
Dynamic Distributed Orchestration of Node-RED
IOT Workflows Using a Vector Symbolic

Architecture

Chris Simpkin∗, Ian Taylor∗, Daniel Harborne∗,
Graham Bent†, Alun Preece∗,

Raghu k Ganti‡
∗School of Computer Science and Informatics, Cardiff University
{simpkinc, taylorij1, HarborneD, PreeceAD }@cardiff.ac.uk

†IBM Research UK
{gbent}@uk.ibm.com
‡IBM Research USA
{rganti}@us.ibm.com

Abstract—There are a large number of workflow systems
designed to work in various scientific domains, including support
for the Internet of Things (IoT). One such workflow system
is Node-RED, which is designed to bring workflow-based pro-
gramming to IoT. However, the majority of scientific workflow
systems, and specifically systems like Node-RED, are designed to
operate in a fixed networked environment, which rely on a central
point of coordination in order to manage the workflow. The
main focus of the work described in this paper is to investigate
means whereby we can migrate Node-RED workflows into a
decentralized execution environment, so that such workflows can
run on Edge networks, where nodes are extremely transient in
nature. In this work, we demonstrate the feasibility of such an
approach by showing how we can migrate a Node-RED based
traffic congestion workflow into a decentralized environment.
The traffic congestion algorithm is implemented as a set of
Web services within Node-RED and we have architected and
implemented a system that proxies the centralized Node-RED
services using cognitively-aware wrapper services, designed to
operate in a decentralized environment. Our cognitive services
use a Vector Symbolic Architecture to semantically represent
service descriptions and workflows in a way that can be unraveled
on the fly without any central point of control. The VSA-based
system is capable of parsing Node-RED workflows and migrating
them to a decentralized environment for execution; providing a
way to use Node-RED as a front-end graphical composition tool
for decentralized workflows.

Index Terms—Decentralized Workflows, Vector Symbolic Ar-
chitecture, Machine Learning, Dynamic Wireless Networks

I. INTRODUCTION

During the last decade, there has been an explosion in the
quantity, variety and complexity of data generated routinely by
research and industry. This has been driven by the development
of new virtualization technologies (e.g. containers, virtual
machines, and so forth) which allow applications to adapt
elastically on-demand, as well as the adoption of service

interfaces (e.g. micro-services) which break down complex
problems into smaller and repeatable tasks. In addition the
emergence of smart devices and sensors, many of which are
located at the edge of wireless networks, collectively known as
The Internet of Things (IoT) represents a rapidly burgeoning
requirement for distributed communications and data analytics
in a distributed environment.

A scientific workflow is a set of interrelated computa-
tional and data-handling tasks designed to achieve a specific
goal. The workflow methodology provides a robust means
of describing applications consisting of control and data
dependencies along with the logical reasoning necessary for
distributed execution. It is often used to automate processes
which are frequently executed, or to formalize and standardize
processes. Such workflows may be used to define and run
computational experiments or to conduct recurrent processes
on observational, experimental and simulation data.

The majority of scientific workflow management systems
utilise a centralised control methodology in order to simplify
the complex task of distributing and load balancing workflow
steps across, often heterogeneous, compute resources. In addi-
tion, while IoT devices are widely distributed geographically,
the current approach for management of such devices is cloud
based and therefore similarly centralised. However, consider-
ing the huge and growing volume represented by the IoT it will
become more and more expensive and impractical to manage
and coordinate billions of devices in centralised server farms.

Further, more and more compute resource is becoming
available at the edge of networks in the form of traditional
mobile devices as well as IoT devices. Hence an opportunity
is emerging to utilise such edge resources for data analytics
and a need is evident for an alternate decentrailised approach
to managing IoT devices.



Vector Symbolic Architectures (VSAs) [1, 2, 3, 4] are a set
of lossy dimensionality reduction methodologies that enable
large volumes of data to be compressed into a fixed size vector
in a way that captures associations and similarities as well as
enabling categorizations between data to be built up. Such
vector representations are recursive as originally proposed by
Hinton [5] in that they allow for higher level abstractions
to be formulated in the same format as their lower level
components. VSAs are capable of supporting a large range
of cognitive tasks such as; (a) Semantic composition and
matching; (b) Representing meaning and order; (c) Analogical
mapping; (d) Logical reasoning; (e) They are highly resilient to
noise; (f) They have neurologically plausible analogues which
may be exploited in future distributed cognitive architectures.
Consequentially they have been used in natural language
processing [6, 7, 8] and cognitive modeling [9, 10].

In this paper we describe the use of a VSA to architect
a mechanism that can be used for distributed discovery and
orchestration of remote devices and compute resources without
any knowlege of the ’IP’ location of such devices and without
the need for a central point of control. We then show how it
can be used to implement a new operational mode for Node-
RED [11], a well known cloud based, graphical workflow
management system for IoT devices. We describe the use
of this new mode to transition an existing Node-Red, traffic
congestion, workflow to operate in CORE/EMANE [12], a
real-time network emulator. Further, we describe how the VSA
can be used to orchestrate more complex data analytics tasks
and, as a test case, use the new Node-Red mode to run a
distributed simulation of the Montage Pegasus[13] workflow
in the CORE/EMANE environment.

