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On Unbounded Positive Definite Functions
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School of Mathematics, Cardiff University, Cardiff CF24 4AG

Abstract

It is well known that positive definite functions are bounded, taking
their maximum absolute value at 0. Nevertheless, there are unbounded
functions, arising e.g. in potential theory or the study of (continuous) ex-
tremal measures, which still exhibit the general characteristics of positive
definiteness. Taking a framework set up by Lionel Cooper as a motiva-
tion, we study the general properties of such functions which are positive
definite in an extended sense. We prove a Bochner-type theorem and, as
a consequence, show how unbounded positive definite functions arise as
limits of classical positive definite functions, as well as that their space
is closed under convolution. Moreover, we provide criteria for a func-
tion to be positive definite in the extended sense, showing in particular
that complete monotonicity in conjunction with absolute integrability is
sufficient.

Keywords: unbounded positive definite function; Bochner’s theorem; Pólya’s
criterion; completely monotonic function
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1. Introduction

The concept of positive definite sequences, arising naturally in the context of a
problem in complex function theory posed by Carathéodory [5], was introduced
in 1911 by Toeplitz [22]. Herglotz [8] established a connection between posi-
tive definite sequences and the trigonometric moment problem. Motivated by
the work of Carathéodory and Toeplitz, Mathias [12] and later Bochner [3] de-
fined and studied the properties of positive definite functions, specifically their
harmonic analysis. Before these developments, however, Mercer [13] had stud-
ied the more general concept of positive definite kernels in research on integral
equations.

According to the classical standard definition, a function f : R → C is
positive definite if

n∑

i,j=1

f(xi − xj) vi vj ≥ 0 (1)

for all x1, x2, . . . , xn ∈ R and v1, v2, . . . , vn ∈ C, with any n ∈ N; in other
words, if the matrix

[
f(xi − xj)

]n
i,j=1

is non-negative definite for all n ∈ N and
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x1, x2, . . . , xn ∈ R. We shall denote the set of classical positive definite functions
on R by PC. Using (1) with n = 2, x1 = 0, x2 = x, v1 = 1 and v2 such that
v2f(x) = −|f(x)|, it can be shown that |f(x)| ≤ f(0) for all x ∈ R. Hence
positive definite functions by the standard definition are always bounded.

However, a positive definite function in this sense need not be positive or
continuous; for example, the function f(x) = 1 if x = 0, f(x) = 0 otherwise
(x ∈ R), is positive definite, but not continuous; the cosine function is posi-
tive definite, but not non-negative. For continuous classically positive definite
functions, (1) is equivalent to

∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy ≥ 0 (2)

for all functions φ ∈ C0(R), see e.g. [6, p.53].
One of the central results on this subject is Bochner’s theorem [3, Chapter

IV.20], which states that a function f : R → C is continuous and positive
definite if and only if it is the (inverse) Fourier transform of a finite, non-negative
measure µ on R, i.e.

f(x) = µ̌(x) =
1√
2π

∫

R

eixξ µ(dξ) (x ∈ R) . (3)

Thus, Bochner’s theorem provides an equivalent characterisation of whether or
not a given continuous function f is positive definite. The concept of positive
definite functions was extended to positive definite distributions by L. Schwartz
[19, Chapter VII, §9], and his analogue of Bochner’s theorem states that a
distribution is positive definite (and tempered) if and only if it is the Fourier
transform of a non-negative measure of slow increase, i.e. such that the measure
of balls is polynomially bounded in terms of the radius.

As shown above, positive definite functions in the sense of the standard
definition (1) are always bounded by their value at 0. However, there exist
functions such as f = | · |−α (0 < α < 1), which are unbounded at the origin,
yet still exhibit properties similar to those of positive definite functions. Such
functions arise naturally in potential theory (see, e.g. [2], [10] and [14]), and
recently appeared in the context of extremal measures ([16], [17]). Functions
which are unbounded at the origin and positive definite in the following extended
sense were studied by Cooper [6].

Definition 1. A function f : R → C is called positive definite w.r.t. a set J
of functions if for every φ ∈ J , the integral in (2) exists (in the Lebesgue sense)
and is non-negative [6, p. 54].

