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Abstract 

Atherosclerosis and its complications are responsible for more global deaths 

than any other disease. Atherosclerosis is a chronic inflammatory disease of medium 

and large arteries that can cause clinical complications such as myocardial infarction 

and cerebrovascular accidents. Current therapies against atherosclerosis mainly 

target the dyslipidemia associated with the disease and are associated with 

considerable residual risk for cardiovascular disease together with various side 

effects. In addition, the outcomes of clinical trials on many pharmaceutical agents 

against promising therapeutic targets have been disappointing. This has resulted in 

considerable recent interest on nutraceuticals in the prevention of atherosclerosis and 

as add-on with current pharmaceutical therapies. However, nutraceutical research has 

considerably lagged those on pharmaceuticals on two key aspects, large clinical trials 

and mechanistic insights. The latter forms the focus of this review in relation to the 

potential beneficial actions of polyunsaturated fatty acids as identified from pre-clinical 

studies. 
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Practical Applications 

 There is substantial recent interest in the use of nutraceuticals for the 

prevention and treatment of atherosclerosis. It is therefore important that the molecular 

mechanisms underlying their protective actions are fully understood and large clinical 

trials are carried out to evaluate their efficacy. Polyunsaturated fatty acids represent 

promising anti-atherogenic agents. This review illuminates on the mechanisms 

underlying their actions in relation to atherosclerosis as revealed from pre-clinical 

studies using in vitro and in vivo model systems.  
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1. Introduction 

Cardiovascular disease (CVD) is the leading cause of global morbidity and 

mortality [1]. According to the figures from the American Heart Association, CVD 

accounted for about 17.9 million deaths per year in 2015 and this is expected to 

increase to 23.6 million by 2030 [1]. The total direct medical costs of CVD are projected 

to increase to $749 billion in 2035 thereby imposing great burden on the health care 

system worldwide [1]. 

Atherosclerosis, a chronic inflammatory disorder of medium and large arteries 

associated with the accumulation of lipids and fibrous elements, is the major 

underlying cause of CVD [2-4]. Risk factors for the disease include smoking, 

hypertension, hypercholesterolemia, sedentary life style, diet rich in saturated fats, 

diabetes, obesity and genetic predisposition [2-4]. Such risk factors, particularly the 

accumulation of low-density lipoproteins (LDL) in the intima of medium and large 

arteries that subsequently undergoes modifications such as oxidation, cause 

endothelial cell activation or dysfunction leading to the secretion of chemokines and 

the expression of adhesion proteins on the cell surface [2-4]. The net result of these 

changes is the recruitment of immune cells, particularly monocytes, into the 

subendothelial layer of the intima, which then differentiate into macrophages [2-4]. 

Several different macrophage phenotypes have been identified with polarization often 

dependent on environmental factors such as the presence of specific cytokines [5-7]. 

Differentiation of monocytes into macrophages is accompanied by increased 

expression of scavenger receptors on the cell surface that are involved in the uptake 

of modified LDL, particularly oxidized LDL (oxLDL) [2-4]. The uptake of LDL by their 

cognate LDL receptors is under negative feedback regulation whereas that by 

scavenger receptors is not [8]. Thus, the uncontrolled uptake of modified LDL by 
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scavenger receptors together with other processes (e.g. macropinocytosis) causes 

the transformation of macrophages into lipid laden foam cells [8]. Macrophage lipid 

homeostasis is maintained by control of modified LDL uptake and efflux of cholesterol 

from foam cells [8]. This balance is compromised during atherosclerosis resulting in 

excessive uptake of modified LDL [8]. Accumulation of cholesterol is toxic to the cells 

and triggers a range of stress responses that ultimately results in the lysis of the cells 

by apoptosis and necrosis [8]. This leads to the deposition of lipids that causes the 

formation of a lipid-rich necrotic core [8]. In addition, there is defective clearance of 

apoptotic body (so called efferocytosis) [2, 8]. The accumulation of lipids such as 

cholesterol crystals causes the activation of the inflammosome in macrophages 

leading to increased secretion of pro-inflammatory cytokines such as interleukin (IL)-