Our scheme converts the existing Node-Red microser-
vices into a cooperating set of decentralized proxies, which
are instantiated into the CORE environment, by adding a
cognitively-aware wrapper around each service to facilitate
decentralized discovery and execution. Request workflows are
then composed using the Node-Red graphical interface to
describe the connectivity and functional requirements of each
workflow step but without specifying IP locations as per the
normal Node-Red scheme. The user interface is then used to
launched the workflow request into the CORE environment
for distributed discovery and execution.

The VSA cognitive wrapper represents individual services
as symbolic vectors which are in turn bound into compound
vectors in order to represent complex workflow structures
[14]. This scheme is used to represent workflows by com-
bining services, edges, sub-workflows, branches, etc. into a
hierarchical set of vectors that represent the workflow as a
whole. Thus, this extremely compact representation can be
transmitted to multiple services (e.g., using multicast) and
only services that semantically match a particular vector will
proceed with the work; hence they are cognitive. The vectors
have the property that they can then be unbound to unravel
the workflow and therefore, the decentralized operation is
simplified to a transmit-unbind and re-transmit procedure,
since each unbind unravels the next step of the wortkflow.

The simple, and yet powerful approach can provide se-
mantically rich representations of workflows that have several
interesting by-products, including: (a) the ability to make
semantic comparisons at each level of the architecture (e.g.,
semantic searches are scoped within a sub-group of services
in a workflow); and (b) and the ability to bind extra metadata
along with the workflow structure, which is only accessible
to the services that can consume it (e.g. it enables policy
enforcement).

The rest of the paper is structured as follows. In the next
section we provide an overview of related work. In Section
III, we describe how the VSA approach is used to encode
service representations and in Section IV we describe how
VSA enables workflows to be encoded and orchestrated. In
Section V, we outline a simple use case that demonstrates
how the VSA enabled Node-RED can perform decentralised
data analytics. Section VI describes the architecture we have
employed to enable existing services to participate in a dis-
tributed workflow. Section VII describes the implementation
and methods used to meld our VSA architecture with Node-
RED. Finally in Section VIII we draw conclusions and outline
the scope of our future work.

II. RELATED WORK

For wired networks, there have been a wide variety of work-
flow systems developed [15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
On the other hand, on-demand distributed analytics work-
flows for general collaborative environments need spontaneous
discovery of multiple distributed services without central
control [25]. Applying the current state-of-the-art workflow
research to such dynamic environments is impractical, if
not impossible, due to the difficulty in maintaining a stable
endpoint for a service manager in the face of variable network
connectivity; such workflows are more focused on operating
on highly available distributed computing infrastructures using
TCP, using centralized management and service discovery.
Service-oriented systems, such a Taverna, have some support
for discovery [26] but service providers are centralized and
require manual configuration.

Consequently, service discovery is a key component in a
transient distributed networked environment. Service discov-
ery is a difficult problem even when services are hosted in
centralized repositories, mainly because services are devel-
oped and deployed independently or developed by loosely
cooperating developers in open environments. This has led to
a complex mix of disparate service architectures employing
different methodologies for the description of their input,
outputs, and configurations. Even with standardized protocols,
such as Multicast Domain Name Service (mDNS, [27, 28])
there are no conventions for service templates. In support
of such situations, we are investigating vector based repre-
sentations as a means of representing service descriptions
that can be semantically compared within particular contexts,
in an extremely resource efficient way. Using such vectors,
semantically rich queries in the form of vectors, can be sent out



to the network, using protocols such as multicast for efficient
querying in a complex space.

Hyperflow [24] is based on a formal model of computation
called Process Networks, which uses asynchronous signals to
coordinate flow. Such signals could operate in an decentralized
way but currently, there is no service discovery component,
rather the node.js [29] execution environment employs the
use of third party tools eg. RabbitMq to coordinate services.
Petri net workflows [30] offer a decentralized approach by
using directed bipartite graphs, in which the nodes represent
transitions (i.e. events that may occur, signified by bars)
and places (i.e. conditions, signified by circles). However,
such workflows require predefined DAG-based workflows with
concrete endpoints to be defined before deployment.

Newt [31] is designed to address network edge workflow
environments by providing a reusable workflow methodology
for decentralized workflows that incorporates decentralized
execution and logic, support for group communication (one
to many) and support for multiple transports e.g. TCP, UDP,
multicast, ZeroMq, etc. However, although Newt has discovery
interfaces available, it currently only supports pre-configured
profiles for its nodes, so dynamic service discovery is not
possible. In the Newt paper, the authors used the dialogue from
William Shakespeare’s Hamlet [32] as a workflow, where each
actor is a node that decides what line to say and who to say
it to, and the sending of those lines represents the network
payloads. They argued that this example is highly illustrative
of group conversations or distributed analytics at the edge,
where complex local decisions are made and communicated
to distributed node(s) in a decentralized way. The play contains
several instances where an actor speaks to several actors,
thus creating natural distributed communications and there are
other instances where an actor will speak to himself, causing
looping.

III. ENCODING SERVICE REPRESENTATIONS USING THE
VECTOR SYMBOLIC ARCHITECTURE

In [14] we describe in detail the use of VSAs to represent
service workflows. This section provides a brief recap of the
core principals to provide context for the Node-RED integra-
tion. Vector Symbolic Architectures use very large vectors
to represent objects and features of objects within a hyper-
dimensional vector space such that objects and concepts that
are semantically similar to each other in the real world are
positioned closer to each other in the vector space.

