameters and variables in Chapter 6 

Closs
ref  Annual energy loss cost of the distribution network in the 

reference case, where no SOP is installed (£k) 

Fref Annual cost of the distribution network in the reference 
case, where no SOP is installed (£k) 

FSOP Annual cost of the distribution network with one SOP 
installed (£k) 

PC1, 𝑄𝐶1 Active (kW) and reactive (kVar) power provided by VSC1 

PC2, 𝑄𝐶2 Active (kW) and reactive (kVar) power provided by VSC2 

𝐶𝑖𝑛𝑣 Investment cost of SOP (£k) 

𝐶𝑙𝑜𝑠𝑠 Annual energy loss cost of a distribution network (£k) 

𝐶𝑜𝑝𝑒 Operational cost of SOP (£k) 

𝐼𝑘 Current flow through branch 𝑘 (A) 

𝐼𝑘
𝑚𝑎𝑥 Maximum allowed current of branch 𝑘 (A) 

𝑁𝑆 Set of all scenarios considered over a year 

𝑁𝑏𝑟𝑎𝑛𝑐ℎ Total number of branches 

𝑁𝑏𝑢𝑠 Total number of buses in a network. 

𝑃𝐶1,𝑠𝑐𝑒 , 𝑃𝐶2,𝑠𝑐𝑒 Active power exchanged through the converters 1 and 2 of 
an SOP at scenario 𝑠𝑐𝑒 (kW) 
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𝑃𝑖, 𝑄𝑖 Active (kW) and reactive (kVar) power flowing from bus 𝑖 to 
bus 𝑖 +1 

𝑃𝑙𝑜𝑎𝑑(𝑖), 𝑄𝑙𝑜𝑎𝑑(𝑖) Active (kW) and reactive (kVar) power demand at bus 𝑖 

𝑃𝑙𝑜𝑠𝑠(𝑖,𝑖+1), 𝑄𝑙𝑜𝑠𝑠(𝑖,𝑖+1) Active (kW) and reactive (kVar) power loss of the branch 
connecting buses 𝑖 and 𝑖 + 1 

𝑃𝑙𝑜𝑠𝑠,𝑠𝑐𝑒 Power loss of the network per unit time at scenario 𝑠𝑐𝑒 
(kW) 

𝑆𝑆𝑂𝑃 Capacity of an SOP (MVA) 

𝑆𝑚𝑜𝑑𝑢𝑙𝑒 Minimum capacity of the basic power electronic module in 
an SOP (kVA) 

𝑉𝑖 Voltage at bus 𝑖 (V) 

𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 Minimum and maximum bus voltage limits (V) 

𝑏𝑖,𝑗 Binary variable that indicates if the branch between buses 𝑖 
and 𝑗 is equipped with an SOP 

𝑐𝑆𝑂𝑃 Investment cost per unit capacity of an SOP (£/kVA) 

𝑐𝑒𝑙𝑒 Electricity price per kWh (£/kWh) 

𝑝𝑠𝑐𝑒 Probability corresponding to scenario 𝑠𝑐𝑒 

𝑟𝑖, 𝑥𝑖 Resistance and reactance of the branch connecting buses 𝑖 
and 𝑖 + 1 (Ohms) 

𝑟𝑖𝑛𝑣 Discount factor for the investment cost of SOP 

𝑟𝑜𝑝𝑒 Discount factor for the operational cost of SOP 

𝐹 Objective function 

𝑓(𝑥) Continuous probability density function of variable 𝑥 

𝑚 Number of basic power electronic modules 

𝑠𝑐𝑒 Scenario number 

𝑦 Device economical service time of SOP (years) 

𝜂 Loss coefficient 

 



   

1 

 

 Introduction 

1.1 Background 

The electrical power system is one of the most critical infrastructures of a country. Traditional 

power systems usually consist of large centralized power generation units connected to the High 

Voltage (HV) grid, which produce electric power mostly by burning fossil fuels. But, the modern 

power systems have become more decentralized due to the large penetration levels of 

renewable power generation (e.g. Solar photovoltaics (PV), wind, hydro and tidal power) and 

other distributed energy resources (DER) (e.g. Battery storage, Electric vehicles (EV)), which are 

mainly connected to the power grid at Medium Voltage (MV) and Low Voltage (LV) levels. These 

transformations are mainly driven by: 

(i) policy goals to achieve energy and climate change objectives by reducing greenhouse 

gas emissions [1], [2], and  

(ii) the challenges imposed by depletion of fossil fuel reserves. 

Technologies such as renewable power generation and DERs that help to reduce greenhouse 

gas emissions belong to Low Carbon Technologies (LCTs). With the increasing integration levels 

of LCTs at the MV and LV levels, electricity distribution networks are of increasing importance in 

modern power systems. 
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1.2 Analysing uncertainties in electricity distribution networks 

1.2.1 Uncertainties in electricity distribution networks 

The effective integration of the LCTs into the existing distribution networks requires significant 

changes of the technical, regulatory and commercial arrangements in the current systems. 

These changes have led to many techno-socio-economic uncertainties in the electricity 

distribution systems. In general, the various sources of uncertainties in electrical power systems 

can be summarised as shown in the Figure 1.1. 

 

Figure 1.1: Sources of uncertainties in electrical power networks. 

Due to the integration of new LCTs, significant levels of technical uncertainties are introduced 

to the electricity distribution networks by the changes in network configurations, variations in 

electricity generation and load demands. In addition, socio-economic uncertainties such as, 

uncertainties in policy commitment and support for decarbonisation in energy sectors, 

uncertainties in economic and financial viability, future costs, market conditions and public 

acceptance of the new LCTs are also associated with the integration of LCTs in the distribution 

networks [3].  
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Therefore, it is important to identify effective tools and methodologies to understand (i.e. 

analyse and quantify), manage and mitigate these uncertainties associated with LCTs in the 

distribution networks for operational/strategic decision-making and policy support. 

1.2.2 Methods of uncertainty assessment and modelling in electricity 

distribution networks 

Much research has been carried out worldwide to model, analyse and quantify the uncertainties 

associated with LCTs on electricity distribution networks. The methods used in previous research 

can be categorised as shown in Figure 1.2. 

Many previous studies on the impact assessment and modelling of LCTs have been deterministic 

in approach, capturing the uncertainties using scenario or sensitivity-based analysis [4], [5], [6]. 

These deterministic methods do not consider the probabilistic nature of the system behaviour 

or parameters and provide deterministic solutions in the presence of uncertainties. The worst-

case scenario analysis is a commonly used deterministic method for making decisions in the face 

of uncertainties.  

In addition to the deterministic studies, a number of previous research on distribution networks 

have considered the probabilistic behaviour of system parameters, e.g. variation of demand and 

generation, probability of component failures, etc. [7], [8], [9]. The probabilities of the 

occurrence of an event in the distribution networks are recognised using probabilistic studies in 

order to support decision making activities in the distribution systems.  

On the other hand, data driven modelling techniques are gaining popularity to study 

uncertainties in many scientific disciplines in the recent years.  Through collecting, summarising, 

analysing and interpreting a large amount of numerical data, rules can be derived to predict the 

behaviour of real systems in the face of uncertainties.  
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Figure 1.2: Methods used to model, analyse and quantify the uncertainties associated with LCTs on electricity distribution networks.
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So far, these kinds of data driven models with relevant to the impact assessment studies of LCTs 

are largely used in the applications such as, predicting intermittent renewable generation, 

recognising EV charging patterns and demand forecasting.  

The hybrid methods, which use methods from above two or more categories are usually more 

comprehensive in approach and better decision support is provided than the individual 

methods. 

1.2.3 Challenges associated with existing uncertainty assessment and 

modelling methods and research gaps 

A major challenge for the government and industry is to assess the impact of new LCTs on 

electrical power systems and make robust decision in the face of significant uncertainties. For 

example, it is important for policy makers to be able to characterise and quantify how differently 

the urban and rural networks perform with different integration levels of a new LCT. 

However, most of the above deterministic and probabilistic studies are conducted on real 

network samples [4], [6], standard synthetic networks such as the IEEE test cases [7], [10] or 

other representative test networks [11]. As a result, most reported analysis in the literature is 

only useful for evaluating a specific test case and conclusions made from such studies have 

limited applicability to other networks. 

A few researchers have identified the need of data driven/statistical studies to support the 

decision making activities based on impact assessment studies on a large number of realistic 

electricity networks [12], [13], [14], [15].  This kind of decision making approach on uncertainty 

assessment studies of power networks, is more robust compared to the decision-making 

approaches based on the case study networks.  



   

6 

 

For example, a large-scale network model based on fractal generation is used to generate LV 

and MV networks in [14], [15]. This fractal networks generator has been developed using a 

bottom-up approach where, the network generation has done by first, generating the realistic 

consumer distributions and then, by connecting the consumer locations to obtain the network 

topologies. The networks generated by the fractal generating tool do not correspond to any real 

networks but are capable to realistically mimic typical network characteristics of distribution 

networks of Great Britain (GB), thus allowing more general and strategic conclusions to be drawn 

with respect to case studies on specific networks. In [12] and [13], the impact of PV generation 

and EV integration is assessed on a complete distribution system of a single utility in New 

Zealand. Nevertheless, each distribution network is different, this kind of studies help to identify 

the common behaviours of different types (urban, sub-urban and rural) of distribution networks.  

However, it is challenging to obtain detailed data from a large number of real networks, to carry 

out these simulation studies. In most cases access to the real-world network data is very limited. 

Many researchers spend a large amount of time searching for real network data and cleaning 

the data. On the other hand, the number of available representative test networks such as the 

IEEE test cases and the test cases from UK generic distribution system (UKGDS), are also limited 

to carry out statistical studies on different types of distribution networks. 

Other than the aforementioned fractal networks generator for GB electricity distribution 

networks, comprehensive statistical network generating tools for distribution networks were 

not found in the open literature. The characteristics of distribution networks are different from 

country to country and region to region. Hence more statistical network generation tools 

supported by large amount of real world network data are required, to support strategic and 

robust decision making on the distribution networks studies.  
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1.3 Objectives, scope and the idea of the research 

The aim of this thesis is to present the rationale and development of a network modelling tool 

with the ability of generating a large number of random, realistic models of electricity 

distribution networks and demonstrate how such a tool can be used to analyse the risks and 

benefits associated with LCTs in order to support decision making. The overall concept of the 

tool is illustrated in Figure 1.3.  

 

Figure 1.3: The concept of the network assessment tool. 

Statistically-Similar Networks Generator (SSNG) is the main element of the proposed tool. With 

a give set of input data, the SSNG is capable of generating a user defined number of ‘statistically-

similar’ networks. Statistically-similar distribution networks are a set networks with a similar set 

of topological and electrical properties as defined by the user with some given values or ranges 

of values. 

The generation of multiple representations for the same real-world network (i.e. in this case, 

electrical power network) has always been problematic in network modelling. A single 

representation might not capture all the diverse characteristics of a real network. Therefore, the 

ability to generate statistically-similar many networks to represent an electricity distribution 

network is one of the key features of the proposed tool.  
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The network modelling and simulation tool proposed in this thesis is named ‘A statistical 

assessment tool for distribution networks’ for the reason that, the conclusions about the 

impacts of LCTs on distribution networks are now derived from the statistical studies conducted 

on a large number of statistically-similar networks. 

The main difference between the fractal networks generator and the networks generator 

presented in this thesis is that, the later uses a top-down approach for the network generation. 

In the top down approach, the networks generation is based on the graph related topological 

properties and electrical properties of the real-world networks without going into the details of 

the actual/realistic geographical location/distribution of the individual consumers. 

In order to develop the aforementioned network assessment tool, this thesis set out to achieve 

the following objectives. 

(i) To review the statistical studies on power networks and to identify the available 

statistical network modelling tools, compare them and identify their limitations. 

(ii) To investigate the topological and electrical properties of real world electricity 

distribution networks and identify and quantify the key features that characterise 

different types of distribution networks. 

(iii) To develop a statistically-similar networks generator for electricity distribution 

networks. 

(iv) To demonstrate the application of the SSNG tool - Analyse the impacts of Soft Open 

Points (SOPs) on electricity distribution networks with variable levels of DG penetration. 
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1.4 Thesis outline 

The structure of the thesis follows the research objectives and has seven main chapters. The 

structure of the thesis is shown in Figure 1.4. 

 

Figure 1.4: The thesis structure. 

Chapter 2 first provides a background on the different type of decisions to be made in power 

systems planning, design and operation relative to the level of decision stakes and the level of 

uncertainties. A review of the literature on impact assessment studies of LCTs on distribution 

networks including the different methods of analysing uncertainties in the electrical power 
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networks is presented.  The statistical studies conducted on electrical power networks and 

various network models and network generating tools available for modelling the electrical 

power networks are also reviewed.  

In Chapter 3, an investigation of the topological properties of the real-world networks is 

conducted using the network data which was collected from China, covering urban and sub-

urban areas. The key topological properties that characterize different types (urban and sub-

urban) of distribution networks are identified and quantified.  

 In Chapter 4, electrical properties of the real-world networks are studied using the same 

network data which was collected from China, covering urban and sub-urban areas. The key 

electrical properties that characterize different types (urban and sub-urban) of distribution 

networks were identified and quantified. 

In Chapter 5, the development process of a Statically-Similar Networks Generator is presented. 

The input parameters required for the generation of realistic distribution networks are taken 

from the investigations of topological and electrical properties which were conducted in the 

Chapters 3 and 4 respectively. The guidelines for planning and design of the real-world 

distribution networks are also employed in the process of SSNG development. First, the 

methodology to generate statistically similar network topologies is presented. Then the 

procedure to generate realistic electrical parameter settings for the distribution network 

topologies is presented. Validation of the SSNG model is done by comparing the performance 

and properties of the generated statistically-similar networks with a real-world network sample.  

Finally, in Chapter 6, the impacts of Soft Open Points (SOPs) on the distribution networks are 

analysed and quantified using a set of statistically-similar distribution networks that are 
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generated by the SSNG. General conclusions are derived on the impact of SOPs on the selected 

type of distribution network through a statistical study. 

The conclusions and possible future work are summarised in Chapter 7. The limitations of the 

present work are also discussed.
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1.5 Contributions of the research and publications 

1.5.1 Contributions of the research 

The contributions of this thesis are as follows.  

 An investigation of the topological properties of real-world electricity distribution 

networks using the techniques in complex networks theory and graph theory is 

presented. The key topological properties that characterise different types of electricity 

distribution networks were identified and quantified. A novel depth dependent 

approach was developed to investigate the network topologies. 

 An investigation of electrical properties of real-world electricity distribution networks is 

presented and the key electrical properties that characterise different types of 

electricity distribution networks were identified and quantified. A novel depth 

dependent approach was developed to investigate the electrical properties of the 

distribution networks. 

 A data driven model based statistically-similar networks generator (SSNG) for electricity 

distribution networks was developed. Real-world network properties as characterised 

by the above topological and electrical investigations and the corresponding network 

planning and design guidelines were used in the development of the SSNG. 

 A statistical analysis of the impact of Soft Open Points (SOPs) on electricity distribution 

networks with variable distributed generation penetration was presented on a set of 

statistical-similar distribution network models. General conclusions were derived about 

the impact of the SOPs on the type of electricity distribution networks under study. 
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1.5.2 Publications  

The following papers are published with relevant to the work described in this thesis. 

 Sathsara Abeysinghe, Jianzhong Wu, Mahesh Sooriyabandara, Muditha Abeysekera, Tao 

Xu, Chengshan Wang "Topological properties of electricity distribution networks”, In 

Applied Energy, 2017, ISSN 0306-2619.  

 Sathsara Abeysinghe, Jianzhong Wu, and Mahesh Sooriyabandara, "Statistical 

Assessment Tool for Electricity Distribution Networks," Energy Procedia, Volume 105, 

May 2017, Pages 2595 – 2600.  

 Sathsara Abeysinghe, Silviu Nistor, Jianzhong Wu, Mahesh Sooriyabandara, “Impact of 

Electrolysis on the Connection of Distributed Generation”, Energy Procedia, Volume 75, 

August 2015, Pages 1159-1164. 
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 Literature review 

2.1 Introduction 

Dealing with uncertainties in the electrical power networks has always been one of the main 

concerns of decision makers including policy makers, system operators and industry 

stakeholders. This chapter first provides a background on the different type of decisions to be 

made in power systems planning, design and operation relative to the level of decision stakes 

and the level of uncertainties.  

With a large number of LCTs connecting at the MV and LV levels, making robust decisions under 

uncertainties at the distribution levels of the power networks has become more challenging. 

Thus, the present study has focused on investigating the methods and tools available to support 

robust decision making on the impacts of LCTs on distribution networks. A review of the 

literature on impact assessment studies of LCTs on distribution networks is presented.  

The importance of statistical studies on power networks and statistical modelling of power 

networks to support robust decision making have been identified. The existing literature on 

analyzing statistical properties of power networks and various methods and tools available for 

modelling the electrical power networks are also reviewed. 

2.2 Decision making in electrical power systems 

In the context of power system planning, design and operation, different types of decisions are 

involved. Figure 2.1 illustrates the use of Funtowicz and Ravetz (1990) model adapted to 

understand uncertainties in the energy systems [16]. The model classifies type of decisions to 

be made in problem solving relative to the level of decision stakes and the level of uncertainty. 
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Figure 2.1: Types of decisions to be made in power system studies relative to the level of 
decision stakes and the level of uncertainty [16]. 

Different types of decisions involved in power systems studies are explained below.  

 Operational decisions 

Low system uncertainties, describe a situation where uncertainties are at the plant/network 

level and low decision stakes (operational decisions) describe decisions that are usually 

applicable to a single operator [16]. In operational level decisions there is little concern about 

the long-term impact and the concern is mostly on the short-term operation of a given system. 

For instance, decisions about how much energy to be produced by the system to meet the end 

user demand is an operational decision. Such operational level decisions are supported by 

optimization and simulation models where the given system is analyzed/optimized in various 

possible configurations and under different scenarios [17].  

 Tactical decisions 

Tactical decisions are mostly medium-term decisions that can prepare the system for strategic 

changes. For example, if the energy demand of a region is expected to grow significant 

investments on the power supply system will be needed. Integration of new renewable 
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generators can be a potential solution. Such tactical decisions require an analysis of what 

implications each relevant alternative may have on the local power system and on the local 

community [17]. These decisions exist at the methodological level and often require more than 

one model to assess the uncertainties and several decision makers with multiple, conflicting 

criteria are involved. As a result, tactical decisions can be informed, but cannot be solved, by 

operational level techniques [16].  

 Strategic and policy level decisions 

Strategic and policy level decision making is a complex process and encompasses high levels of 

uncertainties over medium and long term, inputs from various stakeholders and massive 

investments. In general, it is difficult to structure and model the all these factors that may 

involve at this level of the decision making. However, all possible implications that may affect 

the future of society and the environment must be considered in the process. Tactical and 

operational level analysis can be used to inform strategic and policy level decisions up to some 

extent [16], [17].  

With high penetration levels of LCTs at the distribution levels of the power networks, it is 

important to identify the methods and tools that can support robust decisions making in the 

power system studies at operational, tactical, strategic and policy levels. 

2.3 Impact assessment studies of LCTs on distribution networks - 

A review 

Table 2.1 provides a literature review of the uncertainty assessment and modelling studies of 

LCTs that have been conducted on electricity distribution networks. The details of the 

uncertainties analyzed/optimized, the number of networks and the type of the networks used 

in the study, the methods used for the uncertainty assessment and modelling are compared. 
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In general, the focus of these studies has been on the analysis of technical and economic 

challenges of the integration of new LCTs, evaluation of hosting capacity of DG, investigation of 

negative impact mitigation options of LCTs and sizing of the devices that will be used for negative 

impact mitigation in the distribution networks. 

According to the review in Table 2.1, most of the studies in literature on the impact assessment 

of LCTs have focused on one or few real or synthetic network samples. A few studies which have 

been conducted on a very large amount of realistic/real-world network samples are identified 

[12], [13].  



   

18 

 

Table 2.1: A literature review of the uncertainty assessment and modelling studies of LCTs on distribution networks 

Ref. LCT Uncertainties  Case study networks used Methods used for uncertainty assessment and modelling 

[4] Solar PV Voltage magnitude, unbalance A residential LV network in 

Malaysia 

A deterministic study. Sensitivity analysis with varying PV 

penetration levels is used. 

[7] Solar PV Voltage magnitude IEEE 33-node radial system A probabilistic study. Both analytical techniques and 

numerical methods are used to solve probabilistic load flow. 

[11] Solar PV Power Quality, under-voltage, 

over-voltage, Unbalance 

Four representative (LV rural, 

semi-rural, urban and city) feeder 

types from Flanders, Belgium 

A deterministic study. Scenarios have been designed 

considering feeder topologies, load and generation profiles, 

PV penetration level, PV-size statistics and the PV location. 

[12] Solar PV Over-voltage and under-

voltage problems 

Entire LV network data from a 

single utility 

A data driven/statistical study. Monte Carlo type simulations 

are performed on a large number of realistic LV distribution 

networks of different types (rural, urban) 

[8] Solar PV 

and PHEV 

charging 

stations 

Energy losses, reactive power 

support to the grid, voltage 

magnitude, peak load 

reduction 

An 18-bus test feeder A probabilistic study. PV output is generated from a 

probabilistic solar irradiance model. 

[10] PHEV Power losses, main grid load 

factor and voltage magnitude 

IEEE 34-node test feeder Both deterministic and probabilistic methods are used. 

[5] EV Distribution network 

investment, energy losses 

Two large-scale distribution 

networks with several voltage 

levels 

A deterministic study. Three scenarios with 35%, 51%, and 

62% of EV penetration are used. 

[13] EV Over-voltage and under-

voltage problems, overloading 

of distribution lines 

Entire LV network from a single 

utility 

A data driven/statistical study. Monte Carlo type simulations 

are performed on a large number of realistic LV distribution 

networks of different types (rural, urban) 
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[9] Wind Limits on the distribution 

feeders' voltages and currents 

and costs of energy 

A 69-bus radial distribution system 

and a 152-bus radial distribution 

system 

A probabilistic study. Probabilistic behaviour of wind 

generation and consumer load is considered. 

[18] Energy 

Storage 

Systems 

(ESS), wind 

power 

Levelised production cost of 

energy, wind energy 

curtailment 

A section of the South Wales 

distribution network in UK and 

one UK Generic Distribution 

System (UKGDS) 

A deterministic study. Scenarios are chosen depending on 

windfarm capacity and ESS capacity allocation. 

[6] DG and 

electrolytic 

hydrogen 

production 

Voltage magnitude, line 

loading, wind energy 

curtailment 

An actual distribution network 

sample from the UK 

A deterministic study. Five scenarios were considered 

depending on different levels of DG connection and control 

strategies. 

[14] CHP and 

electric HP 

Change in peak demand, 

thermal and voltage limit 

violations 

Two UK representative urban and 

rural LV networks generated from 

a fractal network generator 

A deterministic study. Scenario studies have been carried 

out by modelling different penetration levels of consumer 

points with DCHPs or electrical HPs. 

[19] Microgrids 

with 

renewable 

generators 

Voltage magnitude, line losses Sample LV distribution network 

with two feeders and 10 

consumer nodes 

A deterministic study. Scenario studies have been carried 

out with different demand profiles and solar irradiance 

profiles. 
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Depending on the methods used for uncertainty assessment and modelling and depending on 

whether the study is carried on a large number of real/realistic networks, the placement of all 

above previous studies on the Funtowicz and Ravetz (1990) model adapted to understand 

uncertainties in the energy systems is shown in Figure 2.2. 

 

Figure 2.2: Placement of the uncertainty assessment and modelling methods of LCTs on 
distribution networks according to the level of decision support provided by the study. 

 Deterministic studies 

According to the literature review on impact assessment studies of LCTs, in the deterministic 

type studies which are based on one or few case study networks, all the input data for the 

analysis is known beforehand and the events are completely predetermined. Therefore, for a 

particular set of inputs the same set of output results are produced. For example, some 

researchers have performed time-series simulations using historical load and generation profiles 

to determine what is running in each time period. This type of studies provides information on 

the variations of voltage, current and power levels throughout simulation period in a specific 

distribution system and the conclusions derived from these studies can be used to support 

operational level decisions in that specific electrical distribution system. For instance, results 



   

21 

 

from the deterministic study in reference [4] indicated that the LV network used in the study 

can accommodate high level PV (>100%) penetration without causing any problem. However, it 

is important to mention that the impact of PV is very location and network dependent. 

Since, the deterministic studies do not take into account the probabilistic behaviour of the load, 

generation and other system parameters robust decisions in the tactical, strategic and policy 

levels cannot be derived from such studies. However, the deterministic studies based on 

scenarios and sensitivity analysis studies can inform the tactical and strategic level decisions on 

the factors that may combine in different ways to create unforeseen impacts on the distribution 

networks. 

 Probabilistic studies  

Although, the probabilistic studies are able to deal with the uncertain parameters of the 

distribution systems, most of such studies in the literature are based on the case study networks. 

Hence, the conclusions derived from those studies have limited applicability to the other 

networks. Therefore, robust and generalized conclusions required for strategic and policy level 

decision making cannot be derived by solely depending on the results of these case study 

networks-based probabilistic studies. However, the conclusions made from such probabilistic 

studies can support operational levels decision making on the specific distribution network used 

in the study.  For instance, in the probabilistic load flow study in reference [7] it has been 

recognized that by connecting PV generators to certain nodes the voltage profile in the given 

distribution network can be improved. 

 Data driven/statistical studies 

In general, data driven/statistical studies relate the observed statistical data to theoretical 

models such as PDFs or models used in regression analysis. Rules are derived from a large 
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number of similar events or based on the experience obtained by conducting data driven 

studies. 

In this thesis the impact assessment studies of LCTs conducted on a large number of distribution 

networks are given much attention in the category of data driven or statistically driven studies. 

The abovementioned deterministic and probabilistic type analysis are often conducted on a 

large number of networks and the statistics of the results of many similar networks are used 

derive the conclusions of such data driven studies. Therefore, it was identified that the 

conclusions made from these studies are more robust and generalized than the aforementioned 

one or few case study networks-based studies. For example, studies [12] and [13] claim to 

provide information on the proportion of the distribution network that may experience 

problems by integrating LCTs and highlights the importance of undertaking LCT impact studies 

on a large number of networks to come up with robust and generalized conclusions to support 

strategic and policy level decision making. 

The challenges and limitations to conduct such statistical studies have been identified [20]. They 

are, 

(i) Difficulty to obtain realistic network data from utilities and the amount of time 

and efforts need to clean the data.  

(ii) Limited availability of reference test networks. 

(iii) Limited availability of open source tools for the generation of representative 

test cases of the real networks.  
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2.4 Analyzing statistical properties of electrical power networks -

A review 

Followed by the review of impact assessment studies of LCTs, the need for generating random-

realistic models that can effectively capture key topological and electrical characteristics of real-

world networks in aiding statistical analysis of the power networks is identified [12], [13], [14].  

However, it is often difficult to produce a large number of random-realistic models of the real-

world networks including the electric power networks. Identifying and quantifying the key 

statistical properties that characterize different types of networks is a fundamental requirement 

when developing such random-realistic models of real networks. 

2.4.1 A summary of the related previous research 

The statistical properties of the power networks have been studied by many researchers in the 

past. The existing literature on analyzing statistical properties of power networks have been 

reviewed in this section. Statistical properties of the power networks are usually studied under 

two categories; topological and electrical properties. Table 2.2 summarizes some of the related 

studies. The type of the networks, voltage levels, number of networks used and the topological 

and electrical properties that are investigated in each study are compared. 
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Table 2.2: A literature review on analysing the statistical properties of power networks [21]. 

