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Summary 

Analyses of genome-wide association study data have demonstrated that there are 

potentially thousands of loci associated with schizophrenia (Sullivan et al. 2003). Although 

risk is partially explained by the additive effects of top-ranking polymorphisms, genetic 

interactions may help to explain additional heritability (Hemani et al. 2014; Zuk et al. 2012). 

However, attempts to identify disease-associated pair-wise interactions through 

exhaustive testing have so far been unsuccessful due to the large burden of multiple testing 

and the absence of easily discoverable interactions of large effect (Moskvina et al. 2011). 

Here we investigate whether evidence for a contribution to disease risk from SNP-SNP 

interactions can be found by searching for sets of genes enriched for nominally associated 

interactions. 

When performing interaction analyses covariates were introduced to account for 

population structure. Where the effect of covariates needs to be accounted for, the most 

widely used method modifies the basic logistic regression interaction analysis by simply 

adding covariate terms into the model. The performance of this method was compared to 

two alternative approaches: adding covariate-SNP interactions terms in addition to the 

individual covariate terms, as suggested by (Yzerbyt et al. 2004); and testing for 

interactions in each population separately, then using meta-analysis to combine 

interaction effects. Results and running time were similar whether SNP-covariate terms 

were included or not, while the meta-analytic approach was found to be the most efficient 

in terms of running time. 

To try and identify sets of genes enriched for nominally associated interactions, two 

approaches were investigated: one based on genetic information alone, and one based on 

functional information using protein-protein interactions (PPI). The first approach analyzed 

the distribution of interaction p-values after ranking them by the gene-wide main effects 

of the contributing genes, allowing a comparison to be made between genes with high/low 

gene-wide association. The second approach asked whether genes encoding directly 

interacting proteins were enriched for nominally associated interactions, drawing upon 

two PPI datasets: one from a large experimental (yeast two-hybrid) screen, the other 

consisting of PPI data curated from the literature. In both of the genetic datasets studied 

there was evidence for enrichment of nominally associated interactions amongst genes 

with highest gene-wide association for schizophrenia. There was no evidence for an excess 

of nominally associated interactions when investigating either PPI dataset.  
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Chapter 1 - Introduction 

11..11 SScchhiizzoopphhrreenniiaa

11..11..11 HHiissttoorryy

The concept of schizophrenia has recent origins despite the fact that some of the specific 

aspects of the disorder appeared to have been known from the Middle Ages (Jeste et al. 

1985). Dr Emil Kraepelin was the first to identify the disease in 1887 under the name of 

“dementia praecox”.  It was the first time that schizophrenia was separated from other 

forms of psychosis. Kraepelin thought that his dementia praecox was a brain disease 

differentiated from dementia by the fact that it occurred early in life. 

Eugen Bleuler introduced the term schizophrenia in 1911. The word schizophrenia comes 

from the Greeks schizo and phrene. Schizo can be translated as split and phrene as mind. 

Bleuler noted that schizophrenia was very complex in the sense that it seemed to appear 

as a group of diseases, due to the wide variety of symptoms observed between individuals. 

He was also the first person to separate the symptoms in two categories: positive 

symptoms and negative symptoms. 

11..11..22 DDiisseeaassee

Schizophrenia is a severe psychiatric disorder, estimated to affect approximately 1% of the 

population (Owen et al. 2005). The onset of the disease lies in adolescence or early 

adulthood and often results in a lifetime of illness and treatment. Consequently, 

schizophrenia has a strong impact on the patient’s life, their family and on the public health 

service. 

11..11..22..11 SSyymmppttoommss

To diagnose schizophrenia, patients have to fulfil certain criteria. The Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5) provides a list of symptoms and behaviours 
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that enable psychiatrists to identify the disease. As schizophrenia‘s phenotype is very 

complex and heterogeneous, patients show diverse symptoms. Moreover, schizophrenia 

is a long-term mental health disorder and symptoms can also evolve. The main symptoms 

of the disorder can be classified in four categories: positive, negative and cognitive 

symptoms and disorganization of thinking and behaviour. 