A. Vector Symbolic Architecture background

A common technique for achieving such semantic repre-
sentations is to represent a high level concept or feature by
a collection of its sub-features in a hierarchically recursive
manner[5] so that the sub-features themselves are also built
up of their sub-features which in turn are built of their
own and so on. Descending in this way we eventually get
down to a sub-feature which cannot sensibly be broken down
further, and define this as an atomic vector. VSAs can be
based on real valued vectors, such as in Plate’s Holographic

Reduced Representation (HRR) [1], or large binary vectors,
such as Pentti Kanerva’s Binary Spatter Codes (BSC) [3] that,
typically, have N ≥ 10,000. For this work, we have chosen to
use Kanerva’s BSCs but we note that most of equations and
operations discussed should also be compatible with HRRs [9].

A key feature of VSA architectures is that all vectors have
the same size; that is the vector for a high level concept, such
as the entire play Hamlet, is the same size as each of its
sub-features, i.e., acts, scenes, stanzas, sentences, words. In
order to achieve this, sub-feature vectors are combined using
a suitable bundling operator, which for BSCs1 is majority-
vote addition[3, 14]. The resultant vector is a superposition
of all sub-features in the sum such that each vector element
participates in the representation of many entities, and each
entity is represented collectively by many elements [9]. Nor-
malized hamming distance (HD) can be used to probe such
a vector for its sub-features without unpacking or decoding
the sub-features. XOR binding is used to build roll-filler
pairs[1, 3] which allow sub-feature vectors to remain separate
and identifiable (although hidden) within a concept vector
superposition[1, 3, 14]. In addition binding can be used to
maintain positional and temporal relationships such as those
needed for execution of workflows.

Binding is commutative and distributive over superposition
as well as being invertible [3, page 147]. This means that, if
Z = X ·A then X ·Z = X · (X ·A) = X ·X ·A = A since X ·X = 0, the zero
vector2. Similarly A · Z = X . Due to the distributive property
the same method can be used to test for sub-feature vectors
embedded in a compound vector as follows:

Z = X ·A+Y ·B (1)
X ·Z = X · (X ·A+Y ·B) = X ·X ·A+X ·Y ·B (2)
X ·Z = A+X ·Y ·B (3)

Where ′.′ indicates XOR binding and ′+′ indicates majority-vote-add

Examination of Eq. (3) reveals that vector A has been exposed,
thus, if we perform HD(X ·Z,A) we will get a match. The second
term X ·Y ·B is considered noise because X ·Y ·B is not in our
known vocabulary of features or symbols. XOR-binding also
preserves distance, but produces a result that is uncorrelated
to its operands. Hence, if V = R ·A and W = R ·B then HD(V,W ) =

HD(A,B) even though, R, A and B has no similarity to V or W .
These operations allow us to create semantically comparable

compound objects analogous to data structures as follows:
P1v = FNr · Johnv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P2v = FNr ·Lucyv +SNr ·Charlesv +Ager ·55yrsv +Healthr ·T 2Diabeticv

P3v = FNr ·Charlesv +SNr ·Smithv +Ager ·55yrsv +Healthr ·T 2Diabeticv

Note that, without role vectors, e.g., FNr
3 then HD(P1,P2) =

HD(P1,P3) = HD(P2,P3) since each record would be an un-
ordered bag of feature values. Thus role vectors can be used

1Further references to operations used in VSA architectures are expressly
talking about binary vector operations

2Throughout this text, unless otherwise stated ′.′ indicates XOR binding
and ′+′ indicates majority-vote-add

3Note that throughout this text, a symbol having suffix r, (Yr) represents a
known atomic, role vector. A symbol having suffix v (Xv) indicates a vector
that is representing a value.



to perform the important function of categorisation within a
superposition. To test P1 for the surname Charlesv we perform,

HD(xor(SNr,P1v),Charlesv) (4)

For 10kbit vectors, if the result of Eq.(4) is less than 0.47
then the probability of Charlesv being detected in error is
less than 1 in 109 [3, page 143]. If our person records are
distributed over a network we could transmit or multicast the
request vector Z = SNr ·Charlesv +Ager · 55yearsv to the network.
Any listening distributed microservice, or node in a Parallel
Distributed Processing network, having person records con-
taining the surname Charlesv and age 55yearsv can check for
a match and respond or become activated.

B. Encoding service descriptions into semantic vectors

As described in Section III-A a common approach for
creating semantically rich representations is to represent a high
level concept as a collection if its sub-features in a recursive
manner. Reviewing that Xr represents a role vector and Yv a
value vector, one such arrangement for services might be,

Zv = Servr ·Servv +Resourcer ·ResPv +QoSr ·QoSv (5)
Servv = Inputsr · Inpv +Namer ·Namev +Descr ·Descv +Out putsr (6)
Inpv = Oner ·Floatr +Twor ·Floatr +T hreer ·Floatr +Oner ·BitMapr (7)

Thus, Zv, the high-level semantic vector representation of the
service, is made up of a nested superposition of its sub-feature
vectors. Listing 1 is an example of a JSON service description
for one of the Node-RED object detectors in our Traffic
Congestion use case. We now describe a new methodology
for converting JSON service descriptions into a semantically
comparable service vector descriptions.

Listing 1: Service Vector Description
{”service”:
{”service name”:”object detector 1”,

”service inputs”:[
{”input name”:”image”,
”input data type”:”char64jpg”,
”input related concepts”:[{

”concept name”:”location”}],
”required”:true}],

”service outputs”:[
{”output name”:”object list”,
”output data type”:”list string”,
”output related concepts”:[

{”concept name”:”car”},
{”concept name”:”person”},
{”concept name”:”bus”}]}],

”service average response time ms”:5000}}

The field-names within the JSON must be converted to
unique role vectors and the JSON values must be converted
to semantically comparable vector values. The value fields are
encoded using (8) which is described fully in [14]. This means
that values can be complex and are semantically comparable
as long as, within a superposition, they are bound to the same
roles.