Ref. Network 
type 

Voltage 
level 

Number of networks 
analyzed 

Node degree 
related 
statistics 

Average 
shortest-path 
length 

Clustering 
coefficient 

Betweenness Fractal 
properties 

Electrical 
distance/ 
impedance 
distribution 

[22] Real HV 1 real grid (Italian grid)       

[23] Real and 
synthetic 

HV 1 real, 1 random grid & 1 IEEE 
test network 

      

[24] Real HV 1 real grid (North American)       

[20] Real and 
synthetic 

HV 4 IEEE test networks and 2 
real networks 

      

[25] Real and 
synthetic 

HV 1 real and 1 synthetic       

[26] Real and 
synthetic 

HV 2 IEEE test cases and 1 real 
grid 

      

[27] Real HV 1 real grid (European power 
grid) 

      

[28] Real HV 1 real grid (North American)       

[29] Real HV 3 real grids (Italian, French 
and Spanish grids) 

      

[30] Synthetic HV 1 IEEE test case       

[21] Real MV/LV Northern Ireland network 
data 

      

[31] Real MV/LV 2 LV networks and 2 MV 
feeders 
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In the past, the interest of studying the statistical properties, primarily the topological properties 

of electrical power grid was mainly led by the major blackouts happened in North America [28], 

[24] , Italy [22], Europe [27] and few other power grids [32]. After these large-scale blackouts 

happened worldwide, researchers were seeking solutions for improving security and reliability 

of the power grid from different perspectives. Advances in statistical physics and complex 

network theory together with graph theory applications have developed new areas of interest 

in vulnerability assessment in power systems [33]. The connection between the structure of the 

HV power grid and the risk probabilities are often analyzed. 

As seen from the review in Table 2.2, majority of the statistical studies on the power networks 

are carried out in the HV networks. The number of statistical studies on the MV and LV networks 

are very limited. To the best of the author’s knowledge only one comprehensive topological 

investigation of the MV and LV networks was found in the literature which has used data from 

a large number of real networks. The study has focused on a methodology of integrating 

topological metrics with economic factors and the topological characteristics of MV and LV 

networks are compared [21]. Other than the aforementioned MV and LV network study, the 

statistical investigations of power networks are conducted on a limited number of networks in 

most of the above previous research. 

Complex networks analysis techniques together with graph theory applications have been used 

in majority of the studies to analyze the statistical (both topological and electrical) properties of 

the power networks. 

In addition, fractal properties of the power networks are also investigated under the topological 

properties [31]. 
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2.4.2 Frequently analyzed statistical properties of power networks 

Most commonly investigated statistical properties of the power networks are summarized in 

this section. In order to extract the graph related network properties (i.e. node degree, average 

shortest-path length, clustering coefficient, betweeness and distribution of impedances related 

statistical measures), the electrical power networks have been modelled as graphs with 

electrical substations and consumer load points representing the nodes of the graphs and 

transmission and distribution lines representing the edges of the graphs.  

 Node degree related statistical measures 

The number of edges incident with a node in the network is called the degree of that node. 

Different nodes in the network can have different node degrees. Degree distribution is the 

probability distribution of the degrees of nodes over the whole network [33]. Node degree 

related statistical measures such as the degree distribution, average degree of the network and 

maximum node degree of the networks are widely studied in the previous research in Table 2.2.  

Researches have observed that the HV electrical transmission grids have heavy-tailed nodes 

degree distributions. A network is said to be ‘scale-free’ when the nodes degree distribution of 

the network follows a power law, resulting in few nodes having many edges and many nodes 

having few edges. In vulnerability assessment studies of HV networks, it has been identified that 

networks with scale free property are highly resistant to accidental failures but are highly 

vulnerable to deliberate attacks [34]. 

 Average shortest-path length  

The average path length is defined as the average length along the shortest paths for all possible 

pairs of network nodes [33]. It has been widely used as a measure of the efficiency of 
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information or mass transport on a network. Higher average shortest path length implies 

network is almost in liner chain and lower characteristic path length shows the network is in a 

compact highly meshed form. Most of the previous studies under review have studied the 

average shortest-path length property of the networks. 

 Clustering coefficient 

In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph 

tend to cluster together. Evidence suggests that in most real-world networks, and in particular 

social networks, nodes tend to create tightly knit groups [33]. Therefore, clustering coefficient 

of the power networks have been studied in some of the above previous research to capture 

the local cohesiveness of the networks. 

 Betweenness 

Betweenness describes the importance of a node with respect to shortest paths in the graph. 

This is very important to identify critical components of the power grid [21], [22], [35]. For a 

given node, betweenness, is defined as the number of shortest paths that traverse that node. 

Considering the betweenness of a node as a random variable it is possible to obtain the 

corresponding probability distribution. Betweenness properties have mostly been analysed in 

the vulnerability assessment studies of the power networks. 

 Fractal properties 

Historically, Benoit Mandelbrot first introduced the concept of fractals. In general, a fractal can 

be described as a rough or fragmented geometric shape that can be subdivided in parts, each of 

which is (at least approximately) a reduced/size copy of the whole [36]. According to this 

definition, a same repeating pattern can be seen at every scale of a fractal. Fern leaf is a simple 
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example for a fractal. In the fern leaf shown in the Figure 2.3 it can be noticed that every little 

leaf is part of the bigger one and has the same shape as the whole fern leaf. This property of the 

fractals is called the self-similarity. A fractal dimension is a statistical index for characterizing 

fractal patterns by quantifying their complexity as a ratio of the change in detail to the change 

in scale [36]. 

 

Figure 2.3: Fern leaf-an example for fractals. 

Some researchers have observed that power networks have fractal like structures with self-

repeating patterns at all length scales [15], [31]. In reference [31], an analysis of the fractal 

properties of two LV networks and two MV feeders is presented. Through this study it was 

identified that the four networks under the study have fractal characteristics but four different 

fractal dimensions.  

 Electrical distance/impedance distribution  

Investigations of electrical properties of the power networks in the literature mainly refer to the 

investigations related to the distribution of transmission and distribution line impedances of the 

power networks. Weighted graphs of the power networks with weights of the edges 

representing the impedance of the transmission or distribution lines are used to derive the 
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electrical properties of the power networks in such studies. The concept of electrical distance 

has also been used when studying the electrical structures of the power networks [20], [21], 

[25].  The most common measure of electrical distance has been the absolute value of the 

inverse of the system admittance matrix (i.e. this is the same admittance matrix that is used in 

power flow analysis in electrical power system studies) [37]. 

2.5 Methods and tools for the modelling of electrical power 

networks - A review 

Mathematical modelling of a real-world network means producing an artificial object that has 

similar characteristics to the real one [38]. Followed by the investigations of statistical properties 

of the power networks, various methods and tools that has been developed in the literature to 

model the electrical power networks are reviewed in this section. 

It has been identified that real-world networks share some important properties, irrespective of 

their functionalities. A number of complex networks models have been developed in the past to 

model many different types of real-world networks (e.g. internet, telecommunication networks 

and social networks). Therefore, some of the researchers have investigated the suitability of the 

well-known complex networks models to describe the characteristics of the power networks. 

The relevant literature is summarized under the section of ‘power grids as complex networks’ 

[39]. 

As researchers started to pay attention on the fractal behaviour of real-world networks, various 

fractal models for real-world networks have been developed. Therefore, the fractal-based 

network models developed for the power networks are reviewed in this section.  

One of the main goals of this thesis is to develop a statistical-similar networks generator for 

electricity distribution networks. The idea is to generate large numbers of random-realistic test 
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cases for various power network studies. Therefore, a review of the literature with a similar 

interest on statistical models/tools for the generation of random-realistic power networks is also 

presented. 

2.5.1 Power grid as a complex network model 

Table 2.3 provides a review of the literature on power grid as complex networks. The voltage 

level, type (i.e. real/synthetic) and the number of the networks under the study in each previous 

research are compared. The type of the complex networks models tested/used against the 

selected real-world or synthetic power networks in the previous studies are also summarized. 

Most of the related research was found in the recent survey conducted by Giuliano Andrea 

Pagani and Marco Aiello (2013) in the reference [39].  

According to the review in Table 2.3, a majority of the previous studies on power grids as 

complex networks has been carried out on the HV networks. Vulnerability assessment of the 

power grids has been the primary objective of most of those HV level network studies.  Only one 

relevant study that has been conducted on MV and LV networks was identified [40]. 

According to the literature, well-known and much studied complex networks models for testing 

the power networks are the random graph models, small-world networks models and scale-free 

network models. There are few other complex networks models which have also been tested 

for modelling the power networks (E.g. Forest fire graph model [41], Kronecker graph model 

[42],  R-MAT network model [43]). However, these models are not discussed in detail for this 

thesis, as they were not found to be suitable so far for modelling the power networks in the 

existing literature. Also very limited literature exists on their suitability for modelling power 

networks [40].  
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Table 2.3: A literature review on power grids as complex networks. 

Ref. 
Voltage 
level 

Real-world/synthetic networks used for the 
study 

Complex networks model 
 

Random graph 
models 

Small-world 
network 
models 

Scale-free 
network models 

Other complex networks 
models 

[25], 
[44] 

HV 
IEEE 300 bus network and the Eastern United 
States power grid 

   
Minimum distance random 
graphs 

[28] HV 
North American eastern and western electric 
grids 

    

[45] HV 
Western U.S. power grid and Nordic power 
grid 

    

[46] HV Shanghai power grid     

[47] HV Power grids of China and America     

[48] HV 
Sichuan Chongqing grid and Guangdong grid 
in China 

    

[49] HV 
Power grids of the Nordic countries and 
western USA 

    

[50] HV 
IEEE test networks (14, 24, 30, 57, 118 and 
300 buses) 

    

[40] 
MV and 
LV 

Medium and low voltage power grids of the 
North Netherlands 

   
Forest fire graph, Kronecker 
graph, R-MAT graph 
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In reference [25], it has been identified that the minimum distance random graphs are suitable 

to model HV power networks. Since, the interest of this thesis is on methods of modeling MV 

and LV networks such models are not discussed here in detail. 

All the different types of complex networks models exist in the literature are characterized by 

specific statistical properties. The statistical characteristics of the well-known complex networks 

models and their suitability to model the power networks as found in the literature are 

summarised below. 

 Random graph models  

In the late 1950s, Paul Erdȍs and Alfred Rényi introduced a random graph model and later it 

helped scientists to discover that most natural phenomena can be described in terms of random 

graphs. Since 1950s random networks have been studied for several decades. The network 

model that Erdȍs and Rényi introduced is now known as ‘classical random network model’ or 

‘Erdȍs-Rényi (ER) network model’ where the random graph is built by picking each possible pair 

of nodes and connecting them with an edge with probability p [51]. 

In the references [25] and [44], the topological characteristics of real power grids and the 

corresponding random graphs models are compared. These studies concluded that the random 

graph models do not provide substantial utility for modeling HV power grids. In [45] and [49] 

structural vulnerability of real power grids are compared with the corresponding random graph 

models. It was identified that the power grids are more sensitive to attacks than the random 

graph models of those power grids.  The study in [40], investigated the topological metrics that 

the MV and LV networks need to satisfy for efficiency, resilience  and robustness with the help 

of various complex networks models including the random graph models.  
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 Small-world network models 

The Small-world networks are characterized by high clustering and short average path lengths. 

This model was first introduced by Duncan J. Watts and Steven Strogatz in 1998. In the small-

world networks there is the ability to reach any given point within the network in a fairly small 

number of steps relative to the network size. This small-world phenomenon is popularly known 

as six degrees of separation [52]. 

From the studies [25] and [49], it was identified that small-world networks are not suitable for 

modelling the Eastern United States power grid and the IEEE 300 bus network. However, small-

world properties are observed in several Chinese power grids [46], [47], [48]. Performances of 

these Chinese power grids have been evaluated using the corresponding small-world network 

models. 

 Scale-free network models 

Scale free networks are characterized by power-law degree distributions [34]. Out of many 

different ways of developing networks with power-law degree distribution, the preferential 

attachment network model by Barabási and Albert has widely been used in the literature for 

real-world networks modelling. Preferential attachment means that the more connected a node 

is, the more likely it is to receive new edges.  In other words, nodes with higher degree have 

stronger ability to grab new edges added to the network [53]. 

The scale-free nature of HV level power networks has been observed in a number of previous 

research. Therefore, in many vulnerability assessment studies of the HV real and synthetic 

power grids, representative scale-free models of the corresponding power networks have been 

used. The reliability of the North American eastern and western electric power grids were 

analyzed  based on the Barabási–Albert network model in [28]. In [50], assessment of 
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vulnerability of power grids is performed through graph theory indexes by using the scale free 

network models of several IEEE test networks. Scale-free models have also been used to study 

the vulnerability of the Western United States power grid and Nordic power grid [45], [49]. 

However, the studies in [25] and [44]  have identified that the preferential attachment models 

are not suitable for modelling the IEEE 300 bus and the Eastern United States power grids.  

2.5.2 Fractal-based network models for power networks 

Although there are various fractal-based network models developed for different types of real-

world networks (e.g. in references [54], [55], [56], [57]), only a few fractal-based models have 

been found in literature which are specifically developed for power networks.  

In [15] and [58], the development of a fractal based networks generating tool for MV and LV 

power networks of the Great Britain(GB) is explained. Different ranges of fractal dimensions for 

the distribution of consumer settlements in urban, sub-urban, semi-rural and rural type areas of 

GB have been used for the development of the tool. The software tool has used an algorithm 

which simulates the position of consumers in a controllable manner, modelling the 

characteristics of the positions of real consumer sets, based on different fractal dimensions. 

Then, realistic networks have been generated by connecting realistic set of consumers’ positions 

with the appropriate branching rates similar to the real networks.  

Another fractal graph model for MV and LV distribution grid topologies has been developed in 

[31]. Two small LV networks and two MV feeders from the distribution networks of Greek power 

grid have been analysed in order to prove that power networks have fractal like structures. 

Fractal dimensions of those network samples have been calculated. A two dimensional 

stochastic dielectric breakdown model (DBM) [60] is utilized to generate virtual distribution 

networks with different fractal dimensions.  
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2.5.3 Statistical models/tools for the generation of random-realistic 

power networks 

Models/tools, which are capable of generating large numbers of random-realistic 

representations of power networks in order to facilitate statistical studies on the power 

networks are reviewed in this section. The well-known complex networks models and fractal-

based network models explained above have provided the foundation for the development of 

such models/tools in the literature. The related previous research is summarized in Table 2.4.  

According to Table 2.4, there are a few statistical models/tools that have been developed for 

the modelling of HV power networks.  

In [20] and [59] the development of a new random topology power grid model, called RT-nested-

Smallworld has been presented. Through an investigation of statistical properties of several IEEE 

networks and two real power grids, the topological and electrical properties of large scale power 

grids have been identified and quantified. It has been identified that the power grids are sparsely 

connected with obvious small-world properties and the line impedance has a heavy-tailed 

distribution. Based on these discoveries, an algorithm has been proposed to generate random 

topology power grids featuring the same topological and electrical characteristics found from 

the real data. The motivation behind their study was to find out the classes of network 

topologies of communication networks that are needed to support the decentralized control of 

a smart grid through the statistical studies on a large number of power grid test cases. 

With similar motivations, a new Cluster and-Connect model is introduced to generate synthetic 

graphs for HV power networks in  [60]. This model has mainly addressed some of the limitations 

of the above described in the RT-nested-smallworld model.
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Table 2.4: A review of the literature on the statistical networks generating tools for power networks. 

Work 
Voltage 
level 

Name or description of 
the method/tool 

Origin of the supporting 
network data for the 
development of the tool 

Topological properties 
of the real networks 
captured by the 
model/tool 

Electrical properties 
of the real networks 
captured by the 
model/tool  

Purpose of the model/tool 

[20], [59] HV 
RT-nested-Smallworld 
model 

IEEEE 30, 57, 118, 300 bus 
test networks, western 
United States power grid 
(WSCC) and New York state 
bulk electricity grid (NYISO) 

Node degree 
distributions and small 
world properties 

Distribution of 
transmission line 
impedance  

Testing smart grid 
communication and control 
networks for the power 
grids 

[60] HV 
Cluster-and-Connect 
model 

Western United States 
power grid (WSCC) and 
New York state bulk 
electricity grid (NYISO) 

Clustering, inter- and 
intra-cluster degree 
distributions 

Distribution of 
transmission line 
impedance 

Generate synthetic graphs 
that accurately captures 
topological and electrical 
properties  

[61] HV 
Random power grid 
model 

HV network in the U.S. 
state of Florida 

Average degree 
Impedance 
distributions 

Generate synthetic graphs 
similar to the real power 
networks 

[15], [58] 
MV and 
LV 

Fractal-based statistical 
tool for design of 
distribution networks 

Distribution networks data 
of Great Britain from rural, 
sub-urban and urban areas 

Fractal dimension, total 
network length and 
branching rates  

Consumer demand 
and network 
planning standards 

Evaluation of alternative 
design strategies of 
distribution networks 

[31] 
MV and 
LV 

Fractal model for 
distribution grid 
topologies 

2 small LV networks and 2 
MV feeders from the Greek 
power grid 

Fractal dimension 
Maximum voltage 
drop, total Power 
Losses 

Test different scenarios and 
algorithms on MV and LV 
networks without having to 
collect and process the real 
network data 
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In [61], another generative model for HV power networks has been presented. The model 

randomly connects N nodes located in a square with a guarantee that there is no isolated node 

in the network. This model is limited because it only focuses on the averages of degree and 

impedance distributions. Unlike the previously discussed HV network models, this model does 

not capture the clustering coefficient and the locally dense clustering behavior of the real power 

networks.  

According to the best of the author’s knowledge, fractal-based networks generating tool in [15], 

[58] and the fractal model in [31] are the only statistical models/tools available in the literature 

for the modelling of MV and LV networks. The implementation procedures of these fractal 

models are described in the above section (i.e. Fractal models for power networks). 

The fractal-based networks generating tool in [15], [58] has been used to quantitatively assess 

the impact of alternative distribution network investment plans in terms of capital costs, losses 

and reliability. This has been done by a statistical assessment approach in which the optimal 

network design policies are determined by evaluating the costs and benefits of different designs 

applied on a number of networks with similar properties. 

The fractal model developed in [31] has been validated only on a limited number of real 

networks. More networks need to be analyzed for a better classification of MV and LV networks 

and in order to make a robust validation of this fractal model.  
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2.6 Summary and research gaps 

 According to the review of the literature on impact assessment studies of LCTs, most of 

the previous research are based on one or few real or synthetic network samples. 

Although, such studies give an insight into the likely problems that may be experienced 

in the distribution networks, conclusions made from those studies have limited 

applicability to other networks. 

 Researchers have identified the need of statistical studies carried out on large numbers 

of real/realistic networks to support robust decision making on the impacts of LCTs in 

distribution networks. The main obstacles for researchers to conduct such statistical 

studies have been identified; limited access to real-world network data, limited 

availability of representative network models and limited availability of open source 

tools for the generation of representative test cases of the real networks.  

 The need of analyzing the statistical properties of the power networks in order to 

develop statistical models which can generate random-realistic power networks has 

been identified. A review of the literature on investigations of the statistical properties 

of power networks was presented. Complex networks analysis techniques together with 

graph theory applications have been widely used in the previous research to analyze the 

topological and electrical properties of the real and synthetic power networks. In 

addition, fractal properties of the power networks have also been analyzed. Majority of 

the related research has been carried out for the HV power networks and are supported 

by a limited number of real or synthetic networks. 

 Statistical models that are available in the literature for the modelling of power 

networks were also reviewed. Well-known complex networks models (i.e. random 

graph, small-world and scale-free network models) have been widely used to model the 
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HV power networks. The main goal of such studies was to find out the relation between 

the vulnerability and topological and electrical structures of the power networks. A few, 

(complex networks theory and fractal theory-based) new statistical models/tools that 

have been specifically developed for the modelling of power networks were found in 

the literature. Majority of such models/tools have been developed for HV power 

networks. Statistical models/tools that has been developed for the MV and LV networks 

are based on the fractal generating methods. So far, these fractal models are limited for 

certain geographic areas where the fractal properties of the real-world distribution 

networks have been observed. 
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 Topological properties of medium 

voltage electricity distribution networks 

3.1 Introduction 

Characterising the important statistical properties of different types of real world electricity 

distribution networks are required to generate random, realistic test network models for various 

simulation studies. In this thesis, the statistical properties of electricity distribution networks are 

studied under two categories, namely topological and electrical properties. An investigation of 

the topological properties of real-world, MV electricity distribution networks is presented in this 

chapter. 

Topological properties of a distribution network describe how different network components 

are located and connected to each other, which is critical to evaluate the network performance. 

Simple models which assume equal spacing between the consumers and equally spaced 

substations are not accurate enough to represent the topological features of real distribution 

networks.  

Both topological and electrical properties of distribution networks are decided by many factors 

such as, spatial distribution of the consumer load, network planning guidelines and 

recommendations, social and financial factors. Due to the effect of these factors, each electricity 

distribution networks may have observable differences in their topological and electrical 

properties. However, regardless of the detailed differences of these topological and electrical 

properties, similar types (e.g. rural/urban) of distribution networks share some common 

statistical characteristics. For example, in rural networks consumer locations tend to be 
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distributed in a more clustered fashion with large open areas dedicated to farms and green 

spaces, while in urban networks consumer locations are usually evenly distributed.  

To capture these features, a rigorous analysis of real-world networks is required. From the 

literature review in the Chapter 2, it has been identified that most of the topological 

investigations are carried out on the HV level on the power networks. Topological structures of 

HV grids are different from that of MV and LV grids. The HV transmission and sub-transmission 

is usually a meshed system, but distribution networks (MV and LV) are mainly radial structures. 

The research findings in the HV network analysis cannot be directly used in MV and LV 

distribution networks. Also, majority of the previous studies were supported by a limited set of 

real network data or only a limited set of topological properties were analysed. Hence a wide 

ranging topological analysis supported by a large amount of real world network data is required 

for electricity distribution networks. 

The motivation behind the topological investigation presented in this chapter comes from 

finding out answers to the following two questions;  

i. What are the key topological properties that characterize the realistic nature of different 

types of electricity distribution networks?  

ii. Is it possible to efficiently generate ensembles of random but realistic network 

topologies similar to real electricity distribution networks in order to conduct a large 

amount of simulation studies? 
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Figure 3.1: Schematic overview of the topological study. 

The schematic overview of the study of topological properties conducted in this chapter, is 

shown in Figure 3.1. First, some of the essential definitions and formulations of the key 

properties used in the topological investigation of the distribution networks are described. Then, 

a thorough investigation of topological properties of real distribution networks at MV level is 

conducted using real-world data. The sub-urban and urban grouping of the distribution 

networks have been validated using a clustering approach. Finally, the key topological properties 

that characterize different types (urban and sub-urban) of distribution networks have been 

identified and quantified. 

3.2 Definitions and formulations of the key topological properties 

In order to understand and model a topology of a real-world complex network such as an 

electrical power grid, a right set of tools and techniques are required. As seen in the literature 

review in Chapter 2, most widely used techniques and tools are coming from the fields of 

Complex Network Analysis (CNA) and graph theory [33]. Ignoring the 3-dimensional features 

such as very tall buildings and elevation of the equipment, the electrical power grid can be 

considered as a 2-dimensional grid composed of various elements such as transmission and 

distribution lines, distribution transformers and switchgears. A graph model can be easily 

constructed by taking into consideration the topological relationship between these elements. 

This section describes some of the essential definitions and formulations of the key properties 

used in the topological investigation of the distribution networks. The physical interpretation of 
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graph related properties with reference to the electrical power networks are also described in 

this section. Figure 3.2 summarizes the fundamental approach and the key topological features 

used in this study.  

 

Figure 3.2: Feature extraction. 

3.2.1 Basic graph properties 

A graph 𝑮 consists of a collection of vertices 𝑽 (nodes) and a collection of edges 𝑬: 𝑮 = (𝑽, 𝑬). 

With reference to an electricity distribution network, 𝑽-nodes set include substations, 

distribution transformers, switches, busbars and consumer locations. Edges set 𝑬, stands for the 

physical connections between the nodes through underground (UG) cables and overhead (OH) 

distribution line segments. Since the collected real network data includes the actual 

geographical location of the electrical components, the information about nodes are extracted 

with the 𝑥, 𝑦 coordinates. The edges are represented using the start and end  

𝑥, 𝑦 coordinates of the nodes. For an electrical power network with 𝑁 nodes and 𝑀 edges, 
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 𝑽 = [𝑥, 𝑦]𝑁×2 (3.1) 

 𝑬 = [𝑠𝑡𝑎𝑟𝑡𝑥 , 𝑠𝑡𝑎𝑟𝑦𝑦, 𝑒𝑛𝑑𝑥 , 𝑒𝑛𝑑𝑦, 𝑐𝑖𝑟𝑐𝑢𝑖𝑡_𝑖𝑑]𝑀×5 (3.2) 

In real networks, very often two or more circuits share the same towers. In that case, to 

distinguish them a fifth dimension called 𝑐𝑖𝑟𝑐𝑢𝑖𝑡_𝑖𝑑 is added to 𝑬.  

 Adjacency matrix (𝑨) 

Connectivity between nodes in the graph is represented by an Adjacency Matrix ‘𝑨’. As the 

electrical power grid can be considered as an undirected graph, the adjacency matrix of a power 

grid becomes a symmetric 𝑁 × 𝑁 matrix. The element  𝑨𝑖𝑗 becomes 1 if there exists a link 

between nodes 𝑖 and 𝑗, otherwise  𝑨𝑖𝑗  equals to 0 (3.3). 

 
 𝑨𝑖𝑗 = {

    1, 𝑖𝑓(𝑖, 𝑗) ∈ 𝑬

     0, 𝑖𝑓 (𝑖, 𝑗) ∉ 𝑬
 

(3.3) 

 Distance matrix (𝑫) 

The distance matrix ‘𝑫’ is defined for a graph using the edge lengths between nodes. The 

element  𝑫𝑖𝑗  becomes the length of the edge  𝑒𝑖𝑗  if there exists an edge between nodes 𝑖 and 𝑗. 

Otherwise  𝑫𝑖𝑗  is equal to zero. 

  𝑫𝑖𝑗 = {
    √ {𝑽(𝑖, 1) − 𝑽(𝑗, 1)}2   + {𝑽(𝑖, 2) − 𝑽(𝑗, 2)}2   ,           𝑖𝑓(𝑖, 𝑗) ∈ 𝑬

    0,                                                                                                𝑖𝑓 (𝑖, 𝑗) ∉ 𝑬
 (3.4) 

 Degree matrix (𝑲) 

The degree of a node 𝑖 which is denoted as 𝑘𝑖, is the number of edges incident to that node and 

is obtained using the adjacency matrix. The values obtained for the node degrees are used to 

construct the Degree Matrix ‘𝑲’ which is an 𝑁 × 𝑁 diagonal matrix. 
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𝑘𝑖 =∑𝑨𝑖𝑗

𝑁

𝑗=1

 
(3.5) 

 
𝑲𝑖𝑗 = { 

 𝑘𝑖   , 𝑖𝑓 𝑖 = 𝑗
0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.6) 

 Laplacian matrix (𝑳) 

Laplacian matrix ‘𝑳’ is also useful in obtaining graph properties of power networks which is 

expressed as, 

 𝑳 = 𝑲 − 𝑨 (3.7) 

A connected component in graph theory refers to a set of vertices in a graph that are linked to 

each other. For instance, a radial 10kV network supplied by one 35kV/10kV substation can be 

considered as one connected component (ignoring the connections to the main grid from the 

35kV side of the main supply point). According to this definition, the number of connected 

components in a radial electricity distribution network of a certain voltage level (in a given area) 

is equal to the number of main grid supply points in the network. From the graph theory 

definitions, the number of connected components in a graph is equal to the number of times 0 

appears as an eigenvalue in the Laplacian matrix of the graph. 

Most of the graph-related properties of the networks described below are derived using the 

above basic graph properties 𝑨,𝑫,𝑲 and 𝑳. 

