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Abstract 

This research stems from the idea of introducing a fibre-network structure into composites 

aiming to enhance the stiffness and strength of the composites.  A novel new type of composites 

reinforced by a tranversely isotropic fibre-network in which the fibres are devided into 

continuous segments and randomly distributed has been proposed and found to have improved 

elastic properties compared to other conventional fibre or particle composites mainly due to 

the introduction of cross-linkers among the fibres. Combining with the effects of Poisson’s 

ratio of the constituent materials, the fibre network composite can exhibit extraordinary 

stiffness. A simplified analytical model has also been proposed for comparison with the 

numerical results, showing close prediction of the stiffness of the fibre-network composites. 

Moreover, as a plate structure, the thickness of the fibre network composite is adjustable and 

can be tailored according to the dimensions and mechanical properties as demanded in industry. 

 

Key words: Fibre-network composites, transversely isotropic, elastic properties, cross-linker 
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1. Introduction 

Fibre reinforced composites have been widely used in various fields for their attractive 

mechanical and physical properties with the wide choices of constituent materials and 

geometry structures. Numerous different structures of fibre composites, such as uni-directional 

fibre composites, cross-ply fibre composites, woven fabric composites and fibre laminates  etc., 

have been designed and applied primarily for their advantages in directional mechanical 

properties. However, the superior properties are achieved by sacrificing the properties in other 

axial or planar directions. In addition, it is inevitable in engineering that loads are applied to 

the inferior directions of the structure. This may increase the risk of crack propagation and, 

even worse, fracture. For instance, delamination [1] is a common problem for laminate 

composites due to the weakly bonded interfaces between plies. The similar problem also exists 

even for the randomly distributed fibre composites which are mostly isotropic [2] or 

transversely isotropic [3]. Some three dimensional numerical models [2-4] of short fibre 

reinforced composites have been proposed by many researchers with the most frequently used 

method of random sequential adsorption (RSA). However, overlap between fibres are usually 

avoided which makes it difficult to generate a model with a high volume fraction. Besides, the 

constraints among fibres in the conventional fibre composites are weak since they are only, or 

at most, in contact but without bonding connection, thus rendering large deformation  and easy 

pull-out [5] of fibres when subjected to load.   

It has been found that interpenetrating composites reinforced by a self-connected fibre-network 

have significantly enhanced mechanical properties, such as stiffness and strength, compared to 

their counterparts with discontinuously reinforced phase structures [6-11]. Apart from the 

improved mechanical properties, good thermal and electrical conductivities [12, 13] can also 

be an advantage for fibre network composites owing to the connected network of fibres. 
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Therefore, we aim to construct a 3D fibre network reinforced composite. In terms of the fibre 

network, Clyne et al. have conducted a series of thorough investigations towards bonded metal 

fibre networks both experimentally and analytically, involving work in the characterisation of 

the  network architecture and capture of independent elastic constants [14-19]. Some other 

research has also been done regarding to the mechanical properties of transversely isotropic 

fibre networks [20-23], such as metal fibre sintered sheet [24, 25]. However, when it comes to 

fibre network composites, much less has been conducted. A few experimental work was 

focused on metal matrix composites [26-28]. Jayanty et al. [10] have fabricated an auxetic 

stainless steel mat and a composite reinforced by the mat. Clyne et al. [14, 15, 19] have also 

included analysis of fibre network composites by introducing a strain reduction factor. 

However, no close form can be obtained from this analytical expression due to the complex 

architecture. Lake et al. [29] and Zhang et al. [30, 31] have proposed a 3D isotropic two-phase 

numerical model of collagen-agarose tissue in which a non-periodic Voronoi network is 

generated to represent collagen and a neo-Hookean solid to represent the matrix. The drawback 

of their model lies in that the fibres are assumed to be pin-jointed, the model is not periodic 

and the boundary conditions used in their model are not realistic. 

To the best of our knowledge, there is few simulation or analytic research work to study the 

mechanical properties of interpenetrating composites reinforced by a transversely isotropic 

fibre network due to the combined complexity of  fibre network architecture and coupling 

between the fibre network and matrix. This type of structure is frequently observed in 

bioscience such as cornea [32, 33] and cytoskeleton [34], and can be a promising structural 

material in engineering fields. Therefore, the main objective of this paper is to investigate the 

elastic properties of composites reinforced by a random transversely isotropic fibre network. 

In this paper, we have developed a code to automatically construct the periodic representative 

element (RVE) model for composites reinforced by a random transversely isotropic fibre 
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network,  then use the commercial finite elemet software ABAQUS to simulate how the fibre 

volume fraction affects the in-plane and out-of-plane elastic properties.  In addition, we have 

obtained analytical results from a simplified geometric model and compared the results of the 

transversely insotropic interpenetrating composites to those of the conventional composites. 

2. Numerical implementation 

2.1. Geometric model of transversely isotropic random fibre network 

Before applying finite element analysis (FEA), a periodic representative volume element 

(RVE) with a size of L L t× ×  is constructed for the interpenetrating composite.  The periodic 

transversely isotropic random fibre-network model with N complete fibres is generated within 

the same domain (i.e. L L t× × ) using a code similar to that developed to generate the 3D fibre-

network with cross-linking in reference [21].  Figure 1 shows a periodic representative volume 

element (RVE) of the interpenetrating composite reinforced by a self-connected and 

transversely isotropic random fibre-network containing 50 complete fibres, in which the fibres 

on the front, left and botton surfaces align with those on the back, right and top surfaces, 

respectively.  Thus a large-size interpenetrating composite can be made up by a number of 

identical RVEs. 
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Fig. 1.  A periodic representative volume element (RVE) of the composite reinforced by a 

transversely isotropic random fibre-network containing 50 complete fibres. 

