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Abstract 

The classical formulation of a two-warehouse inventory model is often based on the Last-In-First-Out 

(LIFO) or First-In-First-Out (FIFO) dispatching policy. The LIFO policy relies upon inventory stored in a 

rented warehouse (RW), with an ample capacity, being consumed first, before depleting inventory of 

an owned warehouse (OW) that has a limited capacity. Consumption works the other way around for 

the FIFO policy. In this paper, a new policy entitled “Allocation-In-Fraction-Out (AIFO)” is proposed. 

Unlike LIFO and FIFO, AIFO implies simultaneous consumption fractions associated with RW and OW. 

That said, the goods at both warehouses are depleted by the end of the same cycle. This necessitates 

the introduction of a key performance indicator to trade-off the costs associated with AIFO, LIFO and 

FIFO. Consequently, three general two-warehouse inventory models for items that are subject to 

inspection for imperfect quality are developed and compared – each underlying one of the dispatching 

policies considered. Each sub-replenishment that is delivered to OW and RW incurs a distinct 

transportation cost and undertakes a 100 per cent screening. The mathematical formulation reflects a 

diverse range of time-varying forms. The paper provides illustrative examples that analyse the 

behaviour of deterioration, value of information and perishability in different settings. For perishable 

products, we demonstrate that LIFO and FIFO may not be the right dispatching policies. Further, 

relaxing the inherent determinism of the maximum capacity associated with OW, not only produces 

better results and implies comprehensive learning, but may also suggest outsourcing the inventory 

holding through vendor managed inventory. 

Keywords: Two-warehouse inventory; Imperfect quality; Deterioration; Perishable items.  
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1. Introduction and research motivation 

The classical Economic Order Quantity (EOQ) model is based on the assumption that a single owned 

warehouse (OW) has unlimited capacity, which is often unrealistic. However, there are many factors 

that may lead to purchasing an amount of units that may exceed the limited capacity of OW, resulting 

in the excessive units being stored in another, rented, warehouse (RW), which is assumed to be of an 

ample capacity (Hartley, 1976). Such factors may include a discounted price of goods offered by the 

supplier, revenue (acquisition price) being higher than the holding cost in RW, and evading high 

inflation rates (Chung et al., 2009; Hsieh et al., 2008; Lee and Hsu; 2009; Liang and Zhou, 2011; Yang, 

2004; 2006; 2012; Zhong and Zhou, 2013; Zhou and Yang, 2005). 

 

The classical formulation of a two-warehouse inventory model assumes that the lot size entering the 

system first fulfils the maximum storage capacity of the OW with the remaining quantity, over and 

above that maximum capacity, being kept at the RW. Subsequently, this entails two types of 

dispatching policies. The first one is to consume the goods of the RW at the earliest, which is termed 

Last-In-First-Out (LIFO) dispatching policy. Researchers advocating such a policy assume a higher 

(lower) holding cost (deterioration rate) in RW due to the availability of better preserving 

environmental conditions (e.g. Jaggi et al., 2015). Conversely, when the First-In-First-Out (FIFO) 

dispatching policy is employed then the goods of the OW are consumed first before considering the 

RW inventory. This case is usually justified by holding cost reduction, especially when the holding cost 

in RW is lower than that in OW due to competition, i.e. various offers are available in the market (e.g. 

Lee, 2006; Niu and Xie, 2008).  

 

At this point it is important to note that the terms LIFO and FIFO are often associated with cost 

accounting, and indeed there is a considerable amount of research conducted in this area. However, 

these terms are solely used, for the purposes of this work, to indicate which warehouse is being used 

first. 

 

Although, the literature related to the formulation of two-warehouse inventory models is quite 

mature, the inventory formulation is based on a number of explicitly or implicitly made unrealistic 

mathematical assumptions that may never reflect reality. In more detail, the assumption that the lot 

size is delivered to the inventory system in one batch ignores the cost effects of transporting items to 

distinct warehouses, and whether those items are transported to OW first and then to RW, or vice 

versa. It is worth noting that if no penalty charges are payable to the supplier when a replenishment 

(bulk quantity) is divided into two sub-replenishments, then there is no reason why the second sub-
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replenishment is not delivered at or just before the stored items in either warehouse are completely 

consumed. That is, the mathematical formulation of a two-level storage has no meaning. Therefore, 

considering differing unit transportation costs among supply chain levels may have a considerable 

effect on the optimal order quantity. This can be justified by the distinct location of each warehouse, 

i.e. there exists at least a marginal difference in distance that incurs an additional transportation cost 

payable for inventory movements.  

 

From a managerial point of view, there is indeed a time gap between consecutive sub-replenishments 

that are delivered to OW and RW. The LIFO policy may influence the warehouse rental contract, i.e. 

the time gap may affect the availability of RW (Fig.1). On the other hand, the FIFO policy renders the 

OW unusable during the consumption period of RW (Fig.2). Because of this, both LIFO and FIFO assume 

no cost effect while the initially used warehouse is idle. Finally, in the case of managing perishable 

products, LIFO and FIFO may not be the right choices, given that the order quantity needs to be 

consumed based on a First-Expired-First-Out (FEFO) policy.  

 

In this paper, a new policy entitled “Allocation-In-Fraction-Out (AIFO)” is developed. Under an AIFO 

dispatching policy the goods at RW and OW experience simultaneous consumption fractions, which 

implies that the inventories at both warehouses are depleted by the end of the same cycle (Fig.3). Note 

that under the LIFO (FIFO) policy, the sub-replenishment 𝑞𝑟(𝑞𝑜) that is delivered to RW (OW) is 

consumed first by time 𝑇𝑅(𝑇), then the sub-replenishment 𝑞𝑜(𝑞𝑟) that is delivered to OW (RW) is 

consumed by time 𝑇(𝑇𝑅). 

 

 

                            𝑞𝑟                                 LIFO                  

                                                         Effect of demand                                          
                                                 
                    
                                     RW 
                    
                                  𝑞𝑜 
 
                                                    OW                                        Time gap (𝑇 − 𝑇𝑅) with no cost effect  
                                                                         
          

 
                
                                         0                                     𝑇𝑅                              𝑇                        Time                                            
 

Fig.1. Inventory variation of the two-warehouse model during one cycle (LIFO). 
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                            𝑞𝑜                                FIFO                  

                                                       Effect of demand 
                                                 
                    
                                     OW 
                    
                                  𝑞𝑟  
 
                                                    RW                                     Time gap (𝑇𝑅 − 𝑇) with no cost effect  
                                                                         
          

 
                
                                         0                                     𝑇                              𝑇𝑅                         Time                                            
 

Fig.2. Inventory variation of the two-warehouse model during one cycle (FIFO). 
 
 

 

                            𝑞𝑟  

                        
                                                 
                    
                                     RW 
                                                                                           AIFO 
                                  𝑞𝑜                        
                                                                                                 Effect of demand 
                                                    OW  
                                                                         
          

 
                
                                         0                                                                         𝑇                         Time                                            
 

Fig.3. Inventory variation of the two-warehouse model during one cycle (AIFO). 
 

 

2. Research background and contribution  

In this Section, we first address some product quality related issues that are associated with the 

formulation of a two-warehouse inventory model, followed by some discussion on the value of 

information (VOI) and inspection processes in supply chains. This provides the necessary background 

to position our study in the current body of literature and elaborate on its research contributions. 

Inventory 
Level 

Inventory 
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5 
 

2.1. Inventory quality issues   

One of the unrealistic assumptions underlying the EOQ model is that all items are of good quality. In 

practice, this assumption is technologically unattainable in most supply chain applications as defective 

items may affect the operational and financial performance of an inventory system (Chan et al., 2003; 

Cheng, 1991; Khan et al., 2011; Pal et al., 2013; Salameh and Jaber, 2000).   

 

Another implicit assumption embedded in the EOQ model is that stored items preserve their physical 

characteristics indefinitely. However, in real-life settings, items are subject to  ‘perishability’, 

‘deterioration’ and ‘obsolescence’ that affect the physical state/fitness and behaviour of an item as it 

moves through the supply chain (Bakker et al., 2012; Dave, 1986; Elmaghraby and Keskinocak, 2003; 

Ferguson and Ketzenberg, 2005; Ferguson and Koenigsberg, 2007; Goyal and Giri, 2001; Jain and Silver, 

1994; Joglekar and Lee, 1993; Ketzenberg and Ferguson, 2008; Kim et al., 2014; Liao et al., 2013; 

Olsson, 2009; Song and Zipkin, 1996; Teunter and Flapper, 2003). Factors such as changes in 

temperature and controlled atmosphere storage as well as increases in the storage time may result in 

a decrease (or an increase) of the deterioration rate of certain items.  

 

Pahl and Voß (2014) provided a comprehensive literature review that addresses deterioration and 

lifetime constraints of items. Common examples are packaged foods, seafood, fruit, cheese, processed 

meet, pharmaceutical, agricultural or chemical products that are transported over long distances in 

refrigerated containers, where temperature variability has a significant impact on product shelf 

lifetime (Doyle, 1995; Koutsoumanis et al., 2005; Taoukis et al., 1999). Moreover, various conditions 

such as transportation, handling, the product’s temperature history and humidity have a direct impact 

on product shelf lifetime (Alamri et al., 2016; Ketzenberg et al., 2015).  

 

2.2. Value of information (VOI) and inspection process     

Value of information (VOI) in supply chains has become increasingly important and may relate to 

sharing data over and above demand and inventory information (Dong et al., 2014; Kahn 1987; Metters 

1997). For example, modern technologies such as radio-frequency identification (RFID) systems, data 

loggers and time–temperature integrators and sensors are capable of recording, tracking and 

transmitting information regarding an item as it moves through the supply chain (Jedermann et al., 

2008). The deployment of such technologies increases supply chain visibility, which in turn increases 

efficiency, lowers safety stocks and improves customer service level (Gaukler et al., 2007; Kim and 

Glock 2014). Ketzenberg et al. (2007) conducted an extensive literature review of papers considering 

VOI in the context of inventory control. The researchers indicated that the dominant research stream 

in this area focuses on the value of demand information to enhance supply chain performance.  
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The above discussion relates very much to knowledge acquired from an inspection process conducted 

at RW and OW. This means that the quality issues that render an item defective can be communicated 

to the supplier in order to reduce the potential risks affecting such defectiveness. These risks can be 

attributed to production, handling or transportation errors. Although the buyer is often credited so 

that no costs apply for defective items, the potential interest remains to eliminate the presence of 

defects in subsequent replenishments. Therefore, coordination may be pursued between supply chain 

members implying that any information gained through previous replenishments can be used to 

enhance subsequent deliveries. In many situations, products entail inspection to ensure an 

appropriate service to the customers (White and Cheong, 2012). Inspection may also presumed 

essential for updating the Information System records with good items that are actually available in 

stock so as to avoid shortages (Rekik et al., 2015). Moreover, inspection may eliminate the return 

service cost associated with product recalls (Klassen and Vereecke 2012). 