3.2.2 Node degree related graph properties 

Node degrees can be used to identify the key components in a network. In power networks, 

nodes such as substations have a high node degree compared to the other nodes. Also, degrees, 

and notably degree distributions can be used to derive information on the structure of a 
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network. For example, if most node degrees are the same the network is more or less a regular 

network in which vertices have equal roles.  

 Nodes degree distribution 

The nodes degree distribution 𝑃(𝑘) of a network is defined as the fraction of nodes in the 

network with degree, 𝑘. If the total number of nodes in the network is 𝑁 and 𝑛𝑘 of them have 

degree 𝑘, 𝑃(𝑘)  is defined in Equation (3.8). 

 𝑃(𝑘) =
𝑛𝑘
𝑁

 (3.8) 

A power law relationship between 𝑃(𝑘)  and 𝑘 is as shown in Equation (3.9) where, γ is a 

parameter whose value is typically ≥ 1. 

 𝑃(𝑘) ∝  𝑘−γ (3.9) 

As seen in the literature review in Chapter 2, in vulnerability assessment studies on HV 

transmission grids, this power law relationship between 𝑃(𝑘) and  𝑘 has been broadly analysed 

[28], [34]. However, for weakly meshed and radial networks in distribution level a power law 

distribution for 𝑃(𝑘) cannot be observed. But still it is worth to observe the behaviour of 𝑃(𝑘) 

for similar types of distribution level networks.  

 Average node degree 

The average node degree 𝑘𝑎𝑣𝑔, of a graph 𝑮 is also an important measure about the structure 

of the network. If 𝑘𝑎𝑣𝑔 > 2 the network has a meshed structure. 

 𝑘𝑎𝑣𝑔 =
1

𝑁
∑𝑘𝑖

𝑁

𝑖=1

=
2𝑀

𝑁
  (3.10) 



 

47 

 

 Branching rate 

Another node degree related measure is the branching rate  𝑏𝑟, which gives an indication of how 

much a given network tends to branch out. For instance, the urban distribution networks tend 

to branch out more compared to the rural distribution networks. Branching rates are usually 

different for different types of networks (rural, urban), for different voltage levels, and for 

different locations, i.e. close to the supply points or close to the customer points. 

 
 𝑏𝑟 =

Number of nodes with degree ≥ 3

Total number of nodes in the network
 

(3.11) 

 Pearson correlation coefficient 

A network is said to show assortative mixing if there exists a correlation between nodes of 

similar degree. Assortativity property of the networks is examined in terms of node degrees 

using the Pearson correlation coefficient 𝜌: 

 𝜌 =
𝑀−1∑ 𝑗𝑖𝑘𝑖−[𝑀

−1∑
1
2
(𝑗𝑖+𝑘𝑖)]

2 𝑖𝑖

𝑀−1∑
1
2
(𝑗𝑖
2+𝑘𝑖

2) 𝑖 −[𝑀−1∑
1
2
(𝑗𝑖+𝑘𝑖)]

2 𝑖

 (3.12) 

where 𝑗𝑖, 𝑘𝑖 are the degrees of the vertices at the ends of the 𝑖 th edge, with 𝑖 = 1, ..., 𝑀. A positive 

value for 𝜌 indicates correlation between nodes with similar degree and negative values for 𝜌 

indicates the relationship between nodes of different degree which is called disassortative 

mixing [62]. 

3.2.3 Network length related graph properties 

In power system terminology, network length of an MV distribution network refers to the total 

length of the OH and UG electricity distribution line segments. The network length is a critical 

parameter for electrical power networks since it impacts on a number of technical and economic 

factors such as the voltage drops, power losses and the cost of UG cables/OH lines in the 
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network. It is also important when describing the network topology realistically. An edge can be 

referred to a feeder section in an electrical distribution network. Some of the length related 

network properties are defined below. 

 Total network length 

Total network length  𝐿𝑡𝑜𝑡𝑎𝑙, is the addition of all the edge lengths in the network. 

 Average edge length 

Average edge length  𝑒𝑎𝑣𝑔 is obtained by dividing the total network length by the total number 

of edges.  

 Average path length 

A path is a continuous sequence of edges from one vertex to another. Length of a path is the 

addition of the lengths of all the edges in the path.  The ‘geodesic distance’ between nodes  𝑣1 

and  𝑣2, denoted as 𝑙( 𝑣1,  𝑣2) is the length of the shortest path between  𝑣1 and  𝑣2. Diameter 

of a network is defined as the longest graph geodesic between any two graph vertices  𝑣1,  𝑣2 of 

a graph. Then the average path length  𝑙𝑎𝑣𝑔 is defined as the average length along the shortest 

paths for all possible pairs of network nodes.  

 
 𝑙𝑎𝑣𝑔 =

1

𝑁(𝑁 − 1)
∑𝑙(𝑣𝑖, 𝑣𝑗)

𝑖≠𝑗

 
(3.13) 

 Edge length distribution 

Similar to the degree distribution, the edge length distribution 𝑃(𝑒) of a network is defined as 

the fraction of edges in the network, with length 𝑒. Here, length 𝑒 represents a range of edge 
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lengths. If the total number of edges in the network is 𝑀 and 𝑚𝑒 of them fall in to the length 

range 𝑒, 𝑃(𝑒) is expressed as: 

 𝑃(𝑒) =
𝑚𝑒

𝑀
 (3.14) 

Some network models assume equal spacing between nodes. However, this is not true for most 

real networks. Therefore, the edge length distribution is an important feature to be considered 

in the network modelling. 

3.2.4 Clustering of nodes 

 Clustering coefficient 

In graph theory, clustering coefficient 𝐶 is a measure of the degree to which nodes in a graph 

tend to cluster together. The clustering coefficient is defined as the average of the clustering 

coefficient for each node 𝐶𝑖.  

 
𝐶 =

1

𝑁
∑ 𝐶𝑖

𝑁

𝑖=1
 

(3.15) 

𝐶𝑖 is expressed as the ratio of number of edges between the neighbours of node 𝑖, 𝜆𝐺(𝑖) to the 

total number of edges that can exist among neighbours of node 𝑖, τG(𝑖) [52]. 

 
 𝐶𝑖 =

𝜆𝐺(𝑖)

τG(𝑖)
 

(3.16) 

The clustering coefficient of a radial network is zero. Therefore, in order to analyse the MV and 

LV radial networks this measure is not very useful. But in HV network studies this measure has 

been widely used (Section 2.4, Chapter 2). 
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3.2.5 Fractal properties 

As explained in Chapter 2, a few researchers have observed that the real-world electricity 

distribution networks also consist of self-repeating patterns across all scales similar to the 

fractals [15], [63]. 

 Fractal dimension 

Fractal dimension is an important property of fractals which provides a statistical index for the 

complexity of the fractal[36]. If the fractal dimension of an object needs to be explained, the box 

counting method provides the practical solution for that. In this method, the fractal object (e.g. 

image of the distribution network layout) is covered with boxes with equal sides 𝜀, and find how 

the number of boxes 𝑛(𝜀) which include the fractal object changes with the box size. A network 

is said to be fractal if the box counting dimension exists for that network. The box-counting 

dimension  𝐷𝑓 is defined as [64]: 

  𝐷𝑓 = 𝑙𝑖𝑚𝜀→0

log 𝑛(𝜀)

log (
1
𝜀)

 (3.17) 

3.2.6 Depth property and depth dependent network properties 

 Depth of a node 

The depth 𝑑, of a node 𝑥, in a graph is defined as the number of edges 𝑛𝑒, from the root node 

𝑟, to the node 𝑥. The depth of a node from the given root node can be obtained using Dijkstra 

shortest path algorithm [65]. In this study, the HV/MV substation is considered as the root of a 

MV radial network. A simple connected graph with no loops is called a tree. The electricity 

distribution networks at MV and LV levels predominantly have tree like (radial) structures. 

 𝑑𝑟,𝑥 = 𝑛𝑒(𝑟, 𝑥) (3.18) 



 

51 

 

 Maximum depth of the network 

Maximum depth 𝑑𝑚𝑎𝑥 is the number of edges along the longest path from the root node down 

to the farthest leaf node. 

During this study, analysing the depth dependent network properties was identified as an 

effective approach in both topological feature identification and the network model 

development. More details can be found in the section 3.7. 

3.3  Real-world power grid data for topological investigation 

The topological investigation of the real-world networks was conducted using network data 

collected from China, covering urban and sub-urban areas. These data include the detailed 

technical and geographical information of transmission, sub-transmission, and distribution level 

networks and the population data of the supplied areas of the networks. Since the present work 

is mainly focused on MV level networks, only the 10kV voltage level network information was 

used in this study. 10kV network is the most extensive forms of the main distribution system in 

both rural and urban areas in China. It is supplied by medium to large primary substations, where 

power is transformed from 35kV/10kV. As most of the MV distribution networks are operated 

in radial mode in the normal operating conditions [66], radial structures of the networks are 

considered in this study.  

A graph representation of each network was obtained. A graph representation obtained from 

the geographical layout of a single network, is shown in Figure 3.3(a). The red nodes represent 

the 10kV level consumers, 10kV/400V distribution transformers (secondary substations) and 

busbars. The green circle represents the main grid supply point (primary substation) of the 10kV 

network. 
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Table 3.1 summarizes the basic information available for the selected 30 networks at the 10kV 

level. The networks were categorized as sub-urban and urban depending on the population 

density. According to the Demographic Yearbook 2013 published by United Nations, the 

definition of ‘urban’ for cities in china is defined as the areas with population density higher than 

1500 people per square kilometre [67]. The distribution of the population density of the 

networks under study is shown in Figure 3.3(b). 

 
         (a)                                                                           (b) 

Figure 3.3: (a) Graph representation of network no. 1 (b) Distribution of population densities 
of the networks. 

According to Figure 3.3(b) out of 30, 10 kV networks, 17 networks are in the sub-urban category 

while the other 13 networks fall in to the urban category. 
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Table 3.1: Basic network information of 30 networks at 10kV level. 

Network 
ID 

Area 
(km2) 

Population 
Density 
(/km2) 

Total 
network 
length 
(km) 

Number 
of nodes 

Number 
of Edges 

Network 
ID 

Area 
(km2) 

Population 
Density 
(/km2) 

Total 
network 
length 
(km) 

Number 
of nodes 

Number 
of Edges 

1 66.2 482 76.4 254 253 16 101 256 103 377 376 

2 142 328 88.5 399 398 17 44.3 1054 84.1 384 383 

3 64.5 405 64.2 285 284 18 9.8 1939 28.3 234 233 

4 86.2 377 80.6 350 349 19 9.2 1935 29.6 237 236 

5 33.8 376 35.5 136 135 20 10 1930 34.2 331 330 

6 108.5 256 78.8 204 203 21 8 1750 34.2 205 204 

7 86.2 229 66.8 226 225 22 14 3200 38 328 327 

8 93.8 228 81.5 246 245 23 16 3200 52.5 400 399 

9 69 464 90.6 308 307 24 14 3200 31.2 267 266 

10 44.3 361 32.1 100 99 25 7 3600 28.7 227 226 

11 78.5 369 61.1 196 195 26 7.5 3600 29 217 216 

12 84.1 473 87.3 321 320 27 7 3600 17.5 115 114 

13 69.1 411 71.6 220 219 28 7.5 3600 14.7 114 113 

14 80.9 449 54.2 173 172 29 7.5 3600 16.1 153 152 

15 125.4 364 95.6 351 350 30 8 3600 30.4 265 264 
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3.4 Quantification of the topological properties 

Table 3.2 presents the topological properties of the 30 chosen networks at 10kV level. 

In order to compare the results shown in Table 3.2, probability distributions of the topological 

properties of both sub-urban and urban networks were obtained. Figure 3.4 shows the 

comparative probability distribution plots for the two types of networks, arranged back to back 

on the x-axis (probability of occurrence). For one topological property, the same bin size and the 

same number of bins were used to generate the probability distributions for both types of 

networks.   

It can be observed from Figure 3.4 (sub-graphs with letter A) that, some of the topological 

properties such as, nodes per km2, network length per km2, average edge length and average 

path length are able to clearly characterise the topological differences of the two types of 

networks. The ranges of the variation of the above four properties are summarised in Table 3.3. 

The probability distributions of the branching rate, maximum node degree, fractal dimension 

and maximum depth have some noticeable differences (i.e. probability distribution plots of the 

two network types are biased into different directions) of the two types of networks. However, 

still there are some overlapping of the values (sub-graphs with letter B). According to Figure 3.4 

(sub-graphs with letter C), properties such as Average node degree and Pearson correlation 

coefficient do not give clear information to characterise urban and sub-urban networks.
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Table 3.2: Graph related properties of the 30 networks at 10 kV level. 

Network  

ID 

Number  

of Nodes  

per 1km2 

Network  

length per 
1km2 (km) 

Average  

node  

degree 

Branching  

rate 

Maximum 

Node 

degree 

Pearson 
correlation 
coefficient 

Average 

edge 

length (km) 

Average  

path  

length (km) 

Fractal 
dimension 

Max  

Depth 

1 4 1.154 1.992 0.324 7 0.534 0.302 7.408 1.301 28 

2 3 0.623 1.995 0.313 5 0.559 0.222 10.356 1.270 54 

3 4 0.995 1.993 0.365 4 0.457 0.226 7.551 1.275 35 

4 4 0.934 1.994 0.377 7 0.516 0.231 6.445 1.331 28 

5 4 1.052 1.985 0.346 4 0.421 0.263 5.404 1.266 23 

6 2 0.726 1.990 0.363 5 0.504 0.388 8.418 1.261 26 

7 3 0.775 1.991 0.292 3 0.776 0.297 8.518 1.273 34 

8 3 0.868 1.992 0.350 4 0.356 0.332 9.694 1.276 35 

9 4 1.316 1.994 0.361 5 0.477 0.295 8.179 1.323 38 

10 2 0.724 1.980 0.330 3 0.394 0.324 4.546 1.228 25 

11 2 0.779 1.990 0.352 4 0.597 0.313 7.625 1.270 24 

12 4 1.038 1.994 0.336 6 0.616 0.273 7.983 1.319 35 

13 3 1.036 1.991 0.341 3 0.600 0.327 9.840 1.285 38 

14 2 0.670 1.988 0.358 4 0.353 0.315 6.513 1.266 27 

15 3 0.762 1.994 0.288 7 0.475 0.273 9.792 1.296 51 
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16 4 1.020 1.995 0.358 8 0.612 0.274 9.452 1.319 37 

17 9 1.899 1.995 0.299 9 0.363 0.220 6.820 1.344 36 

18 24 2.885 1.991 0.350 7 0.538 0.121 2.879 1.304 23 

19 26 3.222 1.992 0.371 7 0.682 0.126 3.388 1.302 38 

20 33 3.418 1.994 0.390 7 0.606 0.104 2.641 1.336 30 

21 26 4.275 1.990 0.263 9 0.502 0.168 3.738 1.281 22 

22 23 2.711 1.994 0.348 8 0.499 0.116 3.788 1.324 45 

23 25 3.281 1.995 0.370 8 0.678 0.132 4.370 1.341 29 

24 19 2.230 1.993 0.397 9 0.101 0.117 3.415 1.352 33 

25 30 3.828 1.991 0.370 6 0.633 0.127 4.494 1.353 40 

26 29 3.867 1.991 0.373 6 0.580 0.134 3.578 1.341 29 

27 15 2.336 1.983 0.365 7 0.390 0.154 2.583 1.327 20 

28 15 1.960 1.982 0.272 6 0.491 0.130 2.232 1.319 20 

29 20 2.152 1.987 0.366 7 0.542 0.106 2.053 1.369 31 

30 35 4.048 1.992 0.343 10 0.226 0.115 2.507 1.344 21 
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Figure 3.4: Comparison of the topological properties of urban and sub-urban networks. 
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Table 3.3: The ranges of variations of the topological properties of sub-urban and urban 
distribution networks. 

Topological property                                 The range of variation 

Sub-urban networks Urban networks 

Nodes per km2 2 - 9 15 – 35 

Network length per km2 0.6 km - 2.0 km 2.0 km – 4.2 km 

Average edge length 0.2 km – 0.4 km 0.1 km – 0.2 km 

Average path length 4.5 km – 10.5 km 2.0 km – 4.5 km 

3.5 Validation of the networks classification using topological 

properties 

A validation of the network classification with the population density parameter (i.e. as urban 

and sub-urban networks), is validated in this section using a clustering approach. 

 K-means clustering 

Clustering in general, is defined as the grouping of similar objects. The k-means clustering 

algorithm was used to classify the data set in Table 3.2 into a set of clusters. The k-means 

clustering algorithm aims to partition a number of observations into k number of clusters in 

which each observation belongs to the cluster with the nearest mean. Each observation is a d-

dimensional real vector. Euclidian distances are used to calculate the distance from the 

observation to the mean.  

The implementation of the k-means algorithm is as follows; (i) make initial guesses for the means 

m1, m2,.. mk. (ii) use the estimated means to classify the samples into clusters. (iii) for i from 1 to 

k, replace mi with the mean of all of the samples for cluster i (iv) repeat steps 2 and 3 until there 

are no changes in any mean [68], [69]. 
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Figure 3.5: The k-means cluster analysis. 

Figure 3.5 illustrates the procedure of the k-means cluster analysis used in this study. According 

to the above explanation of k-means clustering, the 30 networks used in the study represent 30 

observations, and each observation is a 10-dimensional real vector. The 10 dimensions (cluster 

variables) are the 10 topological properties listed in Table 3.2. The input data matrix for the k-

means algorithm was formed using different subsets of the properties from Table 3.2 to find out 

which subsets of the parameters together can effectively characterize the two network types 

(urban and sub-urban). Therefore, it was assumed that the number of clusters k is known for the 

data set (k=2). Two clusters are the urban and sub-urban networks. Then, the k-means algorithm 

was used to group the 30 networks into two clusters.  

Trial n, refers to the exercise where any n properties from Table 3.2 are used as cluster variables 

to form the Data Matrix in Figure 3.5. Trial 10 and trial 3 were used as examples for the 

discussion of the clustering results in this section. In the trial 10 all the 10 topological parameters 

in Table 3.2 were used as cluster variables. The grouping done by the clustering in trial 10 exactly 

followed the sub-urban and urban classification done by the population density parameter. 

Hence trial 10 was used to validate the urban, sub-urban classification of the networks. 

The results shown in Figure 3.6 are graphical representations of the case where, different 

subsets of 3 topological parameters were chosen as the cluster variables (trial 3). In the first two 

cases (Figure 3.6 (a) and (b)), the selected sets of cluster variables were able to group the 
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network sample into two clusters accurately, as defined by the population density of the 

networks. However, the third set of cluster variables shown in Figure 3.6(c) did not cluster the 

network sample into the right groups. Some of the sub-urban type networks were fallen into the 

urban category and also the data points in each cluster seemed to be much more dispersed that 

the previous two cases. This observation explains the importance of feature selection when 

characterizing different network types. 
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(a)                                                                                      (b)                                                                                       (c) 

 

Figure 3.6: Cluster assignments.
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3.6 Identification of key topological properties 

From the results so far, it is evident that the node degree and edge length related topological 

properties are key to characterise different types of networks (most of the above listed 

topological properties are related with node degrees and edge lengths).  

In Section 3.4 all the node degree and edge length related topological properties are evaluated 

using a single value to describe each network. However, by investigating the probability 

distributions of these topological properties more details about the network topologies can be 

extracted. 

 Probability distributions of key topological properties 

Figure 3.7 (a) and (b) show the edge length distributions of sub-urban and urban networks 

respectively. Light blue and light red curves in both figures represent the edge length 

distribution of a single network. The dashed dark blue and dark red lines show the average 

curves of the edge length distributions of all the networks in the corresponding figure. The 

average curve was obtained by taking into consideration the edge lengths in all the networks of 

one type as one set and by getting the probability of occurrences for the whole set.    

The curves of average edge length distribution of sub-urban and urban types of networks are 

compared in Figure 3.7(c). It was observed that edge length distributions of both types of 

networks follow negative exponential patterns. The edge length distribution of urban networks 

has a faster decay compared to the sub-urban networks and this observation explains that the 

urban networks have a considerably higher fraction of shorter edge lengths compared to the 

sub-urban networks. 
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    (a)                                                                                         (b)                                                                                        (c) 

Figure 3.7: Edge length distributions of; (a) sub-urban networks, (b) urban networks and (c) comparison of edge length distributions of sub-urban and urban 
networks.
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   (a)                                                                                        (b)                                                                                         (c) 

Figure 3.8: Node degree distributions of; (a) sub-urban networks, (b) urban networks and (c) comparison of node degree distributions of sub-urban and urban 
networks.
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Similarly, degree distributions of the sub-urban and urban networks are shown in Figure 3.8(a) 

and (b) respectively. The average degree distribution curves for the two types of the networks 

are compared in Figure 3.8(c). The curves do not follow any well-known distribution. However, 

it is noticeable that the number of nodes with a degree of 2 in most of the urban networks is 

less than the sub-urban networks. This implies that the urban networks tend to have more 

branches (nodes with degree ≥3) and leaf nodes (nodes with degree 1) than sub-urban networks. 

Also, the maximum degree observed in sub-urban networks is 7 while maximum degree of the 

urban networks is up to 10. 

3.7 The depth dependent topological properties 

Electrical power grid is an evolving network, with new nodes (substations and consumers), and 

edges (power distribution lines) added with time. Similar to most of the real-world networks, 

the development and evolution of the electrical power networks is closely related to the factors 

such as geographical environment, population distribution, social and economic development. 

Due to these factors, different networks have observable topological differences. 

It was observed that, the electrical power networks used in this study have considerably 

different graph related properties at different depths of the networks. For example, in urban 

networks consumer locations are evenly distributed with compared to the sub-urban networks. 

Therefore, urban networks has a higher network density compared to the sub-urban networks.   

3.7.1 Definition of ‘depth levels’ for the analysis of topological 

properties 

In this study, topological properties of the networks are observed depending on the depth of 

the nodes as; closer to the supply point (level 1), at the middle level (level 2) and at the furthest 

away area from the supply point (level 3) respectively.  
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(a)                                                                              (b) 

Figure 3.9: (a) The concept of depth of a node (b) The idea of the levels of a network along 
the depth. 

The network is divided into several levels along the depths as shown in Figure 3.9(a). In this 

study, the network is divided into three levels 𝑙1, 𝑙1 and 𝑙1 along the depth. The number of levels 

chosen for the depth dependent study, can be varied. A sensitivity study with different number 

of levels can be conducted to identify the best number of levels to capture the depth dependent 

properties of different types of networks. However, this part of the study is not covered in this 

thesis. Figure 3.9(b) illustrates segmenting a radial network into levels. 

 𝑙 =

{
 
 

 
 

         

𝑙1;                   0 < 𝑑 ≤
𝑑𝑚𝑎𝑥
3

𝑙2;       
𝑑𝑚𝑎𝑥
3

< 𝑑 ≤
2𝑑𝑚𝑎𝑥
3

   

𝑙3;          
2𝑑𝑚𝑎𝑥
3

< 𝑑 ≤ 𝑑𝑚𝑎𝑥

  (3.19) 

 

Figure 3.10: Algorithm to obtain depth dependent network properties. 

In order to obtain the depth dependent properties for a tree like graph, the adjacency ‘𝑨’ and 

distance ‘𝑫’ matrices can be re-organized as ‘𝑨𝑛𝑒𝑤’ and ‘𝑫𝑛𝑒𝑤’ following the new node 
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identifiers given according to the depth of the node (Figure 3.10). For example, the root/source 

node is now numbered as ‘node 1’ and the nodes immediately connected to the root node takes 

the next consecutive numbers for their node identifiers. Submatrices of the 𝑨𝑛𝑒𝑤 and 𝑫𝑛𝑒𝑤 are 

used to derive the depth dependent degree and edge length distributions of the network. For 

example, the edge length distribution of the network at level 1, (𝑙1) is obtained from the values 

in submatrix 𝑫𝑙1 of 𝑫𝑛𝑒𝑤, using the basic definition in the Equation (3.14). Similarly, the values 

in submatrices 𝑫𝑙1 and 𝑫𝑙1 are used to obtain the edge length distributions of level 2 and level 

3 respectively. The idea is illustrated in the Figure 3.11. 

 

Figure 3.11: New distance matrix (node numbers 1 to N are given according to the depth of 
the node from its root node). 

3.7.2 Probability distributions of depth dependent topological 

properties 

An investigation of the depth dependent topological properties was conducted using the same 

set of real world network data. Since the length and degree related measures play a critical role 

in describing the topology of a network, the depth dependent degree distributions and the edge 

length distributions at different depth levels were thoroughly investigated. 
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Figure 3.12Figure 3.12(a), (b) and (c) show the results of depth dependent analysis of one sub-

urban type network (Network 1 in Table 3.2).  

From Figure 3.12(a) it can be observed that in Network 1, the edge length distributions of all the 

three ‘levels’ approximately follow negative exponential distributions. However, the maximum 

edge length and the total number of edges in each level has been reduced when going towards 

level 3 from the level 1 of the network.  

Figure 3.12(b) shows the degree distributions of the three levels of the network 1. Figure 3.12(c) 

shows the distribution of the nodes among the levels of the network 1. It was observed that the 

number of nodes in each level has been reduced when moving from level 1 to level 3 of the 

network. 
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(a)                                                                                       (b)                                                                                        (c) 

 

Figure 3.12: (a) Depth dependent edge length distribution of Network 1. (b) Depth dependent degree distribution of Network 1. (c) Distribution of nodes 
among the levels of Network 1.



 

70 

 

Table 3.4: Number of nodes in different levels of the networks. 

Level Number of nodes in different levels of sub-urban networks  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

level 1 128 185 122 150 52 102 93 106 172 39 66 164 94 84 174 180 214 

level 2 85 159 109 130 53 80 74 100 107 38 86 117 80 69 104 136 130 

level 3 41 54 54 70 31 22 59 40 29 23 44 40 46 20 73 61 40 

Total no.  

of nodes 

254 398 285 350 136 204 226 246 308 100 196 321 220 173 351 377 384 

Level Number of nodes in different levels of urban networks 

18 19 20 21 22 23 24 25 26 28 27 29 30 
    

level 1 70 107 175 70 158 171 108 96 106 47 58 74 101 
    

level 2 96 100 95 99 121 175 112 89 88 44 38 48 121 
    

level 3 68 30 61 36 49 54 47 42 23 23 19 31 43 
    

Total no. 

of nodes 

234 237 331 205 328 400 267 227 217 114 115 153 265 
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Figure 3.13: Comparison of the distribution of the nodes among the levels of sub-urban and 
urban networks. 

Table 3.4 provides the information regarding the distribution of the number of nodes in different 

levels of urban and sub-urban networks used in the study. Figure 3.13 compares and summarises 

the information in Table 3.4. For instance, the average probability that a given node in an urban 

network belongs to level 1 was obtained by dividing the total number of nodes in level 1 by the 

total number of nodes in all urban networks. From Figure 3.13 it was identified that in both types 

of networks the number of nodes in each level has been reduced when going away from the 

source node. According to Figure 3.13, the fraction of nodes in levels 2 and 3 of urban networks 

are slightly higher than that of the sub-urban networks. This is due to the higher density of the 

distribution of consumers in urban areas, compared to that of the sub-urban areas. 
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Figure 3.14(a) shows a comparison of the edge length distributions of sub-urban and urban 

networks at their levels 1, 2 and 3. Each curve represents the average variation of all the 

networks of one type (E.g.: Average variation of 17-sub-urban and average variation of 13-urban 

networks). When comparing the results, it can be observed that the edge length distributions of 

all levels in urban networks have a faster decaying negative exponential pattern and a shorter 

‘maximum edge length’ compared to the sub-urban networks. Also, for both types of networks, 

the maximum edge length that can be observed in level 1 reduced when moving away from the 

source node towards level 2 and level 3 (Figure 3.14(a)), and the exponential decay of the edge 

length distribution has also become faster. 