 

In the interpentrating composite model shown in Fig. 1, the x-y plane projections of all the 

fibres are  straight lines, and their x-z and y-z plane projections are polylines.  For the projected 

straight lines of the fibres on the x-y plane, the coordinate of the centre point ( 0 x L≤ ≤ , 

0 y L≤ ≤ ),  the orientatation ( 0 θ π≤ ≤ ), and the length ( 0.8 1.2iL L L≤ ≤ ) are all specified 

by random numbers (from 0 to 1) generated automatically by the computer.   All the fibres are 

assumed to have the same diameter d.  The z coordinates of the polylines are determined by the 

building-up process, see [27] for details.  For two connected fibres, the overlap coefficient is 

defined as 1 /c dδ= − , where δ  is the distance between the centroidal lines of the two fibres. 

The density of the cross-linkers is defined as the number of connections of a fibre with those 

below it, and given as /C cN L l= , where cl  is the mean distance between any two 

neighbouring connections of a fibre with those below it.  The maximum inclination angle of 

the segments in a polyline is limited to be smaller than  21.5°.  It is noted that in reference [27], 

only two fixed values of the fibre overlap coefficients, i.e. 0.05c =  and 0.6c = , are 
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considered; while in this paper, the value of fibre overlap coefficient is not a constant, but 

always increases with the volume fraction of the fibre-network or the density of cross-linkers 

as given by  � = 0.025(	
 + 1).  For a RVE model containing N complete fibres, its thickness 

t depends on the density of crosslinkers and can be determined during the construction process 

of the fibre-network model.   By taking account the overlap parts between the connected fibres, 

the volume fraction of the fibre-network can be obtained and given in Equation (1) and (2).  

For RVEs with 200 complete fibres (i.e. N=200) and a size of L L t× × , Figure 2 shows how 

the density of cross-linkers affects the thickness t and the volume fraction of the fibres, where 

L=100mm, d=1mm, and the mean length of complete fibres is L. 

�� = ∑ ��� × (14���) − ∑ �������� ����� L × L × !  
(1) 

Where, 

��� = �"(#�(2 − �) + 2#�(1 − �))4 sin '��
× (arctan -#�(2 − �)1 − � . − (1− �)#�(2 − �)/ 

(2) 

where �� are the fibre lengths, 	 is the number of fibres and � is the diameter of the circular 

cross section of a fibre. '�� and ���   are, respectively, the angle and the overlap volume between 

the two connected fibres at the 0th crosslinker of fibre i.   
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Fig. 2. Effects of cross-linker density, 	
 , on RVE thickness t and fibre volume fraction fV  of 

fibre-network with aspect ratio L/d = 100. 

 

2.2. RVE model of fibre-network reinforced composite 

We have performed a large number of numerical tests and found that for each of periodic RVE 

models containing 50 complete fibres, as shown in Figure 1, its in-plane elastic properties are 

far from isotropic because the number of complete fibres is too small.  To mesh both the matrix 

and fibres into solid tedraheral elements for such a model, the total number of elements is 

between 1~2 millions.  Because of the very complex interfaces between  the fibres and matrix, 

it is very difficult to mesh the matrix and all the fibres into solid tetrahedral elements for the 

RVE models. What’s worse, such a large number of elements dramatically increases the pre-

processing time and slows down the computing speed in simulations. Due to the above reasons,  

we use periodic RVE models containing 200 complete fibres, as shown in Fig. 3, and mesh the 
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matrix into a large number (varying from 20000 to 230000 depending on the thickness of RVE) 

of 8-node solid brick C3D8R elements and the fibres into around 60000 Timoshenko 2-node 

beam B31 elements, and then use the commercial finite element software ABAQUS [28] to 

perform the simulations. The cross-linkers are represented by an inserted beam element and 

the diameter is assumed to be the same as that of the fibres.   

 

 

Fig. 3.  Periodic RVE geometric model of composite reinforced by a transversely isotropic 

random fibre network containing 200 complete fibres, where the matrix is partitioned into brick 

elements and the fibres are partitioned into Timoshenko beam elements. 

 

The periodic fibre-network RVE with 200 complete fibres (i.e. N=200) and a size of  

100mm× 100mm × ! (i.e. �=100mm and ! varies according to the cross-linker density 	
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for models with different volume fractions, see Fig. 2) is constructed in MATLAB and then 

imported into ABAQUS. In ABAQUS, a solid RVE with exactly the same size 100mm×
100mm× ! is created to represent the matrix. To assemble the fibre-network and the matrix 

together, constraints are applied to the corresponding nodes in the matrix and the fibre-network 

to ensure that they have the same translation so as to transfer load between fibres and matrix. 

One common method is the Embedded Element Method (EEM), in which each node in fibre 

network will be coupled with the nodes of the coinciding element [35]. However, this method 

cannot be applied to our model because over-constraint occurs when both periodic boundary 

condition and embedded element method are applied to the matrix nodes on the the boundary 

of the RVE simultaneously.  Therefore, another method, the automatic searching & coupling 

(ASC) technique proposed by Lu et al. [2], has been adopted in this model to avoid the conflict. 