1 and -18 [5, 7, 9]. This together with other pro-atherogenic changes results in a state 

of chronic inflammation that is regulated by a range of cytokines [5-9]. In particular, 

the cells of the adaptive immune system (e.g. T-cells, dendritic cells, B-cells etc) make 

a major contribution to the chronic inflammation in part via the production of such 

cytokines [4, 10-12]. However, the roles of different subtypes of the various classes of 

immune cells involved in the adaptive immune system is complex and not fully 

understood [4, 10-12]. For example, T-helper (Th1) cell responses are considered pro-

atherogenic and regulatory T cells (Treg) anti-atherogenic whereas the roles of Th2 

and Th17 cells is debatable [4, 10-12]. Similarly, B1a cells are athero-protective 

whereas B2 cells are pro-atherogenic [4, 11, 12]. To counteract the detrimental 

changes produced by the innate and the adaptive immune response, smooth muscle 

cells migrate from the media into the intima and produce extracellular matrix (ECM) 

that forms the plaque stabilizing fibrous cap [2-5]. Plaque stability is dictated by the 

production of ECM and its degradation by a range of proteases, particularly matrix 
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metalloproteinases, produced under inflammatory conditions [2-5]. Excessive 

degradation of ECM causes plaque rupture leading to thrombosis and subsequent 

clinical complications such as myocardial infarction (MI) and cerebrovascular 

accidents [2-5]. 

 Although all the different stages in the pathogenesis of atherosclerosis are 

potential targets for therapeutic intervention, current therapies mainly regulate lipid 

dysfunction [2]. Statins, inhibitors of a rate limiting enzyme in the biosynthesis of 

cholesterol (hydroxyl methyl glutaryl CoA reductase) with additional pleiotropic actions 

(e.g. acting in an anti-inflammatory manner), are widely used [2]. The impact of statins 

in the reduction of CVD morbidity and mortality has been demonstrated by several 

large clinical trials [2, 13]. However, statin therapy is associated with considerable 

residual risk for CVD along with various side effects in some patients [13]. From the 

various emerging therapies, some promise has been seen with ezetimibe, which 

inhibits intestinal absorption of cholesterol [14], monoclonal antibodies or small 

interfering RNA that target the protease proprotein convertase subtilisin kexin 9 

(PCSK9) [15, 16], which is involved in the degradation of the LDL receptor, and 

monoclonal antibodies against the pro-inflammatory cytokine IL-1b [17]. The use of 

monoclonal antibodies is expensive and has to be restricted to high risk patients; this 

also applies with approaches that manipulate the inflammatory response as this is 

likely to make an individual more prone to infections [17]. Unfortunately, many other 

pharmaceutical leads against promising targets have failed at the clinical level, 

including inhibitors against cholesterol ester transfer protein and phospholipase A2 

[18]. Such outcomes have therefore generated substantial interest in the use of 

functional foods or dietary supplements with health benefits beyond their nutritional 
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value (nutraceuticals) in the prevention of atherosclerosis or as add-on with current 

therapies such as statins [2, 3].  

 Diets that are rich in fruits, vegetables, fish and grains have been associated 

with cardiovascular health benefits [19]. For example, a recent CARDIVEG Study 

(Cardiovascular Prevention With Vegetarian Diet) showed that a lacto-ovo vegetarian 

diet was more effective at reducing LDL levels whereas a Mediterranean diet resulted 

in a greater reduction of triacylglycerol [20]. Several classes of nutraceuticals have 

been studied in relation to atherosclerosis, including polyunsaturated fatty acids 

(PUFAs), polyphenols, flavanols and probiotics [2, 3]. Unfortunately, research on 

nutraceuticals have lagged those on pharmaceuticals on two major aspects, large 

clinical trials and detailed mechanistic insights [2, 3]. The purpose of this review is to 

address our current understanding of the mechanisms underlying the actions of 

omega-3 and omega-6 PUFAs in atherosclerosis as identified from pre-clinical 

studies, particularly mouse model systems. Only brief mention will be made on the 

outcomes from clinical studies where the reader is directed to several recent reviews 

on this topic [2, 3]. Figure 1 summarizes the key atherosclerosis-associated processes 

where many of the PUFAs exert their beneficial actions. 