Similarly, a comparison of the depth dependent network analysis for the degree distributions is 

shown in Figure 3.12(b). Compared to the information delivered by the degree distribution 

curves in Figure 3.8, the depth dependent analysis provides detailed information regarding the 

network structure. It can be observed that in both types of networks, close to the supply point 

the network is less branched and when going away from the supply node branching (nodes with 

degree ≥ 3) and the fraction of leaf nodes (nodes with degree = 1) have increased. Comparison 

of the degree distribution of the same level in the two types of networks shows that the urban 

networks tend to have a strong depiction of the above discussed property than that of the sub-

urban networks. 
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(a)                                                                                                                        (b) 

 

Figure 3.14: (a) Comparison of edge length distributions of sub-urban and urban networks at different levels. (b) Comparison of degree distributions of sub-
urban and urban networks at different levels.



 

74 

 

Table 3.5: Maximum value for edge length in sub-urban and urban networks at different 
levels of the network. 

Level                                  Maximum edge length (km) 

Sub-urban networks Urban networks 

1 2.9 1.4 

2 2.0 0.9 

3 1.6 0.7 

3.8 Summary of the topological investigation 

This chapter presents an investigation of the topological properties of real-world electricity 

distribution networks at the MV level by employing techniques from complex networks analysis 

and graph theory. A novel approach to obtain depth-dependent topological properties was 

developed. Topological properties of sub-urban and urban distribution networks are quantified. 

The sub-urban and urban grouping of the networks is validated using a clustering approach. 

Results of the investigation of topological properties in real-world networks showed that, 

(i) Node degree and edge length related graph properties are fundamental in 

characterizing the topological structures of radial type sub-urban and urban 

electricity distribution networks.  

(ii) Depth dependent properties were able to better capture the topological 

features of electricity networks at different depth levels of the networks. 

Results from the depth dependent analysis showed that urban and sub-urban 

types of electricity distribution networks have different graph related properties 

at different depth levels of the networks. 
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 Electrical properties of medium 

voltage electricity distribution networks 

4.1 Introduction 

Similar to the investigation of topological properties in Chapter 3, it is also important to identify 

and quantify the electrical properties of different types of real-world distribution networks, in 

order to produce random-realistic electricity distribution network models.  

Some examples for the electrical properties of the distribution networks are Impedances of the 

distribution lines and electrical equipment, thermal ratings of conductors, protection devices 

and other electrical equipment, installed capacities of the primary and secondary substations, 

load profiles of consumers and installed capacities and generation profiles of DGs. In this thesis, 

electrical properties are referred to as the above electrical parameters and some derivations 

from one or few of the above electrical parameters (e.g. average installed capacity of a 

secondary substation, average impedance of a branch) that describe the electrical structure or 

the electrical arrangement of a distribution network. These electrical parameters are important 

to study the performance of electricity distribution networks including voltage drops, power 

losses, network reliability and costs, etc.  

The typical assumptions used in these types of studies such as uniform distributions of the 

consumer load and uniform cross sections and cable types for all the distribution lines are not 

sufficiently accurate to describe the realistic electrical behaviour of the distribution networks. 

Distribution of the consumer load is usually different from one network type to the other and 
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difficult to predict without sufficient information from the real networks. Moreover, the 

guidelines and recommendations for network planning and design are also different from region 

to region and cannot be followed exactly in practice due to various reasons such as geographical 

constrains, policies, regulations and financial factors. Hence, planning and design guidelines of 

distribution network by its own, is not sufficient to provide realistic representations of the 

electricity distribution networks. 

Therefore, followed by the topological investigation in Chapter 3, an investigation of the 

electrical properties of real-world, MV electricity distribution networks is carried out in this 

chapter. 

The motivation of this study is to identify and quantify the key electrical properties which will 

later be useful in network modelling. 

 The approach of the study is similar to that of the topological investigation in Chapter 3 and the 

schematic overview of the study is shown in Figure 4.1.  

 

Figure 4.1: Schematic overview of the study. 

The same set of Chinese power grid data that was used for the topological investigation, is used 

for this study. However, only a limited set of electrical data from the real-world networks were 

available. They are, 
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(i) Installed capacities of the primary and secondary/distribution substations.  

(ii) conductor cross sections of the distribution lines  

The following sections of the chapter describe the detailed approach of the investigation of 

electrical properties of real-world distribution networks using the above available two sets of 

data. 

4.2 Definitions and formulations of the key electrical properties 

In order to extract the electrical properties of distribution networks, which are also associated 

with its topology, each real network is represented as a directed, weighted graph: 𝑮 = (𝑽, 𝑬). 

𝑽 represents the set of nodes and the 𝑬 represents the set of edges in the graph 𝑮.  The 

definitions of nodes and edges are similar to those in Chapter 3. Since, all the networks used in 

this study have radial structures they can be denoted as rooted trees with the primary substation 

(PS) representing the root s, of the corresponding network. 

Node identifiers were specified according to the Breadth-first search (BFS) approach [70]. In this 

approach, node numbering starts at the tree root (𝑛𝑜𝑑𝑒_𝑖𝑑 equals to 1), and number the nodes 

in the next same depth level first (E.g.: 𝑛𝑜𝑑𝑒_𝑖𝑑 = 2, 3, 4...), before moving to the subsequent 

depth level. Lengths (in km) of the distribution line segments are used as the weights of the 

edges in the graph. 

Definitions and formulations of the key electrical properties used in this study are described in 

the following section with reference to the 10kV Chinese electricity distribution networks 

selected for the investigation. Table 4.1 provides a summary of the electrical properties 

investigated in this study. 
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Table 4.1: Summary of the electrical properties. 

Category  Electrical properties 

Substation capacity related 
properties 

Installed capacity of the primary substation (MVA) 

Average installed capacity of a secondary substation (kVA) 

Variation of the installed capacities of the secondary 
substations with the distance to the source node along the 
feeders 

Load density(MVA/km2) 

Conductor cross section 
related properties 

Average electrical distance(Ohms) between two nodes of 
the network 

(i.e. average resistance and reactance between two nodes 
in the network) 

Thermal ratings of the conductors (kVA or amperes) 

Electrical performance of the 
network related properties 

Total power loss to the total supplied power ratio (%) of 
the network 

Minimum recorded voltage of the network 

System load balancing index 

4.2.1  Substation capacity related properties 

 Primary substations (PS) 

Usually, a 10kV distribution network is supplied by a PS which transforms voltage from 35kV to 

10kV. PSs are often sited close to large industrial customers or at the load centre. In the graph 

representations of electricity networks, PS becomes the root node. 

The installed capacities of these primary substations (𝑃𝑆𝑐) depends on the type of the area it is 

located. In rural areas the primary substation capacity can be quite small with a single 35kV/10kV 

transformer and no more than 2 or three outgoing feeders. A feeder in an electricity distribution 

networks is an exit route that carries electric power from the primary substation to the 

distribution substations. Primary substations in city centre areas often have several large 

transformers and more than 10 outgoing feeders. The information of PSs are specified in the 

following format (4.1). 
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 𝑃𝑆 = [𝑛𝑜𝑑𝑒_𝑖𝑑, 𝑃𝑆𝑐  (𝑀𝑉𝐴), 𝑛𝑢𝑚_𝑜𝑓_𝑓𝑒𝑒𝑑𝑒𝑟𝑠]1×3 (4.1) 

where, 𝑛𝑜𝑑𝑒_𝑖𝑑 is the identifier of the node where the PS is located, 𝑃𝑆𝑐 is the installed capacity 

of the PS and  𝑛𝑢𝑚_𝑜𝑓_𝑓𝑒𝑒𝑑𝑒𝑟𝑠 is the number of outgoing feeders from the PS.  

 Secondary substations (SS) 

The secondary substations (SS), where power is transformed from 10kV down to the 0.4kV LV 

system come in different types. In highly populated areas secondary substations are mostly 

ground mounted and have higher installed capacities than in less populated areas. In less 

populated areas pole mounted substations are widely used. 

In graph models of the distribution networks, each node representing a secondary substation is 

assigned with an installed capacity, 𝑆𝑆𝐶.  The distance (in km) from root s, to the secondary 

substations along the feeders (𝑑𝑖𝑠𝑡𝑠,𝑆𝑆), is obtained using the Djakarta’s shortest path algorithm 

[65]. The list of SS is represented in the matrix format as shown in Equation (4.2). 𝑁𝑆𝑆 is the total 

number of secondary substations in the network.  

 𝑆𝑆          = [𝑛𝑜𝑑𝑒_𝑖𝑑, 𝑑𝑖𝑠𝑡𝑠,𝑆𝑆 (𝑘𝑚), 𝑆𝑆𝐶(𝑘𝑉𝐴)]𝑁𝑆𝑆×3 (4.2) 

 Average installed capacity of secondary substations 

The average installed capacity of secondary substations (𝑆𝑆𝐶,𝑎𝑣𝑔) in a network can be obtained 

from the above data using Equation (4.3). A High value of 𝑆𝑆𝐶,𝑎𝑣𝑔  implies a high electrical load 

density and a lower value of 𝑆𝑆𝐶,𝑎𝑣𝑔implies a low load density in a selected area of the networks. 

 
𝑆𝑆𝐶,𝑎𝑣𝑔  =

∑ 𝑆𝑆𝐶,𝑖
𝑁𝑆𝑆
𝑖=1

𝑁𝑆𝑆
 

(4.3) 
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 Distribution of the capacities of secondary substations along the feeder 

lengths 

The distribution of consumer loads is a primary factor that determines the distribution of SS 

capacities. The distribution of consumer loads can be different from one network type to the 

other. For example, in rural type distribution networks, usually the PSs are located closer to the 

high capacity loads while some distribution feeders stretch further to provide power to the far 

away low capacity loads. 

In order to capture the variation of SS capacity with its distance to the root node, the following 

approach is used. The SS capacities are plotted against the distance to the root node of each SS. 

The distances are normalised over entire network (𝑙𝑛𝑜𝑟𝑚) by dividing the distances to each SS 

from the root node, by the maximum feeder length 𝑙𝑚𝑎𝑥, of the corresponding network as 

shown in Equation (4.4). 𝑙𝑚𝑎𝑥 of a network is the distance from root node to the furthest away 

SS along a feeder.  

 
𝑙𝑛𝑜𝑟𝑚  =

𝑑𝑖𝑠𝑡𝑠,𝑆𝑆
𝑙𝑚𝑎𝑥

 
(4.4) 

This normalisation allows the comparison of the distribution of SS capacities along the feeder 

length between different networks.  

 Load density (MVA/km2) 

The load density, 𝐿𝐷 (MVA/km2) of a given area of the network is obtained by dividing the total 

installed capacity of SSs in the network by the total supply area (𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎) of the network 

and then multiplying this value by a demand factor 𝑘𝑑  as shown in Equation (4.5). A demand 

factor 𝑘𝑑 , for this study is defined as a fraction of the installed capacity of a SS in the distribution 

network, that is actually being consumed as the consumer load at a given instant of time. In the 



 

81 

 

real-world networks SSs do not operate in their maximum capacity under normal operating 

conditions. Therefore, it was assumed that on average SSs are operating at 60% of their 

capacities and hence, for the calculations, 𝑘𝑑  is assumed to be equal to 0.6.  

 𝐿𝐷 =
∑ 𝑆𝑆𝐶,𝑖

𝑁𝑆𝑆
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎
× 𝑘𝑑  

(4.5) 

4.2.2 Conductor cross section related properties 

Usually, in radial feeders, the distribution line segments closer to the root node carry the 

maximum power while the line segments further away from the source are lightly loaded (Note: 

this explanation is valid when there is no DG is connected to the distribution network. With DGs 

connecting at various places the line loadings in the distribution networks can be different from 

the above explanation). These characteristics of radial feeders enable the choice of multiple 

conductor cross sections for a single feeder. However, the use of a large number of conductors 

of different cross sections will result in an increased cost of the inventory [71]. To avoid high 

costs, specific recommendations are set by the network planners.                                                                

The distribution line segments in a network can be divided into a trunk and lateral branches (tie 

lines are ignored). The trunk refers to the backbone of a network and is the main route of power 

transfer from the primary substation down to the load centres. Usually, the trunk lines have 

larger cross sections and also a headroom is left for future expansions. Lateral branches are the 

distribution line segments that connect between trunk lines and the MV consumers and SSs. 

The choice between overhead lines (OH) or underground (UG) cables for a distribution line 

depends on the type of area. UG cables are widely used in urban areas while OH lines are more 

common in rural or less populated areas. In addition, the choice of UG cables and OH lines are 
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also heavily influenced by the cost of labour and material, and geographical constrains such are 

rivers, mountains, reserved areas, etc. [66].  

 Impedance of a distribution line 

Depending on the conductor cross section (mm2), the per km impedance (𝑧) of a distribution 

line can be obtained using manufacturer manuals. Parameter 𝑟 is the per km resistance and 𝑥 is 

the per km reactance in Equation (4.6). Usually the shunt capacitance of the distribution lines is 

ignored [66].  

 𝑧 = 𝑟 + 𝑗𝑥 (4.6) 

 Electrical distance matrix 

If the impedances of all the distribution lines are known, an electrical distance matrix (𝐸𝐷), for 

the network can be obtained as shown in Equation (4.7),  

 
 𝐸𝐷𝑖𝑗 = {

    𝑑(𝑖, 𝑗) × 𝑧(𝑖, 𝑗)  ,                 𝑖𝑓(𝑖, 𝑗) ∈ 𝐸 𝑎𝑛𝑑 𝑖 < 𝑗 
 0,                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4.7) 

where, 𝑑(𝑖, 𝑗) is the length of the distribution line connecting nodes 𝑖 and 𝑗 and 𝑧(𝑖, 𝑗) is the 

impedance of the distribution line connecting nodes 𝑖 and 𝑗.  

 Average electrical distance between two nodes in a network 

Average electrical distance 𝑒𝑑𝑎𝑣𝑔, between the nodes in the network is then obtained according 

to Equation (4.8). 𝑁 is the total number of nodes in the network and 𝑀 is the total number of 

branches in the network. 
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𝑒𝑑𝑎𝑣𝑔  =

∑ ∑ 𝐸𝐷(𝑖, 𝑗)𝑁
𝑗=1

𝑁

𝑖=1

𝑀
 

 

(4.8) 

 Thermal rating of the conductors 

Thermal rating/limit of the conductors is one major factor that limits the power flow through a 

distribution line. These thermal limits are intended to limit the temperature reached by the 

energized conductors and the resulting sag and loss of tensile strength. Thermal ratings (in terms 

of kVA or amperes) of the corresponding cross section and material type of the conductors can 

be found using cable manufacturers data manuals. 

4.2.3 Electrical performance related properties 

In practice, electricity distribution networks are designed to meet many technical and economic 

standards to achieve the best performance in both normal and abnormal operating conditions. 

Power losses, voltage drops and feeder utilizations are some of the most important indicators 

to describe the electrical performance of a distribution network.  

 Power losses 

Given the active (𝑃) and reactive (𝑄) load connected at the end of a distribution line segment 

𝑒𝑖𝑗  with a conductor impedance (𝑧), the active power loss (𝑃𝐿𝑜𝑠𝑠), reactive power loss (𝑄𝐿𝑜𝑠𝑠) 

and apparent power loss (𝑆𝐿𝑜𝑠𝑠) is obtained by the following Equations (4.9), (4.10) and (4.11). 



 

84 

 

 

Figure 4.2: Representation of a distribution line segment. 

 
𝑃𝐿𝑜𝑠𝑠𝑒𝑖𝑗  =

𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2

𝑉𝑗
2 × 𝑅 = 

𝑆𝑖𝑗
2

𝑉𝑗
2 × 𝑅 

(4.9) 

 
𝑄𝐿𝑜𝑠𝑠𝑒𝑖𝑗  =

𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2

𝑉𝑗
2 × 𝑋 = 

𝑆𝑖𝑗
2

𝑉𝑗
2 × 𝑋 

(4.10) 

 𝑆𝐿𝑜𝑠𝑠𝑒𝑖𝑗  = √(𝑃𝐿𝑜𝑠𝑠𝑒𝑖𝑗
2 + 𝑄𝐿𝑜𝑠𝑠𝑒𝑖𝑗

2 ) (4.11) 

The total power loss 𝑆𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙  is the sum of individual power losses in each line segment in the 

network. 

The ratio of total power loss to the total supplied power (𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜) is used as another 

performance evaluation parameter to compare different networks. 𝑆𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑𝑇𝑜𝑡𝑎𝑙 is the total 

power supplied to the network. 

 
𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =

𝑆𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙
𝑆𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑𝑇𝑜𝑡𝑎𝑙

× 100% (4.12) 

 Voltage drops 

In a distribution network, a knowledge of the voltage at different parts of the network can 

indicate the strong and weak parts of a network. Often a specific voltage drop (E.g. 6%) is 

permitted between the supply node and any other node in the network. The voltage drop 𝑉𝑑 in 

a distribution line segment can be calculated using the following formula: 
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𝑉𝑑  =

𝑃

𝑉
(𝑅 + 𝑋 𝑡𝑎𝑛𝜑) 

(4.13) 

where, 𝑉 is the rated line-line voltage, 𝑃 is the total three phase active power and φ is the angle 

between voltage and current. In the above Figure 4.2, the load is concentrated at the receiving 

end. The total voltage drop 𝑉𝑑_𝑇𝑜𝑡𝑎𝑙 is the sum of individual voltage drops due to each load point 

[66]. 

 Load balancing index 

Branch load balancing index 𝐿𝐵𝑏𝑟𝑎𝑛𝑐ℎ and overall system load balancing index 𝐿𝐵𝑠𝑦𝑠 are used 

to determine the loading condition of the distribution network. Branch load balancing index is 

defined as a measure of how much a branch can be loaded without exceeding the rated capacity 

of that branch. This can be represented mathematically as, 

 
𝐿𝐵𝑏𝑟𝑎𝑛𝑐ℎ  =

𝑆𝑏𝑟𝑎𝑛𝑐ℎ
𝑆𝑏𝑟𝑎𝑛𝑐ℎ
𝑚𝑎𝑥  

(4.14) 

where, 𝑆𝑏𝑟𝑎𝑛𝑐ℎ is the complex power flowing through the branch and 𝑆𝑏𝑟𝑎𝑛𝑐ℎ
𝑚𝑎𝑥  is the maximum 

rating or capacity of branch. The system load balancing index 𝐿𝐵𝑠𝑦𝑠 of the entire distribution 

network is represented as, 

 
𝐿𝐵𝑠𝑦𝑠  =

1

𝑀
∑

𝑆𝑏𝑟𝑎𝑛𝑐ℎ
𝑆𝑏𝑟𝑎𝑛𝑐ℎ
𝑚𝑎𝑥

𝑀

𝑏𝑟𝑎𝑛𝑐ℎ=1

 
(4.15) 

where, 𝑀 is the total number of branches in the network [72], [73].  
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4.3 Power grid data for the investigation of electrical properties 

Sub-urban and urban network samples with radial structures were selected from the data of 

10kV Chinese electricity distribution networks. Similar to the topological investigation (Section 

3.3), network classification as sub-urban and urban is done according to the population density. 

Table 4.2 summarises the basic information of the 10kV network samples selected for this study. 
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Table 4.2: Basic information of the selected samples of 10kV sub-urban and urban networks. 

Network 
type 

Network 
ID 

Area 
(km2) 

Population 
density 
(/km2) 

Total 
number 
of nodes 

Total 
Number 
of 
branches 

Number of 
outgoing 
feeders from 
the primary 
substation 

Installed 
capacity of the 
primary 
substation 
(MVA) 

Number of 
secondary 
substations 
in the 
network 

Total 
installed 
capacity of 
secondary 
substations 
(kVA) 

Maximum 
feeder 
length 
(km) 

 
Su

b
-u

rb
an

 

1 66.2 482 254 253 7 8+5   = 13                 92 16100 10.7 

2 142.0 328 399 398 5 2×10 = 20 129 20652 14.8 

3 64.5 405 285 284 4 2×10 = 20 109 20083 10.8 

4 80.9 449 173 172 4 2×10 = 20 65 13470 12.3 

5 108.5 256 204 203 5 2×8   = 16 81 17303 11.8 

6 78.5 369 196 195 4 2×10 = 20 76 15135 11.5 

7 84.1 473 321 320 6 2×10 = 20 117 24440 14.4 

8 88.0 508 351 350 7 2×10 = 20 109 28080 15.1 

9 32.2 422 169 168 6 5+6.3= 11.3 59 12580 6.8 

10 48.8 640 186 185 5 2×10 = 20 73 17650 7.1 

 
U

rb
an

 

11 9.8 1939 234 233 9 2×20 = 40 65 23850 3.8 

12 9.2 1935 237 236 7 2×50 = 100 98 50030 3.7 

13 10.0 1930 331 330 7 2×16 = 32 90 38200 3.5 

14 8.0 1750 205 204 7 50+63= 113 83 43900 5.2 

15 14.0 3200 328 327 8 2×50 = 100 125 72370 5.5 

16 16.0 3200 400 399 7 2×20 = 40 115 66380 4.8 

17 7.0 3600 227 226 6 31.5+20 =51.5 99 42250 4.0 

18 7.5 3600 217 216 6 2×50 = 100 96 42865 5.6 

19 8.0 3600 265 264 10 2×20 = 40 89 65080 5.1 

20 7.5 3600 153 152 7 2×16 = 32 50 27470 3.4 



 

88 

 

 

Figure 4.3: A distribution feeder of a 10kV electricity distribution network. 

Figure 4.3 shows an example for a real distribution feeder of a 10kV electricity distribution 

network. The trunk line and the lateral branches are marked in red (thick) and blue (thin) lines. 

Installed capacities of the 10kV/0.4kV secondary substations are marked next to each SS. The 

capacity of the 35kV/10kV primary substation is 20MVA. Conductor type used for the 

distribution lines are marked along the lines. Consider the example of conductor type LGJ-70/1.6 

in Figure 4.4. ‘LGJ’ is the symbol of steel cored aluminium strand, in which ‘L’ the abbreviation 

of aluminium wire is, ‘G’ is the abbreviation of steel core, and ‘J’ is the abbreviation of stranded 

wire. The number ‘70’ refers to the cross section (mm2) of the conductor [74]. In the network 

drawings the number after the cross section (e.g. 1.6) refers to the length of the distribution line 

segment with that conductor cross section. 

Table 4.3 summarises the installed capacities of the SSs and PSs of the selected set of sub-urban 

and urban network samples. It was noticed that, at some primary and secondary substations, 

two or more transformers were installed to obtain a higher power supply capacity or to act as a 

backup unit. 
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Table 4.3: The selection of capacities for primary and secondary substations transformers in 
10kV networks. 

Substation type Unit Installed capacities  

Primary substation PS 
(33kV/10kV) 

MVA 5, 6.3, 8, 10, 16, 20, 31.5, 50, 63 

Secondary substation SS 

(10kV/0.4kV) 

kVA 20, 30, 50, 80, 100, 125, 160, 200, 250, 315, 400, 500,  

625, 800,1000 

 

Table 4.4 summarises the properties of widely used conductor types in the selected set of 10kV 

distribution networks.  

Table 4.4: Properties of the conductor types used for 10kV distribution lines [6]. 

Cable name Cross 
section 
mm2 

Resistance 
per km 

(Ohms) 

Reactance 
per km 

(Ohms) 

Current 
rating at 90 
degrees  

(A) 

LGJ-35 35 0.82 0.38 180 

LGJ-50 50 0.59 0.368 227 

LGJ-70 70 0.42 0.358 287 

LGJ-95 95 0.29 0.342 338 

LGJ-120 120 0.23 0.335 390 

LGJ-185 185 0.16 0.365 518 

LGJ-240 240 0.12 0.358 610 

LGJ-300 300 0.09 0.365 707 

 

4.4 Quantification of the electrical properties 

In order to compute electrical performance related network parameters load flow simulations 

were conducted. However, the consumer load profiles or load data were not available in the 

original data. To overcome this limitation a few assumptions were made. A steady state power 

flow simulation for each network was conducted with the following assumptions. 
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(i) A fraction (60%) of the installed capacities of secondary substations are used as the 

actual load connected to each load node.  

(ii) Power factor at each load node is considered as 0.9. 

(iii) Per unit voltage at the supply point is equal to 1.05 p.u. 

Table 4.5 presents the results of the evaluation of electrical properties of the above sub-urban 

and urban networks at 10kV level. 

In order to compare the results in Table 4.6, probability distributions of the electrical properties 

of both sub-urban and urban networks were obtained. Figure 4.4 shows the comparative 

probability distribution plots for the two types of networks, arranged back to back on the x-axis 

(probability of occurrence). For one electrical property, the same bin size and the same number 

of bins were used to generate the probability distributions of both types of networks. 
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Table 4.5: Electrical properties of the 10kV sub-urban and urban networks. 

Network  
ID 

Load density 
(MVA/km2) 

Average installed 
capacity of a 
secondary 
substation (kVA) 

Average 
Electrical distance 

Total power 
loss/total supplied 
power ratio (%) 

Minimum 
recorded 
voltage (pu) 

System load 
balancing  
index R (Ohms) X (Ohms) 

1 0.146 175 0.2566 0.1129 4.84 0.949 0.1257 

2 0.145 160 0.1167 0.0798 5.85 0.912 0.1568 

3 0.187 184 0.0874 0.0798 6.13 0.954 0.11 

4 0.166 207 0.2571 0.1179 3.83 0.983 0.1134 

5 0.159 213 0.3364 0.1467 5.43 0.948 0.1651 

6 0.116 199 0.2515 0.1176 5.93 0.927 0.136 

7 0.174 209 0.1504 0.0986 4.42 0.964 0.144 

8 0.191 258 0.1071 0.0965 7.99 0.896 0.1294 

9 0.234 213 0.2757 0.122 3.8 0.962 0.1448 

10 0.217 242 0.2409 0.1138 2.98 1.004 0.142 

11 1.46 367 0.0886 0.0449 2.17 1.027 0.1496 

12 3.263 511 0.0511 0.0446 4.14 0.970 0.1834 

13 2.292 424 0.0456 0.037 1.4 1.033 0.0938 

14 3.293 529 0.0715 0.0596 2.42 1.017 0.1716 

15 3.102 579 0.0405 0.0391 5.11 0.979 0.3047 

16 2.489 577 0.0519 0.0407 5.03 0.966 0.3479 

17 3.621 427 0.0613 0.0412 2.09 1.012 0.2169 

18 3.429 447 0.0584 0.0444 6.22 0.949 0.2844 

19 4.881 731 0.0479 0.0455 4.21 0.994 0.2771 

20 2.198 549 0.0742 0.0541 3.05 1.015 0.2526 
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Figure 4.4: Comparison of the electrical properties of urban and sub-urban networks.
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From Figure 4.4 it can be identified that some of the electrical properties are able to clearly 

characterise the two types of networks. These properties include load density, average installed 

capacities of secondary substations, average resistance and reactance between the nodes of the 

network (sub-graphs with letter A).   

The ranges of variation of these properties in sub-urban and urban networks are summarised in 

Table 4.6. In sub urban networks, load densities and the average installed capacities of SSs are 

considerably lower than that of the urban networks. In the real situation these observations 

from the results are reasonable, as the urban areas are highly populated and a higher number 

of commercial and industrial consumers are located in the urban areas than in the sub-urban 

areas. However, this study has managed to quantify these characteristics of sub-urban and 

urban networks in terms of load densities and average capacities of SSs and clear differences 

between the ranges of variations of the values have been identified. 

Table 4.6: The ranges of variations of the electrical properties of sub-urban and urban 
distribution networks. 

Electrical property The range of variation 

Sub-urban networks Urban networks 

Load density (MVA/km2) 0.116 - 0.234 1.460 - 4.881 

Average installed capacity of 
secondary substations (kVA) 

160 - 258 367 - 731 

Average resistance between two 
nodes of the network (Ohms) 

0.087- 0.336 0.041 - 0.089 

Average reactance between two 
nodes of the network (Ohms) 

0.080 - 0.147 0.037 - 0.060 

According to the summary in Table 4.6, average resistance and reactance of the edges 

connecting two nodes of the urban networks are lower than that of the sub-urban networks. 