When using field-names as roles to categorise the feature
values of a service vector concept, one important issue is, how

can we guarantee that the role vectors created are unique and
have the same value across distributed service implementa-
tions. This is a particularly relevant question for Node-RED
integration since Node-RED is open source and functional
nodes/services can be created arbitrarily by an unrelated set of
developers. In the original implementation we simply assigned,
known, random hyper-dimensional vectors to each role/field-
name, however, this does not allow for unrelated developers
to invent new field-names and would require some sort of
central database lookup so that distributed services agreed on
the vector value of a role/field-name, otherwise they would
not be able to perform semantic matching.

In this paper we describe an alternate vector encoding
method that ensures roles are always unique based on their,
case insensitive, spelling. The encoding algorithm used for
the field-names is chained XOR of a shared vector alphabet.
Cyclic-shift per character position is used to ensure unique
encodings for words such as ’AA’ and ’AAA’ which would
otherwise collapse into similar values, since XOR(A, A) = 0 and
XOR(XOR(A, A), A = A. The algorithm to convert a field name to
a vector is shown in Listing 2.

Listing 2: Field name to Vector.
def field name to vec(name, vec alphabet):

n = name.lower()
v = vec alphabet[n[0]]
shift = 0
for c in n[1:]:

shift += 1
v = XOR(v, ROLL(vec alphabet[c], shift))

return v

To recursively encodes each feature chaining all field-
names together with the sub-feature roll-filler pairs we use
the json to vecs() function listed in Listing 3.

Listing 3: Chaining Field Names.
def json to vecs(json input):

if isinstance(json input, dict):
dd = []
for k, v in json input.iteritems():

rv = json to vecs(v) # Recurse
if isinstance(rv, list):

dd.extend([(”{} * {}”.format(k, i[0]),
# Chain XOR field−names with
# sub role−filler found in i[1]
XOR(field name to vec(k, symbol dict), i[1]))
for i in rv])

else:
dd.append((”{} * {}”.format(k, rv[0]), XOR(

field name to vec(k, symbol dict), rv[1])))
return dd

elif isinstance(json input, list):
dd = []
for item in json input:

rv = json to vecs(item) # Recurse
if isinstance(rv, list):

dd.extend([json to vecs(i) for i in rv]) # Recurse
else:

dd.append(rv)
return dd

else:



if isinstance(json input, tuple):
return json input

else:
return json input,

chunkSentenceVector(str(json input)).myvec

Where chunkSentenceVector creates semantically compara-
ble vectors. The algorithm produces a ‘bag’ (python list) of
role-filler vectors that are then further combined into a single,
semantically comparable, vector using simple ma jority vote
addition. The output of json to vecs() for JSON Listing 1 is
shown in schematic form below.

Listing 4: Output from json to vecs().
service * service name * object detector 1
service * service average response time ms * 5000
service * service inputs * input data type * char64jpg
service * service inputs * input related concepts * concept name * location
service * service inputs * required * True
service * service inputs * input name * image
service * service outputs * output data type * list string
service * service outputs * output name * object list
service * service outputs * output related concepts * concept name * car
service * service outputs * output related concepts * concept name * person
service * service outputs * output related concepts * concept name * bus

Note, in the listing ′∗′ indicates XOR binding.

Each line in Listing 4 represents a compound vector entry
in the returned list. The right most vector is the value vector,
all vectors to the left of this are unique role vectors. Each
individual vector is XOR chained with the one to its left.
Precedence is as follows:

sub f eaturev = service ∗ (service name ∗ ob ject detector 1))

In the above example, ob ject detector 1 is the value vector
and service and service name are both role vectors. If Zv is the
result of the final ma jority vote superposition, then to extract a
noisy copy of the ob ject detector 1 value we would perform

ob ject detectorv ≈ XOR(service namer, XOR(Zv, servicer)

Note, as mentioned above, that the output of json to vecs()
is combined as a simple ma jority vote bag of vectors, this
helps makes the vectorisation of JSON service descriptions
immune to ordering issues but does limit the number of service
line entries to approximately 100, the maximum capacity of a
single 10kbit binary vector [4].

In Node-RED such vector encodings are representative of
the required function. The encoded JSON may be a specific
known function that has been previously used, or a generic
JSON representing the type of functional service needed.

IV. DESCRIBING WORKFLOWS USING VECTOR SYMBOLIC
ARCHITECTURE

A workflow is a set of inter-related tasks that must be carried
out in a specific order. In order to compose a workflow some
methodology is needed to describe the various steps and what
data must be passed between each cooperating node in the
workflow. In our previous work we showed how Pegasus[13]
DAX files could be parsed and converted into a VSA work-
flow. Such DAX files can be written directly in XML script

language, or, they can be generated programmatically via
the Peagsus API, available in Java, Perl or Python. Node-
RED provides a graphical means of describing a workflow by
allowing graphical icons representing functional operations to
have their input/outputs connected. Figure 1 shows an outline
of the Pegasus Montage 20 workflow composed via the Node-
RED graphical interface.

Fig. 1: Pegasus Montage 20 composed using Node-RED.