The ASC technique involves node searching and coupling procedures, in which the closest 

matrix node is found out for each node on the fibre network and the translational freedom 

degrees of the corresponding fibre node and matrix node are coupled. By this way, all the 

corresponding nodes will be coupled and constrained for mechanical analysis. Another 

advantage of applying the ASC technique is reflected when it comes to meshing, that is no 

complex meshing is needed for the matrix thus saving the time in mesh generation and 

computing.  As the RVE model of the fibre-network composite shown in Fig. 3 is periodic, 

periodic boundary conditions are applied to the RVE model in simulations. The mechanical 

properties of the matrix are exactly the same as what they are, while the Young’s modulus of 

fibres is modified as ( )f mE E−  because of the overlap between the fibre-network and the 

matrix, where fE  and 
mE  are the Young’s moduli of the fibres and matrix, respectively [2]. 
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2.3.  Mesh size sensitivity 

Different matrix mesh sizes have been tested for models with fibre volume fractions of 9% and 

30% respectively, and the in-plane and out-of-plane Young’s moduli and Poisson’s ratios have 

been listed in Table 1. The convergence of both the in-plane and out-of-plane moduli in Fig. 4 

gives us a more transparent vision of mesh sensitivity of the results. Taking the computing 

precision and efficiency into consideration, matrix mesh size of 1.5 mm×1.5 mm×0.6 mm 

through the x, y and z directions has been chosen for the following analysis. With this element 

mesh size and RVE size of 100mm× 100mm× !, the number of solid C3D8R elements in 

matrix varies from 20000 to 230000 depending on the thickness of RVE. Besides, the number 

of  Timoshenko beam elements (B31) in fibres is around 60000 with the fibre mesh size of 1 

mm.    

Table 1. Mesh size effect on the in-plane and out-of-plane Young’s moduli and Poisson’s ratios of RVE. 

Elastic properties Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6 

Size of elements 
(mm× mm×mm)  

4×4×1 
1.5×1.5×

0.8 

1.5×1.5×

0.6 

1.25×1.2

5×0.6 
1×1×0.5 

0.8×0.8×

0.4 

9%(��) 

2�� 4.37 3.99 3.86 3.8 3.74 3.7 

2"" 1.89 1.71 1.565 1.54 1.5 1.48 

3�� 0.339 0.337 0.336 0.335 0.335 0.334 

3"� 0.094 0.096 0.097 0.098 0.1 0.101 

30%(��) 

2�� 12.4 12.01 11.9 11.88 11.86 11.87 

2"" 4.15 3.81 3.55 3.46 3.45 3.4 

3�� 0.291 0.288 0.332 0.331 0.329 0.328 

3"� 0.039 0.041 0.041 0.041 0.042 0.042 
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Fig. 4. Mesh size effects on the mean in-plane and out-of-plane Young’s Moduli for 10 RVEs of 

composites with fibre volume fractions of 9% and 30%, respectively. 

2.4. Fibre element type effect 

The results in table 1 and Figure 4 are based on the analysis of RVEs with beam elements 

applied to the fibres and solid elements to the matrix. As mentioned before, the ASC Technique 

has been adopted to constrain every single node of the beam elements within the corresponding 

solid element in matrix. This method tremendously reduces the complexity of pairing the 

coincident nodes on fibres to those in the matrix. However, it has to be aware that there are 

limitations to this technique. The biggest concern lies in that additional stiffness/flexibility 

might be added to the RVE. Therefore, it is necessary to investigate the difference introduced 

by the application of beam elements to fibres compared to solid elements.  
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Ten RVEs which each contains 50 complete fibres were generated with the density of cross-

linkers 		
 = 15, overlap coefficient c = 0.4 and aspect ratio 	� � = 30⁄ . Beam and solid 

elements were respectively applied to fibres in the the same RVE models while keeping the 

other conditions the same.  The value of 2� 27⁄  is assumed as 100 and Poisson’s ratios of fibres 

and matrix are kept the same as 0.3. A uniaxial tensile/shearing strain of 0.001 was applied to 

the RVE models and the corresponding reaction force was recorded. Table 1 lists the mean 

results of the five independent elastic constants with two different element types. 2�� and	8"� 

of RVEs with beam elements show smaller values than those of RVEs with solid elements 

whereas 2"" of RVEs with beam elements is larger than that of RVEs with solid elements. It 

can be calculated that the difference between the stiffnesses with the two different element 

types is around 15%. One unavoidable problem is computing efficiency. When solid elements 

is adopted, the number of elements in a RVE reaches 1-2 millions or even larger depending on 

the dimensions of fibres, which is really time-consuming and unaffordable for a research 

involving several hundreds of such RVEs. Therefore, it can be a good choice to use beam 

elements in consideration of feasibility, efficiency and accuracy in computation. This is also 

how most other researchers deal with complex fibre reinforced composites.  

 

Table 1. The independent elastic properties of RVE with beam and solid fibre element types, 

respectively, in which the density of cross-linkers		
 = 15, overlap coefficient c = 0.4 and 

aspect ratio � � =⁄  30. The values are averaged for 10 RVEs. 

Fibre element type 2�� 3�� 2"" 3"� 	8"� 

Beam 2.496059 0.225184 1.383805 0.207891 0.466779 

Solid 2.862772 0.190082 1.142895 0.127317 0.526806 

 



  

13 
 

2.5. Transverse isotropy of RVE 

In order to evaluate the transverse isotropy, we simulated 10 models which each has 200 

complete fibres,  the density of cross-linkers		
 = 11, the overlap coefficient � = 0.3 and the 

aspect ratio	� � = 100⁄ .   