 

2. Protective actions of omega-3 PUFAs at multiple levels 

Omega-3 PUFAs are typically 18 to 22 carbon atoms in length with the first double 

bond beginning at the third carbon from the methyl end of the fatty acid structure (n3 

position) [2, 3, 21]. The three physiologically relevant omega-3 PUFAs are a-linolenic 

acid (ALA; 18:3), eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 

22:6) [2, 3, 21]. Mammals are not able to synthesize omega-3 PUFAs but can obtain 

them directly from diet (dietary ALA can be metabolized to EPA and then DHA) [2, 3, 
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21]. Several studies have indicated anti-atherogenic actions of omega-3 PUFAs either 

in the form of fish oils or flax seed oils or as individual fatty acids though evidence is 

particularly strong for long-chain omega-3 PUFAs such as EPA and DHA [2, 3]. These 

studies have highlighted protective effects at multiple steps in atherogenesis [2, 3]. 

For example, DHA reduced tumor necrosis factor-a induced adhesion of monocytes 

to endothelial cells in vitro that was in part due to attenuation of expression of vascular 

cell adhesion molecule-1 (VCAM-1) and the activation of nuclear factor-kappa B (NF-

kB), a key transcription factor implicated in the control of an inflammatory response 

[22]. In addition, EPA and DHA attenuated the oxLDL-induced expression of adhesion 

molecules in human endothelial cells via the protein kinase B pathway [23]. Such an 

anti-atherogenic action of omega-3 fatty acids on the expression of cytokines, 

chemokines and adhesion proteins is not just restricted to endothelial cells but also 

extends to macrophages and smooth muscle cells [2, 3, 24]. Thus, omega-3 fatty acids 

modulate several key cellular processes associated with atherosclerosis, including 

attenuation of chemokine-driven monocytic migration and monocyte adhesion to 

endothelial cells [24, 25], inhibition of modified LDL uptake by macrophages [26], 

stimulation of protective, M2 macrophage polarization [27] and suppression of smooth 

muscle cell migration [28]. 

 The anti-atherogenic actions of omega-3 fatty acids identified in numerous in 

vitro studies have also been seen in mouse models of atherosclerosis with effects on 

both the innate and adaptive immune system together with lipid metabolism and 

plaque stability. Two mouse model systems are commonly used for the investigation 

of atherosclerosis: apolipoprotein-E (apoE) deficient mice and LDL receptor (LDLr) 

deficient mice [2-5]. The typically slow spontaneous development of atherosclerosis 

in these mice can be speeded up by feeding them a western type high fat and 
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cholesterol containing diet [2-5]. EPA reduced atherosclerosis in both model systems 

and this was associated with decreased content of macrophages (less inflammation) 

and increased levels of smooth muscle cells and collagen indicative of plaque stability 

[29]. Other studies have also shown that omega-3 fatty acids ameliorate 

atherosclerosis in apoE-/- or LDLr-/- mice by reducing plasma cholesterol, monocyte 

recruitment to aortic lesions and favourably altering monocyte subsets by decreasing 

pro-atherogenic Ly6C(hi) levels [30]. In addition, EPA caused rapid regression of 

atherosclerosis in LDLr-/- mice by modulating the phenotype of dendritic cells together 

with reduction in the content of macrophages and CD4(+) T cells in plaques [31]. 

Interestingly, a study of patients awaiting carotid endarterectomy (n=121) that were 

randomized to consume control capsules or omega-3 PUFA ethyl ester capsules until 

surgery also showed that EPA content of plaque phospholipids was inversely 

correlated with the number of T cells in plaque (hence adaptive immunity responses) 

together with plaque inflammation and instability [32]. The anti-atherogenic actions of 

omega-3 fatty acids are not just restricted to fish oils, DHA or EPA. For example, 

dietary ALA reduced atherosclerosis in apoE-/- mice by decreasing T-cell driven 

inflammation [33]. The protective actions of omega-3 PUFAs also extend beyond 

atherosclerosis; for example, attenuation of aortic aneurysm development via 

inhibition of macrophage-mediated inflammation [34]. 

 Several mechanisms have been proposed for the actions of omega-3 PUFAs. 