In our previous work [14] we explained how we can
combine functional vector service descriptions into a workflow
via our hierarchical VSA binding scheme (8) and (9). The
execution flow is achieved by sequentially unbinding using
(10).

Zx =
x

∑
i=1

Zi
i .

i−1

∏
j=0

p0
j +StopVec.

i

∏
j=0

p0
j (8)

Omitting StopVec for readability, this expands to,

Zx = p0
0.Z

1
1 + p0

0.p
0
1.Z

2
2 + p0

0.p
0
1.p

0
2.Z

3
3 + ... (9)

Z′n+1 = (p−n
n .Z′n)

−1 (10)

In all of the above equations, the Zn terms are the semantic
vector representations built using the methods described in
Section III-B. In addition, for very large workflows the Zn

term may be a cleanup vector representing a large grouping
of smaller steps, or in Node-RED terms, analogous to a sub-
flow.

In [14] we also explain how discovery and workflow or-
chestration can be achieved using the above equations. For a
linear workflow, the workflow steps are bound and unbound
using and (10) respectively. The p0, p1, p2, ... vectors are role
vectors used to define the current position/step in the workflow.
After the workflow has been built the unbinding procedure
essentially exposes each microservice description in turn. Flow
is controlled by the currently active node doing its functional



work and then performing the next unbinding using (10) to
activate the next node, no central controller is needed.

Note that, because we are using semantic vector descriptions
for each exposed vector service request we fully expect to
get multiple replies. In order to avoid race conditions and to
enable on the fly load balancing we employ a method of local
arbitration described in [14] whereby the currently active node
acts as the local arbiter for selection of the next workflow step.

Z′1 = (T + p0
0.Z0)

-1
= p-1

0 .T -1 + Z0
1 + p-1

1 .Z1
2 + p-1

1 .p-1
2 .Z2

3+... (11)

Z′2 = (p-1
1 .Z′1)

-1
= p-1

1 .p-2
0 .T -2 + p-1

1 .Z-1
1 + Z0

2 + p-2
2 .Z1

3 + . . . (12)

Equations (11) and (12) show the state of the workflow
vector after the first and second unbinding. Only Z1 is visible
in (11) and Z2 is visible in (12) because all other vectors are
permuted by position vectors[14].

For Directed Acyclic Graph (DAG) workflows we extend
this mechanism by employing three phases:[14]

1) A recruitment phase where services are discovered, se-
lected and uniquely named.

2) A connection phase where the selected services connect
themselves together using the newly generated names.

3) An atomic start command indicates to the connected
services that the workflow is fully composed and can be
started.

Thus, in mathematical terms, using (9):

WP = p00.(RecruitNodes)
1 +

p00.p10.(ConnectNodes)
2 + p00.p10.p20.Start3

RecruitNodes = p00.Z1
1 + p00.p10.Z2

1 + ...p00.p10.p20.p30.Z4
1 . . .

ConnectNodes =
(

p00.P1
1 + p00.p0

1.C
2
1
)
+(

p00.p10.p20.P3
2 + p00.p10.p20.p30.C4

2
)
+ ...

The resulting workflow, WP, is a single vector superposition
representing the linear sequence of steps needed to discover,
connect and initiate the workflow. During the Recruitment
phase; (a) real services respond to matches via their VSA
cognitive layer; (b) the currently active node uses local
arbitration[14] to select the best node for the next Recruit
nodes step; (c) selected nodes build representations of their
own parent and child vectors which will be used during the
Connection phase so that each service can be informed of its
inputs and outputs. Notice that, during the Connection phase,
the WP vector has become a sequential list of alternating
parent P and child C vectors. This is how each recruited node
learns of its partner connections. Control continues to pass
from node to node but, during the connection phase, when a
node becomes activated by seeing its parent vector it simply
unbind/multicasts the next vector, since in doing so it will
activate its associated child service, automatically informing
the child service of its ip-address. When a service receives a
multicast that matches to its child vector it stores the parent’s
ip-address and multicasts a response informing the parent of
its own ip-address before unbinding and multicasting the next
vector.

When the final child request is processed, this is detected by
the ConnectNodes cleanup service[14] causing it to unbind and
multicast the StartVec indicating to all nodes that the workflow
has been fully constructed and processing can be started.
At this point each VSA-Agent sends an /init/ message to its
associated Workflow-Agent and the proper work is initiated,
see Section VII-A.

The scheme supports encoding of DAG workflows having
one-to-many, many-to-many, and many-to-one connections. In
[14] we show that the result provides several desirable features
and byproducts: it can encode workflows /sub-workflows that
can be unbound on-the-fly and executed in a completely
decentralized way; associated metadata can also be embedded
into the vector, e.g., security, configuration, etc.; the vector
representation is extremely compact and self-contained and
can be passed around using standard group transport protocols;
and semantic comparisons or searches are scoped within a
sub-group of services in a workflow, allowing scoped service
matchmaking.

V. TRAFFIC CONGESTION USE CASE

In prior work, we identified traffic monitoring as a plau-
sible use case involving sensing (e.g., via a network of
traffic cameras) and decision making (e.g., routing traffic to
avoid congested areas) supported by an interactive question-
answering interface ([33], [34]). The concept for this interface
is to provide decision support for a user tasked with managing
the state of city or region-wide traffic. In [33], we explored
detecting traffic congestion using a number of services which
could be both distributed and owned by multiple agencies (i.e.,
operating as a coalition). In [34], we explored how natural
language queries relating to traffic could be answered by
taking advantage of the output of distributed data sources and
processing services. In both these pieces of work, we did not
outline the co-ordination of these distributed resources, merely
providing specific architectures and the Node-RED workflows
that could provide the required answers.