 

The combination of the quality related issues raised in Section 2.1 is important in many industries and 

may significantly influence the optimal order quantity. This is an important issue especially in the case 

of managing perishable products where inspection would imply that products may be classified 

according to quality, size, appearance, freshness, etc., and where a distinct selling price may be linked 

to its corresponding quantity. Moreover, a 100 per cent inspection will render a potential random 

lifetime of a product deterministic, i.e. it intersects the areas of fixed and random lifetimes of 

perishable products. Finally, inspection not only isolates defective and/or already perished items, but 

also leads to the consumption of the order quantity based on a FEFO policy. For example, isolation, i.e. 

dis-location of good and defective items, allows for an immediate disposal of defective and/or already 

perished items in case of any potential safety issues. It may also reduce holding costs due to the 

deployment of less preserving environmental conditions, i.e. the defective items are not usually stored 

in the same warehouse where the good items are stored (e.g.  Wahab and Jaber, 2010).   

 

2.3. Contribution and organisation of the paper 

The contribution of this work goes beyond addressing the issues raised in Sections 1, 2.1 and 2.2 when 

formulating a two-warehouse inventory model for items that require 100 per cent screening. In 

particular, a new policy entitled “Allocation-In-Fraction-Out (AIFO)” is developed. Under an AIFO 

dispatching policy the goods at RW and OW experience simultaneous consumption fractions, which 

implies that the inventories at both warehouses are depleted by the end of the same cycle. On the 

other hand, the LIFO and FIFO policies assume no cost effect while the initially used warehouse is idle, 

which is unrealistic and a rare scenario to encounter in practice. Subsequently, this necessitates 

introducing costs associated with the OW or RW being idle when formulating a two-warehouse 
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inventory model. Therefore, three general EOQ models for items with imperfect quality are presented 

and compared. The first model underlies the LIFO policy, the second model underlies the FIFO policy 

and the third model relates to the AIFO policy. It becomes apparent that the tradeoff between the 

three policies constitutes a key business objective in supply chain management. Under both the LIFO 

and FIFO dispatching policy, the cost associated with the OW or RW being idle is treated as an input 

parameter as well as a decision variable. If the cost is a decision variable, then it constitutes a key 

performance indicator (KPI), i.e. an upper-bound (cost associated with OW (RW) being idle) that 

renders AIFO the optimal dispatching policy.  

 

To the best of our knowledge, the maximum capacity of the OW is invariably treated in the academic 

literature as an input parameter. Relaxing the inherent determinism related to the maximum fulfilment 

of the capacity of OW may lead to maximizing net revenue. In addition, if the system is subject to 

learning, then the lot size may reduce for each successive replenishment. However, such reduction 

affects the amount allocated to the RW only, and the amount allocated to the OW remains at the 

maximum capacity. Relaxing the inherent determinism of this assumption implies comprehensive 

learning that can be achieved simultaneously, i.e. the amounts that are allocated to both the OW and 

RW are affected.   

 

The proposed models may be viewed as realistic in today’s competitive markets and reflective of a 

number of practical concerns with regards to product quality related issues. These issues relate to 

imperfect items received from suppliers, goods’ deterioration during storage, potential dis-location of 

good and defective items, tracking the quality of perishable products in a supply chain and transfer of 

knowledge from one inventory cycle to another. The percentage of defective items per lot reduces 

according to a learning curve and different warehouses for the good and defective items are 

considered in the mathematical models. We show that the solution to each underlying inventory 

model, if it exists, is unique and global optimal. Practical examples that are published in the literature 

for generalised models in this area are shown to be special cases of our FIFO, LIFO and AIFO models. 

We observe and test the behaviour of the theoretical models in different settings (e.g. different 

transportation costs associated with OW and RW, functions for varying demand, screening, defective 

and deterioration rates, VOI, perishable items that are subject to deterioration while in storage and by 

means of relaxing the inherent determinism related to the maximum fulfilment of the capacity of OW).  

 

The remainder of the paper is organised as follows: In Section 3, we present our three EOQ models for 

items with imperfect quality and the solution procedures. Illustrative examples, a comparison between 

the three models and special cases are offered in Section 4, where we also present the key findings of 



8 
 

our work along with the managerial insights. Concluding remarks and opportunities for further 

research are provided in Sections 5. The proof of the optimality and uniqueness of our solutions is 

presented in an electronic companion as supplementary material to this paper. 

 

3. Formulation of the general models  

3.1. Assumptions and notation  

We will use throughout the paper the subscript ‘‘𝑜 (𝑟)’’ to indicate the quantity related to the OW 

(RW). We will also employ the subscript ‘‘𝑔 (𝑑)’’ to refer to good (defective) items. So, for example, 

and denoting the cycle index by 𝑗,  𝐼𝑟𝑔𝑗(𝑡) denotes the inventory level of good items at time 𝑡 in RW, 

and 𝐼𝑜𝑑𝑗(𝑡) refers to the inventory level of defective items at time 𝑡 in OW. We will also use the 

subscript 𝑖(𝑖 = 𝐴, 𝐿, 𝐹) to refer to the AIFO, LIFO and FIFO dispatching policy, respectively.  

 

Our models are developed under the following assumptions and notation: 

1. A single item is held in stock. 

2. The lead-time is negligible, i.e. any replenishment ordered at the beginning of a cycle arrives 

just prior to the end of that same cycle.  

3. The demand, screening and deterioration rates are arbitrary functions of time denoted by 

𝐷(𝑡), 𝑥(𝑡) and 𝛿𝑦(𝑡) respectively.  

4. The OW has a fixed limited capacity and the RW has unlimited capacity. 

5. The percentage defective per lot reduces according to a learning curve denoted by 𝑝𝑗, where 

𝑗 is the cycle index. 

6. Shortages are not allowed, i.e. we require that  (1 − 𝑝𝑗)𝑥(𝑡) ≥ 𝐷(𝑡) ∀ 𝑡 ≥ 0. 

7. The cost parameters are as follows: 

𝑐 = Unit purchasing cost; 

𝑑 = Unit screening cost; 

𝑐𝐿 =  Charge payable per unit time if RW remains idle for the LIFO model; 

𝑐𝐹 =  Cost incurred per unit time if OW remains idle for the FIFO model; 

𝑠𝑜 = Unit transportation cost for OW; 

𝑠𝑟 = Unit transportation cost for RW; 

ℎ𝑟𝑔 = Holding cost of good items per unit per unit time for RW; 

ℎ𝑟𝑑 = Holding cost of defective items per unit per unit time for RW; 

ℎ𝑜𝑔 = Holding cost of good items per unit per unit time for OW; 

ℎ𝑜𝑑 = Holding cost of defective items per unit per unit time for OW; 

𝑘 = Cost of placing an order. 
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At the beginning of each cycle 𝑗(𝑗 = 1,2, … ), a lot of size 𝑄𝑖𝑗  is delivered such that a quantity of size 

𝑞𝑜𝑖𝑗 is allocated to the OW and the remaining amount of size 𝑞𝑟𝑖𝑗 = 𝑄𝑖𝑗 − 𝑞𝑜𝑖𝑗 is allocated to the RW. 

Each sub-replenishment that enters the OW (RW) undertakes a 100 per cent screening process at a 

rate of 𝑥(𝑡) that starts at the beginning of the cycle and ceases by time 𝑇𝑜𝑖𝑗 (𝑇𝑟𝑖𝑗), by which point in 

time 𝑞𝑜𝑖𝑗 (𝑞𝑟𝑖𝑗) units have been screened and 𝑦𝑜𝑖𝑗 (𝑦𝑟𝑖𝑗) units have been consumed. Each sub-

replenishment covers the actual demand and deterioration during both the first phase (screening) and 

the second phase (non-screening). During the screening phase, items not conforming to certain quality 

standards (defective items) are stored in different warehouses.  

 

3.2. Allocation-In-Fraction-Out (AIFO) dispatching policy 

As an application of an AIFO dispatching policy, items are simultaneously depleted from the RW and 

OW at rates ∅𝑜𝑗 𝐷(𝑡) and ∅𝑟𝑗 𝐷(𝑡) respectively, where ∅𝑟𝑗 = 1 − ∅𝑜𝑗. Unlike LIFO and FIFO, the 

analysis of AIFO is limited to one case, i.e. the cycle length for the RW and OW is the same. The 

behaviour of such a model is depicted in Fig. 4. 

 

 
                                                                                                       
                                                 
                         𝑞𝑟𝑗     

             𝑞𝑟𝑗(1 − 𝑝𝑗) − 𝑦𝑟𝑗                           

                                                                                                
                                                                                   
                                     𝑝𝑗𝑞𝑟𝑗                                                                                      

                                         𝑞𝑜𝑗 

              𝑞𝑜𝑗(1 − 𝑝𝑗) − 𝑦𝑜𝑗                                                 

          
          

                 𝑝𝑗𝑞𝑜𝑗                                    

                
                                               0                      𝑇𝑟𝑗            𝑇𝑜𝑗                            𝑇𝑗   Time                                            
 

Fig. 4. Inventory variation of the two-warehouse model during one cycle (AIFO). 

 

The variations in the inventory levels depicted in Fig. 4 for the OW and RW are given by the following 

differential equations: 

 

𝑑𝐼𝑜𝑔𝑗(𝑡)

𝑑𝑡
= −∅𝑜𝑗𝐷(𝑡) − 𝑝𝑗𝑥(𝑡) − 𝛿𝑜𝐼𝑜𝑔𝑗(𝑡),                                  0 ≤ 𝑡 < 𝑇𝑜𝑗                      (1)  

𝑑𝐼𝑜𝑔𝑗(𝑡)

𝑑𝑡
= −∅𝑜𝑗𝐷(𝑡) − 𝛿𝑜𝐼𝑜𝑔𝑗(𝑡),                  𝑇𝑜𝑗 ≤ 𝑡 ≤ 𝑇𝑗                     (2)  

𝑑𝐼𝑟𝑔𝑗(𝑡)

𝑑𝑡
= −∅𝑟𝑗𝐷(𝑡) − 𝑝𝑗𝑥(𝑡) − 𝛿𝑟𝐼𝑟𝑔𝑗(𝑡),                    0 ≤ 𝑡 < 𝑇𝑟𝑗                       (3)  

Inventory 

Level 
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𝑑𝐼𝑟𝑔𝑗(𝑡)

𝑑𝑡
= −∅𝑟𝑗𝐷(𝑡) − 𝛿𝑟𝐼𝑟𝑔𝑗(𝑡),                  𝑇𝑟𝑗 ≤ 𝑡 ≤ 𝑇𝑗                         (4)  

with the boundary conditions 𝐼𝑜𝑔𝑗(0) = 𝑞𝑜𝑗, 𝐼𝑜𝑔𝑗(𝑇𝑗) = 0, 𝐼𝑟𝑔𝑗(0) = 𝑞𝑟𝑗  and 𝐼𝑟𝑔𝑗(𝑇𝑗) = 0  

where 

 𝑄𝑖𝑗 = ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
+ ∫ 𝑥(𝑢)𝑑𝑢

𝑇𝑟𝑗

0
.                                                       (5) 

 

Finally, the variations in the inventory levels for defective items (shaded area) depicted in Fig. 4 are 

given by the following differential equations: 

𝑑𝐼𝑟𝑑𝑗(𝑡)

𝑑𝑡
= 𝑝𝑗𝑥(𝑡),                      0 ≤ 𝑡 ≤ 𝑇𝑟𝑗           (6)  

𝑑𝐼𝑜𝑑𝑗(𝑡)

𝑑𝑡
= 𝑝𝑗𝑥(𝑡),                      0 ≤ 𝑡 ≤ 𝑇𝑜𝑗     (7)  

with the boundary conditions 𝐼𝑟𝑑𝑗(0) = 0,  𝐼𝑜𝑑𝑗(0) = 0,  𝐼𝑟𝑑𝑗(𝑇𝑟𝑗) = 𝑝𝑗𝑞𝑟𝑗  and 𝐼𝑜𝑑𝑗(𝑇𝑜𝑗) = 𝑝𝑗𝑞𝑜𝑗. 