This observation from the results is explained by two factors of the real-world networks; (i) as 

studied in Chapter 3 about the average edge length between two nodes in the sub-urban and 
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urban networks, urban networks have shorter average edge lengths between two nodes of the 

network than in the sub urban networks (ii) conductors used in the urban networks for 

distribution lines have larger cross sections and hence lower resistances and reactances. 

The probability distributions of the properties labelled with letter ‘B’ in Figure 4.4 also have some 

noticeable differences (Probability distribution plots of the two network types are biased into 

different directions) between the two types of networks. It can be observed that the Load 

balancing index and minimum recorded voltages of urban networks tend to be higher than the 

sub-urban network while the total power loss to total supplied power ratio in sub-urban 

networks tend to be higher than that of the urban networks. However, there are still some 

overlapping of the values. Therefore, these properties are not suitable to clearly characterise 

the two types of networks.  

4.5 Validation of the networks classification using electrical 

properties 

A clustering exercise following the same clustering approach described in the topological 

investigation (Section 3.5) was carried out with the results in Table 4.5 for electrical properties 

of the networks. 

First, all the 7 electrical properties mentioned in Table 4.5 were chosen as the cluster variables.  

The k-means algorithm was used to group the 20 networks into two clusters. The grouping done 

by using all the 7 variables, exactly followed the sub-urban and urban classification done by the 

population density parameter of the networks. Hence this step was used to validate the urban, 

sub-urban classification of the networks by using the electrical properties. 
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The results shown in Figure 4.5 are graphical representations of the case where, different 

subsets with 3 parameters were chosen as the cluster variables. In the first two cases (Figures 

4.5(a) and 4.5(b)), the selected sets of cluster variables were able to group the network sample 

into two clusters accurately, as defined by the population density of the networks. However, the 

third set of cluster variables shown in Figure 4.5(c) did not cluster the network sample into the 

right groups. Similar to that of the topological investigation, this observation explains the 

importance the careful selection of network properties when characterizing different network 

types. 
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(a)                                                                                              (b)                                                                            (c) 

 

Figure 4.5: Cluster assignments. 
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4.6 Identification of the key electrical properties for 

characterising electricity distribution networks 

From the results, it is evident that the electrical properties derived from the data of installed 

capacities of the secondary substations and the conductor cross sections used for distribution 

lines are able to characterise the different types of networks.  

The distribution of the installed capacities of the secondary substations is an indirect 

representation of how the consumers are distributed in a network, which is not possible to be 

derived from the planning and design guidelines. Therefore, realistic allocation of the installed 

capacities of the substations on a network is important in achieving realistic representations for 

different types of electricity distribution networks. 

The allocation of the conductor cross sections of a sub-urban type real world distribution 

network is shown in Figure 4.6. Similar to the network in Figure 4.6, in all the real-world network 

samples selected for this study, the trunk lines are assigned with larger cross sections while the 

laterals are assigned with slightly smaller conductor cross sections. Also, a maximum of 3 - 4 

different types of conductor cross sections were observed in each network used for this study, 

which also is consistent with the normal practices of network planning and design [75]. 

In the network modelling point of view, further investigating the distribution of the installed 

capacities of the secondary substations has clear benefits. If the realistic distributions of 

secondary substations can be obtained the other electrical parameters to the representative 

topology models can be assigned by following the traditional approach for planning and design 

of distribution network. 
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The traditional approach for planning and design of distribution networks involves forecasting 

of electricity demand, locating and sizing substations, designing the layout of the power 

distribution network and finally the selection of electrical equipment (E.g.: Selection of 

conductor cross sections for OH lines, UG cables) [66]. 
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Figure 4.6: Network layout and the selection of conductor cross sections of the sub-urban type network no.1.
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4.7 Network depth dependent electrical properties 

In this section the depth dependent electrical properties are investigated. The depth in this study 

is the normalised distance, 𝑙𝑛𝑜𝑟𝑚 from the root node to the other nodes in the network 

(Equations (4.4)). Whereas in the topological investigation in Chapter 3, depth dependent 

properties were calculated considering the depth as the number of steps from the source node 

to the other nodes in the network (Equations (3.18) and (3.19)). The aim is to capture the realistic 

distribution of secondary substation capacities of sub-urban and urban networks. 

Figures 4.7(a) and 4.7(b) show the distribution of the installed capacities of SSs in sub-urban and 

urban networks with the normalised distance from root node to each SS. The information in 

Figure 4.7(a) corresponds to all the sub-urban networks used in the study and similarly Figure 

4.7(b) corresponds to all the urban networks.  

The range of variation in SS capacities in urban networks is much larger compared to that of the 

sub-urban networks. In the sub-urban networks, the number of SSs with higher installed 

capacities are less at the far ends of the network from the root node. Whereas in urban 

networks, high capacity SSs are spread almost evenly throughout the lengths of the networks 
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     (a)                                                                                                                         (b) 

 

Figure 4.7: Distribution of the installed capacities of secondary substations with the normalised distances from the source nodes in, 

(a) Sub-urban networks (b) Urban networks.



 

102 

 

4.7.1 Definition of ‘depth levels’ for the analysis of electrical properties  

In order to better understand the distribution of the secondary substation capacities, the 

networks are divided into levels according to the normalised lengths, 𝑙𝑛𝑜𝑟𝑚 from the source 

node as shown in Figure 4.8. For example, secondary substations within the normalised distance 

0 and 0.1 belong to the 𝑙𝑒𝑣𝑒𝑙1 of the network. The number of levels (m) can be varied. 10 levels 

are chosen for this study. A sensitivity study with different number of levels can be conducted 

to identify the best number of levels to capture the depth dependent properties of different 

types of networks. However, this part of the study is not covered in this thesis. 

 

Figure 4.8: Representation of levels of a network for the analysis of electrical properties. 

 

 

𝑙𝑒𝑣𝑒𝑙 =

{
 
 

 
 

         

𝑙𝑒𝑣𝑒𝑙1;                   0 < 𝑙𝑛𝑜𝑟𝑚 ≤ 0.1
𝑙𝑒𝑣𝑒𝑙2;               0.1 < 𝑙𝑛𝑜𝑟𝑚 ≤ 0.2 

  
:

𝑙𝑒𝑣𝑒𝑙10;                    0.9 < 𝑙𝑛𝑜𝑟𝑚 ≤ 1

 

 

(4.16) 

4.7.2 Probability distributions of the depth dependant electrical 

properties 

Applying the Kernel distribution fitting methodology described in [76], the PDFs of the installed 

capacities of SSs at different levels of the two types of networks are calculated (Appendix A). 

Unlike a histogram, which discretizes the data values into separate bins, the Kernel distribution 
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sums the weight functions for each data value to produce a smooth, continuous probability 

curve. 

The Kernel density probability distributions for the installed capacities of SSs in each level can 

be formulated using Equations (4.17) and (4.18). 

 
𝑓ℎ(𝑦)  =

1

𝑛ℎ
∑𝐾(

𝑦 − 𝑦𝑖
ℎ

)

𝑛

𝑖=1

 
(4.17) 

 
𝐾(𝑦) =

1

√2𝜋
 𝑒−

𝑦2

2    
(4.18) 

With relevant to this study, variable 𝑦 in Equations (4.17) and (4.18) refers to the installed 

capacities of the SSs in the given level of the networks and 𝑛 refers to the total number of SSs in 

that level. The Kernel distribution is defined by a kernel smoothing function 𝐾(𝑦) and a 

bandwidth value h that controls the smoothness of the resulting density curve. In this model, 

the normal Kernel smoothing function is used, described in Equation (4.18). The bandwidth 

value ℎ is considered to be the optimal for estimating densities for the normal distribution. 

Basic statistics such as mean and standard deviation of the probability distributions can be used 

to describe the shape of the PDFs derived from the above Kernel density estimation [77]. In 

probability and statistics, the mean value, 𝑦 (i.e. is same as the expected value of y, 𝐸(𝑦)) is 

referred to the central tendency of a random variable, 𝑦 characterised by a probability 

distribution, 𝑓ℎ(𝑦) as shown in Equation (4.19). Standard deviation, 𝑠𝑡𝑑 is a measure that is used 

to quantify the amount of variation of a set of data values from the mean, as shown in Equation 

(4.20). Here the operator 𝐸 denotes taking the expected value of a random variable.  

 
𝑦  = 𝐸(𝑦) = ∫ 𝑦

∞

−∞

𝑓ℎ(𝑦) 
(4.19) 
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 𝑠𝑡𝑑 = √𝐸((𝑦 − 𝑦)2) (4.20) 

Figures 4.9 and 4.10 show the resulted PDFs of the Kernel density estimation for SS capacities of 

sub-urban and urban networks respectively. SS capacities are positive values. Therefore, only 

the positive values of the x-axis are shown in the figure. ‘Standard deviation’, is shown only on 

one side of the ‘mean’ due to this reason. 

From Figure 4.9 it can be observed that, the mean values of the PDFs of sub-urban networks are 

gradually decreasing when moving down from level 1 to level 10. This means, in sub-urban 

networks the higher capacity SSs are installed closer to the PS and the capacities of the SSs which 

are further away from the PS tend to have smaller values. The standard deviation of the PDFs 

has the highest deviation from the mean at the middle levels of the network. This explains that 

in the middle depth levels of the sub-urban networks the SS capacities vary within a large range 

of values from very high capacities to low capacities. However, the standard deviation of the 

PDFs at the far ends of the networks is much smaller, proving that the installed capacities of SSs 

at the far ends of the networks vary between a small ranges of values.  

In the urban networks (Figure 4.10) the variation of the mean and standard deviations when 

going down from level 1 to level 10, does not have a clear pattern. However mean values do not 

vary largely from one level to the other (variation is around 500kVA). These observations of the 

changes in mean and standard deviation explains that, in general, the capacities of SSs in the 

urban networks are distributed almost evenly throughout all the depth levels of the networks.  

However, standard deviations and means of the PDFs in urban networks are much higher than 

that of the sub-urban networks for all the depth levels in the networks. Results show a clear 

difference of the SS capacity distribution among sub-urban and urban networks.  
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Figure 4.9: Level dependent distribution of the installed capacities of secondary substations 
in sub-urban networks. 
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Figure 4.10: Level dependent distribution of the installed capacities of secondary substations 
in urban networks. 
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4.8 Summary of the investigation of electrical properties 

This chapter studied the electrical properties of real-world electricity distribution networks at 

the MV level. A limited set of available data regarding the installed capacities of distribution 

substations and the conductor cross sections of the distribution lines were used for the study. 

The sub-urban and urban grouping of the networks is validated using a clustering approach. A 

novel approach to obtain depth dependent electrical properties has also been developed. Kernel 

density PDFs for the secondary substation capacities with the distance from the source nodes of 

the two types of networks were investigated.  

Results from the real-world network investigation showed that, 

(i) the substations capacities and the conductor cross sections are able to characterise the 

electrical features of sub-urban and urban networks. 

(ii) PDFs which describe the distribution of secondary substation capacities along the feeder 

lengths of the two types of networks have clear differences. 
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 Development of the statistically-

similar networks generator 

5.1 Introduction 

The detailed development process of the statistically-similar electricity networks generator 

(SSNG) proposed in this thesis is presented in this chapter (Figure 1.3).  The key feature of the 

SSNG is its ability to generate large numbers of random, realistic models of electricity 

distribution networks which are statistically-similar in terms of a set of topological and electrical 

properties as defined by the user with some given values or ranges of values 

The overview of the development process of the SSNG is shown in Figure 5.1. The SSNG is a data 

driven model. The development process of the SSNG consists of four stages: data collection and 

preparation, feature identification, network generation, and validation. These four stages of the 

development process of the SSNG are independent from the chosen network data set. However, 

the detailed approach in each stage is varied according to the details of the available data. This 

chapter describes the development of the SSNG using a set of 10kV level distribution network 

data collected from the Chinese power grids. 
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Figure 5.1: Overview of the development procedure of the SSNG. 

 Data collection and preparation stage 

There are two key inputs to the SSNG: real-world distribution network data and guidelines for 

planning and design of electricity distribution networks. A set of real-world distribution 
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networks were collected. Then, the planning and design guidelines which are applicable for the 

selected set of real-world networks were identified. The selected set of real-world networks was 

then divided in to two datasets, namely training and testing data set. The network data in the 

training dataset was used in the training process where, the different network types and various 

statistical properties of different network types were identified and quantified. The testing 

dataset represents the real network data and was used to validate generated network models 

against the real networks. The largest part of the data formed the training dataset whereas the 

rest were used in the testing dataset. 

 Feature identification stage 

Identification and quantification of the important statistical (topological and electrical) 

properties of real-world distribution networks is a key requirement for developing random, but 

realistic network models. Therefore, an investigation of the statistical properties of real-world 

distribution networks was conducted using the training data set. This step of the development 

process of the SSNG is described in Chapters 3 and 4 of this thesis. Probability density functions 

(PDFs) of topological and electrical properties in different types of distribution networks (urban 

and sub-urban) were obtained from this investigation.  

 Network generation stage 

The PDFs of topological and electrical properties of real-world networks, together with the 

relevant guidelines for network planning and design were then used to develop the statistically-

similar network generator. The network generator was developed in a hierarchical manner. One 

iteration of the algorithm (E.g.: iteration i =1) is explained here as an example. First, a realistic 

model of the network topology is generated by taking into account the user inputs regarding the 

networks to be generated. Then, the realistic electrical parameter settings are assigned to the 

above network topology model. There are two separate validation procedures within the 
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hierarchical approach. Generated network topologies and the assigned electrical parameter 

settings of the network topologies are validated against the network planning and design 

guidelines. The outcomes (i.e. topologies and topologies assigned with electrical parameter 

settings) that violate the design standards are discarded.  

Likewise, starting with different random seeds the network generator is able to generate as 

many statistically-similar distribution networks as specified by the user. 

 Validation stage 

A validation stage was used to validate the networks generated by the SSNG against the real 

networks. An ensemble of statistically-similar networks to a selected network from the testing 

dataset was generated by the SSNG. Then, the statistical properties of the ensemble of the 

statistically-similar networks are compared with that of the selected network from the testing 

dataset.  

The detailed network generation procedure and the validation of the generated network models 

against testing data set are presented in the following sections. 

5.2 Guidelines for network planning and design  

This section provides a summary of the guidelines for network planning and design, used during 

the statistically similar networks generation. Identifying the relevant guidelines for network 

planning and design is important when generating realistic networks in order to ensure that the 

networks are consistent with the planning and design standards. In the development process of 

the SSNG, guidelines for network planning and design were used to achieve the following goals. 

(i) To compare and validate the results of the statistical investigation of the real-world 

distribution networks with the guidelines for network planning and design. A successful 
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validation against the planning and design guidelines gives the confidence that the 

results of the statistical investigation reflect both the characteristics of the real-world 

networks and the planning and design standards. 

(ii) To ensure that the networks generated by the SSNG do not violate the planning and 

design standards of the distribution networks. 

The guidelines for network planning and design are usually different from country to country, 

region to region and also from the distribution network operator (DNO) to operator. The 

supporting network data for the development of the SSNG is collected from Chinese distribution 

networks. Hence, this study refers to the guide for planning and design of the Chinese 

distribution networks [75]. 

5.2.1 Guidelines for planning and design of Chinese distribution 

networks 

In the planning process of Chinese electrical power networks, the power supply areas are divided 

into different zones according to their load densities σ, which is measured in MW per km2 (Table 

5.1). According to the guidelines, in order to obtain σ the minimum area must be above 5 km2.   

Table 5.1: Division of power supply zones [75]. 

Power supply 
zone 

A+ A B C D E 

A
d

m
in

is
tr

at
iv

e 
le

ve
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Directly 
under the 

central 
government 

City 
centre 
area 

σ≥30 

Downtow
n 

15≤σ<30 

Downtow
n 

6≤σ<15 

Urban area 

1≤σ<6 

Sub-urban 
area & 
country 

side 

0.1≤σ<1 

 

- 

Provincial 
capital 

City 
centre 
area 

σ≥30 

City 
centre 
area 

15≤σ<30 

Downtow
n 

6≤σ<15 

Urban area 

1≤σ<6 

Sub-urban 
area & 
country 

side 
0.1≤σ<1 

 

- 

Prefecture 
level city 

 

- 

City 
centre 
area 

City 
centre 
area 

Downtown 

& urban 
area 

Sub-urban 
area & 
country 

u
n

p
o

p
u

la
te

d
 a

re
as
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σ≥15 6≤σ<15 1≤σ<6 side 
0.1≤σ<1 

County 
level city 

 

- 

 

- 

urban 
area 

σ≥6 

urban area 

1≤σ<6 

Sub-urban 
area & 
country 

side 

0.1≤σ<1 

Depending on the power supply zone, planning guidelines for 10kV distribution networks such 

as selection of the network structure (E.g.: radial, single/double ring), capacities of the main 

supply transformers and selection of conductors (OH and UG) are then decided (Table 5.2). 

Recommendations are provided to choose the conductor type and the cross sections for 10kV 

distribution lines depending on the main transformer capacities (Table 5.3). The recommended 

number of (10 kV) outgoing feeders from the main transformer depending on its capacity is also 

listed in the guidelines and shown in Table 5.3. Moreover, some recommendations regarding 

the installed capacities of the pole mounted 10kV secondary substations are shown in Table 5.4. 

Table 5.2: Planning standards of distribution networks according to the power supply zones 
[75]. 

Power 
supply 
zone 

Sub-station 
transformer 
capacity 

10 kV line type Structure of the network 

A+, A High/medium 
Underground cables must 
be used. Overhead cables 
are used occasionally 

UG cables: double ring, single 
loop, n-1 (2≤n≤4) 

OH lines: Multi sectional 

B High/medium 
Overhead lines are used. 
Underground cables can be 
used at an additional cost. 

UG cables: single loop, n-1 (2≤n≤4) 

OH lines: Multi sectional 

C Medium/small 
UG cables: single loop 

OH lines: Multi sectional 

D Small 
Overhead lines are widely 
used. 

OH lines: Multi sectional, radial 

E Small 
Overhead lines are widely 
used. 

OH lines: radial 
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Table 5.3: 10 kV distribution line information/recommendations depending on the main 
transformer capacity [75]. 

Main 
transformer 
capacity 
(MVA) 

Number 
of 10kV 
feeders 

Cross section area of 10 kV 
trunk lines/main feeders 

(mm
2
) 

Cross section area of 10 kV 

lateral branches (mm
2
) 

OH lines UG cables OH lines UG cables 

80, 63 ≥ 12 240, 185 400, 300 150, 120 240, 185 

50, 40 8 ~ 14 240, 185, 150 400, 300, 
240 

150, 120, 95 240, 185, 
150 

31.5 8 ~ 12 185, 150 300, 240 120, 95 185, 150 

20 6 ~ 8 150, 120 240, 185 95, 70 150, 120 

12.5, 10, 6.3 4 ~ 8 150, 120, 95 - 95, 70, 50 - 

3.15, 2 4 ~ 8 95, 70 - 50 - 

 

Table 5.4: Recommended capacities for 10kV pole mounted transformers [75]. 

Power supply zone 
3 phase pole mounted 
transformer capacity (kVA) 

A+, A, B and C ≤ 400 

D ≤ 315 

E ≤ 100 

In addition to the guidelines given in the above tables, there are several other rules used in the 

planning and design of Chinese distribution networks; 

 It is recommended to use a maximum of three different cross sections in one 

distribution feeder. 

 For A+, A and B type power supply areas, the supply radius from the main transformer 

should be within 3 km. 

 For type C supply areas, the maximum supply radius should be ≤5 km. 

 For type D supply areas, the maximum supply radius should be ≤15 km. 
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5.2.2 Comparison of the statistical properties of real-world networks 

with the guidelines for network planning and design 

It was identified in Section 5.2.1 that the guidelines for planning and design of the distribution 

networks are structured according to the power supply zones which are defined by the load 

densities σ (measured in MW/km2). However, the load density information was not available in 

the collected set of real-world network samples. In Chapter 4, to overcome this limitation of 

data, approximate values for the load density of the networks (𝐿𝐷), were derived using the 

installed capacities of the secondary substations (Equation 4.10). The units of 𝐿𝐷 are in 

MVA/km2. Therefore, an approximate value for the load densities in real world networks, 

𝜎𝑎𝑝𝑝𝑟𝑜𝑥 in MW/km2 can be obtained as shown in Equation (5.1).It is assumed that 𝑝𝑓 is the 

power factor at which each secondary substation in the network is operating under normal 

conditions. 

 𝜎𝑎𝑝𝑝𝑟𝑜𝑥(MW/km2  ) = 𝐿𝐷(MVA/km2  )  × 𝑝𝑓  (5.1) 

These values obtained for 𝜎𝑎𝑝𝑝𝑟𝑜𝑥 in the real-world networks, enable the comparison of the 

statistical properties of real world electricity distribution networks with their planning and 

design guidelines as shown in Table 5.5. The outcomes of the comparison are summarised 

below. 

 According to the ranges of variation of the 𝜎𝑎𝑝𝑝𝑟𝑜𝑥 of the real-world sub-urban and 

urban networks derived using the data in Table 4.5 and the Equation (5.1), the urban 

group of networks corresponds to the power supply zone C and sub-urban group of the 

networks corresponds to the power supply zone D. 
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Table 5.5: Comparison of the statistical properties of real-world networks with the guidelines for network planning and design. 

Properties of real-world networks from the investigations in  

Chapters 3 and 4 
Planning and design guidelines  

Property 
Urban  
networks 

Sub-urban 
networks Property 

Type C  
supply areas 

Type D  
supply areas 

𝝈𝒂𝒑𝒑𝒓𝒐𝒙 (MW/km2)   1.31 ≤ 𝜎 ≤ 4.4 0.1 ≤ 𝜎 ≤ 0.21 𝜎 (MW/km2)   1 ≤ 𝜎 ≤ 6 0.1 ≤ 𝜎 ≤ 1 

Capacities of main transformers 
used in the primary substations 
(MVA)  

16, 20,31.5, 50, 63 
5, 6.3, 8, 10, 16, 
20 

Capacities of main transformers 
used in the primary substations 
(MVA)  

Medium-small 

(E.g. 16, 
20,31.5, 50, 63) 

Small (E.g. 5, 
6.3, 8, 10, 16, 
20) 

Number of outgoing feeders 
from primary substations 

6-10 4-7 
Recommended number of 
outgoing feeders from main 
transformer 

6-14 4-8 

Maximum recorded feeder 
lengths (km) 

5.6 15.1 
Maximum supply radius 
constraint (km)  

≤ 5 ≤ 15 

The choice of cable cross 
sections (mm2) 

95,120,185,240,300 35,50,70,95,120 
Recommendations for the choice 
of cable cross sections (mm2) 

95,120,185,240, 

300,400 

35,50,70,95, 

120 

Average installed capacity of a 
secondary substation (kVA) 

367 - 731  145 - 258 
Recommended capacities of pole 
mounted 10kV transformers (kVA) 

≤ 400 ≤ 315 
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 According to the guidelines in Table 5.3, there are no hard rules of defining large, 

medium and small capacities of the main transformers used for the primary substations. 

Therefore, with the assumptions that medium to small capacities are in the range of 2 

MVA- 65MVA, it is reasonable to say that the capacities of the main transformers of the 

urban and sub urban networks match well with the recommendations for power supply 

zones C and D respectively. 

 The number of outgoing feeders from the main transformers in the urban and sub-urban 

networks are also consistent with the standards of network planning and design in Table 

5.3. 

 Maximum supply radius constraints from the planning guidelines are compared with the 

maximum feeder lengths of the real networks. Even though the definitions of these two 

measures are not the same, they both give an idea about the distance to the furthest 

node in the network from the supply node. In real world sub-urban networks, maximum 

recorded feeder length of 15.1km is just above the maximum supply radius constraint 

of type D supply zone which is 15km. The maximum recorder feeder length of urban 

networks has a slight deviation of +12% from the power supply zone C constraint for 

maximum supply radius.  

 The choice of cable cross sections used in the sub-urban and urban networks are similar 

to the conductor cross-sections specified by the network planning guidelines in Table 

5.3. 

The outcomes of the above comparison prove that the selected set of real-world networks are 

consistent with the network design standards and also validates the statistical investigation in 

Chapters 3 and 4. 
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5.3 Generation of statistically-similar network topologies 

The generation of statistically-similar networks begins with the network topology generation. 

Starting with different random seeds and a given set of input parameters, the idea is to generate 

different network layouts (topologies) which have similar topological properties (Figure 5.1). 

The networks are generated as graph models and visualised in the form of tree diagrams to show 

the connection between the nodes.  The proposed SSNG does not generate actual graphical 

portrayals of the network topologies (i.e. visualisations in terms of actual lengths and the 

realistic angle distributions of the network branching are not generated).  

5.3.1 The inputs required by the algorithm  

The input parameters required by the algorithm can be categorised into three groups; direct 

user inputs, inputs derived from the topological investigation of real-world networks and the 

constraints from the guidelines for network planning and design. 

 Direct user inputs 

It is expected that several characteristics of the networks to be generated is provided by the 

user of the network generating tool. These are defined as direct user inputs. Some of these direct 

user inputs can be derived from the available set of information of the network to be analysed.  

(i) Network type (urban/sub-urban) 

If the total population and the power supply area is known, according to the population density 

the type of the network (urban/sub-urban) can be identified. Load density parameter can also 

be used to identify the network type according to Table 5.1.   

(ii) The total number of nodes/ number of secondary substations 
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Two options have been given to input the number of nodes in the network. The user must input 

either the total number of nodes N, or the number of secondary substations in the network.  

In addition,  

(iii) Capacity of the main supply transformer/primary substation and 

(iv)  The number of outgoing feeders from the main transformer/primary substation 

are required from the user as inputs to the topology generating algorithm 

 Inputs generated from the topological investigation of real-world networks 

From the topological investigation in Chapter 3, three sets of inputs are required to the network 

topology generation. These inputs must be in the form of probability density functions (PDFs) 

and probability mass functions (PMFs). A PMF differs from a PDF in that the latter is associated 

with continuous random variables rather than discrete random variables [78]. 

(i) Depth dependent edge length distributions of urban and sub-urban networks 

The depth dependent edge length distributions are represented in the form of PDFs, as the value 

of an edge length can be any non-integer value between the specified limits (i.e. edge length is 

a continuous variable). Therefore, the resulting PDFs of the depth dependent edge length 

distributions are approximated by well-known distributions (E.g. exponential distribution, 

lognormal distribution, gamma distribution, etc.). It was identified through distribution fitting 

exercises that, negative exponential distribution curves show the best fit with the PDFs of depth 

dependent edge length distributions. Figures 5.3(a) and 5.3(b) show the PDF and the cumulative 

density function (CDF) of the edge length distribution of all the sub-urban networks at ‘level 1’. 

The PDF and CDF of the best fit exponential distribution are also plotted on top of the same 

figures. 
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(a) 

 

(b) 

Figure 5.2: (a) PDF and (b) CDF of the edge length distribution of the sub-urban networks at 
‘level 1’ of a network and the fitted exponential distribution on the same figure. 

According to Figure 5.2, the best fit exponential distribution can be represented using the mean 

of the exponential distribution (α=0.324) and its standard error (Std. Err. = 0.00724) compared 

to the mean of the actual dataset. The corresponding parameters for the edge length 

distributions of all the levels of urban and sub-urban networks are listed in Table 5.6. Therefore, 

a general representation for the PDFs of the depth dependent edge length distributions of the 

sub-urban and urban networks (at each level separately), 𝑓(𝑙, 𝛼) can be obtained as shown in 

the Equations (5.2) and (5.3). The 𝑙min and 𝑙max refer to the minimum and maximum edge 

lengths observed at each level of the two types of real-world networks.  
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 𝑓(𝑙, 𝛼) = {

0 ;            𝑙 <  𝑙min

      
1

𝛼
𝑒−

𝑙
𝛼
 ;            𝑙min ≤ 𝑙 ≤ 𝑙max

0;             𝑙 > 𝑙max

  (5.2) 

 ∫ 𝑓(𝑙, 𝛼) 𝑑𝑙
∞

0

≈ 1  (5.3) 

Table 5.6: Parameters of the PDFs of depth dependent edge length distributions of sub-
urban and urban networks. 