In this and the following sections we show how VSA
enabled Node-RED can be used to semantically describe and
cognitively wrap the existing services and how we construct
the workflow vector that is used to orchestrate the discovery
and execution of the workflow across the distributed resources.

A. Data Sources & Processing Resources

For this work, the example we use (counting the number
of cars on a given street) takes advantage of a subsection of
data sources and resources used in prior work but our solution
featured in this paper can be applied to working with a wider
range of available services.

The main data source we have taken advantage of is the
Transport for London (TFL) traffic camera API4. This allows
access to imagery and video from around one-thousand traffic
cameras situated around London. The imagery and video is
updated every five minutes and the video provided is a ten

4http://www.trafficdelays.co.uk/london-traffic-cameras/



second clip recorded at the beginning of the five minute
interval.

To detect cars, we process the imagery from the traffic
camera feeds using an object detector (MobileNetSSD5) sup-
plied within the opencv library 6. Finally, to convert the list
of detected cars to a count we use a simple service that is
designed to count the items in a list it receives. Having this as
a service (and not hard coded in to the interfaces processing
of the result for example) allows for this list to count function
to be used within workflow construction.

B. Moving to a Dynamic and Decentralized Environment

Within a decentralized environment, these resources need
to be discovered dynamically amongst a distributed array of
services. Once the nature of the query is established, the cor-
rect services must be identified and chained together in order
to answer the query. During the discovery process there are
two key considerations, services may be replicated identically
providing redundancy and thus there may be multiple services
that provide a perfect fit or the required functionality. These
must be discovered and selected appropriately. Secondly there
may be services available which although do not meet the
functionality exactly still provide the functionality required.
For example, when counting the number of vehicles on a road,
a vehicle detector (a detector that identifies cars, bikes, vans
etc) is a perfect fit but if detectors for these individual concepts
exist (individual car detector, van detector etc), their output
could be aggregated and provide an output that may still be
appropriate if no vehicle detector is available.

A method of discovery and execution within a distributed
setting must factor these two properties in in order to best take
advantage of the resources made available and to maximize the
queries that are answerable.

VI. ARCHITECTURE

In order to manage and fuse these sensor feeds, an archi-
tecture is required that integrates the services in a loosely
coupled way to support decentralized discovery and execution.
This loosely coupled nature ensures that existing services and
resources can be be quickly set up to be discovered and take
part in query responses without having to be re-written from
the ground up.

In Figure 2, we illustrate the three layers of architecture.
The lowest layer (in gray), contains the services and resources
we wish to make available. These can be existing or newly
created, and can be unique services or redundant replications
of the same service. Simply these are end points which can
be sent a request and respond in kind.

The second layer (in green), contains our proposed solution
to handling workflow execution, the workflow agents. These
decentralized wrapper services are light weight and encompass
the real services below them. They manage the address of the
end point, the collection of the required input data, the retrieval

5MobileNet-SSD: https://github.com/chuanqi305/MobileNet-SSD
6Opencv: https://github.com/opencv/opencv

Fig. 2: Distributed architecture for answering the question
”How many cars on Oxford Street?”

of the end points response and finally the forwarding of this
response to the next workflow agent in the chain.

The highest layer (in orange), is where the VSA agents re-
side which, in our solution, handle the discovery of appropriate
services using vector representations of the task (as detailed
in section IV).They have the required information about the
location of the workflow agent and a representation of the
function the linked service provides.

In summary, within this architecture diagram , the vertically
aligned agents and services represent the connected VSA
agent, the workflow agent and the service itself which work
together to offer discoverability and execution of a particular
function amongst the array of services. The distinct columns
(three in our diagram) represent categories of service i.e. the
different functions that can be provided. The depth shown
at each layer within these columns represents redundant or
similar services for a function.

The VSA agent and the workflow agent are co-located on
the same hardware but the Service itself can be located on
another platform that the workflow agent can communicate
with. In our use case, for example, the camera service is
a remote webs-service that is only reachable from the node
running the corresponding workflow agent.

VII. NODE-RED INTEGRATION

In Figure 1, we illustrated a typical Node-RED workflow.
To illustrate the integration of Node-RED with VSA, we make
use of the linear workflow shown in Figure 3 that is used in
the simple traffic congestion use case.

In a conventional Node-RED implementation all messages
travel through the Node-RED workflow engine. This requires
the location of external services to be specified and these
must be known in advance. In this example, the external
service, ob ject detector 1, is defined using an Node-RED
http-request node as shown in Figure 4.

The HTTP request is actually enacted via the NODE-Red
workflow engine. The Node-RED engine makes a POST to
the address shown, it collects the reply and passes it, as a
Node-RED payload message, to the next node in the flow.
This means that all messages must pass through the central



Fig. 3: Typical Node-RED workflow.

Fig. 4: HTTP Requester properties for Object Detector 1

Node-RED controller and, since the external service endpoint
is hard-coded, no alternate service can be selected. The archi-
tecture described in Section VI is largely independent of Node-
RED. However, we integrate with Node-RED in two ways.
First, Node-RED is used as a front end graphical composition
interface, acting as the interface component located in the top
left corner of Figure 2. Second, we have extended the VSA
Importer toolkit to parse Node-RED workflows, so we can
export Node-RED workflows into a decentralized discovery
and execution environment.