 

Solving the above differential equations we get   

𝐼𝑜𝑔𝑗(𝑡) = 𝑒−(𝑔𝑜(𝑡)−𝑔𝑜(0)) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
− 𝑒−𝑔𝑜(𝑡) ∫ [∅𝑜𝑗𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑡

0
,   0 ≤ 𝑡 < 𝑇𝑜𝑗     (8) 

𝐼𝑜𝑔𝑗(𝑡) = 𝑒−𝑔𝑜(𝑡) ∫ ∅𝑜𝑗𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑇𝑗

𝑡
,                              𝑇𝑜𝑗 ≤ 𝑡 ≤ 𝑇𝑗        (9) 

𝐼𝑜𝑑𝑗(𝑡) = ∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑡

0
,                                           0 ≤ 𝑡 ≤ 𝑇𝑜𝑗    (10) 

𝐼𝑟𝑔𝑗(𝑡) = 𝑒−(𝑔𝑟(𝑡)−𝑔𝑟(0)) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑟𝑗

0
− 𝑒−𝑔𝑟(𝑡) ∫ [∅𝑟𝑗𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑡

0
,    0 ≤ 𝑡 < 𝑇𝑟𝑗    (11)  

𝐼𝑟𝑔𝑗(𝑡) = 𝑒−𝑔𝑟(𝑡) ∫ ∅𝑟𝑗𝐷(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢
𝑇𝑗

𝑡
,                𝑇𝑟𝑗 ≤ 𝑡 ≤ 𝑇𝑗     (12)  

𝐼𝑟𝑑𝑗(𝑡) = ∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑡

0
,                        0 ≤ 𝑡 ≤ 𝑇𝑟𝑗   (13) 

respectively, where 

𝑔𝑦(𝑡) = ∫ 𝛿𝑦(𝑡)𝑑𝑡.                                                                                  (14) 

 

Now, the per cycle cost components for the given inventory model are as follows:  

Purchasing cost + Screening cost + Transportation cost = (𝑐 + 𝑑 + 𝑠𝑜) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
+ (𝑐 + 𝑑 +

𝑠𝑟) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑟𝑗

0
. Note that the purchasing cost includes the defective and deteriorated items. 

Holding cost for the RW = ℎ𝑟𝑔[𝐼𝑟𝑔𝑗(0, 𝑇𝑟𝑗) + 𝐼𝑟𝑔𝑗(𝑇𝑟𝑗 , 𝑇𝑗)] + ℎ𝑟𝑑𝐼𝑟𝑑𝑗(0, 𝑇𝑟𝑗). 

Holding cost for the OW = ℎ𝑜𝑔[𝐼𝑜𝑔𝑗(0, 𝑇𝑜𝑗) + 𝐼𝑜𝑔𝑗(𝑇𝑜𝑗, 𝑇𝑗)] + ℎ𝑜𝑑𝐼𝑜𝑑𝑗(0, 𝑇𝑜𝑗). 

Thus, the total cost per unit time of the underlying inventory model during the cycle [0, 𝑇𝑗], as a 

function of  𝑇𝑟𝑗, 𝑇𝑗 and ∅𝑜𝑗 say 𝑍𝐴(𝑇𝑟𝑗, 𝑇𝑗 , ∅𝑜𝑗) is given by 
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𝑍𝐴(𝑇𝑟𝑗 , 𝑇𝑗, ∅𝑜𝑗) =
1

𝑇𝑗
{(𝑐 + 𝑑 + 𝑠𝑜) ∫ 𝑥(𝑢)𝑑𝑢

𝑇𝑜𝑗

0
+ (𝑐 + 𝑑 + 𝑠𝑟) ∫ 𝑥(𝑢)𝑑𝑢

𝑇𝑟𝑗

0
+ ℎ𝑜𝑔 [[𝐺𝑜(𝑇𝑜𝑗) −

𝐺𝑜(0)]𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
− ∫ [𝐺𝑜(𝑇𝑜𝑗) − 𝐺𝑜(𝑢)][∅𝑜𝑗𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑇𝑜𝑗

0
+ ∫ [𝐺𝑜(𝑢) −

𝑇𝑗

𝑇𝑜𝑗

𝐺𝑜(𝑇𝑜𝑗)]∅𝑜𝑗𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢] ℎ𝑜𝑑 [∫ [𝑇𝑜𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
] + ℎ𝑟𝑔 [[𝐺𝑟(𝑇𝑟𝑗) −

𝐺𝑟(0)]𝑒𝑔𝑟(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑟𝑗

0
− ∫ [𝐺𝑟(𝑇𝑟𝑗) − 𝐺𝑟(𝑢)][∅𝑟𝑗𝐷(𝑢) + 𝑝𝑗𝑥(𝑢)]𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑇𝑟𝑗

0
+ ∫ [𝐺𝑟(𝑢) −

𝑇𝑗

𝑇𝑟𝑗

𝐺𝑟(𝑇𝑟𝑗)]∅𝑟𝑗𝐷(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢] + ℎ𝑟𝑑 [∫ [𝑇𝑟𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑇𝑟𝑗

0
] + 𝑘},                                                        (15)  

where 

𝐺𝑦(𝑡) = ∫ 𝑒−𝑔𝑦(𝑡)𝑑𝑡.                                                                                    (16) 

 

Our objective is to find 𝑇𝑟𝑗 , 𝑇𝑗  and ∅𝑜𝑗 that minimise 𝑍𝐴(𝑇𝑟𝑗, 𝑇𝑗 , ∅𝑜𝑗), where 𝑍𝐴(𝑇𝑟𝑗, 𝑇𝑗 , ∅𝑜𝑗) is given by 

Eq. (15). But the variables 𝑇𝑟𝑗 , 𝑇𝑗  and ∅𝑜𝑗 are associated with each other through the following 

relations:  

0 < 𝑇𝑟𝑗 < 𝑇𝑗 ,                                                                                                             (17) 

𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑜𝑗

0
= ∫ ∅𝑜𝑗𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑇𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑇𝑜𝑗

0
,                                            (18) 

𝑒𝑔𝑟(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑇𝑟𝑗

0
= ∫ ∅𝑟𝑗𝐷(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑇𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑇𝑟𝑗

0
.                                       (19) 

Thus, our goal is to solve the following optimisation problem, which we shall call problem (𝑚𝐴)  

(𝑚𝐴) = {
minimise 𝑍𝐴(𝑇𝑟𝑗, 𝑇𝑗, ∅𝑜𝑗) given by Eq. (15)               

subject to Eqs. (17 − 19)  and 0 ≤ ∅𝑜𝑗 ≤ 1
}. 

From Eq. (19), 𝑇𝑟𝑗 = 0 ⟹ 𝑇𝑗 = 0 and 𝑇𝑟𝑗 > 0 ⟹ 𝑇𝑟𝑗 < 𝑇𝑗 . Thus Eq. (19) implies constraint (17). 

Hence, if we temporarily ignore the monotony constraint (17) and call the resulting problem as (𝑚𝐴1) 

then constraint (17) does satisfy any solution of (𝑚𝐴1). Therefore, (𝑚𝐴) and (𝑚𝐴1)  are equivalent. 

Moreover, 𝑇𝑟𝑗 > 0 ⟹  RHS of  Eqs. (9) and  (12) > 0, i.e. Eqs. (18) and (19) guarantee that the 

number of good items is at least equal to the demand and deterioration during screening. 

 

3.2.1. Solution procedures 

First, we note from Eqs. (18) and (19) that 𝑇𝑟𝑗 , 𝑇𝑗  and ∅𝑜𝑗 can be determined as functions of 𝑞𝑟𝑗, say  

𝑇𝑟𝑗 = 𝑓𝑟𝑗(𝑞𝑟𝑗),                                                                                                        (20) 

𝑇𝑗 = 𝑓𝑗(𝑞𝑟𝑗),                                                                                                                (21) 

∅𝑜𝑗 = ∅𝑗(𝑞𝑟𝑗).                                                                                               (22) 

 

Thus, considering Eqs. (18)-(22) then the problem (𝑚𝐴) is converted to the following unconstrained 

problem with the variable 𝑄𝐴𝑗  (which we shall call problem (𝑚𝐴2)). 
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𝑊𝐴(𝑄𝐴𝑗) =
1

𝑓𝑗
{(𝑐 + 𝑑 + 𝑠𝑜) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ (𝑐 + 𝑑 + 𝑠𝑟) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+

ℎ𝑜𝑔 [−𝐺𝑜(0)𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑓𝑜𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ ∅𝑗 ∫ 𝐷(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑗

0
] +

ℎ𝑜𝑑 [∫ [𝑓𝑜𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑓𝑜𝑗

0
] + ℎ𝑟𝑔 [−𝐺𝑟(0)𝑒𝑔𝑟(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ (1 −

∅𝑗) ∫ 𝐷(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢
𝑓𝑗

0
] + ℎ𝑟𝑑 [∫ [𝑓𝑟𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
] + 𝑘}.               (23) 

 

If we let 𝑊𝐴 =
𝑤𝐴

𝑓𝑗
, then the necessary condition for having a minimum for problem (𝑚𝐴2) is  

𝑤𝑞𝑟𝑗
′ 𝑓𝑗 = 𝑓𝑗,𝑞𝑟𝑗

′ 𝑤𝐴,                                                                                                           (24) 

where 𝑤𝑞𝑟𝑗
′  and 𝑓𝑗,𝑞𝑟𝑗

′  are the derivatives of 𝑤𝐴 and 𝑓𝑗  with respect to  𝑞𝑟𝑗, respectively. 

Also, Eqs. (18) and (19) yield 

𝑓𝑗,𝑞𝑟𝑗

′ =
(𝑒𝑔𝑟(0)−𝑝𝑗𝑒

𝑔𝑟(𝑓𝑟𝑗)
)(∫ 𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑗
0

)
2

𝐷(𝑓𝑗)𝑒
𝑔𝑟(𝑓𝑗)

((∫ 𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑓𝑗

0
)

2

−𝑆(∫ 𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑓𝑗

0
−𝑒

(𝑔𝑜(𝑓𝑗)−𝑔𝑟(𝑓𝑗))
∫ 𝐷(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑗
0

))

,   (25) 

∅𝑗,𝑞𝑟𝑗

′ = −
𝑆𝑓𝑗,𝑞𝑟𝑗

′ 𝐷(𝑓𝑗)𝑒
𝑔𝑜(𝑓𝑗)

(∫ 𝐷(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑓𝑗

0
)

2,                                                                              (26) 

where 𝑆 = 𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑓𝑜𝑗

0
− ∫ 𝑝𝑗𝑥(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
. 