Let P(J) denote the class of all functions which are positive definite w.r.t. the
set J . For certain spaces of functions J , Cooper’s definition enables us to extend
the concept of positive definiteness to functions which have a singularity at 0.
In particular, we shall consider the spaces J = Lp(R) (and their local versions)
for various values of p.

Building on the foundations set by Cooper, we study unbounded positive
definite functions in more detail. Our central result is Theorem 2, which, in
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analogy to Bochner’s theorem for the classical case, characterises a larger class
of (generally unbounded) positive definite functions. Several subsequent results
follow from this Theorem. For example, functions which are positive definite
w.r.t. L2(R) can be approximated, in the L1(R) sense, by a sequence of contin-
uous, classically positive definite functions (see Corollary 1). Functions which
arise as ‘convolution squares’ are positive definite in the new sense (see Corollary
4), and conversely, a function which is positive definite w.r.t. L2(R) can be writ-
ten, in some sense, as a convolution square (see Corollary 5). Using Theorem 2,
we also show that the even reflections of integrable, completely monotone func-
tions are positive definite w.r.t. L2(R) (see Corollary 8). This result provides
many examples of functions which have a singularity at zero and are positive
definite in the extended sense.

The structure of the paper is as follows. In section 2 we introduce the ideas
and discuss the main results of [6]. In section 3 we prove Theorem 2. Sections 4
and 5 present corollaries to Theorem 2 and their proofs. We conclude the paper
with several examples of unbounded positive definite functions.

2. Positive definiteness in the extended sense

We begin with an overview of some basic properties of the positive definite
functions studied in [6], analogous to those for the classical case, see [21, p.
412]. In the following, let J be a set of complex-valued measurable functions
defined on R. This includes functions defined on a non-empty, measurable subset
of R, which we consider to be extended by zero to the whole real line. Then the
following properties follow directly from Definition 1.

i. f ∈ P(J) ⇔ f∗ ∈ P(J), where f∗(x) := f(−x) (x ∈ R).

ii. f ∈ P(J) ⇔ f ∈ P(J) if J is closed under complex conjugation.

iii. If f1, f2, . . . , fn ∈ P(J) and ci ≥ 0 (i = 1, . . . , n), then
∑n

i=1 cifi ∈ P(J).

Before proceeding to present our new results, we highlight the most relevant
results of [6].

For p ∈ [1,∞) ∪ {∞}, let Lp
0(R) denote the subspace of functions in Lp(R)

with compact essential support. The functions in P(L1
0(R)) are essentially

bounded [6, Th. 5] and almost everywhere equal to a continuous, positive defi-
nite function in the classical sense [7, Sec. 6]. The functions in P(L2

0(R)) need
only be locally integrable [6, Lemma 1]. Cooper has the following Bochner-type
theorem [6, Th. 6].

Theorem 1. For any function f ∈ P(L2
0(R)), there exists a non-negative,

non-decreasing function ρ, such that for almost all x,

f(x) =
1√
2π

∫

R

eixt dρ(t) in (C, 1) sense, (4)

where ρ(t) = o (t) as t→ ±∞.
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Note also that, unlike Bochner’s theorem, the implication here is only in one
direction. The qualification “in (C, 1) sense” in (4) means

f(x) =
1√
2π

lim
λ→∞

1

λ

∫ λ

0

( ∫ u

−u

eivx dρ(v)

)
du,

in analogy to Cesàro summation of divergent series.
The P(Lp

0(R)) spaces have the following additional properties.

Proposition 1. If f ∈ PC is continuous, then f ∈ P(L2
0(R)).

Proof. By Bochner’s theorem, there exists a finite, non-negative measure µ on
R such that for any φ ∈ L2

0(R),

∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy =
1√
2π

∫

R

∫

R

∫

R

ei(x−y)ξ µ(dξ)φ(x)φ(y) dxdy

=
1√
2π

∫

R

∣∣∣∣
∫

R

eixξφ(x) dx

∣∣∣∣
2

µ(dξ) ≥ 0.

�

Proposition 2. If f ∈ P(L2
0(R)) and g ∈ PC is continuous, then fg ∈P(L2

0(R))
[6, Th. 1].