Level of 
the 
network, 𝒊 

Sub-urban networks, t=0 Urban networks, t=1 

𝛼 Std.Err. 𝑙min 
(km) 

𝑙𝑚𝑎𝑥 
(km) 

𝛼 Std.Err. 𝑙min  
(km) 

𝑙max 
(km) 

𝒊 = 1 0.324 0.00724 0.02 2.9 0.149 0.00384 0.01 1.4 

𝒊 = 2 0.264 0.00630 0.02 2.0 0.108 0.00323 0.01 0.9 

𝒊 = 3 0.236 0.00853 0.02 1.6 0.087 0.00402 0.01 0.7 

(ii) Depth dependent degree distributions of urban and sub-urban networks 

The depth dependent degree distributions are expressed in terms of PMFs as the degree of a 

node can only be a positive integer value (i.e. the degree of a node is a discrete variable). 

Equation (5.4) shows a general expression for the depth dependent degree distributions of sub 

urban and urban networks at the levels 𝑖 =1, 2, 3. The parameter 𝑘 stands for the degree of a 

node in a network and 𝑘𝑚𝑎𝑥 stands for the maximum node degree observed in a network.  𝑓𝑖(𝑘) 

stands for the probability that a degree of a node in the network level 𝑖 is equal to 𝑘. For 

example, 𝑝𝑖1 is the probability that a degree of a node in the network level 𝑖 is equal to 1. 

 𝑓𝑖(𝑘) =

{
  
 

  
 

   0;                      𝑘 ≤  0
𝑝𝑖1;                      𝑘 = 1
𝑝𝑖2;                      𝑘 = 2

   ∶
   ∶

   𝑝𝑖𝑛;                     𝑘 = 𝑘𝑚𝑎𝑥
    0;                          𝑘 > 𝑘𝑚𝑎𝑥

 (5.4) 

 ∑ 𝑝𝑖𝑘

𝑘𝑚𝑎𝑥

𝑘=1

= 1 (5.5) 
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(iii) Distribution of the nodes among the levels of urban and sub-urban networks 

If the total number of nodes in a network is N, and the probability that a given node is in level 1, 

2 or 3 are respectively q1, q2 and q3, then the PMF for the distribution of the nodes among the 

levels of a network f(n), can be expressed as shown in the Equations (5.6) and (5.7). (i.e. the level 

of a node in a network is a discrete random variable and hence f(n) is in the form of a PMF). 

 𝑓(𝑛) = {

   𝑞1;             𝑙𝑒𝑣𝑒𝑙 =  1
  𝑞2;              𝑙𝑒𝑣𝑒𝑙 = 2
  𝑞3;             𝑙𝑒𝑣𝑒𝑙 = 3

 (5.6) 

 𝑞1 + 𝑞2 + 𝑞3  = 1 (5.7) 

As mentioned in the ‘direct user inputs’ section there are two options to input the number of 

nodes in the network to the network generation tool. This is because, it may be difficult for the 

user to know the total number of nodes in a network including the busbars, switching locations 

and substations, etc. Getting a number for the total number of secondary substations in the 

network may be practically easier than getting the total number of nodes in the network. 

Therefore, if the number of secondary substations (number of leaf nodes, 𝑛𝑙𝑒𝑎𝑓) in a network is 

given, now the total number of nodes, N in a network can be derived using the above 

probabilities, as shown in the Equation (5.8). 

 𝑛𝑙𝑒𝑎𝑓 = 𝑁( 𝑞1  × 𝑝11 + 𝑞2  × 𝑝21 + 𝑞3  × 𝑝31) (5.8) 

Equation (5.8) can be explained as follows. If the total number of nodes in the network is N, the 

total number of nodes in the level 1 of the network is equal to N×q1. Similarly, the total number 

of nodes in the levels 2 and 3 become N×q2 and N×q3 respectively. The number of leaf nodes in 

one level of the network can be obtained by multiplying total number of nodes in that level with 

the probability of a node in that level having a degree equals to 1 (E.g.: The number of leaf nodes 

in level 1= N×q1×p11). The addition of the leaf nodes in all the three levels is equal to the total 
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number of leaf nodes in the network. This will lead to the Equation (5.8) and N can be calculated 

by substituting the values for probabilities and the number of leaf nodes to the equation. 

All the parameters introduced in the above equations to describe the PDFs and PMFs of 

topological properties of real-world networks are called the ‘SSNG model parameters’. 

 Inputs from the guidelines for distribution network planning and design 

All the inputs from guidelines for network planning and design are used as the constraints (i.e. 

rules to follow) in the algorithm for the network topology generation. This is to ensure that the 

generated topologies do not violate the standards of actual network design. 

(i) Guidelines for the capacities of the main supply transformers (i.e. depending on the 

network type) and  

(ii) Guidelines for the number of outgoing feeders from the main transformer 

depending on its capacity are used as initial checks for the direct user inputs.  

(iii) The guidelines for the maximum supply radius (rsupply_max) of urban and sub-urban 

networks are used at the end of each topology generation, to discard the networks 

that exceed these supply radius limits. 

5.3.2 The algorithm for the generation of statistically-similar network 

topologies 

The flow chart of the algorithm for generation of network topologies is shown in Figure 5.3. The 

algorithm explains the generation of a single network topology. The process shown in the 

algorithm is repeated to generate many statistically-similar network topologies. Each step of the 

algorithm is explained in this section. The main steps are numbered in Figure 5.3 and the step-

wise explanation of the algorithm follows this numbering.  
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Figure 5.3: Flowchart of the algorithm for the generation of network topologies. 

The topologies are generated as evolving network topologies. Starting with one source node (to 

represent the primary substation of the radial network), gradually new nodes are added and 

connected to the existing network topology. The PDFs of edge length and the PMF’s of node 

degree are used to reproduce realistic edge lengths and branching of the networks generated. 



 

125 

 

It is assumed that the edge length, degree of a node and the level of a node in a network are 

statistically independent events, which means the occurrence of one event does not affect the 

probability of occurrence of the other [79]. 

1. A new iteration of the topology generation starts with a new random seed. This is to 

ensure that, at each iteration of the algorithm a different set of values are produced 

from the probability distributions of edge lengths and degree of the nodes in the steps 

described below. 

2. Then the direct user inputs are checked against the constraints of the network planning 

and design guidelines. Type of the networks, t to be generated is identified from the 

user inputs. The calculation of the variable 𝑀𝒊, for the levels of the network 𝑖 =1,2,3 is 

important in the generation process of the network topology.  𝑀𝒊 for is calculated 

according to Equation (5.9). 

 𝑀𝒊 = 𝑁 × ∑𝑞𝑗

𝑖

𝑗=1

 (5.9) 

𝑀𝟏 represents the total number of nodes in the level 1 of the network, 𝑀𝟐 represents 

the total number of nodes in the levels 1 and 2 of the network and similarly 𝑀𝟑 

represents the total number of nodes in all the three levels of the network which is also 

equal to N.  𝑞𝑗  for j=1,2,3 is the probability that a given node in the network belongs to 

the level j of the network. 𝑀𝒊 is used to decide the change of the network level according 

to the number of nodes in the evolving network topology. 

 

3. The source node of the network topology is initialised at first. Depth of the network at 

the source node is equal to zero (d=0). The number of nodes in the evolving network 

topology is denoted by the variable n and is equal to 1 at this step of the algorithm. The 
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source node belongs to the level 1 (𝑖 = 1) of the network. Initialising the adjacency 

matrix, 𝑨 is important in this step. The output of the algorithm is a network topology 

which is given in terms of a weighted adjacency matrix as shown in Equation (5.10). 𝑨 is 

a N×N square matrix. If there is an edge between nodes x and y, that are added to the 

network topology, the element (𝑥, 𝑦)) equals to the length of the edge (𝑙𝒙,𝒚), between 

those two nodes. Otherwise 𝑨 (𝑥, 𝑦) is equal to zero. At this stage there are no edges in 

the network, only the source node exists. Therefore, initial 𝑨 is a N×N square matrix 

with all zeros.   

 𝑨(𝑥, 𝑦) = {
𝑙𝑥,𝑦, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑥, 𝑦

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.10) 

4. The number of nodes at the next depth level (at d=1) is decided by the degree of the 

source node, ks as specified by the user. Length of the edges which connect the source 

node with the nodes at the depth d=1, are assigned with random length values which 

are generated from the PDF of the edge length distribution of network type t, at level 

𝑖 = 1. This step of the algorithm is illustrated in Figure 5.4 for a case where, ks= 3.  

 

Figure 5.4: Development of the network topology up to depth, d=1. 

All the variables are then updated. The total number of nodes n, of the evolving network 

topology is now equal to 1+ks. The network level, 𝑖 is still equal to 1. Depth d of the 
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network is also equal to 1. The elements in 𝑨 are updated according to the connections 

between the nodes. An example is shown in Figure 5.4. (Note: The actual angles 

between the links are ignored in the network generation process). 

 

5. Then a set of random values are assigned to the degrees of the nodes at the depth, d=1 

of the network. These random values for the node degrees are generated using the PMF 

of the node degree distribution for the level, 𝑖 = 1 of the network type, t. 

 

6. After assigning the degree to the nodes at depth, d = 1 the network can now evolve to 

the next depth, d = d+1. 

 

7. The next step is similar to the fourth step described above. The next set of nodes at the 

depth, d = 2 of the network are assigned using the PDF for the edge lengths distribution 

at level, 𝑖 = 1 of the network type, t.  Again, all the variables are updated. This step of 

the algorithm is illustrated in Figure 5.5. It was assumed that the random degrees of the 

nodes 2, 3 and 4, generated by the PMF of the degree distribution (in the step 5) are 

equal to 3, 3 and 2 respectively. 
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Figure 5.5: Development of the network topology up to depth, d=2. 

8. Steps 5 to 7 are repeated until the number of nodes, n reaches the value 𝑀𝟏 which is 

the total number of nodes in the level 1 of the network. 

  

9. If the number of nodes, n exceeds 𝑀1, the variable 𝑖 which denotes the level of the 

network is updated to the next level, 𝑖 = 𝑖 + 1. The algorithm repeats Steps 5 to 7 with 

the PDFs of edge lengths and PMFs of node degrees, for the new level (𝑖 = 2) of the 

network in order to locate the new nodes which are joining the network. The aim of this 

process is to use the topological characteristics of real-world networks at different 

‘levels’ to generate the topological structures of artificial networks. Therefore, the 

algorithm first completes the generation of ‘level 1’ of the network topology and 

progressively moves to develop the next two levels of the network topology. If the 

number of nodes, n reaches the value 𝑀3 (i.e. 𝑀3 is equal to N) and 𝑖 exceeds the 

number of levels of the network (𝑖 > 3) the algorithm stops adding more nodes to the 

existing topology and exits from all the loops.  

 

10. The resulting network topology can now be studied using the weighted adjacency 

matrix, 𝑨 for its topological properties. The maximum feeder length, 𝐿𝑚𝑎𝑥 of a network 
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topology is the length of the path (i.e. is the addition of the lengths of all the edges in 

the path) from source node to the furthest away node from the source node.   

 

11. The maximum feeder length, 𝐿𝑚𝑎𝑥 is compared with the the maximum supply radius, 

𝑟𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑎𝑥 in the planning and design guidelines. If 𝐿𝑚𝑎𝑥 > 𝑟𝑠𝑢𝑝𝑝𝑙𝑦_𝑚𝑎𝑥 the network 

topology generated by the algorithm violates the network design standards. Then the 

topology will be discarded.  

 

12. If the network topology generated by the algorithm complies with the above design 

standard, it will be saved and forwarded to the next algorithm (Section 5.4) to assign the 

electrical parameter settings to the network topology.  

5.4 Generating realistic, electrical parameters for the network 

topologies 

In this part of the study, it is assumed that the topological distribution of consumers is captured 

by the models of different types of electricity distribution networks (urban and sub-urban). 

Then, the electrical parameters are assigned to the network topologies using the results of 

statistical analysis of electrical properties of the real-world networks and the guidelines for 

network planning and design. The detailed process is described in this section. 

5.4.1 The inputs required by the algorithm  

The inputs required to assign electrical parameters to the distribution network topologies come 

from four different sources: directly from the user, as the outputs from the topology generating 

algorithm, from the investigation of electrical properties of the real-world networks and also 

from the guidelines for network planning and design. 
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 Inputs from the user 

These user inputs are first used in the topology generating algorithm and passed down to the 

algorithm for electrical property assignment (as shown in Figure 5.1).  

(i) Network type, t is important to identify the correct set of Kernel density probability 

distributions of the secondary substation capacities derived from the real-world 

network data.  

(ii) The capacity of the main supply transformer is used for the selection of conductor 

cross sections for the distribution lines according to the network planning 

guidelines. 

 Input that comes as an output from the topology generating algorithm 

Network topology is the most important input for this algorithm. It is specified in terms of a 

weighted adjacency matrix, 𝑨 and is generated by the topology generating algorithm described 

in Section 5.3. 

 Inputs from the investigation of electrical properties of the real-world 

networks. 

An investigation of the electrical properties of real-world networks was carried out in Chapter 

4. Three set of inputs are taken from results of this investigation.  

(i) The Kernel density probability distributions of the secondary substation capacities 

along the feeder lengths of the urban and sub urban networks. 

These Kernel density probability distributions, are used to generate a realistic set of 

secondary substation capacities to a given network topology. However, the values 
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generated from a continuous PDF can be any non-integer value. Therefore, these values 

must be approximated to the nearest value of actual secondary substations.  

(ii) The list of secondary substation capacities observed in the real networks. 

The list of actual secondary substation capacities is used to approximate the random 

capacities generated by the above kernel density probability distributions to the nearest 

value of actual secondary substations. 

(iii) Electrical properties of the conductors used in the distribution lines of the real-world 

networks  

Electrical properties of the conductors (E.g. per-km resistance, per-km reactance, kVA 

rating) used in the distribution lines of the real-world networks are given to the algorithm 

as another set of inputs. These properties are obtained according to the conductor type and 

the cross section (Table 4.3). 

 Inputs from the guidelines for distribution network planning and design 

(i) A selection of conductor cross sections for the distribution lines depending on the 

main transformer capacities are given as a set of inputs to the algorithm from the 

guidelines for network planning and design.  

(ii) A constraint for the maximum allowable voltage drop of the networks is used to 

ensure that the generated networks are not violating the design standards. 

5.4.2 The algorithm for assigning realistic electrical parameters for the 

network topologies 

The flow chart of the algorithm for assigning realistic electrical parameters for distribution 

network topologies is shown in Figure 5.6. Each step of the algorithm is described as shown by 

the number in the figure. 
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Figure 5.6: Flowchart of the algorithm for the assignment of realistic electrical parameters 
for network topologies. 

1. Similar to the topology generating algorithm, each iteration of this algorithm starts with 

a new random seed. In fact, in one iteration of the complete network generation 

process, (i.e. hierarchical approach in Figure 5.1) the algorithm for topology generation 

and assignment of electrical parameters share the same random seed. Different random 

seeds ensure that different set of values are produced by the PDFs in the different 

iterations of the algorithm. 
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2. The next step is to read all the input parameters given to the algorithm. The type, t of 

the network to be generated is identified.  

 

3. According to the study of real-world networks in Chapter 4, leaf nodes of a network 

topology represent the secondary substations (Figure 4.4). Therefore, it is important to 

identify the leaf nodes (i.e. nodes with a degree equals to 1) in the network topology.  

Next, the distance from the source node to each of the leaf node is calculated. Djakarta’s 

shortest path algorithm is used to obtain these distances [65]. These distances will help 

in the next step to assign the substation capacities to the leaf nodes.  

 

4. Assuming a uniform distribution of the consumer load along the feeders of the network 

topology is not realistic approach. Therefore, results from the statistical investigation of 

electrical properties in Chapter 4 was used to allocate the capacities of secondary 

substations for all the leaf nodes in the network topology to obtain an approximation to 

the actual consumer load distribution. The secondary substation capacities were 

assigned depending on the distance to the source node. These capacities are generated 

by the corresponding Kernel density probability distributions and approximated to the 

nearest values of actual capacities of secondary substations in Table 4.2.   

 

5. After assigning the substation capacities to the leaf nodes, the maximum possible power 

flows through all the edges of the network are obtained. Line losses are ignored at this 

stage, as the conductor properties are not yet assigned to the distribution lines. A 

demand factor kd = 0.6, is assumed for all the secondary substations. 
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This step of the algorithm is explained using a simple example in Figure 5.7. The 

secondary subsection capacities are marked inside the boxes next to them. It is assumed 

that the direction of power flows in the network is from the source node to the leaf 

nodes. Then, the network is divided into a number of feeders equal to the degree of the 

source node. According to Figure 5.7, there are two such feeders: feeder 1 and feeder 

2. The values obtained for the maximum possible power flows through all the edges in 

feeder 1 are shown in Table 5.8. 

 

Figure 5.7: Assignment of electrical parameters to a distribution network topology. 

For example, the maximum possible power flow through the edge ex y is the summation 

of all the installed capacities, 𝐶𝑛𝑜𝑑𝑒𝑖𝑑  of the leaf nodes in that specific feeder, with a 

𝑛𝑜𝑑𝑒𝑖𝑑≥ y, multiplied by the demand factor 𝑘𝑑 , as shown in Equation (5.10). 

 𝑆𝑥→𝑦 = 𝑘𝑑 × ∑ 𝐶𝑛𝑜𝑑𝑒𝑖𝑑
𝑛𝑜𝑑𝑒𝑖𝑑 ≥ 𝑦

 (5.10) 
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Table 5.7: Maximum possible power flows through the edges of feeder 1 of the network. 

Edge  

e x  y 

∑ 𝑪𝒏𝒐𝒅𝒆𝒊𝒅  for 𝒏𝒐𝒅𝒆𝒊𝒅  ≥  𝒚 

(kVA) 

Max possible power flow 
𝑺𝒙→𝒚 

(kVA) 

e 1  2 (400+200+50+80+100+200) = 1030 618 

e 2  4 (200+50+80+100+200) = 630 378 

e 2  5 400 240 

e 4  8 (200+50) = 250 150 

e 4   9 (200+80+100) = 380 228 

e 8  11 (200+50) = 250 150 

e 9  12 (200+80+100) = 380 228 

e 11  15 200 120 

e 11  16 50 30 

e 12  17 (80+100) = 180 108 

e 12  18 200 120 

e 17  21 80 48 

e 17  22 100 60 

After assigning the substation capacities to the leaf nodes and computing the maximum branch 

flows in the network, now it is the time to choose the conductor cross sections for the 

distribution lines. Assuming that, all the distribution lines in the network have a uniform cross 

section is not a realistic approach.  

In the traditional approach for planning and design of distribution networks, the selection of 

conductor cross sections comes after a series of other steps: forecasting of electricity demand, 

locating and sizing substations, designing the layout of the power distribution network [66].   

In reality, the optimal conductor selection in distribution networks is an optimisation problem 

with the objectives to minimize the overall cost of annual energy losses and maximize the saving 

in the capital cost of conducting material, while satisfying the maximum current carrying 

capacity of the conductors and maintaining the acceptable voltage levels of network [71], [80], 

[81]. In addition, the effect of load growth over the years is also taken in to account [71]. 
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However, the algorithm presented in this study does not go into the optimisation of costs and 

the energy losses when selecting the conductor cross sections for the distribution lines. The idea 

is to assign a similar selection of conductor cross sections to that of the real networks, while 

ensuring that the thermal limits and voltage drop constraints are not violated in the networks.   

From the investigation in Chapter 4, it was observed that the trunk lines of the distribution 

networks are assigned with comparatively larger cross sections than the lateral branches. And 

also, it was observed that only 3-4 different types of conductor cross sections are used in one 

distribution feeder. These observations are used to implement the steps 6 -8 in this algorithm 

for the assignment of conductor cross sections to the distribution lines. 

6. As mentioned before, identifying the trunk lines and laterals in the network is important 

in the process of selecting the right conductor sizes for the distribution lines.  

According to this step, each feeder has only one trunk line, the other edges are laterals. 

To identify the edges that belong to the trunk line, the following assumptions are made.  

(i) A trunk line is starting from the source node and ending at a leaf node in the 

corresponding feeder.  

(ii) However, a trunk line does not always appear from the source node to the leaf 

node which has the longest path length in kilo metres.  

(iii) The length of the path and the amount of power carried through the path must 

contribute in making the decision to identify the trunk line from the candidate 

paths.  

(iv) The calculation of power losses that occur in a candidate path for the trunk line 

involves both the lengths of the edges and actual power flows through the 
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edges. Therefore, the candidate path with the highest amount of power losses 

is chosen as the trunk line of the feeder.  

The assumption (iv) is explained in detail below. 

The active power loss, 𝑃𝐿𝑜𝑠𝑠𝑒𝑥→𝑦   occurs in an edge ex y can be calculated using 

Equation (5.11). Pxy, Qxy and Sxy represents the active, reactive and apparent power 

flows through the edge ex y respectively. Resistance and reactance of the edge are 

represented by R and X. Resistance, R of the edge can be substituted with r × 𝑙𝑥,𝑦 where 

r is the per-km resistance of the conductor and 𝑙𝑥,𝑦 is the length of the edge. 𝑉𝑥 and 𝑉𝑦 

are the node voltages. 

 

Figure 5.8: Power flow through an edge/branch of the network. 

 

𝑃𝐿𝑜𝑠𝑠𝑒𝑥→𝑦          =
𝑃𝑥→𝑦
2 + 𝑄𝑥→𝑦

2

𝑉𝑦
2 × 𝑅                                            

=  
𝑆𝑥→𝑦
2

𝑉𝑦
2 × 𝑅                                     

=
𝑆𝑥→𝑦
2

𝑉𝑦
2 × 𝑙𝑥,𝑦  × 𝑟 

(5.11) 

 

𝑃𝐿𝑜𝑠𝑠𝑝𝑎𝑡ℎ_𝑝      =  
𝑟

𝑉𝑦
2  × ∑ 𝑆𝑥→𝑦

2

𝐴𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 𝑒𝑥→𝑦
𝑖𝑛 𝑝𝑎𝑡ℎ_𝑝

 

× 𝑙𝑥,𝑦

≅ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × ∑ 𝑆𝑥→𝑦
2

𝐴𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 𝑒𝑥→𝑦
𝑖𝑛 𝑝𝑎𝑡ℎ_𝑝

 

× 𝑙𝑥,𝑦 

(5.12) 



 

138 

 

The total active power loss that occurs in the path p can be obtained from Equation 

(5.12).  The maximum possible power flows in the edges obtained from the previous 

step (Step 5) are substituted to the Sxy terms in the equation. The per-km resistance, r 

and the node voltages, Vy can be assumed to be constant values (In a 10kV distribution 

network the small deviations of the voltages at the nodes can be ignored for this 

calculation). Therefore, the total power loss occurs in the path p becomes proportional 

to the term,  ∑ 𝑆𝑥→𝑦
2

𝐴𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 𝑒𝑥→𝑦
𝑖𝑛 𝑝𝑎𝑡ℎ𝑝 

× 𝑙𝑥,𝑦 . Which is called the ‘loss index’ of the path in 

this study. 

Table 5.8 summarises the Step 6 of the algorithm with relevant to the feeder 1 of the 

example network shown in Figure 5.7. According to Table 5.8, path p6 has the highest 

loss index. Hence, the edges (branches) that belong to the path p6 become the edges 

that belong to the trunk line of the feeder. 

Table 5.8: Selection of the candidate path for the trunk line of a distribution feeder. 

Leaf 
node 
id 

Path to the leaf node from the source 
node  

Total length 
of the path 

Loss index 

∑S2
x→y × lx,y 

5 p1= (1  2  5) 0.75 km 175481 

15 p2= (1  2  4  8  11  15) 1.3 km 166450 

16 p3= (1  2  4  8  11  16) 1.4 km 165100 

18 p4= (1  2  4  9  12  18) 1.7 km 197820 

21 p5= (1  2  4  9  12  17  21) 2.7 km 206460 

22 p6= (1  2  4  9  12  17  22) 2.7 km 206790 

7. After assigning the edges to the trunk lines, the remaining edges become laterals of the 

network. According to the capacity of the main supply transformer as given by the user, 

a set of conductor cross sections are chosen from the planning and design guidelines 

(Table 5.3). According to network planning and design guidelines it is recommended to 

use only three to four different cross sections for one feeder [75]. Therefore, the 
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selected set of conductor cross sections are divided into groups of three cross sections 

according to the ascending order of the cross sections as shown in Figure 5.9. 

 

Figure 5.9: Grouping of conductor cross sections in ascending order. 

Assignment of the cross sections to the branches in all the feeders begins with the group 

of smallest three cross sections. First, the largest cross section in the selected set is 

assigned to the edges in the trunk lines. The remaining two cross sections are assigned 

to the edges that belong to lateral branches. Then, the maximum power flows through 

the edges are tested against the thermal constraints of the selected conductors. If there 

are any violations of the thermal constraints the next set of three conductor cross 

sections are assigned to the edges of the feeders where the violations of thermal 

constraints are observed. This step is repeated until the thermal constraints are satisfied 

in all the edges of the network. 

 

8. In this step of the algorithm, a power flow simulation is conducted to obtain the 

maximum voltage drop recorded in the network. The maximum recorded voltage drop 

is compared with the maximum allowable voltage drop of the network (𝑉𝑑_𝑚𝑎𝑥). If the 

constraint for the maximum allowable voltage drop is violated, the algorithm goes back 

to the previous step to choose the next set of conductor cross sections (i.e. cross 

sections larger than in the previous assignment). These steps will be repeated until the 

voltage drop constraints are satisfied or the combinations of all the recommended sets 
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of cross sections are finished. If there is no suitable set of conductor cross sections that 

can satisfy the voltage drop constraint, the network is discarded. Otherwise the network 

is stored in the database of statistically-similar networks. 

 

9. One saved network has the following output files: Adjacency matrix, 𝑨 Electrical 

distance matrix, 𝑬𝑫 secondary substations matrix, 𝑺𝑺 and branch matrix, 𝑩. The 

construction of 𝑺𝑺 and 𝑬𝑫 is shown in Equations (4. 2) and (4.12) respectively. The 

structure of 𝑩 is as shown in Equation (5.13). It contains 𝐹𝑟𝑜𝑚𝑛𝑜𝑑𝑒𝑖𝑑  and  𝑇𝑜𝑛𝑜𝑑𝑒𝑖𝑑  of 

the branches, the length 𝑙(km) of the branches, per-km resistance 𝑟 (Ohm), per-km 

reactance 𝑥 (Ohm) and also the thermal capacity 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (kVA) of the conductors used 

in the branches.  𝑀 is the total number of branches of the network. These output files 

are used to conduct power flow studies of the networks. 

 
𝑩 = [𝐹𝑟𝑜𝑚𝑛𝑜𝑑𝑒𝑖𝑑 ,  𝑇𝑜𝑛𝑜𝑑𝑒𝑖𝑑 , 𝑙, 𝑟, 𝑥, 𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙]𝑀×6 (5.13) 
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5.5 Validation of the SSNG tool 

The steps of the validation procedure of the SSNG tool is shown in Figure 5.1. This section 

presents the validation of the SSNG tool by choosing one network from the testing data set. This 

selected network is referred to as ‘test network’ in the text below. 

First, an ensemble of statistically-similar distribution networks to the selected test network is 

generated by the SSNG. Then the topological and electrical properties of the test network are 

compared with the topological and electrical properties of the ensemble of statistically-similar 

networks generated by the SSNG. The results of the comparison are discussed. 

5.5.1 Properties of the test network sample 

The basic inputs taken from the test network to provide ‘direct user inputs’ to the SSNG is 

summarised in Table 5.9. The population density of the selected network is 620 people per 

square km, and hence it belongs to the sub-urban category of networks.  