Considering the above and also Eqs. (20)-(23) we have  

𝑤𝑞𝑟𝑗
′ = (𝑐 + 𝑑 + 𝑠𝑟) + ℎ𝑟𝑔 [(𝐺𝑟(𝑓𝑗) − 𝐺𝑟(0)) 𝑒𝑔𝑟(0) + (𝐺𝑟(𝑓𝑟𝑗) − 𝐺𝑟(𝑓𝑗)) 𝑝𝑗𝑒𝑔𝑟(𝑓𝑟𝑗) +

∅𝑗,𝑞𝑟𝑗

′ (𝐺𝑟(𝑓𝑗) ∫ 𝐷(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢
𝑓𝑗

0
− ∫ 𝐷(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑗

0
)] +

ℎ𝑟𝑑

𝑥(𝑓𝑟𝑗)
∫ 𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+

ℎ𝑜𝑔 [∅𝑗,𝑞𝑟𝑗

′ ∫ 𝐷(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑓𝑗

0
+ ∅𝑗𝑓𝑗,𝑞𝑟𝑗

′ 𝐷(𝑓𝑗)𝐺𝑜(𝑓𝑗)𝑒𝑔𝑜(𝑓𝑗)].                                   (27) 

Also, Eq. (24) ⇔  𝑊𝐴 =
𝑤𝐴

𝑓𝑗
=

𝑤𝑞𝑟𝑗
′

𝑓𝑗,𝑞𝑟𝑗
′ .                          (28) 

Eq. (28) can be used to determine the optimal value of 𝑄𝐴𝑗  and its corresponding total minimum cost. 

Then the optimal values of 𝑇𝑟𝑗 , 𝑇𝑗 and ∅𝑗 can be found from Eqs. (20), (21) and (22), respectively. 

 

3.3. LIFO dispatching policy 

When applying a LIFO dispatching policy, items stored in the RW are depleted first by time 𝑇𝑅𝑗 . In this 

model we distinguish two cases:  

 

Case 1.   𝑇𝑜𝑗 ≤ 𝑇𝑅𝑗. The behaviour of such a model is depicted in Fig. 5.      
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                         𝑞𝑟𝑗     

             𝑞𝑟𝑗(1 − 𝑝𝑗) − 𝑦𝑟𝑗                           

                                                                                                
                                                                                   
                                     𝑝𝑗𝑞𝑟𝑗                                                                                      

                                         𝑞𝑜𝑗 

              𝑞𝑜𝑗(1 − 𝑝𝑗) − 𝑦𝑜𝑗                                                 

          
          

                 𝑝𝑗𝑞𝑜𝑗                                    

                
                                               0                      𝑇𝑟𝑗            𝑇𝑜𝑗              𝑇𝑅𝑗                           𝑇𝑗  Time                                            
 

Fig. 5. Inventory variation of the two-warehouse model during one cycle when 𝑇𝑜𝑗 ≤ 𝑇𝑅𝑗 (LIFO). 

 

Case 2.    𝑇𝑜𝑗 > 𝑇𝑅𝑗 . The behaviour of such a model is depicted in Fig. 6.  

 

 
                                                                                                       
                                        𝑞𝑟𝑗                            

             𝑞𝑟𝑗(1 − 𝑝𝑗) − 𝑦𝑟𝑗                 

                                        
                     
                                     𝑝𝑗𝑞𝑟𝑗                                                      

                                         𝑞𝑜𝑗                                                                                  

                                          

              𝑞𝑜𝑗(1 − 𝑝𝑗) − 𝑦𝑜𝑗                                                 

          
         

                  𝑝𝑗𝑞𝑜𝑗                                    

                
                                               0                  𝑇𝑟𝑗                𝑇𝑅𝑗     𝑇𝑜𝑗                                    𝑇𝑗   Time                                            
 

Fig. 6. Inventory variation of the two-warehouse model during one cycle when 𝑇𝑅𝑗 <  𝑇𝑜𝑗 (LIFO).   

 

The mathematical formulation for cases 1 and 2 can be obtained in a similar way as that for AIFO (see 

Appendix A in the electronic companion), where the total cost per unit time of the underlying inventory 

model is identical for cases 1 and 2 and is given by 

 

𝑊𝐿(𝑄𝐿𝑗) =
1

𝑓𝑗
{(𝑐 + 𝑑 + 𝑠𝑜) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ (𝑐 + 𝑑 + 𝑠𝑟) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+

ℎ𝑟𝑔 [−𝐺𝑟(0)𝑒𝑔𝑟(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑓𝑟𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ ∫ 𝐷(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑅𝑗

0
] +

ℎ𝑟𝑑 [∫ [𝑓𝑟𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑓𝑟𝑗

0
] + ℎ𝑜𝑔 [−𝐺𝑜(0)𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+

∫ 𝐷(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢
𝑓𝑗

𝑓𝑅𝑗
] + ℎ𝑜𝑑 [∫ [𝑓𝑜𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
] + 𝑘 + 𝑐𝐿𝑗(𝑓𝑗 − 𝑓𝑅𝑗)}.                  (29) 

Inventory 

Level 

Inventory 

Level 
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3.4. FIFO dispatching policy 

When applying a FIFO dispatching policy, the goods of the RW are consumed only after depleting the 

goods of OW, i.e. 𝑞𝑜𝑗 is consumed first, which implies that the cycle length for the OW is a 

predetermined value. The behaviour of such a model is depicted in Figs. 7 and 8. 

 

Case 1.   𝑇𝑟𝑗 ≤ 𝑇𝑗 . 

                                                            

                                                                                                       
                                                 
                         𝑞𝑜𝑗     

             𝑞𝑜𝑗(1 − 𝑝𝑗) − 𝑦𝑜𝑗                           

                                                                                                
                                                                                   
                                     𝑝𝑗𝑞𝑜𝑗                                                                                      

                                         𝑞𝑟𝑗 

              𝑞𝑟𝑗(1 − 𝑝𝑗) − 𝑦𝑟𝑗                                                 

          
          

                 𝑝𝑗𝑞𝑟𝑗                                    

                
                                               0                      𝑇𝑜𝑗            𝑇𝑟𝑗              𝑇𝑗                

              
𝑇𝑅 Time                                            

 

Fig. 7. Inventory variation of the two-warehouse model during one cycle when 𝑇𝑟𝑗 ≤ 𝑇𝑗 (FIFO). 

 

 

Case 2.   𝑇𝑟𝑗 > 𝑇𝑗 . 

 

 

 
                                                                                                       
                                        𝑞𝑜𝑗                            

             𝑞𝑜𝑗(1 − 𝑝𝑗) − 𝑦𝑜𝑗                 

                                        
                     
                                     𝑝𝑗𝑞𝑜𝑗                                                      

                                         𝑞𝑟𝑗                                                                                  

                                          

              𝑞𝑟𝑗(1 − 𝑝𝑗) − 𝑦𝑟𝑗                                                 

          
         

                  𝑝𝑗𝑞𝑟𝑗                                    

                
                                               0                     𝑇𝑜𝑗             𝑇𝑗       𝑇𝑟𝑗                                    𝑇𝑅 Time                                            

Fig. 8. Inventory variation of the two-warehouse model during one cycle when 𝑇𝑗 <  𝑇𝑟𝑗  (FIFO).    
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Inventory 
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The mathematical formulation for cases 1 and 2 can be obtained in similar way as that for AIFO (see 

Appendix B in the electronic companion), where the total cost per unit time of the underlying inventory 

model is identical for cases 1 and 2 and is given by 

 

𝑊𝐹(𝑄𝐹𝑗) =
1

𝑓𝑅𝑗
{(𝑐 + 𝑑 + 𝑠𝑜) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ (𝑐 + 𝑑 + 𝑠𝑟) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+

ℎ𝑜𝑔 [−𝐺𝑜(0)𝑒𝑔𝑜(0) ∫ 𝑥(𝑢)𝑑𝑢
𝑓𝑜𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑜𝑗

0
+ ∫ 𝐷(𝑢)𝐺𝑜(𝑢)𝑒𝑔𝑜(𝑢)𝑑𝑢

𝑓𝑗

0
] +

ℎ𝑜𝑑 [∫ [𝑓𝑜𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢
𝑓𝑜𝑗

0
] + ℎ𝑟𝑔 [−𝐺𝑟(0)𝑒𝑔𝑟(0) ∫ 𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+ ∫ 𝑝𝑗𝑥(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
+

∫ 𝐷(𝑢)𝐺𝑟(𝑢)𝑒𝑔𝑟(𝑢)𝑑𝑢
𝑓𝑅𝑗

𝑓𝑗
] + ℎ𝑟𝑑 [∫ [𝑓𝑟𝑗 − 𝑢]𝑝𝑗𝑥(𝑢)𝑑𝑢

𝑓𝑟𝑗

0
] + 𝑘 + 𝑐𝐹𝑗(𝑓𝑅𝑗 − 𝑓𝑗)}.                     (30) 

 

4. Numerical analysis and special cases  

In this Section, we present illustrative examples and special cases to support the application of our 

mathematical models and solution procedures in different realistic situations. In practice, the demand 

function may increase (decrease) over time with linear, exponential, quadratic, and stock-dependent 

trends. For example, exponentially increasing demand fits well products such as new spare parts, new 

electronic chips and seasonal goods in which the demand rate is likely to increase very fast with time 

(Hariga and Benkherouf, 1994). On the other hand, essential commodities and seasonal products may 

follow steadily increasing quadratic or linear demand functions over time (Sana, 2010). As such, the 

mathematical formulation presented in this paper considers arbitrary functions of time, which allows 

the decision maker to assess the consequences of a diverse range of strategies by employing a single 

inventory model. For example, the variation of demand, screening, deterioration and defective rates 

with time (or due to any other factors) is a quite natural phenomenon (Alamri, 2011; Benkherouf et 

al., 2014; Datta et al. 1998; Grosse et al., 2013; Jaber et al., 2008; Karmarkar and Pitbladdo, 1997; 

Murdeshwar, 1988). There is almost unanimous agreement among researchers and practitioners that 

the preponderant form of a learning curve is either an S-shaped (Jordan, 1958; Carlson, 1973) or a 

power one as suggested by Wright (1936) (Alamri and Balkhi, 2007; Dar-El, 2000; Jaber, 2006).  

 

4.1. Varying rates  

In this example we consider the following functions for varying demand, screening, defective and 

deterioration rates:  

𝑥(𝑡) = 𝑎𝑡 + 𝑏, 𝐷(𝑡) = 𝛼𝑡 + 𝑟, 𝑝𝑗 =
𝜏

𝜋+𝑒𝛾𝑗 , 𝛿𝑜(𝑡) =
𝑙𝑜

𝑧𝑜−𝛽𝑜𝑡
 and 𝛿𝑟(𝑡) =

𝑙𝑟

𝑧𝑟−𝛽𝑟𝑡
, 

where 𝑏, 𝑟, 𝜋, 𝑧𝑦 > 0;  𝑎, 𝛼, 𝑙𝑦 , 𝜏, 𝛾, 𝛽𝑦 , 𝑡 ≥ 0 and  𝛽𝑦𝑡 < 𝑧𝑦. 

The parameter “𝛼”, represents the rate of change in the demand. The case of 𝛼 = 0 corresponds to a 

constant demand rate, when then 𝐷(𝑡) = 𝑟 ∀ 𝑡 ≥ 0. A similar behaviour holds true for the effect of 
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“𝑎”, the rate of change in the screening rate. Note that 𝛿𝑦(𝑡) is an increasing function of time. The 

case of 𝛽𝑦 = 0 corresponds to a constant deterioration rate and 𝑙𝑦 = 0 reflects the case associated 

with no deterioration. The percentage defective per lot reduces according to an S-shaped logistic 

learning curve (Jordan, 1958; Carlson, 1973), where 𝜏 and 𝜋 are model parameters, 𝛾 is the learning 

exponent and 𝑗 is the cycle index. The case 𝛾 = 0 applies to a constant percentage of defective items 

per lot . 