Table 2. lists the Young’s moduli, shear moduli and Poisson’s ratios, and shows that the mean 

values of Young’s moduli and the Poisson’s ratio for 10 models are almost identical in the x 

and y directions (i.e. 
11 22

E E=   and 
12 21

ν ν=  ).  In addition, the results also show that the shear 

modulus, Young’s modulus and Poisson’s ratio in the x-y plane meet the reationship 

12 11 12
/ [2(1 )]G E ν= + . Moreover, 

13 23
G G= , 

13 23
ν ν=  and 

31 32
v ν=  with the largest error less 

than 5%.  These all suggest that the random fibre network composite structure is transversely 

isotropic and only five independent elastic constants,	2�� , 3��, 	2"" , 	3"� and	8"�, are needed 

for full elastic analysis. 

 

Table 2. Young’s moduli, Poisson’s ratios and shear moduli of 10 RVEs with density of cross-

linkers 	
  = 11, overlap coefficient c = 0.3, number of complete fibres  N = 200, and aspect ratio 

L/d = 100. The volume fraction is 9%. 

 2�� 3�� 3�" 2�� 3�� 3�" … 

01 3.874956 0.313329 0.245138 3.833344 0.309964 0.248317 

… 

02 3.972831 0.338440 0.235412 3.702278 0.315392 0.242851 

03 3.960358 0.373321 0.226916 3.374779 0.318121 0.243142 

04 3.777534 0.361487 0.227803 3.546943 0.339420 0.233979 

05 3.624164 0.329107 0.239986 3.838568 0.348577 0.234099 

06 4.245049 0.354521 0.233621 3.498124 0.292142 0.249743 

07 3.549718 0.298000 0.254791 3.896780 0.327136 0.245870 

08 3.797864 0.310732 0.245548 3.941230 0.322462 0.240366 
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09 3.989732 0.324433 0.241150 3.779278 0.307320 0.246934 

10 3.861258 0.360456 0.231369 3.452893 0.322335 0.240102 

Mean 3.865346 0.336383 0.238173 3.686422 0.320287 0.242540 

… 
Std. 0.197312 0.025311 0.008820 0.202581 0.016048 0.005491 

 

 2""  3"� 3"� 	8�� 	8�" 	8"� 

01 1.562067 0.098820 0.101188 1.392429 0.454912 0.452931 

02 1.579220 0.093577 0.103589 1.439120 0.453450 0.456408 

03 1.560705 0.089424 0.112444 1.484580 0.448540 0.457150 

04 1.575962 0.095038 0.103961 1.525346 0.452607 0.456802 

05 1.565345 0.103655 0.095464 1.468601 0.455882 0.452770 

06 1.570637 0.086438 0.112133 1.433872 0.449030 0.460255 

07 1.531894 0.109956 0.096656 1.344693 0.452540 0.447162 

08 1.576973 0.101958 0.096176 1.410652 0.455451 0.453879 

09 1.567528 0.094746 0.102420 1.406203 0.451545 0.453021 

10 1.560764 0.093522 0.108530 1.459255 0.448647 0.456727 

Mean 1.565110 0.096713 0.103256 1.436475 0.452260 0.454711 

Std. 0.013519 0.006999 0.006245 0.051342 0.002785 0.003582 

  

3.  Numerical results 

3.1. Elastic behaviours of fibre network composites 

By using periodic boundary conditions and imposing a tensile or shear strain of 1‰ to the 

RVEs with 200 complete fibres, aspect ratio L/d=100, the same Poisson’s ratios 3� = 37 =
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0.3 and various values of 2� 27⁄ (=100, 50, 10, 5), the results of the five independent elastic 

constants in terms of fibre volume fraction, respectively, have been obtained and shown in Fig. 

5, where 2�� , 2""  and 	8"�  are normalised by 27 .  As can be seen, the in-plane Young’s 

modulus 2�� , out-of-plane Young’s modulus 2""  and shear modulus 8"� all increase as the 

fibre volume fraction increases, which indicates that both tensile and shear stiffnesses can be 

improved by raising the volume fraction of the fibre network. Specifically, 2�� shows a linear 

relation with the fibre volume fraction f
V  while 2""  appears as a quadratic function of f

V  

when the fibre volume fraction f
V  is still less than 0.4, and then becomes a linear function of 

f
V . 8�"	indicates a similar relationship with the volume fraction as 2"" .  In terms of Poisson’s 

ratio, it can be seen from Fig. 5 (b) and (d) that 3�� slightly fluctuates around 0.3, which is 

about the same value as 3� or 37, for different fibre volume fractions while 3"� decreases as 

the fibre volume fraction increases.  In addition, there is no doubt that 2��, 2""  and	8"� are 

increased with larger value of 2� 27⁄ . However, 3�� seems not affected by changing the value 

of 2� 27⁄  whereas 3"�decreases with the increase of 2� 27⁄  and f
V .  In the case when both 

the value of 2� 27⁄  and volume fraction f
V  become sufficiently large, 3"� tends to reach 0,  

which suggests that the out-of-plane tension/compression introduces almost no effect on in-

plane expansion under this condition.  However, this may not be true because if solid elements 

are used to model the fibres when f
V  is very large, the value of , 3"�  should be largely 

dependent on the Poisson ratio of the fibre material 3�. 
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(a) 

 

(b)  
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 (c) 

  

(d) 
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(e) 

Fig. 5. Effects of fibre-network volume fraction on (a) in-plane Young’s modulus 2��, (b) in-

plane Poisson’s ratio 3��, (c) out-of-plane Young’s modulus 	2"", (d) out-of-plane Poisson’s 

ratio	3"� and (e) out-of-plane shear modulus 	8"� of composites with the aspect ratio L/d = 100 

and same Poisson’s ratios 3� = 37 = 0.3. All the Young’s moduli and shear moduli are 

normalised by 27. 