These include: changes in the properties of membranes of cells involved in 

inflammation such as their fluidity and structure of lipid rafts; effects on signal 

transduction pathways leading to modulation of the action of key transcription factors 

(e.g. inhibition of NF-kB, activation of peroxisome proliferator-activated receptor-g) and 

associated changes in the expression of downstream genes (e.g. adhesion proteins, 
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cytokines, chemokines); production of lipid mediators such as resolvins and maresins; 

and activation of G-protein coupled receptor (GPR)-120 [35]. Most of these 

mechanisms have been identified from in vitro studies so their exact importance in 

vivo remains to be fully elucidated except in a few cases. For example, resolvins D2 

and E1 along with maresin 1 attenuate atherosclerosis in mouse model systems [36, 

37]. Similarly, GPR120 was identified as a receptor for omega-3 PUFAs and a 

selective agonist for this receptor shown to improve insulin resistance and chronic 

inflammation in obese mice [38]. However, PUFAs-mediated activation of leukocyte 

GPR120 in LDLr-/- mice was found to have a minimal effect on atherosclerosis [39].

 The promise that omega-3 PUFAs have shown in pre-clinical studies have not 

been consistently translated at the clinical level [2, 3]. The discrepancies in the 

literature are in part due to differences in the size and composition of the participants, 

gender, existing risk factors for CVD, intake of pharmaceutical drugs, ethnicity, the 

dose of agent and the duration of the intervention [2, 3]. Promising outcomes were 

shown in two open-label trials, the Gruppo Italiano per lo Studio della Sopravvivenza 

nell’Infarto (GISSI)-Prevenzione trial (11,324 patients who had suffered a recent MI) 

and Japan EPA Lipid Intervention Study (JELIS) (18,645 hypercholesterolaemic 

participants) [40, 41]. Despite a smaller recruitment to JELIS, The GISSI-Prevenzione 

trial showed significant reduction in all-cause mortality and cardiovascular death after 

a relatively short period (within one year) [42] suggesting a potentially major 

contribution of the anti-arrhythmic effects of long-chain omega-3 PUFAs. On the other 

hand, the JELIS trial showed significant reduction in cardiovascular outcome after a 

5-year follow-up period suggesting a major contribution of the anti-atherosclerotic 

properties of omega-3 PUFAs. However, both these studies were performed in a 

single country so differences in diet might have impacted the outcome.  
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Many smaller recent trials [e.g. Multi-Analyte, Genetic, and Thrombogenic Markers 

of Atherosclerosos (MAGMA) [43], Effect of Omega 3-Fatty Acids on the Reduction of 

Sudden Cardiac Death After Myocardial Infarction (OMEGA) [44] and Outcome 

Reduction with an Initial Glargine Intervention (ORIGIN) [45] have failed to identify any 

additional cardiovascular benefits of omega-3 PUFAs when taken in combination with 

traditional therapies. In addition, meta-analysis of 10 trials involving 77,917 individuals 

published this year failed to reveal any significant association between omega-3 fatty 

acids with fatal or non-fatal coronary heart disease (CHD) or any major vascular 

events [46]. Other recent meta-analysis has also shown modest reduction in cardiac 

death with greater benefit among higher-risk populations [47, 48]. A potential reason 

for the discrepancy between these recent trials and, for example, JELIS is the 

background dietary intake of omega-3 PUFAs (>1,000 mg/day in Japan compared to 

<300 mg/day in Western countries) together with the large differences in the doses of 

omega-3 PUFAs administered (300-900 mg/day in Western countries compared to 

1,800 mg/day in the JELIS trial) [49]. Indeed, many recent, smaller randomized control 

trials using higher dose omega-3 PUFAs (1,800 mg/day or more) have shown 

significantly decreased reduction in the progression of atherosclerosis along with 

cardiovascular outcomes in the intervention group compared to the controls [50-53]. 

Increased plasma levels of triacylglycerol are an independent risk factor for CVD 

[4]. High-dose EPA (>3,000 mg/day) has been found to reduce the levels of 

triacylglycerol-rich lipoproteins without increasing LDL-cholesterol together with 

additional cardiovascular benefits [2, 3, 54]. However, there has previously been a 

lack of large, multinational, randomized clinical trials that demonstrate that lowering of 

triacylglycerol levels beyond that seen with statins improves the outcomes of 

cardiovascular events [54]. Two large clinical trials are currently investigating this key 
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aspect. Reduction of Cardiovascular Events with EPA – Intervention Trial (REDUCE-

IT) is a randomized, double-blind, placebo-controlled trial of 8,000 participants at 

approximately 470 centres worldwide. The main aim of this trial is to determine 

whether icosapent ethyl, a highly purified ethyl ester of EPA, reduces ischemic events 

in patients that are currently taking statins but have high triacylglycerol levels [54]. The 

results from this trial are expected to be published this year. Another large international 

trial, STatin Residual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With 

Hypertriglyceridemia (STRENGTH), involving 13,000 patients, is investigating the 

effect of omega-3 carboxylic acids in combination with statins on participants with high 

triacylglycerol levels [55]. It is expected that this trial will be completed in 2019. 