 

Each problem (𝑚𝑖2) has been coded in MATLAB for the above functions and solutions were obtained 

for a wide range of the control parameter values. Here, and for comparison purposes, we thematically 

consider situations with parameters that are presented in Table 1 below.  

 

Table 1. Input parameters for varying rates.  

ℎ𝑜𝑔 ℎ𝑜𝑑 ℎ𝑟𝑔 ℎ𝑟𝑑 𝑞𝑜 𝑘 

20 5 25 5 2000 3000 

Dollars/unit/year Dollars/unit/year Dollars/unit/year Dollars/unit/year Unit Dollars/cycle 

𝑎 𝑏 𝛼 𝑟 𝑐 𝑑 

1000 100200 500 50000 100 0.50 

Unit/year Unit/year Unit/year Unit/year Dollars/unit Dollars/unit 

𝑙𝑜 𝑙𝑟  𝑧𝑜 𝑧𝑟  𝛽𝑜  𝛽𝑟  

1 1 20 33.33 25 20 

Unit/year Unit/year Unit/year Unit/year Unit/year Unit/year 

𝑠𝑜 𝑠𝑟  𝜏 𝜋 𝛾  

0.50 0.75 70.067 819.76 0.7932  

Dollars/unit Dollars/unit Unit/year Unit/year Unit/year  

      

 

Despite the fact that 𝑐𝑖𝑗 is formulated for the LIFO and FIFO models, its associated value is set to be 

equal to zero. That is, rather than assigning 𝑐𝑖𝑗 a specific value that would render the AIFO policy 

performing better than LIFO and FIFO, the ignorance of such a value implies that AIFO is optimal unless 

𝑐𝑖𝑗 ≤ ∆𝑖𝑗.  

 

Now, let ∆𝐿𝑗= 𝜀ℎ𝑟𝑔 +
𝑇𝐿𝑗

∗ (𝑊𝐴𝑗
∗ −𝑊𝐿𝑗

∗ )

𝑇𝐿𝑗
∗ −𝑇𝐿𝑅𝑗

∗  and  ∆𝐹𝑗= 𝜀ℎ𝑜𝑔 +
𝑇𝐹𝑅𝑗

∗ (𝑊𝐴𝑗
∗ −𝑊𝐹𝑗

∗ )

𝑇𝐹𝑅𝑗
∗ −𝑇𝐹𝑗

∗ , where 𝜀 = 0.5 denotes the 

minimum average inventory of one unit that can be stored in either unused warehouse. This appears 

realistic since we either store at least one unit, in the unused warehouse, or do not keep any (e.g. 

EOQ). On the other hand, an AIFO policy implies simultaneous consumption fractions associated with 

RW and OW, where the goods at both warehouses are depleted by the end of the same cycle, i.e. 𝜀 =

0. Thus, ∆𝑖𝑗 constitutes KPI, i.e. an upper-bound (cost applied if OW (RW) is idle) that renders AIFO the 
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optimal dispatching policy. Note that as 𝑇𝑖𝑗
∗ ⟶ 𝑇𝑖𝑅𝑗

∗  then 𝜀 ⟶ 0 ⟹ 𝑊𝐴𝑗
∗ = 𝑊𝐿𝑗

∗ = 𝑊𝐹𝑗
∗ ⟹ EOQ ⟹

𝑐𝑖𝑗 = 0 = ∆𝑖𝑗 (recall 𝑚𝑖2). Therefore, if 𝑊𝐿𝑗
∗ > 𝑊𝐹𝑗

∗  then 𝑐𝐹𝑗 represents the cost incurred per year 

when the OW remains unusable (empty). Conversely, if 𝑊𝐿𝑗
∗ < 𝑊𝐹𝑗

∗  then 𝑐𝐿𝑗 denotes the charge 

payable per year if the RW remains idle or the charge incurred per year in order to guarantee that the 

RW is available. As can been seen below, this cost is typically very small with respect to the minimum 

average holding cost per year incurred to store items in either warehouse. 

 

Table 2. Optimal results for varying demand, screening, defective and deterioration rates.  

𝑗 𝑝𝑗  𝑓𝑟𝑗
∗  𝑓𝑗

∗ 𝑓𝑅𝑗
∗  𝑄𝑗

∗ 𝜔𝑜𝑗
∗  𝜔𝑟𝑗

∗  𝑊𝑗
∗ 𝑤𝑗

∗ Policy 𝑐𝑖𝑗  vs.  ∅𝑗
∗ 

1 0.08524 0.0121 0.0586 0.0221 3209 3.88 0.39 5618002 329280 LIFO 𝒄𝑳𝒋 ≤ 𝟏𝟒𝟒𝟔 

1 0.08524 0.0110 0.0365 0.0568 3107 1.78 1.45 5619757 318980 FIFO 𝑐𝐹𝑗 = 0 

1 0.08524 0.0116 0.0577 - 3158 2.79 0.95 5618896 324160 AIFO ∅𝑗
∗ = 0.63 

 

2 0.08497 0.0121 0.0586 0.0221 3209 3.88 0.39 5616361 329210 LIFO 𝒄𝑳𝒋 ≤ 𝟏𝟒𝟒𝟔 

2 0.08497 0.0110 0.0366 0.0568 3106 1.78 1.45 5618116 318910 FIFO 𝑐𝐹𝑗 = 0 

2 0.08497 0.0116 0.0577 - 3158 2.79 0.95 5617256 324120 AIFO ∅𝑗
∗ = 0.63 

 

3 0.08436 0.0120 0.0586 0.0221 3207 3.88 0.39 5612658 329050 LIFO 𝒄𝑳𝒋 ≤ 𝟏𝟒𝟒𝟔 

3 0.08436 0.0110 0.0366 0.0568 3104 1.79 1.45 5614413 318720 FIFO 𝑐𝐹𝑗 = 0 

3 0.08436 0.0115 0.0577 - 3156 2.79 0.94 5613552 323920 AIFO ∅𝑗
∗ = 0.63 

 

4 0.08305 0.0120 0.0586 0.0221 3204 3.88 0.39 5604720 328700 LIFO 𝒄𝑳𝒋 ≤ 𝟏𝟒𝟒𝟔 

4 0.08305 0.0110 0.0366 0.0568 3100 1.79 1.45 5606477 318330 FIFO 𝑐𝐹𝑗 = 0 

4 0.08305 0.0115 0.0577 - 3152 2.80 0.94 5605616 323540 AIFO ∅𝑗
∗ = 0.63 

 

5 0.08030 0.0119 0.0587 0.0220 3196 3.89 0.38 5588132 327970 LIFO 𝒄𝑳𝒋 ≤ 𝟏𝟒𝟒𝟓 

5 0.08030 0.0109 0.0367 0.0568 3092 1.80 1.44 5589892 317510 FIFO 𝑐𝐹𝑗 = 0 

5 0.08030 0.0114 0.0577 - 3144 2.80 0.94 5589030 322760 AIFO ∅𝑗
∗ = 0.64 

 

Table 2 shows the effect of learning on the optimal values of 𝑄𝑖𝑗
∗ , 𝑇𝑟𝑖𝑗

∗ , 𝑇𝑅𝑖𝑗
∗ , 𝑇𝑖𝑗

∗ , 𝜔𝑖𝑗
∗ , ∅𝑗

∗ and the 

corresponding total minimum costs for 5 successive cycles. In the first cycle, the optimal order 

quantities for the three models are 𝑄𝐿1
∗ = 3209 units,  𝑄𝐹1

∗ = 3107 units and 𝑄𝐴1
∗ = 3158 units (and 

∅1
∗ = 0.63), respectively. The corresponding total minimum costs per year are 𝑊𝐿1

∗ =

5618002 dollars,  𝑊𝐹1
∗ = 5619757 dollars and 𝑊𝐴1

∗ = 5618896 dollars and the total minimum 

costs per cycle are 𝑤𝐿1
∗ = 329280 dollars,  𝑤𝐹1

∗ = 318980 dollars and 𝑤𝐴1
∗ = 324160 dollars, 

respectively. The amount of deteriorated items is 𝜔𝑖1
∗ , which signifies the difference between the 

actual demand and the amount held in either warehouse at the beginning of the cycle. The amount of 

defective items is 𝑝1𝑄𝑖1
∗ , which can be sold at a salvage price at times 𝑇𝑜𝑖1

∗  and 𝑇𝑟𝑖1
∗  or incur a disposal 

penalty charge. As learning increases, i.e. the percentage of defective items per lot decreases, all 
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optimal quantities for the three models decrease except the amount of deteriorated items in the OW 

that experiences a minor increase due to the slight increase in the cycle length (Table 2).  

 

Although the LIFO dispatching policy performs better than the AIFO policy, fact remains that the former 

policy ignores cost effects during the time elapsed between consuming the goods of the RW and the 

time by which the next sub-replenishment is delivered. On the other hand, the latter operates in a 

simultaneous consumption fashion at the OW and RW, i.e. the goods at both warehouses are depleted 

by the end of the same cycle. It should be noted that when a LIFO policy is considered, the idle time 

has been found to be significant for a wide range of the control parameter values. In this example, 

𝑇𝐿1
∗ − 𝑇𝐿𝑅1

∗ = 0.0586 −  0.0221 = 0.0365 ≅ 13 days, which constitutes more than 62% of the cycle 

length. That said, the RW remains idle for more than 227 days per year and free of charge, which is 

unrealistic and rare to encounter in practice. Thus, a LIFO dispatching policy is optimal if and only if the 

charge payable to keep the RW available is less than or equals the upper-bound, i.e. 𝑐𝐿1 ≤ ∆𝐿1=

0.5ℎ𝑟𝑔 +
𝑇𝐿1

∗ (𝑊𝐴1
∗ −𝑊𝐿1

∗ )

𝑇𝐿1
∗ −𝑇𝐿𝑅1

∗ = 10 + 1436 = 1446 dollars per year. Note that this cost is typically very 

small with respect to the average holding cost per year incurred to store items in the RW, which is 

given by 
𝑇𝐿𝑅1

∗ ℎ𝑟𝑔

2𝑇𝐿1
∗ × 1209 = 5702 dollars per year, assuming also that ℎ𝑟𝑑 = 0. This is so, since 𝑇𝐿1

∗ >

𝑇𝐿𝑅1
∗ , i.e. there is a time gap (free of charge) between consecutive sub-replenishments that are 

delivered to the RW. If for instance 𝑇𝐿1
∗ = 𝑇𝐿𝑅1

∗ ⟹ EOQ, then this cost increases to 

15113 dollars per year. Therefore, 𝑐𝐿1 denotes the cost per year incurred if no items are stored in the 

RW. Considering 𝑚𝐿2 and Table 2, this cost is less than 

53 dollars per cycle or less than 900 dollars per year. This can be further justified, if for instance this 

cost (e.g. 53 dollars) is included in the ordering cost applied for LIFO and setting 𝑐𝐿1 = 0, then 𝑊𝐴1
∗ <

𝑊𝐿1
∗ . For a FIFO dispatching policy, the time elapsed for the OW to remain unusable is more than 

7 days, which constitutes more than 36% of the cycle length, i.e. 130 days per year of an empty space. 