In order to integrate Node-RED as the front end to our
VSA workflow architecture we implement a new Node-RED
node type, the ’vsa service’ node. This node type has its
message passing component disabled because message passing
between distributed components its carried out by our VSA
architecture. The vsa service node has two properties, see
Figure 6. The ’Name’ property is a standard Node-RED
property. The ’JSON’ property is used as an entry field to
accept either a file name or a literal JSON string which is used
to describe the service attributes and features of the particular
service it is representing. This JSON description is encoded
by the VSA architecture in to a single 10Kbit semantic vector
as described in Section III-B. When passed as a filename, if
the filename type is .bin, then the VSA architecture will load
a previously built 10kbit vector during workflow encoding,
otherwise it reads and vectorises the JSON on the fly.

Fig. 5: VSA workflow composition using vsa service node.

Fig. 6: Node-RED vsa service properties.

Real microservices that are participating in our VSA archi-
tecture also encode their functional description using the same
methods, hence, when the Node-RED service request is de-
ployed, the service flow, via the VSA architecture, can discover
and utilise the real services. Message passing does not rely
on returning each payload to the Node-RED engine. Rather,
the VSA architecture performs the discovery, selection and
connection of real worker services that are listening for work
in a distributed network. Once the workflow nodes have been
discovered and recruited and connected the VSA Workflow-
Agents execute the workflow as described in Section VII-B,
all messages are passed directly between the Workflow-Agents
without a central point of control. When each terminal node
Workflow-Agent, defined as one having no child endpoints, has
completed its work, it returns its output, if any, to Node-RED
via a HTTP POST.

In Figure 5, the top right node, ’Deploy VSA Flow’ is a
conventional Node-RED sub-flow that extracts the Node-RED
flow JSON description from the flow’s page and sends it to
the VSA Workflow Importer using a HTTP POST request.
A simplified listing of the JSON extracted by ’Deploy VSA
Flow’ is shown below. The wires:[] list field, id: field, and
JSON: field are used by the VSA Workflow Importer to build
the workflow vector.

The bottom right node, ’VSA Flow Result’ is a conventional



Node-RED sub-flow that implements a Node-RED ’HTTP in’
node having endpoint /vsa work done/. This endpoint is used
by the Workflow-Agents to return their results to Node-RED.

{ ”nodes”: [
{ ”wires”: [

[”695e3ae2.e16854”]
],
”name”: ”tfl−camera”,
”JSON”: ”tfl camera tenyson road.json”,
”y”: 295,
”x”: 495,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”226dec54.165fe4”

},
{ ”wires”: [

[”dee64892.9d1a28”]
],
”name”: ”Object−Detection”,
”JSON”: ”object detection.json”,
”y”: 295,
”x”: 702,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”695e3ae2.e16854”

},
{ ”wires”: [

[]
],
”name”: ”Count−Objects”,
”JSON”: ”count objects.json”,
”y”: 295,
”x”: 915,
”z”: ”1592cb0c.f2c005”,
”type”: ”vsa service”,
”id”: ”dee64892.9d1a28”

}
],
”id”: ”1592cb0c.f2c005”,
”label”: ”VSA Car Counter”

}
# Node−RED JSON listing with non−vsa service nodes removed.

A. Implementation

We simulate real world operation using Core/EMANE[12],
a real-time network emulator. From Figure 2, each VSA-Agent
and Workflow-Agent are co-located and run in their own VM,
each of which has its own IP-Address on a simulated wireless
mesh network. We instantiate multiple similar services in
separate VMs so that we simulate having multiple possible
services capable of satisfying a particular workflow step.
Node-RED runs on the host ubuntu server, thus, we simulate
an extended distributed/MANET environment for our services
and request flows from Node-RED. Between and during runs
we can move services in and out of range taking them in and
out of service.

Our VSA platform is implemented in Python2 and has a
modular architecture with several components that are capable
of being reused as plugins to other systems:

1) Core/EMANE All VSA and Workflow agents are started
by loading a Core configuration file defining each of our
services. Each service starts in its own VM. the VSA-
Agent loads its semantic vector service description and

starts listening on the VSA multicast address for semantic
vector messages.

2) The Workflow Importer component uses a general
plugin infrastructure that allows VSA to parse multiple
formats. It has an implementation for the Pegasus work-
flow description(DAX) and for this new implementation,
we added a module for parsing Node-RED workflows.
Once parsed the resulting graph is formed using VSA
primitives: NodeVectors and EdgeVectors for further pro-
cessing by the VSA Creator.

3) The VSA Creator is used to bind the lists of vectors into
a single vector, a reduced representation, of the workflow
using (8) and chunking[14, page 3]. Chunking is per-
formed bottom up and vectors are recursively rebound
until the vector list (workflow) is reduced to a single
vector. The NodeVectors list and the EdgeVectors list are
combined separately producing two high level vectors,
the RecruitNodes vector and the ConnectNodes vector. The VSA
Creator then binds these two vectors together with the
Start vector into a single vector representing the entire
workflow, the WorkFlow vector. This WorkFlow vector
and all its associated sub-vectors are encapsulated in a
chunk tree object[14, page 3] which is then passed to the
VSA executor.