Table 5.9: Basic user inputs from the test network to the SSNG. 

Property Value 

Network type Sub-urban 

Total number of nodes 190 

Capacity of the main supply 
transformer 

20 MVA 

Number of outgoing feeders from 
the main supply transformer  

5 

The topological and electrical properties of the test network is calculated by following the 

methodologies described in Chapters 3 and 4. The results are shown in Table 5.10. 
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Table 5.10: Topological and electrical properties of the test network. 

Topological properties Electrical properties 

Property Value Property Value 

Total network 
length 

62.53 km Total installed capacity of 
secondary substations (kVA) 

16875 kVA 

Average edge 
length 

0.331 km Average capacity of a 
secondary substation 

219.2 kVA 

Average path length 6.49 km Average electrical distance- 
resistance 

0.274 Ohms 

Maximum feeder 
length 

8.87 Average electrical distance- 
reactance 

0.125 Ohms 

Average node 
degree 

1.989 Total active power loss 340 kW 

Branching rate 0.349 Total reactive power loss 194 kVar 

Number of leaf 
nodes 

77 Total power loss/total 
supplied power ratio (%) 

3.72 % 

  Minimum recorded voltage 0.982 p.u. @ bus 
170 

  System load balancing index 0.1554 

Figure 5.10(a) shows the spatial distribution of the actual test network. Figure 5.10(b) shows the 

connections of the nodes in the actual network as a simplified tree diagram. The edge lengths in 

Figure 5.10 (b) are not drawn according to an actual scale. The trunk lines of the network are 

marked using red colour in Figure 5.10(b).  
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(a)                                                                                            (b) 

Figure 5.10: (a) Spatial distribution of the actual test network (b) Connections between the nodes of the test network as a simplified tree diagram.
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5.5.2 Generation of statistically-similar networks 

Since, the proposed networks generator is a statistical tool, it can generate large numbers of 

statistically-similar networks. In this section, the basic inputs in Table 5.9 were used to generate 

100 networks which are statistically-similar to the chosen network from the testing dataset. 

Studies with different numbers of statistically-similar networks can be conducted see the effect 

of the number of networks on the statistics of the results. However, this part of the study is not 

covered in this thesis.  

SSNG model parameters that come from the real-world networks investigation for topology 

generation are shown in Table 5.11. SSNG model parameters to assign electrical properties to 

the network topologies are as follows. (i) A demand factor of kd= 0.6, is assumed for secondary 

substations to estimate the maximum possible branch flows. (ii) The minimum allowable voltage 

drop in the networks is considered as 10% of from main supply point voltage. This limit is about 

6% in the process of planning and design of real-world networks [66]. But from the network 

investigation in the Chapter 4, with a similar set assumption made to carry out load flow 

simulations a voltage drops of more than 6% is observed in the real-world networks. Hence, this 

voltage drop constraint is relaxed up to 10% for this study. 

Table 5.11: SSNG model parameters for topology generation. 

Level of the 
network,𝒊 

Parameters for 
edge length 
distributions 

Parameters for 
degree 
distributions 

Parameters for 
distribution of the 
nodes 

𝜶𝒊 [𝒑𝒊𝟏, 𝒑𝒊𝟐, 𝒑𝒊𝟑]    𝒒𝒊 

𝒊 = 𝟏 0.324 [0.32 0.35 0.33] 0.475 

𝒊 = 𝟐 0.264 [0.39 0.28 0.33] 0.375 

𝒊 = 𝟑 0.236 [0.45 0.28 0.27] 0.150 
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Figure 5.11 shows the simplified tree diagrams of three networks generated by the SSNG. Again, 

the edge lengths are not drawn according to the actual scale. Trunk lines are marked in red 

colour. 
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Figure 5.11: Layouts (as simplified tree diagrams) of three statistically-similar networks generated by the SSNG. 
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5.5.3 Comparison of the topological and electrical properties of the test 

network with the networks generated by the SSNG. 

The results obtained for the topological and electrical properties of 10 networks out of the 100 

networks generated by the SSNG are listed in Table 5.12. The mean and standard deviations of 

the topological and electrical properties of 10 networks are also calculated and compared with 

the test network properties in the last three rows of Table 5.12. 

To get a better understanding about the representativeness of the networks generated by the 

SSNG to the test network, results of all the 100 networks generated by the SSNG are considered. 

The box-whisker plot representations of the topological and electrical properties of the 100 

networks are shown in Figure 5.12. On each box, the central mark indicates the median, and the 

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The 

whiskers extend to the most extreme data points not considered outliers, and the outliers are 

plotted individually using the '+' symbol [82]. 

All the networks generated by the SSNG have same number of total nodes and same number of 

outgoing feeders from the source node similar to the test network. 

From the results in Table 5.12 and Figure 5.12 it can be observed that most of the topological 

and electrical properties (excluding the electrical performance related electrical properties) of 

the generated networks have a standard deviation less than or equal to 12%.  This observation 

proves that the networks generated by the SSNG are statistically-similar to each other in terms 

of those properties with a maximum range of variation around ±12%.
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Table 5.12: Topological and electrical properties of 10 statistically similar networks. 
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2 60.34 0.319 5.11 8.1 1.989 0.311 63 13020 206.7 0.191 0.117 208 179 1 0.1087 3.4 

3 66.28 0.351 4.96 6.72 1.989 0.353 71 15865 223.5 0.215 0.129 124 103 1.025 0.0858 1.67 

4 58.08 0.307 3.97 5.8 1.989 0.347 70 15290 218.4 0.184 0.112 132 91 1.032 0.0922 1.72 

5 60.22 0.319 4.61 5.45 1.989 0.347 70 12150 173.6 0.286 0.121 155 72 1.012 0.0935 2.28 

6 58.32 0.309 5.03 6.21 1.989 0.347 70 14655 209.4 0.133 0.11 224 137 1.023 0.0724 2.07 

7 64.03 0.339 5.57 5.99 1.989 0.337 68 15690 230.7 0.308 0.129 243 160 1.02 0.0918 2.57 

8 63.34 0.335 4.07 5.34 1.989 0.342 69 13010 188.6 0.305 0.127 146 61 1.024 0.1123 1.98 

9 61.43 0.325 5.09 6.66 1.989 0.337 68 12245 180.1 0.286 0.123 232 117 0.987 0.1024 3.42 

10 66.84 0.354 5.53 6.34 1.989 0.337 68 13860 203.8 0.153 0.126 131 129 1.019 0.0735 2.16 

Mean  62.41 0.330 4.83 6.23 1.989 0.340 69 13970 203.7 0.236 0.122 178 114 1.017 0.0924 2.29 

Std. dev, 
± 

5% 5% 12% 12% 0% 3% 3% 9% 9% 28% 6% 25% 32% 1.4% 13% 27% 

Test 
network 

62.53 0.331 6.49 8.87 1.989 0.349 77 16875 219.2 0.274 0.125 340 194 0.982 0.1554 3.72 
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Figure 5.12: Box-whisker representation of the topological and electrical properties of 100 statistically-similar networks.
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From the results in Table 5.12 and Figure 5.12 it can be observed that, the mean values of the 

network samples generated by the SSNG, for the topological properties such as, total network 

length, average edge length, average node degree and branching rate are very similar to the 

corresponding property value of the test network. 

The difference between the mean value for the number of leaf nodes (equals to the number of 

secondary substations) in the generated networks and the test network is around 10%. Whereas 

the mean values of the average path length and maximum feeder length deviate in a range of 

25-30% from the corresponding property values of the test network. 

The mean value for the average capacity of a secondary substation in the generated networks 

are about 10% lower than that of the test network.  The test network property values for the 

average resistance and reactance of the distribution line segments (edges) are in the range of 

25th and 75th percentiles of the statistical distribution of the properties of generated networks. 

However the electrical performance related properties of the generated networks such as 

power losses, load balancing index and minimum recorded voltage are considerably varied from 

the test network properties. 

In summary, the networks generated by the SSNG are very closely representative to the test 

network, in terms of the total network length, average edge length and branching properties. 

The number of secondary substations and average capacity of the secondary substations are 

also nearly similar to the test network. Deviations from the electrical performances related 

network properties such as, power losses, voltage drops and load balancing indexes are 

observed with compared to the test network. 
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5.5.4 Discussion-Fine tuning the algorithms for networks generation  

Deviations observed in some of the electrical and topological properties of generated networks 

and the test network may be due to the effect of the following reasons. 

(i) Impact of the population density of the selected network 

The selected test network has a population density of 620 people per square km. This much 

larger than most of the sub urban networks used in the investigation of the real-world 

network properties. The higher the population density the networks tend to have more 

branching to supply to consumers leading to more leaf nodes in the network. And also the 

installed capacities of the secondary substations tend to be larger to supply more customers. 

However, the SSNG model parameters used in this study to generate the networks are 

derived using a majority of sub-urban networks with a population density less than the 

selected test network. 

(ii) Mismatches in the selection of conductor cross sections of the test network and the 

networks generated by the SSNG. 

From the results in Table 5.12 and Figure 5.12, it is observable that the networks generated 

by the SSNG has lower branch impedances than the test network. This may be due to 

idealistic assumptions made to obtain the maximum branch flows in the networks generated 

by the SSNG (Step 5 of the algorithm for electrical property assignment).  

The SSNG can be fine-tuned to get better representative networks to the test network. This can 

be done by changing the SSNG model parameters. The SSNG model parameters for topology 

generation (Table 5.12) can be varied to change the topological structures of the networks 

generated by the SSNG. For example, by changing the parameter (α) related to the edge length 
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distributions of the networks, different total network lengths can be achieved. Likewise, by 

changing the degree distributions of the networks related parameters (p), different branching 

patterns of the networks can be achieved. 

All these small changes of the SSNG model parameters for topology generation can be justified, 

as they are derived using the properties of the real-world networks and those properties of the 

real networks can be slightly varied from one network to the other even within the same 

network type according to the population distribution. 

Similarly, the SSNG model parameters for assigning the electrical parameters can also be fine-

tuned. The assumptions for the demand factor can be changed achieve the branch flows which 

will eventually give a similar selection of conductor cross sections to the generated networks, 

similar to that of the test network.  

However, fine-tuning the SSNG is not implemented as an in-built function to the model. It is a 

heuristic approach at this stage of the development of SSNG.  

5.6 Summary 

A statistically-similar network generator (SSNG) for MV electricity distribution networks was 

developed. The topological and electrical properties in real-world networks together with the 

guidelines for distribution network planning and design are used in the development process of 

the SSNG. 

Statistically similar networks are generated in a hierarchical way. Algorithms are developed; 

first, to generate realistic topologies of distribution networks and then, to assign realistic 

electrical parameters to the network topologies.  
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The validation of the SSNG showed that the tool is capable of generating ensembles of 

statistically-similar networks which resemble the real-world networks in terms of a set of 

topological and electrical properties.  

It has been identified that the population density parameter within the same type of networks 

has an impact of the detailed topological and electrical properties of the networks. The SSNG 

model parameters can be fine-tuned to improve the representativeness of the networks to the 

real-world networks. 
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  Case study- Impact assessment of Soft 

Open Points on distribution networks 

The work presented in this Chapter is a collaboration with Miss. Qi Qi of Cardiff 

University, School of Engineering, UK. 

6.1 Introduction 

With a high penetration of intermittent DG and flexible demand presents in the distribution 

networks, there is a possibility that some parts of the network become heavily loaded at certain 

time of a day and lightly loaded at other times. This, in turn, leads to high power losses, increased 

peak currents and undesirable over-voltage issues in the distribution networks [83]. The use of 

power electronic devices provides alternative solutions to overcome these challenges [84], [85]. 

 An introduction to the Soft Open Points (SOP) 

Soft Open Point (SOP) is a power electronic device installed in place of a normally open or 

normally closed point in a distribution network [86]. Normally Open Points (NOPs) are built, 

connecting adjacent feeders, to provide alternative routes of electricity supply in case of 

planned or unplanned power outages [87].  

Instead of simply opening/closing NOPs, SOPs control load transfer and regulate network 

voltage profile by flexibly controlling active/reactive power flow between adjacent feeders. 

Immediate fault isolation between interconnected feeders as well as fast supply restoration is 

also enabled using these devices. Therefore, SOPs are able to improve distribution network 
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operation as well as facilitate a large penetration of low carbon technologies into the 

distribution network [86]. 

 A literature review of research studies on SOPs 

A number of previous studies have investigated the benefits of SOPs for distribution network 

operation [83], [86], [88], [89], [90], [91]. This previous research on SOP has mainly focused on 

one or few of the following aspects: (i) development of control strategies for SOP; (ii) 

minimization of network energy losses considering the influence and increase of DG; (iii) analysis 

and quantification of benefits of SOP considering different objectives separately [92]. To the 

best of the author's knowledge, all the previous studies on SOPs have been validated or tested 

against one or few case study networks, such as IEEE 33 busbar network. 

Therefore, these previous research studies leave the question mark of how applicable and 

relevant the benefits of SOPs quantified by that specific study for the other real-world networks. 

 Goals and novelty of the current research. 

The overall benefits that can bring to the distribution network by the SOPs can be varied from 

one network to the other. Therefore, it is important to test the SOP’s capability of bringing 

advantages on many different distribution networks in order to provide broad and robust 

conclusions about the benefits of SOPs on distribution networks. 

As an initial step forward to address this research gap, a methodology for the investigation of 

the SOP’s capability of bringing benefits to the distribution networks on many realistic 

distribution networks is proposed in this chapter.  
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An integrated tool for this purpose is developed by combining the SSNG which was presented in 

the Chapter 5 of this thesis and the optimization framework that was proposed in the reference 

[92], by Qi Qi of Cardiff University, UK. 

The techniques of obtaining statistically meaningful results from a large number of networks, 

about the SOP performances are demonstrated using a set of statistically similar networks. SOP 

operation in the distribution networks at different penetration levels of the DGs are considered. 

6.2 Statistical assessment tool for performance evaluation of SOP 

on distribution networks. 

This section describes the implementation of the integrated tool for SOP performance 

evaluation on distribution networks. The integrated tool is referred to as the ‘Statistical 

assessment tool for the performance evaluation of SOP on distribution networks’. 

The mathematical model of the SOP used in a distribution network in this study is explained. The 

details of the optimization framework that was proposed to improve the operation of a 

distribution network with distributed generation and a SOP, are presented. 

6.2.1 An overview of the integrated tool for SOP performance 

evaluation 

Figure 6.1 shows the simulation set up of the integrated tool for SOP performance evaluation. A 

similar arrangement for the impact assessment of solar PV on the LV distribution networks is 

presented in [93].  

The steps of the simulation study are as follows. First, a realistic distribution network is 

generated by the SSNG considering the user inputs of the network to be generated. A DG 

penetration level is selected. Then DG sites are randomly distributed in the network and the 
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capacities for the DGs are assigned according to the DG penetration level. The presence of only 

one SOP per network is considered in this study. Then, the SOP performance evaluation model 

(an optimisation algorithm) is executed to obtain the outcomes for the optimal capacity (kVA) 

of SOP, optimal location of SOP and annual savings gained by using the SOP. The results are 

recorded. Then another case is run with the same DG locations for the same distribution 

network, but with a different DG penetration level.  This is continued until the number of DG 

penetration levels required for the SOP study has been completed. Then, another network is 

generated by the SSNG and all the above steps are repeated until enough cases have been 

generated to provide a meaningful spread of results. 

 

Figure 6.1: Simulation setup of the statistical assessment tool for SOP performance 
evaluation [93]. 

Different sets of user inputs regarding the networks that are required for the SOP study can be 

given to the SSNG. However, in this chapter only one set of statistically-similar networks are 

used for SOP performance evaluation. 
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6.2.2 DG consideration in the distribution network models 

This research is focused on evaluating the performances of SOPs in the distribution networks in 

the presence of DGs. The details of the considerations made for DG allocation in the distribution 

network models is explained in this section. The locations for the DG sites are chosen randomly.  

Although there is no unified definition of DG penetration in the literature, this study follows the 

commonly used one, which is the same as that in [86], [94]: DG penetration is the percentage of 

total capacity of DG units over the maximum loading capacity of the network. For example, if a 

distribution network is operating at its peak load with a DG penetration of 25%, then 75% of the 

power will be coming from the transmission system. 

In order to consider the intermittent characteristics of renewable generation outputs, a method 

based on the Wasserstein distance was used to derive representative scenarios of DG outputs 

from their probability density functions [95], [96]. Firstly, the probability density functions of 

DGs were generated from historical data. Then the continuous distributions of DG outputs were 

converted to discrete ones using the Wasserstein distance method, from where representative 

operation scenarios of DGs over a certain period were generated. By using these representative 

scenarios of DG operation, the computational burden of the optimization procedure (i.e. 

optimisation to improve the operation of a distribution network with a SOP) can be reduced. 

Assuming 𝑓(𝑥) is the continuous probability density function of variable 𝑥, and is to be 

converted into 𝑁𝑆 discrete distributions, i.e. 𝑁𝑆 representative scenarios. Each representative 

scenario 𝑠𝑐𝑒 (𝑠𝑐𝑒 = 1,2, … ,𝑁𝑠) and its corresponding probability 𝑝𝑠𝑐𝑒 can be obtained as 

follows: 
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 ∫ 𝑓(𝑥)1/2𝑑𝑥 =
𝑠𝑐𝑒 − 1

2𝑁𝑆

𝑠𝑐𝑒

−∞

∫ 𝑓(𝑥)1/2𝑑𝑥
+∞

−∞

 (6.1) 

 𝑝𝑠𝑐𝑒 = ∫ 𝑓(𝑥)𝑑𝑥

𝑠𝑐𝑒+(𝑠𝑐𝑒+1)
2

(𝑠𝑐𝑒−1)+𝑠𝑐𝑒
2

 (6.2) 

Specifically, the scenarios 𝑠𝑐𝑒 = 0 and 𝑠𝑐𝑒 = 𝑁𝑠 + 1 refer to the lower and upper limits of the 

variable 𝑥. In this study 𝑥, refers to the renewable generation in the form of wind and PV. Since 

Weibull distribution [97] and Beta distribution [98] are extensively used to describe the 

probability density functions of wind speed and light intensity in the literature, they were 

adopted for the generation of representative scenarios of wind and PV outputs over a year, 

based on the Wasserstein distance method. 

The wind speed and light intensity curves over a year as shown in Figure 6.2, and the consequent 

probability density functions derived from these curves were obtained in [96]. The probability 

density functions were then used with the Wasserstein distance method to derive five 

representative scenarios of wind outputs (𝑃𝑤𝑖𝑛𝑑), five representative scenarios of PV outputs 

(𝑃𝑃𝑉), as well as their corresponding probabilities. From these scenarios, 25 combined scenarios 

of annual DG operation, and their probabilities can be obtained, which are shown in Table 6.1.  
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Figure 6.2: Wind speed and light intensity curves over a year. 

 

Table 6.1: Representative scenarios and corresponding probabilities of DG outputs. 

𝑷𝒘𝒊𝒏𝒅 𝑷𝑷𝑽 

𝑠𝑐𝑒 1 𝑠𝑐𝑒 2 𝑠𝑐𝑒 3 𝑠𝑐𝑒 4 𝑠𝑐𝑒 5 

0.09 0.29 0.49 0.72 0.91 

𝒔𝒄𝒆 𝟏 0 0.018 0.0174 0.0173 0.0174 0.018 

𝒔𝒄𝒆 𝟐 0.08 0.0916 0.0885 0.0882 0.0885 0.0915 

𝒔𝒄𝒆 𝟑 0.32 0.0468 0.0452 0.0451 0.0452 0.0468 

𝒔𝒄𝒆 𝟒 0.71 0.0268 0.0259 0.0258 0.0259 0.0268 

𝒔𝒄𝒆 𝟓 1 0.021 0.0203 0.0203 0.0203 0.021 

6.2.3 Mathematical model of SOP in distribution networks  

A SOP can be implemented with different converter topologies. A back-to-back Voltage Source 

Converter (VSC) based SOP was considered in this study. A schematic diagram of a distribution 

network installed with an SOP is given in Figure 6.3 [92]. 
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Figure 6.3: A distribution network installed with an SOP [92]. 

Back-to-back VSCs can operate in four quadrants of the P-Q capability curve [91]. The reactive 

power at both terminals of an SOP can be assigned independently to each other as required, 

which makes the device capable to provide flexible reactive power compensation to the 

network. In addition, the active power flow through an SOP can be controlled rapidly and 

accurately. 

To fully evaluate the potential effects of SOP on steady-state network operations, a 

mathematical power injection model of SOP is used [91]. In this model, active and reactive 

power injections at SOP terminals are integrated into the load flow algorithm without 

considering the detailed design of converter controllers. The backward forward sweep method 

was used for load flow calculations. Taking Feeder 1 in Figure 6.3 as an example, the load flow 

is calculated by the following recursive equations [99]: 

 𝑃𝑖+1 = 𝑃𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑖,𝑖+1) − 𝑃𝑙𝑜𝑎𝑑(𝑖+1) = 𝑃𝑖 −
𝑟𝑖
|𝑉𝑖|

2
∙ (𝑃𝑖

2 + 𝑄𝑖
2) − 𝑃𝑙𝑜𝑎𝑑(𝑖+1) (6.3) 

 𝑄𝑖+1 = 𝑄𝑖 − 𝑄𝑙𝑜𝑠𝑠(𝑖,𝑖+1) − 𝑄𝑙𝑜𝑎𝑑(𝑖+1) = 𝑄𝑖 −
𝑥𝑖
|𝑉𝑖|

2
∙ (𝑃𝑖

2 + 𝑄𝑖
2) − 𝑄𝑙𝑜𝑎𝑑(𝑖+1) (6.4) 

Feeder 1

Feeder 2 AC

DC

AC

DC

SOP



 

162 

 

 |𝑉𝑖+1|
2 = |𝑉𝑖|

2 +
𝑟𝑖
2 + 𝑥𝑖

2

|𝑉𝑖|
2
∙ (𝑃𝑖

2 + 𝑄𝑖
2) − 2 ∙ (𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖)      𝑖 ∈ {1,2,… ,𝑁𝑏𝑢𝑠} (6.5) 

where, 𝑃𝑖 and 𝑄𝑖  are the active and reactive power flowing from bus 𝑖 to bus 𝑖 + 1. 𝑃𝑙𝑜𝑎𝑑(𝑖) and 

𝑄𝑙𝑜𝑎𝑑(𝑖) are the active and reactive power demand at bus 𝑖. 𝑃𝑙𝑜𝑠𝑠(𝑖,𝑖+1) and 𝑄𝑙𝑜𝑠𝑠(𝑖,𝑖+1) are the 

power losses within the branch connecting buses 𝑖 and 𝑖 + 1, and 𝑟𝑖 and 𝑥𝑖 are the resistance 

and reactance of that branch. 𝑉𝑖 is the voltage at bus 𝑖. 𝑁𝑏𝑢𝑠 is the total number of buses in a 

network. 

The operational boundaries of a back-back VSC-based SOP are: 

 𝑃𝐶1 = 𝑃𝑝 − 𝑃𝑙𝑜𝑠𝑠(𝑝,𝐶1) (6.6) 

 𝑃𝐶2 = 𝑃𝑞 − 𝑃𝑙𝑜𝑠𝑠(𝑞,𝐶2) (6.7) 

where, 𝑃𝐶1and 𝑃𝐶2 are the active power flows of each VSC. 𝑃𝑙𝑜𝑠𝑠(𝑝,𝐶1) is the power loss between 

bus 𝑝 and VSC 1, and 𝑃𝑙𝑜𝑠𝑠(𝑞,𝐶2) is the power loss between bus 𝑞 and VSC 2. 

Although the operation efficiency of back-back VSCs is sufficiently high, they inevitably produce 

losses when there is a large-scale transfer of active power. Therefore, a loss coefficient 𝜂 is 

considered in the model. The constraint of active power exchange between the two converters 

is described below: 

 𝑃𝐶1 + 𝑃𝐶2 + 𝜂𝑃𝐶1 + 𝜂𝑃𝐶2 = 0 (6.8) 

The reactive power outputs of the two converters are independent of each other because of the 

DC isolation and should satisfy their own capacity constraints: 
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 √𝑃𝐶1
2 + 𝑄𝐶1

2 ≤ 𝑆𝑆𝑂𝑃 (6.9) 

 √𝑃𝐶2
2 + 𝑄𝐶2

2 ≤ 𝑆𝑆𝑂𝑃 (6. 10) 

where, 𝑄𝐶1, and 𝑄𝐶2 are the reactive power output of each converter, and 𝑆𝑆𝑂𝑃 is the capacity 

of an SOP. 

The relationship between the capacity and location of an SOP is: 

 𝑆𝑆𝑂𝑃 = 𝑚𝑆𝑚𝑜𝑑𝑢𝑙𝑒(1 − 𝑏𝑖,𝑗) (6.11) 

where, the capacity of an SOP equals to the summation of the module capacity it consists of, 

where 𝑆𝑚𝑜𝑑𝑢𝑙𝑒 is the minimum capacity of the basic power electronic module in an SOP. The 

binary variable 𝑏𝑖,𝑗 indicates if the branch between buses 𝑖 and 𝑗 is equipped with an SOP. For 

instance, 𝑏𝑖,𝑗 = 0 means an SOP is installed that branch. 

Generally, the AC side of an SOP can be controlled in either PV mode or PQ mode. In this study 

the latter was considered. By choosing the optimal capacity, location and set-points of an SOP, 

power flows within a network can be controlled actively. Therefore, specific operational 

objectives can be achieved. 

6.2.4 SOP performance evaluation model 

The SOP performance evaluation model is formulated as an optimisation problem, where the 

annual cost of a distribution network with a SOP and different penetration levels of DGs is 

subjected to minimise. 
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 Problem formulation 

The annual cost of a distribution network was taken as the objective function of the optimisation 

problem and formulated as follows: 

 𝑚𝑖𝑛𝐹 = 𝐶𝑖𝑛𝑣 + 𝐶𝑜𝑝𝑒 + 𝐶𝑙𝑜𝑠𝑠 (6.12) 

The annual cost consists of the following three parts: 

(i) Investment cost of SOP: 

 𝐶𝑖𝑛𝑣 =
𝑟𝑖𝑛𝑣(1 + 𝑟𝑖𝑛𝑣)

𝑦

(1 + 𝑟𝑖𝑛𝑣)
𝑦 − 1

𝑐𝑆𝑂𝑃𝑆𝑆𝑂𝑃 (6.13) 

where, 𝑟𝑖𝑛𝑣 is the discount factor for the investment cost of SOP, 𝑦 is the device economical 

service time, 𝑐𝑆𝑂𝑃 is the investment cost per unit capacity of an SOP. 

(ii) Operational cost of SOP 

 𝐶𝑜𝑝𝑒 = 𝑟𝑜𝑝𝑒𝑐𝑆𝑂𝑃𝑆𝑆𝑂𝑃 (6.14) 

where, 𝑟𝑜𝑝𝑒 is the discount factor for the operational cost of SOP. 

(iii) Annual energy loss cost of a distribution network: 

 𝐶𝑙𝑜𝑠𝑠 = 8760 ∙ 𝑐𝑒𝑙𝑒 ∑ (𝑃𝑙𝑜𝑠𝑠,𝑠𝑐𝑒 + 𝜂𝑃𝐶1,𝑠𝑐𝑒 + 𝜂𝑃𝐶2,𝑠𝑐𝑒) ∙ 𝑝𝑠𝑐𝑒

𝑁𝑆

𝑠𝑐𝑒=1

 (6.15) 
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where 𝑐𝑒𝑙𝑒 is the electricity price per kWh. 𝑁𝑆 is the set of all scenarios considered over a year, 

and 𝑝𝑠𝑐𝑒 is the probability corresponding to scenario 𝑠𝑐𝑒. 𝑃𝑙𝑜𝑠𝑠,𝑠𝑐𝑒 is the power loss of the 

network per unit time at scenario 𝑠𝑐𝑒. 𝑃𝐶1,𝑠𝑐𝑒 and 𝑃𝐶2,𝑠𝑐𝑒 are the active power exchanged 

through the converters of an SOP at scenario 𝑠𝑐𝑒. 