In many industrial situations, substantial portion of holding cost applies for an empty space as well. It 

should be noted that the AIFO dispatching policy not only overcomes this issue, but may also lead to a 

discounted holding cost that can be gained if a continuous and long-term rental contract is beneficial 

and hence further reduction in the total minimum cost per year can be achieved. 

 

As illustrated in Table 2, other forms of varying demand, screening, defective and deterioration rates 

may be incorporated in each model in order to allow managers to assess the consequences of a diverse 

range of strategies.  
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In the next Section, we analyse the behaviour of the theoretical models in different settings, taking 

into account that the associated value of 𝑐𝑖  is set to be equal to zero for every single case. Tables 3, 4, 

5 and 6 depict the effect of each model parameter on the optimal values. Table 7 tests and compares 

the effect of learning when the maximum fulfilment of the capacity of OW is relaxed. Fig. 9 compares 

LIFO and AIFO for consecutive cycles in order to observe the effect of different learning curves on the 

optimal order quantities. Finally, Fig. 10 indicates the effect of different learning curves on the 

maximum rental cost associated with the RW, i.e. 𝑐𝐿𝑗 (upper-bound). 

 

4.2. Sensitivity analysis  

First, we note that for any 𝑠𝑜 = 𝑠𝑟 ≥ 0, the optimal order quantity is identical for each model, which 

signifies the importance of considering differing transportation costs in the mathematical formulation 

of two-warehouse inventory models (Table 3). With this consideration in mind, further interesting 

insights can be obtained. For example, the dis-location of good and defective items significantly 

influences the optimal order quantity (Tables 3 and 4).  

 

Table 3. Sensitivity analysis for transportation costs.  

Parameter 𝑓𝑜
∗ 𝑓𝑟

∗ 𝑓∗ 𝑓𝑅
∗ 𝑞𝑜

∗ 𝑞𝑟
∗ 𝜔𝑜

∗ 𝜔𝑟
∗ 𝑊∗ Policy 𝑐𝑖  vs.  ∅∗ 

 0.020 0.0121 0.0586 0.0221 2000 1209 3.88 0.39 5618002 LIFO 𝒄𝑳 ≤ 𝟏𝟒𝟒𝟔 

𝑠𝑜 = 0.50 0.020 0.0110 0.0365 0.0568 2000 1107 1.78 1.45 5619757 FIFO 𝑐𝐹 = 0 

𝑠𝑟 = 0.75 0.020 0.0116 0.0577 - 2000 1158 2.79 0.95 5618896 AIFO ∅∗ = 0.63 

 

 0.020 0.0149 0.0638 0.0273 2000 1494 4.38 0.59 5612482 LIFO 𝒄𝑳 ≤ 𝟏𝟕𝟖𝟏 

𝑠𝑜 = 0.50 0.020 0.0140 0.0365 0.0621 2000 1402 1.78 1.95 5614482 FIFO 𝑐𝐹 = 0 

𝑠𝑟 = 0.50 0.020 0.0145 0.0630 - 2000 1449 3.04 1.30 5613495 AIFO ∅∗ = 0.58 

 

 0.020 0.0149 0.0638 0.0273 2000 1495 4.38 0.59 5585101 LIFO 𝒄𝑳 ≤ 𝟏𝟕𝟖𝟏 

𝑠𝑜 = 𝑠𝑟 = 0 0.020 0.0140 0.0365 0.0621 2000 1402 1.78 1.95 5587111 FIFO 𝑐𝐹 = 0 

 0.020 0.0145 0.0630 - 2000 1450 3.04 1.30 5586119 AIFO ∅∗ = 0.58 

 

 0.020 0.0152 0.0644 0.0279 2000 1527 4.44 0.62 5610115 LIFO 𝒄𝑳 ≤ 𝟏𝟖𝟐𝟖 

𝑠𝑜 = 0.50 0.020 0.0151 0.0365 0.0642 2000 1513 1.78 2.15 5612175 FIFO 𝑐𝐹 = 0 

𝑠𝑟 = 0.40 0.020 0.0155 0.0650 - 2000 1558 3.14 1.44 5611145 AIFO ∅∗ = 0.56 

            

𝑞𝑜
∗ 0.016 0.0193 0.0647 0.0354 1609 1935 3.86 0.99 5609991 LIFO 𝒄𝑳 ≤ 𝟐𝟐𝟕𝟏 

𝑠𝑜 = 0.50 0 0.0338 0.0620 0.0620 0 3391 0 3.07 5611828 FIFO ⟹ EOQ 

𝑠𝑟 = 0.40 0.014 0.0270 0.0639 - 1420 2078 2.17 1.90 5611016 AIFO ∅∗ = 0.41 

 

Note that the assumption that the OW is fulfilled with the maximum capacity is indeed not the optimal 

choice for specific input parameters (Tables 3, 4, 5 and 7). Although such observation may appear to 

be counterintuitive, it is indeed an important observation for practitioners since the objective is to 

minimise the total system cost. Note that under FIFO and LIFO policies, it may become optimal that no 
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items are stored in the OW, i.e. the problem reduces to the EOQ (Tables 3, 4 and 7), which is consistent 

with the behaviour of outsourcing inventory holding through a vendor managed inventory (VMI) or 

other inventory intermediary arrangement (Table 6). Moreover, relaxing the inherent determinism of 

this assumption, not only produces better results, but may also reduce the value of the upper-bound 

significantly (Tables 4, 5 and 7). 

 

Table 4. Sensitivity analysis for holding costs with 𝑠𝑜 = 𝑠𝑟 = 0. 

Parameter 𝑓𝑜
∗ 𝑓𝑟

∗ 𝑓∗ 𝑓𝑅
∗ 𝑞𝑜

∗  𝑞𝑟
∗ 𝜔𝑜

∗  𝜔𝑟
∗ 𝑊∗ Policy 𝑐𝑖  vs.  ∅∗ 

 0.020 0.0147 0.0634 0.0269 2000 1472 4.34 0.57 5585796 LIFO 𝒄𝑳 ≤ 𝟏𝟕𝟔𝟒 

ℎ𝑜𝑔 = ℎ𝑜𝑑 = 20 0.020 0.0138 0.0365 0.0618 2000 1381 1.78 1.91 5587789 FIFO 𝑐𝐹 = 0 

ℎ𝑟𝑔 = ℎ𝑟𝑑 = 25 0.020 0.0142 0.0626 - 2000 1428 3.03 1.27 5586805 AIFO ∅∗ = 0.58 

 

 0.020 0.0172 0.0680 0.0315 2000 1724 4.79 0.79 5583382 LIFO 𝒄𝑳 ≤ 𝟐𝟏𝟗𝟖 

ℎ𝑜𝑔 = ℎ𝑟𝑔 = 20 0.020 0.0182 0.0365 0.0699 2000 1827 1.78 2.76 5581324 FIFO 𝑐𝐹 = 0 

 0.020 0.0177 0.0690 - 2000 1777 3.33 1.75 5582364 AIFO ∅∗ = 0.58 

            

𝑞𝑜
∗  0 0.0371 0.0679 0.0679 0 3719 0 3.69 5581411 LIFO ⟹ EOQ 

ℎ𝑜𝑔 = ℎ𝑟𝑔 = 20 0.0103 0.0271 0.0188 0.0685 1030 2718 0.47 3.40 5580732 FIFO 𝒄𝑭 ≤ 𝟖𝟖𝟔 

 0.0035 0.0337 0.0680 - 348 3373 0.56 3.34 5581367 AIFO ∅∗ = 0.09 

 

Table 5. Sensitivity analysis for deterioration rates with 𝑠𝑜 = 𝑠𝑟 = 0. 

Parameter 𝑓𝑜
∗ 𝑓𝑟

∗ 𝑓∗ 𝑓𝑅
∗ 𝑞𝑜

∗ 𝑞𝑟
∗ 𝜔𝑜

∗  𝜔𝑟
∗ 𝑊∗ Policy 𝑐𝑖  vs.  ∅∗ 

 0.020 0.0128 0.0599 0.0235 2000 1285 8.24 0.73 5593672 LIFO 𝑐𝐿 = 0 

𝑧𝑜 = 10 0.020 0.0135 0.0365 0.0611 2000 1348 3.62 3.12 5592737 FIFO 𝒄𝑭 ≤ 𝟏𝟐𝟑𝟔 

𝑧𝑟 = 20 0.020 0.0132 0.0605 - 2000 1318 6.01 1.90 5593230 AIFO ∅∗ = 0.60 

 

𝑞𝑜
∗  0.0097 0.0228 0.0595 0.0418 971 2288 4.84 2.33 5593342 LIFO 𝑐𝐿 = 0 

𝑧𝑜 = 10 0.0134 0.0196 0.0245 0.0603 1343 1959 1.62 3.97 5592454 FIFO 𝒄𝑭 ≤ 𝟕𝟒𝟏 

𝑧𝑟 = 20 0.0117 0.0210 0.0599 - 1173 2108 3.44 3.04 5592887 AIFO ∅∗ = 0.36 

 

 0.020 0.0151 0.0641 0.0276 2000 1510 4.28 0.60 5584866 LIFO 𝒄𝑳 ≤ 𝟏𝟗𝟏𝟒 

𝛽𝑜 = 𝛽𝑟 = 0 0.020 0.0140 0.0365 0.0622 2000 1406 1.76 1.93 5587011 FIFO 𝑐𝐹 = 0 

 0.020 0.0146 0.0632 - 2000 1458 2.97 1.29 5585950 AIFO ∅∗ = 0.58 

            

 0.020 0.0175 0.0687 0.0321 2000 1756 0 0 5576235 LIFO 𝒄𝑳 ≤ 𝟑𝟗𝟔𝟓 

𝑙𝑜 = 𝑙𝑟 = 0 0.020 0.0155 0.0366 0.0651 2000 1558 0 0 5580380 FIFO 𝑐𝐹 = 0 

 0.020 0.0165 0.0669 - 2000 1658 0 0 5578342 AIFO ∅∗ = 0.55 

 

For equal holding costs and deterioration rates, the optimal order quantity for the three models is 

identical, i.e. 𝑐𝑖 = 0 (Table 6). This result is fundamental since not only shows the validity and 

robustness of the proposed models, but also underpins and portrays the value added for integrating 

the upper-bound in the mathematical formulations. The same behaviour is observed in Table 6 when 

𝑓𝑜 = 0, i.e. all models are reduced to that of Alamri et al. (2016). 
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Table 6. Sensitivity analysis for special cases of the general models with 𝑠𝑜 = 𝑠𝑟 = 0. 