Proof. By Bochner’s theorem, there exists a finite, non-negative measure µ on
R such that for any φ ∈ L2

0(R),

∫

R

∫

R

fg (x− y)φ(x)φ(y) dxdy

=
1√
2π

∫

R

∫

R

f(x− y)

∫

R

ei(x−y)ξ µ(dξ)φ(x)φ(y) dxdy

=
1√
2π

∫

R

∫

R

∫

R

f(x− y)(eixξφ(x))(eiyξφ(y))dxdyµ(dξ) ≥ 0.

�

Proposition 3. For any p ∈ [1, 2], P(Lp
0(R)) ⊆ P(L2

0(R)).

Proof. This follows directly from the fact that L2
0(R) ⊆ Lp

0(R) (p ∈ [1, 2]). �

Proposition 4. For any q ∈ [2,∞] and r ∈ [0,∞], P(L2
0(R)) = P(Lq

0(R)) =
P(Cr

0(R)).

Proposition 4 can be proved using [6, Lemma 1] and the density of C∞
0 (R) in

Lq
0(R) (q ∈ [2,∞]). The proof is similar to that of Lemma 2 below.
The last two propositions demonstrate that as p increases from 1 to 2,

P(Lp
0(R)) increases from a smaller class of positive definite functions to a larger

such class. As p increases beyond 2, P(Lp
0(R)) remains the same. Moreover,

roughly speaking, as p increases from 1 to 2, P(Lp
0(R)) runs from the class of

bounded, continuous positive definite functions (in the standard sense), to a
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class of functions which are positive definite in a wider sense and need not be
bounded or continuous.

3. An extension of Bochner’s theorem to unbounded positive definite

functions

We use Cooper’s definition of positive definiteness with J = L2(R). For L2(R),
as opposed to the space of compactly supported functions L2

0(R) of Theorem 1,
we obtain the following Bochner-type theorem.

Theorem 2. Let f ∈ L1(R). Then

f ∈ P(L2(R)) if and only if f̂ ≥ 0,

where f̂ denotes the Fourier transform of f .

We remark that under the hypothesis of Theorem 2, f will correspond to a
regular, in particular tempered, distribution, and hence Schwartz’s version of
Bochner’s theorem applies. Nevertheless, with regard to applications where
both f and its Fourier transform are functions, the above generalised form of
Bochner’s theorem in Cooper’s framework seems of interest, along with its more
elementary proof and the further consequences shown in Sections 4 and 5 below.
The proof of Theorem 2 will be based upon the following two lemmas.

Lemma 1. Let f ∈ L1(R) and φ ∈ L2(R). Then the integral in (2) exists, and
∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy =

∫

R

f(z)(φ ∗ φ∗)(z) dz, (5)

where φ∗(z) = φ(−z) (z ∈ R).

Proof. Since the convolution of two elements of L2(R) is in L∞(R),
∣∣∣∣
∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy

∣∣∣∣ =
∣∣∣∣
∫

R

f(z)

∫

R

φ(x)φ(x− z) dxdz

∣∣∣∣

=

∣∣∣∣
∫

R

f(z)(φ ∗ φ∗)(z) dz
∣∣∣∣ ≤ ‖f‖1 ‖φ ∗ φ∗‖∞.

�

Lemma 2. Let f ∈ L1(R). Then f ∈ P(L2(R)) if and only if f ∈ P(S(R)),
where S(R) denotes the Schwartz space of rapidly decreasing functions on R.

Proof. Since S(R) ⊂ L2(R), it follows directly that P(L2(R)) ⊂ P(S(R)). For
the reverse implication, we shall use the density of S(R) in L2(R). Suppose that
f ∈ P(S(R)). Then the integral

∫

R

∫

R

f(x− y)ψ(x)ψ(y) dxdy =

∫

R

(f ∗ ψ)ψ (6)

exists in the Lebesgue sense and is non-negative for all ψ ∈ S(R). Since f ∈
L1(R) and the convolution of an element of L1(R) with an element of L2(R) is
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in L2(R), the integral also exists for all ψ ∈ L2(R). By a change of variables
and the Fubini theorem,
∫

R

∫

R

f(x− y)ψ(x)ψ(y) dxdy =

∫

R

∫

R

f(z)ψ(z + y)ψ(y) dydz (ψ ∈ L2(R)).