Favourable outcomes in these two trials will clearly open new avenues for the use of 

omega-3 PUFAs in the prevention of CVD and as add-on with current therapies. 

 

3. The good and bad aspects of omega-6 PUFAs  

Omega-6 PUFAs have the final carbon-carbon double bond at the sixth bond from 

the methyl end (n6 position) [21]. Examples include linoleic acid (LA; 18:2), gamma 

linolenic acid (GLA; 18:3), dihomo-gamma-linolenic acid (DGLA; 20:3) and 

arachidonic acid (ARA; 20:4) [21]. In contrast to omega-3 PUFAs, omega-6 PUFAs 

such as ARA are precursors of potent pro-inflammatory molecules such as 

prostaglandins and leukotrienes [21]. Indeed, antagonistic actions have generally 

been attributed to omega-3 and omega-6 PUFAs in relation to the risk of CVD (anti-

atherogenic and pro-atherogenic respectively) [2, 3]. For example, in vitro studies 

have shown that the omega-6 PUFA ARA increased inflammation in endothelial cells 

and enhanced its ability to bind to monocytes [56], potentiated cytokine-induced 

inflammatory processes in smooth muscle cells [57] and increased the expression of 
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scavenger receptors in human monocytes [58]. The omega-6 PUFA: omega 3 PUFA 

ratio is generally regarded as a major contributor to CVD risk with a ratio of 4:1 

considered ideal for the prevention of the disease though this is debatable [59]. The 

excessive consumption of omega-6 PUFA-rich vegetable oils in developed countries 

has increased this ratio to 15:1 [60]. The importance of such a ratio in the development 

of atherosclerosis has been shown by several studies using mouse model systems. 

For example, Yamashita et al., [61] varied the omega-6:omega-3 PUFA ratios in apoE-

/-/LDLr-/- double knockout mice and found that the lowest ratio was the most effective 

in inhibiting atherosclerotic and thrombotic parameters. Low dietary omega-6:omega-

3 PUFA ratio was also associated with reduced expression of hepatic C-reactive 

protein, a marker of inflammation, in apoE-deficient mice [62]. In addition, reduction of 

dietary omega-6 PUFA: EPA plus DHA ratio in the LDLr-/- model system decreased 

many markers of inflammation, macrophage cholesterol accumulation and aortic 

lesion formation [63]. The role of endogenous omega-6: omega-3 PUFA ratios in 

atherosclerosis was elegantly demonstrated by Wan et al., [64] in apoE-/- deficient 

mice that expressed the fat 1 gene from Caenorhabditis elegans. The fat-1 transgenic 

mice express the enzyme omega-3 fatty acid desaturase that is capable of producing 

omega-3 PUFAs from omega-6 PUFAs so the ratio is close to 1:1 in tissues and 

organs. The studies showed a decrease in atherosclerotic lesions associated with 

inhibition of local and systemic vascular inflammation following lowering of 

endogenous omega-6: omega-3 PUFA ratio. The precise mechanisms for such 

detrimental actions of omega-6 PUFAs are unclear though they are believed to 

increase the production of pro-inflammatory eicosanoids, compete with omega-3 fatty 

acids, which produce less inflammatory derivatives, for the same rate limiting enzymes 

and increase oxidation of phospholipids on lipoprotein particles [60]. 
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Not all omega-6 PUFAs are pro-atherogenic. For example, GLA inhibited smooth 

muscle cell proliferation in vitro and attenuated the development of diet-induced 

atherosclerosis in apoE-/- mice [65]. Similar protective actions were observed for 

DGLA, an elongation product of GLA [66]. Supplementation of apoE-/- mice with DGLA 

was associated with increased acetylcholine-induced vascular inflammation and 

reduced plaque burden and lipid content, monocyte and macrophage numbers, 

migration of smooth muscle cells and the expression of intercellular adhesion protein-

1 and VCAM-1 [67]. The anti-atherogenic action of DGLA was attenuated by a non-

selective cyclooxygenase inhibitor naproxen [66]. 