4) The VSA Executor implements the Workflow Agents part
of Figure 2 by providing a decentralized overlay for wrap-
ping the underlying services. The services themselves
can be conventional request/response e.g. Web/REST
interfaces, and the role of the Workflow Agents are to
bind to these underlying services and wiring the inputs
and outputs to such services to serve the service in a
decentralized way. This local wrapping aspect of the im-
plementation is important because it enables decentraliza-
tion over non decentralized services. The VSA Executor
essentially flattens the workflow by distributing copies of
all non-terminal chunk vectors into the terminal (bottom
level/worker) nodes. Non-terminal nodes are distributed
to the first child of a parent node to decode the first vector
in a higher level vector. For robustness, the VSA Executor
can be made to distribute more than one copy of the
cleanup objects into other terminal node objects.

5) The Logging Component collects metrics as the work-
flow runs to feed into external processors. Logging cur-
rently collects a trace of the nodes and edges that are
being processed by the workflow.

6) The Visualisation Component takes the log output and
generates a DAG layout graph using Graphviz [35].

B. Workflow Execution
The Workflow-Agents (WA) are currently implemented as

python flask services. The VSA component knows the end-
point of the WA which is wrapping the underlying functional
service. The WA has a number of HTTP endpoints/routes that
are used to control it and facilitate message passing between
nodes.



1) /init/ The VSA-Agent POSTs the list of its discovered
input/outputs to its partner Workflow-Agent. The parent
addresses are used used as keys in a python tracker
dictionary for the purpose of collecting data on this WA’s
inputs.
{
”name”: ”tfl camera”, ”server id”: ”192.168.0.72:4612”),
”child connections”: [[’192.168.0.72’, 4612], [’192.168.0.72’, 4614]],
”parent connections”: [[’192.168.0.72’, 4623], [’192.168.0.72’, 4617]]
}
# /init/ input message from VSA−Agent

{
”192.168.0.72:4623”: ”False”,
”192.168.0.72:4617”: ”False”
}
# Input tracker Dictionary

2) /start/ Those services that do not have any input(parent)
connections call their DoWork() function and send the
resulting data to each /work/ endpoint in this worker’s
child list. Those services that do have parent connections
return and await /work/ messages. All messages are
currently passed as a JSON dictionary with the following
format, (Note that the sender’s listening address:port is used for the
server id field because it uniquely identifies the sender.)
{
”name”: ”tfl camera” # The Sender’s name string
”server id”: ”192.168.0.72:4612” # The Sender’s server address
”data”: ”A valid JSON serialisable python object”
”status”: ”good” # Alternatively ”UNEXPECTED”
}
# Workflow Agent: Work data message.
# Input and output messages have the same format.

3) /work/ On receipt of a ’work’ message each work mes-
sage is stored in the input tracker until all inputs have
been received. At this point the DoWork() function is
called passing in the data from the messages it received.
Any output from the DoWork() function is then sent to
each /work/ endpoint in this worker’s child list. If the
Workflow-Agent receives an empty child connections list
via the /init/ message it is considered a terminal node and
POSTS its output, if any, back to the known Node-RED
listener.

4) DoWork() The DoWork function is specific to each
task and must be customised by the developer who is
implementing, or wrapping, a real service. For a producer
service, e.g., a tfl camera, it simply packages and returns
its data. For a producer-consumer, it processes the data
collected and returns a packaged response which will
usually be some transformation of its input data.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have identified that the majority of exist-
ing workflows rely on centralized management and therefore
require a stable endpoint in order to deploy such a manager.
One such workflow system is Node-RED, which is designed
to bring workflow-based programming to the IoT. However,
the majority of scientific workflow systems, and specificlly
systems like Node-RED, are designed to operate in a fixed

networked environment, which rely on a central point of
coordination in order to manage the workflow.

In more dynamic settings, such as MANETs, on demand
workflows that are capable of spontaneously discovering mul-
tiple distributed services without central control are essen-
tial. In these types of environments distributed pathways are
complex, and in some cases impossible to manage centrally
because they are based on localized decisions, and operate
in extremely transient environments. Consequently, in dy-
namic environments, a new class of workflow methodology is
required—i.e., a workflow which operates in a decentralized
manner.

We have described how we can migrate Node-RED work-
flows into a decentralized execution environment, so that
such workflows can run on Edge networks, where nodes are
extremely transient in nature. We have demonstrated that such
a new class of workflow can be realized by using vector
symbolic architectures (VSA) in which symbolic vectors can
be used to encode workflows containing multiple coordinated
sub-workflows in a way that allows the workflow logic to be
unbound on-the-fly and executed in a completely decentralized
way.

We have demonstrated the feasibility of such an approach by
showing how we can migrate a centralized Node-RED based
traffic congestion workflow into a decentralized workflow by
adding a cognitive-aware wrapper which uses the VSA to se-
mantically represent the component services and the associated
workflow. The traffic congestion algorithm is implemented as
a set of Web services within Node-RED and we have archi-
tected and implemented a system that proxies the centralized
Node-RED services using cognitively-aware wrapper services,
designed to operate in a decentralized environment.

Symbolic vector representation can also be used to represent
not just the workflow but also the semantics of the component
services at various levels of semantic abstraction. This leads
directly to the concept of self-describing services and data. We
believe that in future the VSA approach offers the potential
to combine the workflow, self-describing services and data
into vector representations that will enable alternative service
compositions to be automatically constructed and orchestrated
to perform tasks specified at higher levels of semantic de-
scription. Our future work will therefore focus on such self-
describing service compositions in order to realize the vision
set out in [25].
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