Let φ ∈ L2(R); then there is a sequence (ψn)n∈N
in S(R) such that ‖φ− ψn‖2 → 0

as n→ ∞. Now,

sup
z∈R

∣∣∣∣
∫

R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dy

∣∣∣∣

≤ sup
z∈R

∫

R

|φ(z + y)||(φ− ψn)(y)| dy + sup
z∈R

∫

R

|(φ− ψn)(z + y)||ψn(y)| dy

≤ ‖φ‖2 ‖φ− ψn‖2 + ‖φ− ψn‖2 ‖ψn‖2 → 0 as n→ ∞.

As f ∈ L1(R), it follows that

∣∣∣∣
∫

R

f(z)

∫

R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dydz

∣∣∣∣ → 0 as n→ ∞,

and hence
∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy = lim
n→∞

∫

R

∫

R

f(x− y)ψn(x)ψn(y) dxdy ≥ 0.

�

Proof of Theorem 2. Since f ∈ L1(R), the integral in (6) exists for all ψ ∈ S(R).
Since the space of Schwartz functions is closed under convolution [20, Th. 3.3],
ψ ∗ ψ∗ ∈ S(R) for all ψ ∈ S(R), where ψ∗(z) = ψ(−z) (z ∈ R). Hence, for any
z ∈ R and ψ ∈ S(R),

(ψ ∗ ψ∗) (z) =
1√
2π

∫

R

(ψ ∗ ψ∗)̌(x) e−ixz dx =

∫

R

ψ̌(x) ψ̌∗(x) e−ixz dx

=

∫

R

|ψ̌(x)|2 e−ixz dx,

since

ψ̌∗(x) =
1√
2π

∫

R

ψ(−ξ) eiξx dξ = 1√
2π

∫

R

ψ(ξ) e−iξx dξ = ψ̌(x) (x ∈ R).

(7)

By Lemma 1,
∫

R

∫

R

f(x− y)ψ(x)ψ(y) dxdy =

∫

R

f(z)(ψ ∗ ψ∗)(z) dz

=

∫

R

∫

R

f(z) |ψ̌(x)|2 e−ixzdxdz =
√
2π

∫

R

f̂(x) |ψ̌(x)|2dx. (8)

6



From (8) it is clear that if f̂ ≥ 0, then f ∈ P(S(R)). By Lemma 2 it follows
that f ∈ P(L2(R)).

Conversely, suppose that f̂(z) < 0 at some point z ∈ R. f̂ is continuous

and bounded because f ∈ L1(R). It follows that f̂ is negative on some interval
I = [z − δ, z + δ] with δ > 0. Let

ψ1(x) =

{
exp

[(
(x− z)2 − δ2

)−1
]

if z − δ < x < z + δ

0 otherwise
(x ∈ R).

Then ψ1 ∈ C∞
0 (R) ⊂ S(R). For ψ2 := ψ̂1 ∈ S(R), it follows by (8) that

0 ≤
∫

R

∫

R

f(x− y)ψ2(x)ψ2(y) dxdy =
√
2π

∫

R

f̂(x) |ψ̌2(x)|2 dx

=
√
2π

∫ z+δ

z−δ

f̂(x) |ψ1(x)|2 dx < 0,

which is a contradiction. �

Remark. It follows from Theorem 2 that if f ∈ L1(R) ∩ P(L2(R)), then f = f∗

almost everywhere. Indeed, f̂∗ = f̂ ≥ 0 by (7), and thus f = f∗ almost
everywhere by the uniqueness of the Fourier transform on L1(R) [4, Th. 5].

4. Approximation by positive definite functions and convolution

squares

In this section we present some corollaries to Theorem 2. In particular, we
show that functions in P(L2(R)) can be approximated by continuous, classically
positive definite functions. We also establish connections between functions
which are positive definite for L2(R) and functions which arise as convolution
squares. We begin by proving the following technical lemma, which shows that
L1(R) ∩ P(L2(R)) is a closed subset of L1(R).

Lemma 3. Let (fn)n∈N be a sequence of functions such that fn ∈ L1(R) and

fn ∈ P(L2(R)) (n ∈ N). If limn→∞ ‖fn − f‖1 = 0 for some f ∈ L1(R), then
f ∈ P(L2(R)).