3.2. Comparison of the in-plane and out-of-plane elastic properties 

Figure 6 presents the re-organised data from Fig. 5 for composites with Poisson’s ratios 3� =
37 = 0.3  and the ratio of 2� 27 = 50⁄  and 10, respectively. Also, 2�� , 2""  and 	8"�  are 

normalised by 27.  The results in Fig. 6 indicate that the in-plane Young’s modulus 2�� is 

higher than the out-of-plane Young’s modulus	2"" .  Moreover, the larger the volume fraction 

is, the bigger the difference between the in-plane Young’s modulus and out-of-plane Young’s 

modulus is.  The in-plane Young’s modulus can be 3 times the out-of-plane Young’s modulus 
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when the fibre volume fraction reaches approximately 50% and the ratio of 2� 27 = 50⁄  (see 

Fig. 6(a)). Fig. 6 (b) shows that the out-of-plane Poisson’s ratio 3"�	is always smaller than the 

in-plane Poisson’s ratio 3�� and the difference between the out-of-plane and in-plane Poisson’s 

ratios is getting larger as the volume fraction increases since the in-plane Poisson’s ratio 

remains constants whereas the out-of-plane Poisson’s ratio decreases with the increase of the 

fibre volume fraction. Besides, the in-plane shear modulus 	8��  and out-of-plane shear 

modulus 	8"� are also compared in Fig. 6(c). It can be seen that the in-plane shear modulus is 

also always larger than the out-of-plane shear modulus and, for instance, the in-plane shear 

modulus is almost 5 times the out-of-plane shear modulus when the fibre volume fraction 

reaches approximately 50% and the ratio of 2� 27 = 50⁄ . 

 

(a) 
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(b) 

 

(c) 
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Fig. 6. Comparison of the in-plane and out-of-plane elastic properties of composites with 

2� 27 = 10⁄  and 50: (a) in-plane and out-of-plane Young’s moduli, (b) in-plane and out-of-

plane Poisson’s ratios, (c) in-plane and out-of-plane shear moduli. All the Young’s moduli and 

shear moduli are normalised by 27.  

3.3. Effect of Poisson’s ratio on the elastic properties 

Poisson’s ratio is a crucial parameter for the mechanical properties of composites [11, 36]. The 

effective elastic properties of fibre-reinforced composites are significantly dependent on the 

Poisson ratios of fibres and matrix. It is well known that the Poisson ratios of most conventional 

solid materials range from 0.1 to 0.4 and this range can be extended to (-1, 0.5) for some 

isotropic materials or designed structures. For instance, re-entrant open-celled foams could 

have a Poisson’s ratio close to −1; rubber and low density open-celled foams possess a 

Poisson’s ratio close to 0.5 [36]. 

In order to explore the influence of Poisson’s ratio alone on the elastic properties of the 

composites, the ratio of  2� 27⁄   is kept constant (e.g. 100 here) while different combinations 

of Poisson’s ratios, either positive or negative, are adopted (i.e.3� = 0.05	&	37 = 0.495,3� =
0.3	&	37 = 0.3,3� = 0.495	&	37 = 0.05 and 3� = 0.495	&	37 = −0.8). The effects of the 

Poisson ratios on the relationships between 2��, 3��, 	2"" , 	3"�		and 	8"�, respectively, and the 

fibre volume fraction are shown in Fig. 7 (a)∼(e), where 2��, 2"" and	8"� are normalised by 

27.  

For the in-plane Young’s modulus 2��, the proportional increasing tendency seems not affected 

by the choice of different combinations of the Poisson ratios. Specifically, there is no difference 

for the situations 3� = 0.3		&		37 = 0.3  and 3� = 0.495		&		37 = 0.05 , whereas the 

combination between 3� = 0.05		&		37 = 0.495 shows a slightly higher value than the former 
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two situations. However, we have also noticed that the choice of negative Poisson’s ratio (down 

triangle dot curve) can remarkably increase the in-plane Young’s modulus compared to the 

combinations between positive Poisson’s ratios.  This inspires us of a method to enhance the 

elastic modulus during the material design.  

As for the out-of-plane Young’s modulus	2"" , positive Poisson’s ratios can also dramatically 

affect its magnitude, not to say negative Poisson’s ratios.  It can be seen from Fig. 7(c) that 

	2""  with the case of 3� = 0.05	&	37 = 0.495 indicates a smaller value than that of 3� =
0.495	&	37 = −0.8 when the volume fraction is less than around 10% and then surpasses and 

increases faster than the later as the fibre volume fraction arises. Still, the situations when 3� =
0.3	&	37 = 0.3 and 3� = 0.495	&	37 = 0.05 demonstrate almost identical results in 2"" . 

When the in-plane and out-of-plane Poisson’s ratios (3��	and 3"� ) of the composites are 

compared, we can see that both are affected by different combinations of fibres and matrix 

Poisson’s ratios. However, 3��	shows a smaller variety (0.2∼0.5) than 3"� (0∼0.5) for positive 

fibres and matrix Poisson’s ratios. For the scenario of composites with negative matrix 

Poisson’s ratio, 3�� varies from −0.6 to 0.2 while 3"� ranges from −0.6 to 0. Therefore, we can 

design the geometry with the expected effective in-plane and out-of-plane Poisson’s ratios 

varying from negative to positive. It is also noticed that the out-of-plane shear modulus	8"� 

does not change significantly as the Poisson’s ratios change within the positive range whereas 

negative Poisson’s ratios drastically improve	8"�.  
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(a) 

  

(b) 
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(c) 

  

(d)  
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(e) 

Fig. 7. Effects of  fibre volume fraction on the elastic properties (a)	2��, (b)	3��, (c)	2"", (d)	3"� 

and (e)	8"� of composites with different combinations of Poisson’s ratios. All the Young’s 

moduli and shear moduli are normalised by 27. 