Parameter 𝑓𝑜
∗ 𝑓𝑟

∗ 𝑓∗ 𝑓𝑅
∗ 𝑞𝑜

∗ 𝑞𝑟
∗ 𝜔𝑜

∗  𝜔𝑟
∗ 𝑊∗ Policy 𝑐𝑖  vs.  ∅∗ 

 0.020 0.0162 0.0662 0.0297 2000 1525 4.61 0.70 5581490 LIFO 𝒄𝑳 ≤ 𝟏𝟗𝟑𝟗 

𝛼 = −500 0.020 0.0153 0.0366 0.0645 2000 1530 1.78 2.19 5583594 FIFO 𝑐𝐹 = 0 

 0.020 0.0158 0.0654 - 2000 1579 3.16 1.47 5586805 AIFO ∅∗ = 0.56 

 

𝑙𝑜 = 𝑙𝑟 = 0 0.020 0.0183 0.0701 0.0335 2000 1833 0 0 5574310 LIFO 𝒄𝑳 ≤ 𝟒𝟏𝟒𝟐 

𝛼 = 0 0.020 0.0163 0.0365 0.0664 2000 1631 0 0 5578555 FIFO 𝑐𝐹 = 0 

𝑎 = 0 0.020 0.0173 0.0683 - 2000 1733 0 0 5576466 AIFO ∅∗ = 0.54 

 

ℎ𝑜𝑔 = ℎ𝑟𝑔 = 20 0.020 0.0161 0.0659 0.0295 2000 1611 4.59 1.15 5584203 LIFO 𝑐𝐿 = 0 

𝑧𝑟 = 𝑧𝑜 = 20 0.020 0.0161 0.0365 0.0659 2000 1611 1.78 3.96 5584203 FIFO 𝑐𝐹 = 0 

𝛽𝑜 = 𝛽𝑟 = 25 0.020 0.0161 0.0659 - 2000 1611 3.19 2.55 5584203 AIFO ∅∗ = 0.55 

            

ℎ𝑜𝑔 = ℎ𝑟𝑔 = 20 0 0.0354 0.0648 0.0648 0 3550a 0 5.4 5585464 LIFO 𝑐𝐿 = 0 

𝑧𝑟 = 𝑧𝑜 = 20 0 0.0354 0.0648 0.0648 0 3550a 0 5.4 5585464 FIFO 𝑐𝐹 = 0 

𝛽𝑜 = 𝛽𝑟 = 25 0 0.0354 0.0648 - 0 3550a 0 5.4 5585464 AIFO ∅∗ = 0 

𝑓𝑜 = 0 ⟹ EOQ            
a The order quantity as in Alamri et al. (2016). 

 

Table 7 replicates the first two rows of Table 5 for two consecutive cycles in order to observe the effect 

of Wright’s learning curve, i.e.  𝑝𝑗 =
𝜏

𝜋+1
𝑗−𝛾 on the optimal order quantity when the capacity of the 

OW is a decision variable with that of fixed value. It is worth noting that the results presented in Table 

2 reveal that the reduction in the optimal order quantity does not affect the OW. That said, although 

the OW may benefit from the VOI that reduces the defective items per lot, it still keeps the maximum 

capacity of goods, and consequently the effect of learning does not really apply here. On the other 

hand, this is not the case when relaxing the inherent determinism of the maximum capacity associated 

with OW. In particular, such relaxation implies comprehensive learning that can be achieved 

simultaneously, i.e. the amounts that are allocated to both the OW and RW are affected. (Table 7). 

However, and despite the fact that the lot size may reduce for each successive replenishment, the 

amount that is allocated to the OW either remains static (due to capacity restriction) or experiences 

further reduction, but the amount that is allocated to the RW may decrease (increase) subject to the 

input parameter. This is a key observation, which demonstrates the impact of learning on the 

operational and financial performance of an inventory system with a two- level storage.   

Fig. 9 compares the optimal order quantity of AIFO with that of LIFO for 15 consecutive cycles with 

respect to 𝑝𝑗 =
𝜏

𝜋+𝑒𝛾𝑗  (Jordan, 1958; Carlson, 1973) and 𝑝𝑗 =
𝜏

𝜋+1
𝑗−𝛾  (Wright, 1936). The same 

behaviour observed in Fig. 9 holds true for the total minimum cost per year, which can be further 

justified by the reduction gained in the maximum rental cost per year (upper-bound) (Fig. 10). The S-

shaped logistic learning curve generates greater quantities in the incipient phase, which is consistent 

with the behaviour of slow improvement that is observed in practice (Dar-El, 2000). 
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Table 7. The effect of Wright’s learning curve on variable capacity of the OW with 𝑠𝑜 = 𝑠𝑟 = 0. 

Parameter 𝑗 𝑓𝑜𝑗
∗   𝑓𝑟𝑗

∗  𝑓𝑗
∗ 𝑓𝑅𝑗

∗  𝑞𝑜𝑗
∗  𝑞𝑟𝑗

∗  𝜔𝑜𝑗
∗  𝜔𝑟𝑗

∗  𝑊𝑗
∗ Policy 𝑐𝑖𝑗  vs.  ∅𝑗

∗ 

 1 0.020  0.0128 0.0599 0.0235 2000 1285 8.24 0.73 5593672 LIFO 𝑐𝐿𝑗 = 0 

𝑧𝑜 = 10 1 0.020  0.0135 0.0365 0.0611 2000 1348 3.62 3.12 5592737 FIFO 𝒄𝑭𝒋 ≤ 𝟏𝟐𝟑𝟔 

𝑧𝑟 = 20 1 0.020  0.0132 0.0605 - 2000 1318 6.01 1.90 5593230 AIFO ∅𝑗
∗ = 0.60 

   

 2 0.020  0.0119 0.0604 0.0226 2000 1189 8.45 0.66 5384686 LIFO 𝑐𝐿𝑗 = 0 

𝑧𝑜 = 10 2 0.020  0.0124 0.0379 0.0616 2000 1246 3.83 3.04 5383925 FIFO 𝒄𝑭𝒋 ≤ 𝟏𝟎𝟕𝟓 

𝑧𝑟 = 20 2 0.020  0.0122 0.0610 - 2000 1219 6.22 1.82 5384334 AIFO ∅𝑗
∗ = 0.62 

   

𝑞𝑜
∗ 1 0.0097  0.0228 0.0595 0.0418 971 2288 4.84 2.33 5593342 LIFO 𝑐𝐿𝑗 = 0 

𝑧𝑜 = 10 1 0.0134  0.0196 0.0245 0.0603 1343 1959 1.62 3.97 5592454 FIFO 𝒄𝑭𝒋 ≤ 𝟕𝟒𝟏 

𝑧𝑟 = 20 1 0.0117  0.0210 0.0599 - 1173 2108 3.44 3.04 5592887 AIFO ∅𝑗
∗ = 0.36 

              

𝑞𝑜
∗ 2 0  0.0319 0.0606 0.0606 0 3196 0 4.83 5384265 LIFO ⟹ EOQ 

𝑧𝑜 = 10 2 0.0123  0.0197 0.0235 0.0610 1237 1977 1.45 4.11 5383677 FIFO 𝒄𝑭𝒋 ≤ 𝟓𝟓𝟐 

𝑧𝑟 = 20 2 0.0093  0.0226 0.0607 - 936 2262 2.86 3.39 5384011 AIFO ∅𝑗
∗ = 0.29 

 

 

 
Fig. 9. A comparison of the optimal lot sizes of AIFO and LIFO for S-shaped and Power learning curves.  
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Fig. 10. A comparison of the maximum rental cost per year for S-shaped and Power learning curves.  

 

The proposed models are not limited to the above contributions; they may trigger other applications 

that can be disseminated from the general formulation as shown in Sections 4.3. and 4.4 below. 

 

4.3. Perishable products and lifetime constraints  

The implications of the inspection process in inventory decision-making can be further explored to 

accommodate an inventory system with a two-level storage. Specifically, a lot of size 𝑄𝑖𝑗 = 𝑞𝑜𝑖𝑗 + 𝑞𝑟𝑖𝑗  

is delivered such that a quantity of size 𝑞𝑜𝑖𝑗 is allocated to the OW and the remaining amount of size 

𝑞𝑟𝑖𝑗 = 𝑄𝑖𝑗 − 𝑞𝑜𝑖𝑗 is allocated to the RW. The assumption that each sub-replenishment that enters the 

RW undertakes a 100 per cent screening would imply that 𝑞𝑟𝑖𝑗 = (𝑞𝑟𝑚𝑗, 𝑞𝑟𝑚−1𝑗, … , 𝑞𝑟0𝑗) where 𝑞𝑟𝑘𝑗 

is the number of units with 𝑘(𝑘 = 0,1, … , 𝑚) useful periods of shelf lifetime. Here, 𝑞𝑟0𝑗 denotes newly 

replenished items that have arrived already perished or items not satisfying certain quality standards 

(defective items). A similar argument holds true for the quantity 𝑞𝑜𝑖𝑗 that is allocated to the OW. 

Although no buyer would pay for defective and already perished items, they would surely be interested 

in seeing a reduction in the presence of such quantities in subsequent replenishments. Our formulation 

allows for an immediate disposal of the amount 𝑞𝑟0𝑗 and 𝑞𝑜0𝑗 in case of any potential safety issues, 

i.e. ℎ𝑜𝑑 = ℎ𝑟𝑑 = 0. Now, let 𝜔𝑟𝑘𝑗  denote the quantity of the on-hand inventory of shelf lifetime 𝑘 that 

perishes by the end of period 𝑘 in RW.  

 

Thus, we have  
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𝜔𝑟𝑘𝑗 = {𝑞𝑟𝑘𝑗 − [𝐷𝑘𝑗 − (∑ 𝑞𝑟𝑛𝑗
𝑘−1
𝑛=1 − ∑ 𝜔𝑟𝑛𝑗

𝑘−1
𝑛=1 − ∑ 𝑑𝑟𝑛𝑗

𝑘
𝑛=1 )]

+

0                                                                               otherwise,
  

where 𝐷𝑘𝑗 < (∑ 𝑞𝑟𝑛𝑗
𝑘
𝑛=1 − ∑ 𝜔𝑟𝑛𝑗

𝑘−1
𝑛=1 − ∑ 𝑑𝑟𝑛𝑗

𝑘
𝑛=1 ) is the actual demand observed up to the periodic 

review 𝑘, and 𝑑𝑟𝑘𝑗  is the number of items of shelf lifetime 𝑘 that deteriorate in RW while on storage. 

Hence, ∑ 𝑑𝑟𝑦𝑗
𝑚
𝑦=𝑘  denotes the total sum of deteriorated items in RW in period 𝑘, i.e. an item may not 

retain the same utility throughout its shelf lifetime, and consequently ∑ 𝜔𝑟𝑘𝑗
𝑚
𝑘=1  refers to the total 

sum of inventory in RW that perishes in cycle 𝑗, excluding any replenished items that have arrived 

already perished. A similar argument holds true for the quantity 𝜔𝑜𝑘𝑗 that perishes in OW. It is 

important to note that if LIFO or FIFO are considered, then ∑ 𝜔𝑟𝑘𝑗
𝑚
𝑘=1 + ∑ 𝜔𝑜𝑘𝑗

𝑚
𝑘=1  is likely greater 

than that experienced under the AIFO policy. This can be justified by the marginal difference in cycle 

length (Sections 4.1 and 4.2) and the fact that under the LIFO and FIFO policies, only one warehouse is 

utilised at a time. This is an important issue, especially in the case when a distinct selling price 𝑣𝑘  may 

be linked to its corresponding quantity 𝑞𝑘𝑗, i.e. 𝑉 = (𝑣𝑚, 𝑣𝑚−1, … , 𝑣0) is applied for the set 𝑄𝑖𝑗 =

(𝑞𝑚𝑗, 𝑞𝑚−1𝑗 , … , 𝑞0𝑗). Therefore, our formulation is viable if, for instance, an item partially loses its 

value based on its perceived actuality (obsolescence).  