Proof. Let φ ∈ L2(R). By Lemma 1,
∣∣∣∣
∫

R

∫

R

(fn(x− y)− f(x− y))φ(x)φ(y) dxdy

∣∣∣∣ ≤ ‖fn − f‖1‖φ ∗ φ∗‖∞ → 0

(n→ ∞). Thus,
∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy = lim
n→∞

∫

R

∫

R

fn(x− y)φ(x)φ(y) dxdy ≥ 0.

�

Lemma 3 is analogous to the pointwise convergence property for the classical
positive definite functions, see [21, p. 412].
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We now present some consequences of Theorem 2. The first observation is
that L1(R) ∩ P(L2(R)) is the closure of L1(R) ∩ PC.

Corollary 1. Let f ∈ L1(R). Then, f ∈ P(L2(R)) if and only if there is a

sequence (gn)n∈N of continuous, classically positive definite functions such that

gn ∈ L1(R) (n ∈ N) and limn→∞ ‖gn − f‖1 = 0.

Proof. Suppose f ∈ P(L2(R)). As f ∈ L1(R), its Fourier transform f̂ is contin-

uous, bounded and tends to 0 at ±∞. Also, by Theorem 2, f̂ ≥ 0. For n ∈ N,
let

ηn(ξ) =
n√
2π

e−(nξ)2/2 (ξ ∈ R),

so that
∫
R
ηn(x) dx = 1. Define

hn(ξ) :=
√
2π f̂(ξ) η̂n(ξ) = f̂(ξ) e−ξ2/(2n2) ≥ 0 (ξ ∈ R).

Then hn ∈ L1(R). Let gn = ȟn be the inverse Fourier transform of hn. By
Bochner’s theorem [3, Chapter IV.20], gn is continuous and classically positive
definite. In particular, it has the property that |gn(u)| ≤ gn(0) < ∞ (u ∈ R).
Also, gn = f∗ηn, so by Young’s inequality, gn ∈ L1(R) (n ∈ N). Since f ∈ L1(R),
it follows that limn→∞ ‖gn − f‖1 = 0 [20, Th. 1.18].

For the reverse direction, we need only show that gn ∈ P(L2(R)) (n ∈ N).
Since gn ∈ L1(R) (n ∈ N), gn has a continuous Fourier transform, and it follows
from Bochner’s theorem that ĝn ≥ 0 (n ∈ N). Thus, gn ∈ P(L2(R)) (n ∈ N) by
Theorem 2. �

We show next that L1(R) ∩ P(L2(R)) is closed under convolution and, under
the further assumption of square integrability, under pointwise multiplication
as well.

Corollary 2. Let f, g ∈ L1(R). If f, g ∈ P(L2(R)) then f ∗ g ∈ P(L2(R)).

Proof. Suppose f, g ∈ P(L2(R)). By Theorem 2, f̂ , ĝ ≥ 0. By Young’s inequal-
ity, f ∗ g ∈ L1(R); moreover

f̂ ∗ g =
√
2π f̂ ĝ ≥ 0,

so f ∗ g ∈ P(L2(R)) by Theorem 2. �

Corollary 3. Let f, g ∈ L1(R)∩L2(R). If f, g ∈ P(L2(R)) then fg ∈ P(L2(R)).

Proof. Suppose f, g ∈ P(L2(R)). By Theorem 2, f̂ , ĝ ≥ 0. By the Cauchy-
Schwarz inequality, fg ∈ L1(R); furthermore

f̂ g =
1√
2π

f̂ ∗ ĝ ≥ 0,

hence fg ∈ P(L2(R)) by Theorem 2. �

The next statement shows that functions which arise as ‘convolution squares’
are positive definite in the new sense, note that p∗(z) = p(−z) (z ∈ R) as before.
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Corollary 4. If f = p ∗ p∗ for some p ∈ L1(R), then f ∈ P(L2(R)).

Proof. Suppose f = p ∗ p∗ with p ∈ L1(R). By Young’s inequality, f ∈ L1(R).
From (7) it follows that

f̂ = p̂ ∗ p∗ =
√
2π p̂ p̂∗ = |p̂|2 ≥ 0.

Thus, f ∈ P(L2(R)) by Theorem 2. �

This result is analogous to the classical result that if f = g ∗ g∗ for some
g ∈ L2(R), then f is positive definite in the original sense [11, Th. 4.2.4].
Note that in the classical case we have f ∈ L∞(R), since the convolution of
two elements of L2(R) is in L∞(R), whereas in our present situation we have
f = p ∗ p∗ ∈ L1(R), again by Young’s inequality.