In addition to the operational constraints of SOP, the following limits were also considered: 

(i) Bus Voltage Limits 

 𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉
𝑚𝑎𝑥     𝑖 ∈ {1,2,… ,𝑁𝑏𝑢𝑠} (6.16) 

(ii) Branch Capacity Limits 

 |𝐼𝑘| ≤ 𝐼𝑘
𝑚𝑎𝑥      𝑘 ∈ {1,2,… ,𝑁𝑏𝑟𝑎𝑛𝑐ℎ} (6.17) 

where, 𝐼𝑘
𝑚𝑎𝑥 is the maximum allowed current of branch 𝑘. 

 Optimization framework 

During the optimization process, the active and reactive power outputs of an SOP during each 

representative scenario, as well as the capacity and location of the SOP were taken as decision 

variables. Decision variables are a set of quantities that need to be determined in order to solve 

the problem. Their values are searched and identified in the optimization model in order to 

obtain the optimal value of the objective function. 

An integrated optimization method proposed in the reference [92], was used to determine the 

optimal allocation of SOP by considering the values obtained for the decision variables. This 

method integrates both global and local search techniques, where Particle Swarm Optimization 
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(PSO) [100] is adopted to explore the solution space globally. A local search technique, namely 

the Taxi-cab method [101], is used for solution space exploitation, which refines the quality of 

solutions searched by PSO in each iteration, overcoming the drawback of PSO in local optima 

trapping. Therefore, the search capability of the integrated optimization method has enhanced 

search capability compared to the conventional PSO algorithm. 

After identifying the optimal solution, the annual cost savings obtained by the SOP is calculated 

as follows, 

 

Annual Cost Saving(%) =
Fref − FSOP

Fref
× 100% 

                     =
Closs
ref − (Cinv

SOP + Cope
SOP + Closs

SOP)

Closs
ref

∙ 100% 

(6.18) 

Fref is the annual cost of the distribution network in the reference case, where no SOP is 

installed. FSOP is the annual cost of the distribution network with one SOP installed and  Closs
ref  

stands for the annual energy loss cost of the distribution network in the reference case, where 

no SOP is installed. 

6.3 Case study  

The statistical assessment tool proposed for SOP performance evaluation in Section 6.2, is used 

to construct a case study. A set of statistically-similar distribution networks are tested for their 

performance with a SOP and different DG penetration levels.  

6.3.1 Description of the test cases 

 Input parameters given to the SSNG 

The set of input parameters that are given to the SSNG in this case study, are shown in Table 6.2 
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Table 6.2: The set of input parameters given to the SSNG. 

Parameter Value 

Network Type Sub-urban 

Voltage level of the network 10kV 

Number of nodes 250 

Number of outgoing feeders from the main 
transformer 

7 

Capacity of the main transformer 20 MVA 

Number of statistically-similar networks 
required for the study 

30 

 Outputs generated from the SSNG 

Each statistically-similar distribution network model generated by the SSNG have several output 

files. The output file ‘Branch matrix’, B includes the connectivity of nodes (buses) in the network, 

branch impedances and current rating of the conductors used in the branches. Secondary 

substations matrix, SS gives the installed capacities of the secondary substations connected to 

the nodes (buses) in the network. Buses and branches that belong to the trunk lines of each 

separate feeders of a distribution network models are also given as an output file from the SSNG.   

 Assumptions made for modelling the consumer load in the distribution 

networks 

The optimisation model for the SOP performance evaluation, takes into account the consumer 

load information of the network. The optimisation model is run for a period of one year. 

However, the SSNG is only capable of providing the information of the distribution of installed 

capacities of secondary substations in the network models. Time variant load profiles are not 

generated by the SSNG. 

Therefore, in order to model the consumer loads in the distribution networks models, the 

following assumptions are made. The nodes where the secondary substations are connected, 
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are considered as the load nodes of the distribution network models. A fraction equals to 0.6 of 

the installed capacities of secondary substations is considered as the instantaneous load 

connected to the corresponding node at any time of the year. It is also assumed that the all the 

loads are operating at a power factor of 0.85. 

 DG consideration in the distribution networks 

DG sites are allocated randomly in each network. All DGs were assumed to operate at unity 

power factor. Since the installed capacity of DGs is related to their penetration levels, in this 

study, DG penetrations from 0 to 100% with an increment of 20% are considered. 

 SOP information 

The consideration of the range of candidate SOP capacities was from 500 kVA to 2500 kVA. End 

nodes of the trunk lines of each main feeder of the distribution networks are considered as 

candidate points for SOP installation. Out of all such candidate locations for SOPs, the 

optimisation algorithm selects the best location for a SOP for each network to satisfy the 

objective of the study. 

 Parameters used in the optimisation  

Parameters related to the investment and operational costs of SOP used in the optimisation 

problem, are listed in Table 6.3. 

Table 6.3: Parameters selected for the case studies. 

Parameters Value 

loss coefficient: 𝜼 [102] 0.02 

module capacity: 𝑺𝒎𝒐𝒅𝒖𝒍𝒆 (kVA) 100 

economical service time: 𝒚 (year) 20 

discount factor: 𝒓𝒊𝒏𝒗, 𝒓𝒐𝒑𝒆 0.08, 0.01 
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investment cost per unit capacity: 
𝒄𝑺𝑶𝑷 (£/kVA) [103], [104] 

230 

electricity price: 𝒄𝒆𝒍𝒆 (£/kWh) 0.12 

6.3.2 Results and discussion 

The box-whisker plot representations of the topological and electrical properties of the 30 

networks generated by the SSNG are shown in Figure 6.4.  

From the box-whiskers plots in Figure 6.4, it can be observed that the networks generated by 

the SSNG share very close topological and electrical properties making them statistically-similar 

to each other. However, these networks have different network layouts and any of that is a 

possible realisation of a real distribution network. 

The difference in the network layouts with the random integration of the DGs can lead to 

different performances of the statistically-similar networks.  

Under each DG penetration level, for each network, the annual network costs, network 

performances (E.g. maximum and minimum bus voltages recorded over a year, maximum 

branch loading recorded over a year) and the maximum allowable DG penetration of the 

network before any limits being breached are obtained for the cases without SOP and with SOP 

operation in the networks. 
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Figure 6.4: Topological and electrical properties of 30 networks generated by the SSNG. 
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 Annual costs of distribution networks with and without SOP 

The annual costs of the 30 statistically-similar distribution networks under different DG 

penetration levels are compared for the cases of with and without SOP in the networks. Figure 

6.5 shows the comparison of the annual costs using a box plot representation. Networks with 

high DG penetrations are more vulnerable to encounter voltage and thermal issues. Therefore, 

only the results of the networks without constraints violations are used for the representation. 

 

Figure 6.5: Annual costs of 30 statistically-similar distribution networks, with and without 
SOP, for different DG penetration levels. 

From Figure 6.5 it can be observed that for the both cases (i.e. with and without the SOP), with 

an increasing penetration levels of DGs initially the network annual costs has reduced. However, 

later when the DG penetration levels continues to increase the annual costs have started to 

increase. This variation of the annual costs of networks with different DG penetration levels can 

be explained using the energy losses occur in the networks. 



 

172 

 

For the cases without SOP, the annual costs of the networks are purely defined by the energy 

losses occur in the networks. For the cases with SOP, in addition to the cost of energy losses the 

investment and operational costs of the SOPs are also involved in calculating the annual costs of 

the networks. With reverse power flows being introduced by the DGs, for lower DG penetration 

levels the overloading of some of the feeders can be reduced. This can lead to reduced energy 

losses and hence reduced network costs can be observed. However, with higher DG penetration 

levels, DG can also introduce overloading for some of the feeders in the networks. This leads to 

higher energy losses and hence higher annual costs are observed for high DG penetration levels.  

It can be clearly observed from Figure 6.5, that the annual costs of networks with SOP is always 

less than those of the cases without using SOP, for all the DG penetration levels.  

 Annual savings brought by using a SOP in distribution networks 

 

Figure 6.6: Annual costs savings brought by SOP for 30 statistically-similar networks under 
different DG penetration levels. The outliers are plotted using the ‘+’ (red) cross marks. 

The annual savings brought by the SOPs for the distribution networks with different DG 

penetration levels are calculated using Equation (6.18). The statistics of the 30 statistically-
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similar networks for the annual savings are represented by box plots shown in the Figure 6.6. 

Mean value of the annual cost savings for each DG penetration is shown by the ‘*’ mark in each 

box plot. According to Figure 6.6, with the increment of the DG penetration the annual cost 

savings brought by the SOP has increased slowly. 

The annual savings calculated in terms of a percentage (%), allow more general conclusions to 

be made about the cost benefits of SOPs. For the type of network that has been considered in 

this study, with different network layouts and random DG locations the annual cost savings 

brought by SOP is in the range of 10-20%, for a wide range of DG penetration from 0-100%. 

 Comparison of network performances with and without SOP 

The Minimum and maximum recorded voltages (p.u.) over a period of one year in the 

statistically-similar distribution networks, with and without SOP for different DG penetration 

levels are compared in Figure 6.7.  Results of the networks without constraints violations are 

presented here.  Jittering has been introduced to the visualisation to prevent over-plotting in 

statistical graphics (when visualising a large number of data points, jittering is used to add a little 

random noise to the data in order to see the data points in a cloud more clearly) [105]. 

For very high DG penetration levels the number of data points observed in Figure 6.7 have been 

reduced due to the voltage and thermal constraint violations of the networks. According to 

Figure 6.7, with increasing DG penetration levels the maximum recorded voltages in the 

networks have clearly increased for the cases without SOP. However, the maximum recorded 

voltages in the networks have been reduced considerably in all DG penetration levels by using 

SOPs. It can be also observed that the minimum recorded voltages in the networks have been 

improved by using SOPs in all DG penetration levels. These observations prove that SOP is 
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capable of providing voltage regulation in the selected type of distribution networks for a wide 

range of DG penetration levels. 

 

Figure 6.7: The maximum and minimum bus voltages recorded over a year under different 
DG penetration levels. 

Next, the maximum branch loadings observed in the distribution networks for the cases of with 

and without SOPs are compared. Maximum branch loading (%) for each branch of the network 

is obtained by dividing the maximum power flow through a specific branch at a given time by 

the maximum thermal capacity of that branch.  

The maximum branch loadings recorded in each network over one year period of time is 

considered. At first, two networks, which have great improvement in the allowable DG 

penetration level without violating the voltage and thermal constraints are used for the 

discussion. The two networks used for the results in Figure 6.8, allow a maximum of 100% DG 

penetration level with a SOP whereas the maximum allowable penetration for those two 

networks without a SOP is only 60%. 
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In Figures 6.8(a) and 6.8(b) the red lines represent the maximum branch loadings without SOP 

and blue lines represent the maximum branch loadings with SOP for a DG integration level of 

100%. Green dashed line shows the margin of the branch overloading (i.e. 100% loading of a 

branch). As seen from the figures SOP is capable of reducing the maximum loading of the 

branches thus allowing more DG integration to the networks. 

 

 

Figure 6.8: Maximum branch loadings recorded over a year for the networks achieving great 
improvements in DG integration by using SOPs. 
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Figures 6.9(a) and 6.9(b) show the maximum branch loading recorded over a year, for two 

networks achieving no improvements in DG integration when using SOPs. The maximum 

allowable DG penetration level with and without SOP for these two networks is 80%.  

 

Figure 6.9: Maximum branch loadings recorded over a year for the networks achieving no 
improvement in DG integration by using SOPs. 

According to Figures 6.9(a) and 6.9(b) although there is no improvement of the maximum 

allowable DG integration level by using a SOP, the branch loading of both networks has been 

reduced by using SOPs. 
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Therefore, it is evident from the results that the SOPs are capable of reducing the branch 

loadings of the distribution networks. However, an improvement of the allowable DG 

integration level cannot be always expected by using a SOP in the type of distribution networks 

selected for this study. The network constraints that limit the DG integration is closely defined 

by the factors such as, network layout, consumer load distribution and the locations of the DGs. 

 Maximum allowable DG integration with and without SOP 

The maximum allowable DG penetration levels of the 30 statistically-similar distribution 

networks, for the cases of with and without SOPs, are shown using a box plot representation in 

Figure 6.10. Average values of the maximum allowable DG penetration level with and without 

SOP are shown using the ‘*’ marks within the corresponding box plot. Results show that SOPs 

can facilitate further DG integration to the selected type of distribution networks. As a general 

conclusion, for the selected type of distribution networks an average of 20% increment of the 

DG integration level can be expected by using SOPs. 

 

Figure 6.10: Maximum allowable DG penetration levels of the 30 statistically-similar 
networks with and without SOPs. 
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 Required optimal capacity of the SOP. 

The optimal capacities required for the SOPs for each network at different DG penetration levels 

are shown in Figure 6.11. The number of dots shown for each DG penetration level in Figure 6.11 

is not always equal to the number of networks tested. This is because, some networks violate 

the voltage and thermal constraints at certain integration levels of DGs even with SOPs. The 

average capacity of the SOP at each DG penetration level is marked using a red star within the 

corresponding data cloud. 

From the results it can be observed that, for a small DG penetration level of 20%, the required 

capacity of the SOP is less than that of the DG integration level of 0%. This is due to the reduced 

energy losses brought by small levels of DG integrations.  However, for larger DG penetration 

levels (i.e. DG penetration level >20%), the required capacities of SOPs have increased with the 

DG penetration level.  

From the results it can be concluded that, a SOP with the capacity under 2.5 MVA is always 

sufficient for the type of distribution networks used for this study, for the DG integration levels 

of 0-100%. 
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Figure 6.11: Required optimal capacities of SOPs at different DG penetration levels of the 30 
statistically-similar networks. 

6.4 Summary 

A network assessment tool for the evaluation of the benefits of SOPs on distribution networks 

is proposed in this chapter. Using the proposed tool, the feasibility of performing a benefit 

analysis of SOPs on a set of statistically-similar networks is presented.  

Operation of SOPs in the distribution networks at different DG penetration levels is considered. 

An optimisation problem which minimises the annual cost of the distribution network is solved 

to obtain the optimum capacities of the SOPs at each DG penetration level of the distribution 

network. The network performances, in terms of minimum and maximum recorded voltages and 

maximum branch loadings are compared for the cases of without SOP and with SOP in the 

networks. Maximum allowable DG penetration levels of the networks with and without SOPs 

are also obtained. 
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Results of the 30 statistically-similar networks showed that, for the type of distribution networks 

used in this study, 

(i) the annual cost of the distribution network with SOP is always less than cost of the 

distribution networks without SOP. The annual cost savings that can obtain by using a 

SOP in the distribution networks is around 10—20%; 

(ii) with high penetration levels of DGs, over voltage and thermal overloading issues in the 

networks are increased. SOPs are able to provide voltage and power flow controls to 

reduce or even to eliminate these issues while facilitating further DG integration to the 

networks; 

(iii) by using a SOP, the maximum allowable DG penetration level in the networks is 

increased approximately by a 20% with compared to the cases without SOPs; and 

(iv) the required capacity of a SOP tends to increase for the higher DG penetration levels. A 

SOP with a maximum capacity of 2.5 MVA is sufficient for the type of distribution 

network under study, for a wide range of DG integration from 0 – 100%.  
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 Conclusions and future work 

This chapter provides an overview of the research undertaken, the conclusions and 

recommendations for the future work. 

7.1 Conclusions 

The overall aim of this thesis is to develop a statistical assessment tool for electricity distribution 

networks which can facilitate a large number of simulation studies on many realistic distribution 

networks in order to come up with robust and generalised conclusions on impact studies of LCTs. 

As parts of this thesis the following objectives were set out. 

(i) To review existing literature on analysing statistical properties of power networks 

and the available methods and tools for modelling the power networks. 

(ii) To investigate the topological properties of real-world electricity distribution 

networks. 

(iii) To investigate the electrical properties of real-world electricity distribution 

networks. 

(iv) To develop a statistically similar networks generator (SSNG) for electricity 

distribution networks. 

(v) To demonstrate the application of the SSNG tool to analyse the impacts of soft open 

points on EDNs with variable levels of DG penetration. 
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7.1.1 Review of impact studies of LCTs, statistical studies on power 

networks and methods and tools for power network modelling. 

The importance of robust decision making in the face of significant uncertainties in the electrical 

power networks have been discussed. The different levels of decision stakes (operational, 

strategic and policy level) in the power systems are discussed. 

A review of the literature on the impact assessment studies of LCTs of the distribution networks 

was conducted. 

 It has been identified that most of the previous studies on the impact analysis of various 

LCTs were conducted on one or few case study networks. Results of those studies have 

a limited applicability to the other networks making it difficult to arrive to generalised 

conclusions. 

 It was recognised that one of the main reasons for using a case study or synthetic 

networks in those research was limited accessibility to real-world network data.  

Therefore, the requirement of a network modelling tools which can generate large 

numbers of realistic distribution networks was identified.  

A review on the previous research studies on analysing the statistical properties of the real-

world power networks and the available network modelling methods and tools for power 

networks was undertaken. 

 Outcomes of the review showed that, most of the previous research on analysing the 

topological and electrical properties of real world power networks was carried out in 

the HV level of the power network and the studies carried out on the MV and LV 

networks are very limited. 
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 Well-known complex network models have been used to model the HV power grid. The 

structure of HV grids is different from that of MV and LV grids. The HV transmission and 

sub-transmission is usually a meshed system, but distribution networks (MV and LV) are 

mainly with radial structures. Therefore, the research findings in the HV network 

analysis cannot be directly used in MV and LV networks. 

 A few fractal based network models have been developed to model the distribution 

networks. However, some of these studies were supported by a limited set of real 

network data or a limited set of properties of the real networks were analysed. 

 The lack of network modelling tools which can generate random-realistic 

representations for electricity distribution networks has been identified. 

 The requirement of a comprehensive statistical investigation of the topological and 

electrical structures of the electricity distribution networks in order to develop network 

modelling tools for electricity distribution networks have been identified. 

7.1.2 Investigation of topological properties of MV electricity 

distribution networks 

An investigation of the topological properties of the MV real-world networks was conducted 

using network data collected from China, covering urban and sub-urban areas. Only radial 

structures of the networks were considered in the study. 

The motivations behind the topological investigation presented in this chapter were to find out  

(i) the key topological properties that characterize the realistic nature of different 

types of electricity distribution networks, and 

(ii) a possible way to efficiently generate ensembles of random but realistic network 

topologies similar to real electricity distribution networks.  
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The techniques from complex networks analysis and graph theory were employed in the 

investigation.  

A novel approach to obtain depth-dependent topological properties has also been developed. 

Results of the investigation of topological properties in real-world networks showed that, 

 node degree and edge length related graph properties are fundamental in 

characterizing the topological structures of radial type sub-urban and urban electricity 

distribution networks; and 

 depth dependent properties were able to better capture the topological features of 

electricity networks at different depth levels of the networks. Results from the depth 

dependent analysis showed that urban and sub-urban types of electricity distribution 

networks have different graph related properties at different depth levels of the 

networks.  

7.1.3 Investigation of electrical properties of MV electricity distribution 

networks 

Electrical properties of real-world electricity distribution networks at the MV level were studied. 

The same set of Chinese network data that was used in the topological investigation was used 

for the study. The motivation of this study was to identify and quantify the key electrical 

properties which will later be useful in network modelling. 

A limited set of available data regarding the installed capacities of distribution substations and 

the conductor cross sections of the distribution lines were used for the study.  

A novel approach to obtain depth dependent electrical properties has also been developed.  
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Results from the real-world network investigation showed that 

 the substations capacities and the conductor cross sections are able to characterise the 

electrical features of sub-urban and urban networks; and 

 Kernel density PDFs which describe the distribution of secondary substation capacities 

along the feeder lengths of the two types of networks have clear differences and reflects 

the realistic consumer distributions of the two types of networks. 

7.1.4 Development of the Statistically-Similar Networks Generator 

A statistically-similar network generator (SSNG) for MV electricity distribution networks was 

developed. The results from the investigations of topological and electrical properties of real-

world networks together with the guidelines for distribution network planning and design were 

used in the development process of the SSNG. Therefore SSNG is a data driven tool. 

The ability to generate statistically-similar many networks to a replicate one distribution 

network is one of the key features of the SSNG.  

The network generation was done in a hierarchical way. First, a realistic topology of a 

distribution network was generated and then, realistic electrical parameters are assigned to the 

network topology. This process was repeated to generate a large number of realistic distribution 

networks. 

The validation of the SSNG was done by comparing the topological and electrical properties of a 

real-world test network with an ensemble of statistically-similar networks which were generated 

to replicate the selected real-world test network. 
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 The validation of the SSNG showed that, the SSNG tool is capable of generating 

ensembles of statistically-similar networks which resemble the real-world networks in 

terms of a set of topological and electrical properties.  

 It has been identified that the population density parameter within the same type of 

networks has an impact of the detailed topological and electrical properties of the 

networks.  

 The ability to fine-tune the SSNG model parameters to improve the representativeness 

of the networks to the real-world networks was discussed. 

7.1.5 Impact assessment of SOPs on distribution networks to increase 

the DG penetration level. 

A network assessment tool was developed by combining the SSNG tool and the SOP 

performance evaluation model which was developed by Qi Qi of Cardiff University, UK. 

The feasibility of performing a benefit analysis of SOPs on a set of statistically-similar networks 

was presented by using the developed network assessment tool. The statistics of the results of 

the generated set of networks was used to provide general conclusions about the type of the 

networks used for the study.  

Operation of SOPs in the distribution networks at different DG penetration levels was 

considered. Maximum allowable DG penetration levels of the networks with and without SOPs 

were also obtained. 

Results of the set statistically-similar networks showed that, for the type of distribution 

networks used in this study, 
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 the annual cost of the distribution network with SOP is always less than cost of the 

distribution networks without SOP. The annual cost savings that can obtain by using a 

SOP in the distribution networks is around 10—20%; 

 with high penetration levels of DGs, over voltage and thermal overloading issues in the 

networks are increased. SOPs are able to provide voltage and power flow controls to 

reduce or even to eliminate these issues while facilitating further DG integration to the 

networks; 

 by using a SOP, the maximum allowable DG penetration level in the networks is 

increased approximately by a 20% with compared to the cases without SOPs, and 

 the required capacity of a SOP tends to increase for the higher DG penetration levels. A 

SOP with a maximum capacity of 2.5 MVA is sufficient for the type of distribution 

network under study, for a wide range of DG integration from 0 – 100%. 

7.2 Recommendations for future research 

This research has provided the initial steps to a statistical platform where various network 

studies can be carried out on many statistically-similar realistic test networks.  

The statistical assessment tool presented in this thesis is developed for 10kV Chinese 

distribution networks. SSNG tool can be further developed to enhance its performances. 

The proposed future work includes,  

 to conduct sensitivity analysis studies with different number of ‘depth levels’ in the 

investigations of the depth dependent topological and electrical properties of electricity 

distribution networks. The work presented in this thesis has not considered the impact 

of using different number of ‘depth levels’ in the investigations of network properties 
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and also in the development process of SSNG. Therefore, such sensitivity analysis will 

help to figure out whether there is an impact of the number of ‘depth levels’ on the 

accuracy and performance of the SSNG; 

 to conduct sensitivity analysis with different numbers of statistically-similar networks, 

in order to identify the effect of the number of networks on the statistics of the results; 

 to incorporate real/realistic load profiles of domestic, industrial and commercial 

consumers in to the load flow studies of statistically-similar networks. The case study of 

SOPs presented in this thesis, assumes a fraction equals to 0.6 of the installed capacities 

of secondary substations as the instantaneous load connected to the corresponding 

node at any time of the year. This is a limitation of the present study; 

 to conduct impact assessment studies of various other LCTs such as solar PV and EV on 

the electricity distribution networks using the developed tool. This will allow further 

development of the statistical approach in conducting the research on many networks 

and in providing generalised conclusions of the results; 

 to improve the SSNG tool with the real-world network data from different countries, 

different areas (rural, urban) and from different voltage levels including the LV 

networks. Also, the SSNG can be improved to generate both the radial and meshed type 

network structures. This will allow SSNG to generate network models for a wide range 

of real-world networks; 

 to improve the visualisation of the networks in order to provide better representations 

of the real-world networks in terms of spatial structures.  This will allow more constraint 

to be involved in the network generation such as actual area of the network, when 

producing realistic representations for the distribution networks. At the current stage 

of the development of SSNG it does not take into account the spatial constraints of the 

actual networks; 
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 to utilise the data available from GIS systems on the actual population distribution of 

the consumer areas in the generation of networks. From the investigations of 

topological and electrical properties of real world networks and it has been identified 

that the distribution of the population has a very close relation with the network 

properties, and 

 to extend the idea of this research for the other energy carrier networks such as gas and 

heat distribution networks. 



 

190 

 

Appendix A: An introduction to Kernel Density 

Estimation 

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability 

density function of a random variable [76], [106].  

A histogram is the simplest non-parametric density estimator. Kernel density estimates are 

closely related to histograms. Therefore, the construction of histograms and kernel density 

estimates can be compared to better understand the KDE. To construct a histogram, the interval 

covered by the data values is divided into equal sub-intervals, known as ̀ bins'. Every time, a data 

value falls into a particular sub-interval, then a block, of size equal 1 by the bin width, is placed 

on top of it. When a histogram is constructed, two main points are considered: the size of the 

bins (the bin width) and the end points of the bins. Because of this bin count approach, the 

histogram produces a discrete probability density function. This might be unsuitable for certain 

applications, such as generating random numbers from a fitted distribution [106]. 

Unlike a histogram, which discretizes the data values into separate bins, the kernel distribution 

builds the probability density function by creating an individual probability density curve for 

each data value, then summing the smooth curves. This approach creates one smooth, 

continuous probability density function for the data set [106]. Figure A.1 shows a comparison of 

the histogram and kernel density estimate constructed using the same set of data shown in the 

Table A.1. 

Table A. 1: A test data set. 

Data Sample Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 Sample_6 

Value of the data 
sample 

2 3 5 6 6 8 
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                                                             (a)                                                                                                                                           (b)                          

Figure A. 1: (a) Histogram of the selected test data set. (b)  The kernel density estimate that was constructed using the same test data set.
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For any real values of 𝑥, the kernel density estimator's formula is given by, 

 
𝑓ℎ(𝑥)  =

1

𝑛ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ

)

𝑛

𝑖=1

 
(A.1) 

 
𝐾(𝑥) =

1

√2𝜋
 𝑒−

𝑥2

2    
(A.2) 

where, 𝑛 is the sample size, 𝐾(. ) is the kernel smoothing function and ℎ is the bandwidth. The 

kernel smoothing function defines the shape of the curve used to generate the pdf. For example, 

Equation (A.2) shows a normal distribution as the kernel smoothing function. A range of kernel 

smoothing functions are commonly used: uniform, triangular, biweight, triweight, 

Epanechnikov, normal, and others. 

The choice of bandwidth value ℎ, controls how wide the probability mass is spread around a 

point and hence, controls the smoothness of the resulting probability density curve. Therefore, 

bandwidth selection bears danger of under or over smoothing of the resulting probability 

density curve. Figure A.2 shows a comparison of kernel density estimates constructed using the 

same data set in Table A.1, with different bandwidth selections of the selected (normal) kernel 

smoothing function.  According to the Figure A.2, for a ‘normal’ kernel smoothing function 

with ℎ = 2 , has resulted in an over-smoothed kernel density estimate while ℎ = 0.15 has 

resulted in an under-smoothed kernel density estimate.  

There are a great number of bandwidth selection techniques for kernel density estimator. The 

integrated squared error and the mean integrated squared error have been widely used as the 

optimality criterion to define the optimal bandwidth [107]. 
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Figure A. 2: Kernel density estimate with different bandwidths.  
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