 

The above discussion underpins and demonstrates how the terms ‘deterioration’, ‘perishability’ and 

‘obsolescence’ may collectively apply to an item. Note that 𝑚𝑖2 can still be used to drive the optimal 

quantity that needs to be added to the on-hand inventory for the next replenishment, i.e. 𝑞𝑖𝑘𝑗 =

𝑄𝑖𝑗+1−𝐼𝑜𝑔𝑖𝑗(𝑡𝑘𝑗) − 𝐼𝑟𝑔𝑖𝑗(𝑡𝑘𝑗), where 𝑡𝑘𝑗  denotes the time up to the periodic review. This relation 

holds true for Sections 4.1 and 4.2, i.e. 𝑞𝑗 = 𝑄𝑗 − 𝐼𝑜𝑔𝑗−1(𝑇𝑗−1) − 𝐼𝑟𝑔𝑗−1(𝑇𝑗−1) for AIFO and LIFO and 

𝑞𝑗 = 𝑄𝑗 − 𝐼𝑜𝑔𝑗−1(𝑇𝑅𝑗−1) − 𝐼𝑟𝑔𝑗−1(𝑇𝑅𝑗−1) for FIFO; please refer to Alamri et al. (2016) for a discussion 

on this issue.  

 

As an example of lifetime constraint, we can assume that Τ denotes the remaining shelf lifetime of an 

item and ℃𝑦  and 𝑡𝑦 represent, respectively, the temperature and time elapsed of an item in a supply 

chain entity 𝑦. Then we have Τ = 𝑀 − 𝜁(℃𝑎)𝑡𝑎 − 𝜁(℃𝑏)𝑡𝑏, where 𝜁(℃𝑦) = (0.1℃𝑦 + 1)2 and 𝑀 =

𝑚 + 𝑡𝑎 + 𝑡𝑏 (Bremner, 1984; Ronsivalli and Charm, 1975). In this case, 𝑓𝑗 ≤ Τ for AIFO and LIFO and 

𝑓𝑅𝑗 ≤ Τ for FIFO, and consequently, the VOI can be quite valuable in reducing the cost per cycle (Alamri 

et al., 2016; Ketzenberg et al., 2015). Note that 𝑧𝑦 = 1 + Τ can fit here as well.  
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4.4. Stochastic parameters   

Let 𝑋𝑗  refers to a set of random variables that are predetermined according to the VOI gained by the 

system due to its coordination as an output of the 𝑗𝑡ℎ inspection process. Suppose that 

𝑋𝑗~𝑈 [𝑌𝑗 − √3𝑍𝑗, 𝑌𝑗 + √3𝑍𝑗]. Note that 𝐸 (𝑋𝑗) = 𝑌𝑗 , i.e. if 𝐷𝑗~𝑈[𝜇𝑗 − √3𝜎𝑗 , 𝜇𝑗 + √3𝜎𝑗] , then 

𝐸(𝐷𝑗) = 𝜇𝑗 = 𝐷(𝑡) = 𝑟. A similar argument holds true for other input parameters. Note that 𝑋𝑗  and 

hence the actual yield of may vary from one cycle to another (e.g. the parameters are nonstationary). 

Hence, we have 𝐸(𝑊𝑖) =
𝐸(𝑤𝑖)

𝐸(𝑓𝑖𝑗)
=

𝐸(𝑤𝑞𝑟𝑗
′ )

𝐸(𝑓𝑗,𝑞𝑟𝑗
′ )

 , for AIFO and LIFO, and 𝐸(𝑊𝐹) =
𝐸(𝑤𝐹)

𝐸(𝑓𝑅𝑗)
=

𝐸(𝑤𝑞𝑟𝑗
′ )

𝐸(𝑓𝑅𝑗,𝑞𝑟𝑗
′ )

,  for 

FIFO, where (1 − 𝐸[𝑝𝑗])𝑥(𝑡) > 𝐷(𝑡).   

 

In the example provided by Jaggie et al. (2015) they have assumed 𝐸[𝑝] = 0.02, 𝑞𝑜 = 800, ℎ𝑜𝑔 =

ℎ𝑜𝑑 = 5, ℎ𝑟𝑔 = ℎ𝑟𝑑 = 7, 𝛽𝑜 = 𝛽𝑟 = 0, 𝑐 = 25, 𝑘 = 100, 𝑟 = 50000, 𝑙𝑜 = 𝑙𝑟 = 1, 𝑧𝑜 = 3.33, 𝑧𝑟 = 5,

𝛼 = 0  and 𝑏 = 175200, resulting in 𝑄𝐽 𝑒𝑡 𝑎𝑙 = 915 units. This quantity is greater than our optimal 

𝑄𝐿
∗ = 909 units and  𝑤𝐿

∗ = 1312381 dollars. However, 𝑄𝐹
∗ = 943 units and 𝑤𝐹

∗ = 1312315, and 

consequently FIFO performs better than LIFO. Moreover, if 𝑞𝑜 is taken as a decision variable, then 𝑞𝑜
∗ =

0, 𝑄𝐿
∗ = 920 units and 𝑤𝐿

∗ = 1312126 dollars ⟹ the solution of FIFO does not exist. This result is 

consistent with the results obtained in Tables 3, 4, 5 and 7 and seems realistic given that the objective 

is to minimise the total system cost. Setting 𝑙𝑜 = 𝑙𝑟 = 0, the result is identical with that of Chung et al. 

(2009) and Jaggie et al. (2015), where  𝑄𝐿
∗ = 𝑄𝐶 𝑒𝑡 𝑎𝑙 = 𝑄𝐽 𝑒𝑡 𝑎𝑙 = 1290 units.  

 

4.5. Key findings   

In this Section, we emphasise the key findings of our work and relate the results of the study to the 

general body of knowledge in the discipline. 

• For any 𝑠𝑜 = 𝑠𝑟 ≥ 0, the optimal order quantity is identical for each model, which signifies the 

importance of considering differing transportation costs in the mathematical formulation of two-

warehouse inventory models. 

• The dis-location of good and defective items significantly influences the optimal order quantity.  

• The assumption that the OW is fulfilled with the maximum capacity may not be the optimal choice 

for specific input parameters.  

• Under FIFO and LIFO policies, it may become optimal that no items are stored in the OW, i.e. the 

problem reduces to the EOQ, which is consistent with the behaviour of outsourcing inventory 

holding through a VMI or other inventory intermediary arrangement.  

• For equal holding costs and deterioration rates, the optimal order quantity for the three models 
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is identical, i.e. 𝑐𝑖 = 0, which implies that LIFO (AIFO) is optimal if and only if 𝑐𝑖 = 0. This finding 

is fundamental, since it not only shows the validity and robustness of the proposed models, but 

also underpins and portrays the value added for integrating the upper-bound in the mathematical 

formulations.  

• When 𝑓𝑜 = 0, all models are reduced to a single-level warehouse base model presented by Alamri 

et al. (2016). In this case, 𝑐𝑖 = 0, which also shows the validity and robustness of the proposed 

models.  

• Relaxing the inherent determinism of the maximum capacity associated with OW implies 

comprehensive learning that can be achieved simultaneously.  

• The optimal order quantity and the total minimum costs per year follow the same fashion as that 

of 𝑝𝑗.  

• Previously published models in this area are shown to be special cases of our models (Table 6 and 

Appendices A, B and C in the electronic companion). 

 

4.6. Summary of implications and managerial insights   

In this Section, we highlight a summary of the implications and managerial insights related to our 

research contributions.  

• The versatile nature of our models allows the incorporation of the desired functions that are 

suitable to a system. Consequently, the list of implications and managerial insights outlined in 

Alamri et al. (2016) fit our models as well.  

• Each model emerges as a viable solution that manages and controls the efficient and cost-

effective flow of perishable and non-perishable products. 

• General solution procedures for LIFO, FIFO and AIFO to determine the optimal dispatching policy 

for continuous intra-cycle periodic review applications for two-level storage EOQ models are 

presented.  

• A detailed method to illustrate how the terms deterioration, perishability and obsolescence may 

collectively affect inventories in a two-level storage is explored. 

• The accuracy of RFID temperature tags that capture the TTH, and the use of that TTH data are 

adopted to model the shelf lifetime of an item under LIFO, FIFO and AIFO dispatching policies. 

• The mathematical formulations are linked to the renewal theory, which have led to further 

interesting insights.  

• The trade-off between the three policies constitutes a key business objective in supply chain 

management. 

• In the case of managing perishable products, LIFO and FIFO may not be the right dispatching 
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policies, given that the order quantity needs to be consumed based on a FEFO policy. This is so, 

since under the LIFO or FIFO dispatching polices, the total sum of inventory that perishes in each 

cycle is likely greater than that experienced under the AIFO policy.  

• The dimension of risk influencing the management of perishable products may increase if, for 

instance, a distinct selling price is linked to its corresponding quantity with a distinct useful period 

of shelf lifetime. 

• Under an AIFO dispatching policy, a discounted holding cost can be gained if a continuous and 

long-term rental contract is beneficial and hence further reduction in the total minimum cost per 

year can be achieved. 

 

5. Conclusion and further research  

In this paper, we have been concerned with the implications of dispatching policies associated with a 

two-level storage, where each lot is subjected to a 100 per cent screening. Three general EOQ models 

for items with imperfect quality ware presented and compared, and it has been shown that the 

solution to each inventory model, if it exists, is unique and global optimal. The first model underlies 

LIFO, the second model underlies FIFO and the third model relates to simultaneous consumption 

fractions associated with OW and RW and is entitled Allocation-In-Fraction-Out (AIFO). Items not 

conforming to certain quality standards are isolated in a separate facility with different holding costs 

of the good and defective items being considered.  

 

Under an AIFO dispatching policy, the cycle length is the same for both OW and RW, and consequently 

the upper-bound (cost applied if OW (RW) is idle) that renders AIFO the optimal dispatching policy has 

also been provided. When a LIFO (FIFO) policy is considered, the idle time has been found to be 

significant for a wide range of the control parameter values and free of charge, which is unrealistic and 

rare to encounter in practice. An AIFO dispatching policy not only overcomes this issue, but may also 

lead to a discounted holding cost. We have shown that the upper-bound is typically very small with 

respect to the minimum average holding cost per year incurred to store items in either warehouse.  

 

The analytical results illustrate the impact of considering different transportation costs associated with 

OW and RW as well as the incorporation of varying demand, deterioration, defective and screening 

rates on the optimal order quantity.  

 

This study is viable for fixed and random lifetimes of perishable products, where VOI is adopted to 

model a shelf lifetime of an item. The versatile nature of our models and the fact that they may reflect 
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a diverse range of strategies has been emphasised, where the validity of the general models are 

ascertained, i.e. the solution is the same as in published sources or in some cases produces better 

results. To the best of our knowledge, this seems to be the first time that such an Allocation-In-

Fraction-Out (AIFO) policy is presented, which necessitates a general formulation of LIFO and FIFO EOQ 

models for investigation and numerical comparison purposes.   

 

Further research can be addressed for finite or infinite planning horizons that may include extensions 

such as allowing for shortages, considering that the screening rate follows learning and forgetting 

curves and the risk of failure during screening (Type I and Type II errors). In addition, it seems plausible 

to assess the formulation of EOQ models for a two-level storage to consider multiple items or to study 

the effect of different supplier trade credit practices. 
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