In Corollary 5 we show that a version of the converse to Corollary 4 is also
true, viz. that a function which is positive definite w.r.t. L2(R) can be written,
in some sense, as a convolution square. An analogous statement is known for
continuous, classically positive definite functions (Khinchine’s criterion, [11, Th.
4.2.5]). In particular, if f : R → C is a characteristic function then there

exists a sequence (gn)n∈N of complex-valued functions, such that for any n ∈ N,∫
R
|gn(x)|2 dx = 1, and f(t) = limn→∞ gn ∗ g∗n(t) holds uniformly in every finite

t-interval. Note that a function f : R → C is a characteristic function if and
only if it is continuous, classically positive definite and f(0) = 1. The final
condition can always be achieved via normalisation due to the bounded nature
of classical positive definite functions.

Corollary 5. Let f ∈ L1(R). If f ∈ P(L2(R)), then there is a sequence

(pn)n∈N of functions such that pn ∈ L2(R), pn ∗ p∗n ∈ L1(R) (n ∈ N), and

limn→∞ ‖pn ∗ p∗n − f‖1 = 0.

Proof. Let gn = ȟn (n ∈ N) be the functions constructed in the proof of
Corollary 1, then limn→∞ ‖gn − f‖1 = 0. By [11, Th. 4.2.4], there exists
pn ∈ L2(R) such that gn = pn ∗ p∗n (n ∈ N). �

Note that here pn /∈ L1(R) in general; also we don’t have
∫
R
|pn(x)|2 dx = 1 as

in Theorem 4.2.4 (ii) [11], since we do not assume that hn is the density of a
probability measure.

5. Sufficient criteria for generalised positive definiteness

The criterion of Theorem 2 for a function to be positive definite for L2(R) is
that its Fourier transform is non-negative. We now give sufficient conditions for
this.

For a measurable set I ⊂ R and p ∈ [1,∞), let

Lp(I) =

{
f : I → C

∣∣∣∣
∫

I

|f(x)| dx <∞
}
.

Naturally Lp(I) ⊂ Lp(R), extending functions by zero on R\I. We always use
this embedding by extension in the following.
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The next result is an analogue of Pólya’s criterion [11, Th. 4.3.1] for con-
tinuous positive definite functions. Our extension also applies to unbounded
functions with an integrable singularity at 0.

Theorem 3. Let f ∈ L1(R) be a function with the following three properties.

i. f is locally absolutely continuous on (0,∞), and f ′ ∈ L1
loc((0,∞)) has a

non-positive, non-decreasing representative.

ii. f(x) = f(−x) (x ∈ R).

iii. f ≥ 0.

Then f ∈ P(L2(R)).

Proof. By Theorem 2, we need only show that the Fourier transform f̂ ≥ 0.
Since f is even and real-valued, its Fourier transform f̂ is given by

f̂(ξ) =

√
2

π

∫ ∞

0

f(x) cos(x ξ) dx (ξ ∈ R) ,

a real-valued, even, bounded function. It is immediate from property iii that
f̂(0) ≥ 0. Hence, it suffices to consider ξ > 0 in the following. By property i, f
is non-decreasing on (0,∞). Using this property combined with the facts that
f is non-negative and integrable, it follows that

lim
x→∞

f(x) = 0. (9)

By the Mean Value Theorem, for any x > 0 there is 0 < ξx < x such that
∫ x

0

f(y) dy = xf(ξx).

Hence, since f is non-increasing on (0,∞), it follows that

0 ≤ xf(x) ≤
∫ x

0

f(y) dy (x > 0)

and consequently

lim
x→0

xf(x) = 0. (10)

Since f is locally absolutely continuous on (0,∞), we can use integration by
parts to obtain

∫ x2

x1

f(x) cos(x ξ) dx =
1

ξ
[f(x) sin(x ξ)]

x2

x1
− 1

ξ

∫ x2

x1

f ′(x) sin(x ξ) dx

(0 < x1 < x2 <∞), where

1

ξ
[f(x) sin(x ξ)]

x2

x1
=

1

ξ
f(x2) sin(x2 ξ)− x1f(x1)

sin(x1 ξ)

x1ξ
.