4. Analytical results 

Based on the simiplified geometry model (see Figures A1 and A2 in the Appendix) and by 

application of the fixed value of 	2� 27⁄ =100 and different combinations of the Poisson ratios 

(i.e. 3� = 0.05	&	37 = 0.495 , 3� = 0.3	&	37 = 0.3 , 3� = 0.495	&	37 = 0.05  and 3� =
0.495	&	37 = −0.8), the analytical results for the relationships of 2��, 3��, 2""  and 3"� are 

obtained, respectively, in terms of the fibre volume fraction in Fig. 8 (a)~(d).  

On the whole, the analytical results in Fig. 8 agree well with the simulation results in Fig. 7 in 

respect of the trend of each curve and the relative relation among curves under different 
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combinations of Poisson’s ratios. For example, both 2�� and 2"" , when 3� = 0.3	&	37 = 0.3 

and 3� = 0.495	&	37 = 0.05 are applied seperately, have shown almost identical values;  2"" 

under the case of 3� = 0.05	&	37 = 0.495  indicates a smaller value than that of 3� =
0.495	&	37 = −0.8 when the volume fraction is less than around 10% and then surpasses the 

later as the volume fraction arises; all the elastic moduli increase with the fibre volume fraction.  

However, it is also noted that the numerical and analytical results do have some disagreement, 

especially for the relative relations when the volume fraction is very large (i.e. larger than 

around 25%) or very small (i.e. less than around 5%). Besides, the analytical results in Fig. 8(c) 

have revealed that 2""  increases as a linear relation with the fibre volume fraction when 

0 .1 5
f

V < , and then becomes a parabolic function when 
f

V  is larger, while the simulation 

results of   2""  always remains an approximate linear linear relation with 
f

V .  In general, the 

numerical results agree with the analytical results on condition that the volume fraction is 

neither too large nor too small and the numerical results can be reliable in predicting the trend 

and relation between the elastic properties and volume fraction under the influence of Poisson’s 

ratios. 
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(a) 

 

(b) 
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(c) 

 

 (d) 



  

29 
 

Fig. 8. Analytical results of the effects of Poisson’s ratios on the effective elastic properties of 

composites (a) 2��; (b) 3��; (c) 2""; (d) 3"�. All the Young’s moduli and shear moduli are 

normalised by 27. 

 

5. Discussion 

In order to demonstrate the superior elastic properties of this new type of 3D transversely 

isotropic fibre-network reinforced composites, we compared the in-plane and out-of-plane 

Young’s moduli with the experimental [10, 37-40] and numerical [2, 3, 41-43] results of other 

conventional fibre or particle composites (see Table 3 and Fig. 9). When compared to the 

simulation results of two transversely isotropic fibre composites without any intersections 

among the fibres, one with inclined randomly distributed short straight fibres [3] and the other 

with curved planar randomly distributed short fibres [41], both the in-plane and out-of-plane 

stiffnesses of the proposed composite indicate significantly larger values. Further comparison 

with the cross-ply composites [37] has been conducted and our designed composites still 

demonstrates superior in-plane stiffness to the later. Besides, the novel fibre-network 

composites demonstrates much larger in-plane stiffness than particle composites (Glass/epoxy 

[39] and Particle/matrix [42]). These results verified the expectation of the elastic properties of 

this novel structure, that is, with the intersections among fibres, the network can greatly 

enhance the stiffness of the composites. 

The in-plane Young’s modulus of our proposed composite is also compared with both the 

experimental results [38] and FEA results [2] where all the fibres in the composites are 

randomly distributed in parallel to the transverse plane (i.e. the x-y plane). By applying the 

same materials properties (2�=75GPa, 27=1.6GPa, 3�=0.25 and 37=0.35) as given in [2], the 

relationship between 2�� and the fibre volume fraction of our new type of composites has been 

obtained and demonstrated in Fig. 9 together with the experimental results and FEA results for 
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comparison. All the results have demonstrated an approximately proportional tendency, which 

is consistent with the numerical results of 2�� shown in Fig. 5(a). As can be seen in Fig. 9, the 

values of the in-plane Young’s modulus of our proposed composite are larger than the 

experimental results [38] and FEA results [2] under the same volume fraction. It should be 

noted that all fibres are straight and planar randomly distributed in [2] and [38] whereas the 

fibres are curved and the fibre segments are inclined out of the transverse plane in our fibre-

network composite. Similarly, the transversely isotropic composite architecture studied in [40] 

(experimental study) and [43] (numerical analysis) is composed of fibres which are physically 

overlaid on each other [43] and intersections among fibres are ignored. The in-plane stiffness 

of our proposed composite also exhibits a larger value than both the experimental and 

numerical results. In addition, the proposed composite has been compared with the similar 

composite reinforced by a fibre network mat [10]. As shown in Fig. 9, the proposed fibre 

network composite still illustrates larger stiffnesses. This is possibly due to the difference in 

in-plane curvatures of fibres, which are straight in the proposed model and curved in [10]. This 

is consistent with a conclusion drawn in [43] that the Young’s modulus decreases as the fibre 

curvature increases. 