The outcome on the impact of omega-6 PUFAs on CVD and related parameters 

from clinical studies have not been consistent. The Quantification of the Optimal 

n−6/n−3 ratio in the UK Diet (OPTILIP) study of 258 subjects investigated the impact 

of altering the ratio of omega-6 to omega-3 PUFAs [67, 68]. The study showed that 

decreasing the omega-6: omega 3 PUFA ratio to approximately 3:1 reduced plasma 

levels of triacylglycerol and produced favourable changes in LDL size without 

influencing hemostatic risk factors (e.g. fibrinogen, clotting factors VII and XII) and 

insulin sensitivity [67, 68]. Pooled data from 11 cohort studies involving 340,000 

individuals demonstrated a reduction of CHD with a low intake of saturated fats and a 

proportionally higher intake of omega-6 PUFAs [69, 70]. Similarly, a systematic review 

and meta-analysis of randomized controlled trials involving 13,614 participants 

showed reduced CHD events by consumption of PUFAs instead of saturated fats [71]. 

However, a meta-analysis of randomized controlled trials published last year 

suggested that replacing saturated fats with mostly omega-6 PUFAs was unlikely to 

decrease CHD events, CHD mortality or even total mortality [72]. In addition, a 

systematic review and meta-analysis involving 32 observational studies (530,525 
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participants) on dietary intake of fatty acids, 17 observational studies (25,721 

participants) of fatty acid biomarkers and 27 randomized control trials (103,052 

participants) of fatty acid supplementation failed to support cardiovascular guidelines 

that encourage high consumption of PUFAs and low consumption of saturated fats 

[73]. In relation to specific PUFAs, this study did find that EPA, DHA and ARA were 

associated with lower risk of coronary events [73]. The Nurses’ Health Study of 78,778 

US women over a 20 years follow-up revealed an inverse association between the 

intake of linoleic acid, an omega-6 PUFA, and the risk of CHD [74]. Similarly, a 

systematic review and meta-analysis of prospective cohort studies involving 310,602 

individuals showed that dietary linoleic acid was inversely associated with CHD risk in 

a concentration-dependent manner [75]. In addition, a population-based study of 

1,551 middle-aged men over a 15-year follow up showed protective effects of dietary 

linoleic acid and CVD risk and total mortality [76]. On the other hand, a study of 2,206 

healthy Japanese men found that serum omega-6 fatty acid levels produced 

unfavourable conditions such as CRP levels and arterial stiffness/wave reflection 

though this study did not directly determine plasma linoleic acid levels [77]. The 

discrepancies in the literature detailed above highlight the need for large, controlled 

clinical trials to evaluate the impact of omega-6 fatty acids on CVD.    

 

4. Conclusions 

Current therapies for atherosclerosis are associated with a substantial residual 

CVD risk and whilst there have been some recent successes on emerging therapies, 

many promising leads have failed at the clinical level. In addition, current therapies 

also suffer from other issues such as adverse side effects in some cases. Major recent 

interest has therefore been generated on the use of nutritional products, which are 
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known to have excellent safety profile, for the prevention of atherosclerosis and as 

add-on with current therapies. PUFAs represent promising nutraceuticals and indeed 

numerous pre-clinical studies highlighted in this review have shown beneficial actions 

of omega-3 PUFAs and some omega-6 PUFAs (e.g. DGLA) on multiple risk factors or 

cellular processes associated with atherosclerosis. However, mechanistic insight still 

remains relatively limited, so it is essential that this is addressed in the future 

particularly using doses that are in the physiological range and can be translated to 

humans. Indeed, the promise shown in pre-clinical research have not been 

consistently observed in human studies and the discrepancies probably reflects 

differences in the size of the cohort (mostly at the lower end), the dose and duration 

of the intervention, heterogeneity of the cohorts, background from current therapies 

and limited parameters studied. However, the outcome of the large REDUCE-IT and 

STRENGTH trials that are currently under way for omega-3 PUFA supplementation is 

likely to open several similar scale, controlled trials on other nutraceuticals such as 

some omega-6 PUFAs. The next few years indeed represent exciting for nutraceutical 

research, particularly on PUFAs. 
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Figure 1. Omega-3 and -6 PUFAs exert their actions on multiple steps involved 

in atherosclerosis 

 See text for details. 
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