10



Since | sin(x)|, | sin(x)x | ≤ 1 (x ∈ R), it follows from (9) and (10) that

lim
x1→0
x2→∞

1

ξ
[f(x) sin(x ξ)]

x2

x1
= 0.

Hence ∫ ∞

0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞

0

f ′(x) sin(x ξ) dx.

Using the same technique as in [23, Eq. 4] we find

−
∫ ∞

0

f ′(x) sin(x ξ) dx = −
∞∑

j=0

∫ 2π(j+1)
ξ

2πj
ξ

f ′(x) sin(x ξ) dx

=
1

ξ

∞∑

j=0

∫ π

0

[
f ′

(
2πj + θ

ξ
+
π

ξ

)
− f ′

(
2πj + θ

ξ

)]
sin(θ) dθ. (11)

Since sin(θ) ≥ 0 on [0, π] and f ′ is non-decreasing, it follows that

∫ ∞

0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞

0

f ′(x) sin(x ξ) dx ≥ 0.

�

Up to this point, we stipulated that the (generalised) positive definite functions
must be in L1(R). This assumption ensures both the existence of the integral (6)

for φ ∈ L2(R) and the pointwise existence of f̂ . In the following we show that
the generalised definition of positive definiteness can be localised, extending it
from L1(R) to functions in L1

loc(R) or in L1(I) for some bounded interval I.
Let I = [a, b] ⊂ R be a closed, bounded interval. Let f ∈ L1([−|I|, |I|]),

where |I| = b − a denotes the length of the interval I. Similarly to Lemma 1,
for any φ ∈ L2(I),

∫

R

∫

R

f(x− y)φ(x)φ(y) dxdy =

∫ |I|

−|I|

f(z)φ ∗ φ∗(z) dz, (12)

since φ∗φ∗ has support in [−|I|, |I|]. The existence of the integral is guaranteed
by the fact that f ∈ L1([−|I|, |I|]). By Theorem 2, if the Fourier transform of
fχ[−|I|,|I|] is non-negative, then fχ[−|I|,|I|] ∈ P(L2(R)) ⊂ P(L2(I)), which in
turn shows the non-negativity of the integral in (12).

The next result is a local variant of Theorem 3, based on the natural embed-
ding of Lp(I) into Lp(R). We need a further technical condition at the end-point
of the interval.

Corollary 6. Let I = [a, b] ⊂ R be any closed, bounded interval, and |I| = b−a
its length. Let f ∈ L1([−|I|, |I|]) be a function with the following properties.

i. f is locally absolutely continuous on (0, |I|], and f ′ ∈ L1
loc((0, |I|]) has a

non-positive, non-decreasing representative.
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ii. f(x) = f(−x) (x ∈ [−|I|, |I|]).

iii. f(x) ≥ 0 (x ∈ [−|I|, |I|]).

iv. f(|I|) = 0 if f ′(|I|) = 0.

Then f ∈ P(L2(I)).

Proof. Define

f̃(x) =

{
f(x) if |x| ≤ |I|
f(|I|) e(|x|−|I|) f ′(|I|)/f(|I|) otherwise

if f(|I|) 6= 0; if f(|I|) = 0, we set f̃(x) = 0 for |x| > |I|.
Then the function f̃ satisfies the hypotheses of Theorem 3, and hence is an

element of P(L2(R)) ⊂ P(L2(I)). Moreover, f̃(x) = f(x) (x ∈ [−|I|, |I|]), so
f ∈ P(L2(I)). �

Remark. If f ′(|I|) = 0 and f(|I|) 6= 0, then it is not possible to find an extension
of the function f from [−|I|, |I|] to the whole real line which is continuous,
integrable and has a derivative with a non-decreasing representative.

A function f : (0,∞) → [0,∞) is completely monotone if f ∈ C∞((0,∞)) and

(−1)n f (n) ≥ 0 on (0, ∞)

for all n ∈ N0 [15, Def. 1.3]. In particular, any completely monotone function
is non-negative and non-increasing. The family of all completely monotone
functions is denoted by CM. Completely monotone functions can be bounded
or unbounded at zero. If f is a bounded completely monotone function, then
it can be extended continuously to [0, ∞) by taking f(0) := f(0+) = lim

x→0
f(x)

[15, p. 28].
The following theorem belongs to Schoenberg (along with a number of other

theorems on classically positive definite functions, e.g. [15, Prop. 4.4], [15, Th.
12.14], [1, Th. 1.6]). Note that positive definite functions on Rd are defined by
property (1) with x1, . . . , xn ∈ Rd.