To conclude, the reason why our composite structure has a larger stiffness can be attributed to 

the introduction of cross-linkers between the fibres in the composites. Besides, there is no doubt 

that the cross-linkers along the out-of-plane direction in the fibre-network composites also 

render a superior out-of-plane stiffness to planar random fibre composites. Therefore, it is 

conjectured that both the in-plane and the out-of-plane stiffnesses of our new type of composite 

are superior to those of planar random fibre composites.  
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Table 3. Stiffness comparison between this research and others’ experimental and numerical 

results.   

Composites Vf(%) 2�  (GPa) 27 (GPa) 3� 37 
Stiffness 

2�� (GPa)  

Stiffness 

2""  (GPa)  

Cross-ply [37] 43 193 0.7 0.3 0.3 29 - 

This research 41.9 193 0.7 0.3 0.3 33.36 - 

Short fibre [3] 13.5 70 

70 

3 

3 

0.2 

0.2 

0.35 

0.35 

6.8656 5.7658 

This research 13.7 10.2261 7.1698 

Short curved 
fibre [41] 

35.1 70 3 0.2 0.35 14.47 9.49 

This research 34.3 70 3 0.2 0.35 17.15 12.31 

Glass/epoxy 
[39] 

31 69 3 0.15 0.35 5.3 - 

This research 32 69 3 0.15 0.35 10.3765 - 

Particle/matrix 

[42] 
20 450 70 0.17 0.3 96 - 

This research 20.2 450 70 0.17 0.3 105.4307 - 

 

 
Fig. 9. Comparison of several results of Young’s modulus 2�� in terms of volume fraction. 
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6. Conclusions 

A novel transversely isotropic composites reinforced by a self-connected fibre network has 

been successfully constructed and simulated to obtain the elastic properties.  The simulation 

results are compared to the analytical results and other relevant experimental and FEA results.  

It is found that both the in-plane and out-of-plane stiffnesses of the new type of composites are 

superior to those of other types of transversely isotroipic fibre-reinforced composites in which 

the fibres are not self-connected. It is also found that the combination of the Poisson ratios of 

the constituent materials could significantly affect the overall elastic modulus and Poisson’s 

ratio of the composites. The analytical exploration of the simplified model has also shown a 

good agreement with the numerical results under moderate fibre volume fractions. Another 

advantage of this new type of composites lies in that the self-connected fibre-network, as a 

whole single ply, can dramatically minimise the delamination among fibres and thus prevent 

crack initiation and propagation. As a plate structure,  the thickness of the fibre network 

composite is adjustable and can be tailored according to the dimensions and mechanical 

behaviours demanded in industry. The new structure can also simplify the manufacturing 

process while maintaining improved mechanical behaviours especially in the through-

thickness direction.  

 

Appendix:   An Analytical Model 

A1 Geometrical and mechanical model 

Based on the simulation results of the elastic properties of the fibre network reinforced 

composites, we also aim to obtain analytic results for comparison. Since the fibres are randomly 

distributed, it increases the complexity and difficulty of deducing the theoretical expressions, 
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not to mention the structures with two phases. Therefore, for simplification and similarity, a 

simplified scaffold alike model has been proposed for analysis as shown in Fig. A1. The fibre 

network consists of several layers of fibres that are in parallel to the x-y plane, in which half of 

the fibres are oriented in the x direction and and the other half in the y direction respectively. 

Moreover, the connected fibres are overlaped to some extent which is determined by the 

overlap coefficient �. Also,  the cross section of each fibre is set as a square with side length of 

� for the sake of predigesting analysis and the error caused by the cross section difference is 

likely to be neglectable when the fibres are slender (i.e. the aspect ratio of fibre is sufficiently 

enough). Therefore, the overlap thickness between two fibres will be ��. For a geometry model 

with fibre length of � and cross-linking concentration of 	
 , the length of each fibre segment 

will be =
 = � 	
⁄ .  By this way, a regular fibre network with cross-linking has been generated 

and the volume fraction of fibres can be controled by adjusting the values of 	
 and �. Then 

the matrix fills in the gap of the fibre network in three dimensions to make it a complete 

composite structure. Although the simplified geometry model is not strictly transversely 

isotropic as the fibres are along either the x direction or the y direction, the mechanism of 

deformation under axial loading is still similar and can be referential to this type of fibre 

network reinforced composites, including the geometry model we proposed with stochastical 

fibres.  
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Fig. A1. A simplified geometry model of the fibre network reinforced composites with aligned 

fibres distributed along x and y directions.  

 

Fig. A2. A representative volume element (RVE) of the simplified geometry model.    

 

In consideration of the periodicity of the simplified structure, a representative volume element 

(RVE) of it can be selected to simplify the analysis as shown in Fig. A2. The dark blue blocks 
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with square cross section represent fibres and the rest light green block represents the matrix. 

Besides, due to the existing verlap between the connected fibres, which renders the cross 

section of fibres more complex at the joints, the whole RVE has to be devided into 20 blocks 

as indicated with dash lines in Fig. A2. The interfaces between fibres and matrix are assumed 

to be perfectly bonded and we only consider the normal stresses within the 20 cuboids and the 

compatibility conditions on the outer surfaces while ignoring the shear stresses and the 

compatibility conditions on the interfaces of the blocks [36]. Thus when a uniaxial load is 

applied in the x, or y,  or z direction, only the three normal stresses on the surface of each bock 

will be taken into account and the three normal stresses inside of each cuboid are assumed to 

be constants. The RVE is not only periodic, but also symmetical in the z direction.  Therefore 

there are 6 different normal stresses (i.e. >?@,	>?A,	>?B,	>?C,	>?D and	>?E) in the x direction, 6 

different normal stresses (i.e. >F@,	>FA,	>FB,	>FC,	>FD and	>FE) in the y direction and 4 different 

normal stresses (i.e. >G@ ,	>GA ,	>GB and	>GC) in the z direction as labelled in Fig. A2. when an 

axial force/displacement is loaded, either in the x direction or in the z direction.  In elastic 

study, the normal stress-strain relations for the blocks in series can be expressed as follows 

according to Hook’s law 

1) Normal stress-strain relations in the x direction: 

(=
 − �)=
27 H>?@ − 37>F@ − 37>G@I + �=
2� H>?@ − 3�>FA − 3�>GAI = J?  (A1) 

(=
 − �)=
27 H>?A − 37>FB − 37>G@I + �=
2� H>?A − 3�>FD − 3�>GAI = J?  (A2) 

			(=
 − �)=
27 H>?B − 37>FC − 37>G@I + �=
27 H>?B − 37>FE − 37>GAI = J?  (A3) 

(=
 − �)=
2� H>?C − 3�>FB − 3�>GBI + �=
2� H>?C − 3�>FD − 3�>GCI = J? 		 (A4) 
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(=
 − �)=
2� H>?D − 3�>FC − 3�>GBI + �=
2� H>?D − 3�>FE − 3�>GCI = J? 		 (A5) 

(=
 − �)=
27 H>?E − 37>F@ − 37>GBI + �=
2� H>?E − 3�>FA − 3�>GCI = J? 	 (A6) 

2) Normal stress-strain relations in the y direction: 

	(=
 − �)=
27 H>F@ − 37>?@ − 37>G@I + �=
27 H>F@ − 37>?E − 37>GBI = JF  (A7) 

(=
 − �)=
2� H>FA − 3�>?@ − 3�>GAI + �=
2� H>FA − 3�>?E − 3�>GCI = JF 			 (A8) 

(=
 − �)=
27 H>FB − 37>?@ − 37>G@I + �=
2� H>FB − 3�>?C − 3�>GBI = JF 	 (A9) 

(=
 − �)=
27 H>FC − 37>?B − 37>G@I + �=
2� H>FC − 3�>?D − 3�>GBI = JF 	 (A10) 

(=
 − �)=
2� H>FD − 3�>?A − 3�>GEI + �=
2� H>FD − 3�>?C − 3�>GCI = JF 		 (A11) 

(=
 − �)=
27 H>FE − 37>?B − 37>GAI + �=
2� H>FE − 3�>?D − 3�>GCI = JF 	 (A12) 

3) Normal stress-strain relations in the z direction: 

127 K2�(1 − �)>G@ − (� − 2��)37>?@ − 2��37>?A − (� − 2��)37>?B  
 

−(� − 2��)37>F@ − 2��37>FB − (� − 2��)37>FCL 	= 2�(1 − �)JG  (A13) 

M �2� +
� − 2��27 N>GA − (� − 2��) 3�>?@2� − 2�� 3�>?A2� − (� − 2��)37>?B27  

 

−(� − 2��)3�>FA2� − 2�� 3�>FD2� − (� − 2��) 37>FE27 = 2�(1 − �)JG  
(A14) 

M �2� +
� − 2��27 N>GB − 2�� 3�>?C2� − (� − 2��) 3�>?D2� − (� − 2��)37>?E27  
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−(� − 2��)37>F@27 − 2�� 3�>FB2� − (� − 2��)3�>FC2� = 2�(1 − �)JG  
(A15) 

12�(1 − �)2� K2�(1 − �)>GC − 2��3�>?C − (� − 2��)3�>?D − (� − 2��)3�>?E 
 

−(� − 2��)3�>FA − 2��3�>FD − (� − 2��)3�>FEL = JG  (A16) 

In the case of strain loading in the x direction, which means J?  is given, periodic boundary 

conditions of the RVE require zero total force in the y and z directions, as given by 

(=
 − �)(� − 2��)>F@ + �(� − 2��)>FA + 2��(=
 − �)>FB  

+(=
 − �)(� − 2��)>FC + 2���>FD + �(� − 2��)>FE = 0 (A17) 

(=
 − �)�>G@ + �(=
 − �)>GA + �(=
 − �)>GB + ��>GC = 0 (A18) 

Thus, the 18 unknown normal stresses and strains, i.e. >?@ , 	>?A , 	>?B , 	>?C , 	>?D , 	>?E , 

>F@ ,	>FA ,	>FB ,	>FC ,	>FD ,	>FE , >G@ , 	>GA ,	>GB ,	>GC , JF  and JG , can be solved from the above 18 

simultanous equations. Accordingly, the Young’s modulus in the x direction can be worked 

out through 

2? = >?J?   

		= (=
 − �)(� − 2��)>?@ + 2��(=
 − �)>?A + (=
 − �)(� − 2��)>?B2�(1 − �)J?   

	+ 2���>?C + �(� − 2��)>?D + �(� − 2��)>?E2�(1 − �)J? 																												 (A19) 

3?F = JFJ? 	 (A20) 

In the anner similar to the case of loading in the x direction, JG  will be given when a strain load 

is applied in the z direction. Then the rest 18 unknown normal stresses and strains need to be 
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solved from 18 simultanous equations, and the Young’s modulus
z

E and Poisson ratio 

zx x zv ε ε= −  can accordingly be obtained. 
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