Theorem 4. A function ψ : [0,∞) → [0,∞) is a bounded completely monotone

function if and only if for all d ∈ N, the function f = ψ(‖ · ‖2) : Rd → [0,∞)
is continuous and positive definite [18, Th. 3].

In particular, bounded completely monotone functions with a squared argument
are continuous and classically positive definite in the one-dimensional case d = 1.
The following result generalizes this observation to potentially unbounded com-
pletely monotone functions.

Corollary 7. Let f ∈ CM, and g(x) = f(x2) (x > 0). If g ∈ L1(R), then

g ∈ P(L2(R)).

12



Proof. By [15, Th. 1.4], f is the Laplace transform of a non-negative measure
µ on [0,∞). That is, for any x > 0,

f(x) =

∫

[0,∞)

e−xt µ(dt).

By the Fubini theorem, for any ξ ∈ R,

ĝ(ξ) =
1√
2π

∫

[0,∞)

∫

R

e−x2te−ixξ dxµ(dt) =

∫

[0,∞)

1√
2t
e−ξ2/(4t)µ(dt) ≥ 0.

Thus, g ∈ P(L2(R)) by Theorem 2. �

We remark that the result of squaring, or taking the square root of, the argument
in a completely monotone function will in general not be a completely monotone
function.

If we do not square the argument, but just extend the completely monotone
function to an even function on the line, then the resulting function will satisfy
the hypotheses of Theorem 3, yielding the following Corollary 8, which is similar
to Corollary 7. However, the function g of Corollary 7, with a squared argument,
does not satisfy property i. in Theorem 3, since g′(x) = 2xf ′(x2) is not non-
decreasing on (0,∞); for this reason Corollary 7 above cannot be obtained in
this simple way.

Corollary 8. Let f ∈ CM. If g = f(| · |) ∈ L1(R), then g ∈ P(L2(R)).

Moreover, we have the following localised versions.

Corollary 9. Let I ⊂ R be any closed interval. Let f ∈ CM be non-constant.

If g = f(| · |) ∈ L1([−|I|, |I|]), then g ∈ P(L2(I)).

Proof. If f ∈ CM, then by [15, Remark 1.5] f (n)(x) 6= 0 for all n ≥ 1 and
all x > 0 unless f is identically constant. Thus g satisfies the hypotheses of
Corollary 6. �

Corollary 10. Let f ∈ CM be non-constant. If g = f(| · |) ∈ L1
loc(R), then

g ∈ P(L2
0(R)).

Proof. For any φ ∈ L2
0(R),

∫

R

∫

R

g(x− y)φ(x)φ(y) dxdy =

∫

I

∫

I

g(x− y)φ(x)φ(y) dxdy, (13)

where I includes the compact support of φ. Since g ∈ L1
loc(R), it follows that

g ∈ L1([−|I|, |I|]), and by Corollary 9 the integral in (13) is non-negative. �

Completely monotone functions can be obtained as derivatives of Bernstein
functions [15, p.18]. Taking functions fi from the list of Bernstein functions in
[15, Chapter 15], the following derived functions gi = f ′i(| · |) are elements of
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P(L2
0(R)) \ PC by Corollary 10.

g1(x) = |x|−α, 0 < α < 1;

g8(x) = |x|α−1/(1 + |x|)α+1, 0 < α < 1;

g11(x) =
(
α|x|α−1

(1− |x|β)− β|x|β−1
(1− |x|α)

)
/(1− |x|α)2,

0 < α < β < 1 ;

g16(x) =
(
α1|x|−α1−1 + . . .+ αn|x|−αn−1

)
/
(
|x|−α1 + . . .+ |x|−αn

)2
,

0 ≤ α1, . . . , αn ≤ 1;

g18,19(x) =
(
1± (2a

√
|x| − 1)e−2a

√
|x|
)
/
√

|x|, a > 0;

g23(x) = |x| (1 + 1/|x|)1+|x|
log (1 + 1/|x|) (x ∈ R \ {0}).
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