Positive symptoms appear to imitate at the excess or distort normal behaviours. Such 

symptoms can appear and disappear. They can also depend on the treatments that the 

patient is taking. Patients generally live in a distorted reality. The degree to which a patient 

is affected can also vary: one person could show a severe form of the symptoms whereas 

in another patient it would be hardly noticeable. Hallucination is when a person sees, 

smells, hears or feels things that do not exist. The most well-known symptom amongst 

individuals suffering from schizophrenia is the hearing of voices. Other hallucinations 

include seeing people or sensations of being touched when no one is physically present. 

Delusion is a false belief based on a mistaken or unrealistic view and is not part of the 

person’s culture. Despite being shown that it is illogical or untrue, patients experiencing 

both hallucinations and delusions will still hold strongly to their beliefs, as they feel very 

real. 

Negative symptoms include signs that disrupt emotions or behaviours including but not 

limited to lack of emotions, affective blunting, poverty of speech, or a loss of interest in 

everyday activities. It is sometimes hard to recognise whether such indications are part of 

the development of the disease or characteristics caused by something else. These 

symptoms are the least likely to improve in the patients. 

Cognitive symptoms include cognitive deficits such as poor ability to make decisions, 

problems with memory, the inability to focus or a lack of understanding information. 

Although cognitive deficiencies are frequently observable, it has to be noted that such 
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observations vary dramatically across individuals. Moreover, cognitive impairment has only 

been recently recognised as a fundamental symptom of schizophrenia. 

Disorganized thinking is an unusual way of thinking. This happens when the patient cannot 

connect their thoughts in a logical way or by poverty of thought content (Tandon et al. 

2009). This can also be expressed though a patient’s difficulty in holding a conversation.

11..11..22..22 TTrreeaattmmeenntt

Schizophrenia is a complex disorder and the cause of the disease is not yet known to its full 

extent (Tandon et al. 2008). So far, available treatments have been focused on helping 

patients to deal with their symptoms or to eliminate them. For example Clozaril, a form of 

Clozapine is an antipsychotic medication.  

11..11..33 EEppiiddeemmiioollooggyy

To characterise the epidemiology of a disease, two indicators are usually used: incidence 

and prevalence. The incidence is the number of observed new cases developed over a 

period of time in a population at risk with the disease. The prevalence is the number of 

new and previously existing cases who have the disease at a particular time within a 

defined population. 

Numerous epidemiological studies have been done on schizophrenia. An analysis of the 

prevalence from 188 studies that covered 46 countries calculated the median prevalence 

estimate at 4.6 per 1,000 (Saha et al. 2005). Regarding the incidence rate, research showed 

that results range between 0.16 and 0.42 per 1,000 (Jablensky 2000). While differences 

have been observed between economically rich and more economically impoverished 

countries, these differences essentially concern the progression and consequence of the 

disease (Jablensky 2000): there is no evidence that the economic status of a country 

influences the incidence rates of schizophrenia (Saha et al. 2006). A meta-analysis of all 

published studies between 1965 and 2001 showed that variation in the incidence of 
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schizophrenia was highly associated with sex, urbanity and migration (McGrath et al. 2004). 

Another review also noted that the clinical features of the disorder vary significantly from 

one patient to another (Rössler et al. 2005). 

11..11..44 GGeenneettiiccss ooff sscchhiizzoopphhrreenniiaa

11..11..44..11 HHeerriittaabbiilliittyy

Heritability is the proportion of variance in a particular trait, in a particular population, at 

a particular time that is due to genetic factors. 

A given phenotype (P) for a particular trait at a particular time in a particular population 

can be modelled as the sum of the unobserved genotype (G) and the unobserved 

environment (E) as follow: 

Consequently the variance of the observable phenotype can then be defined: 

Where is the phenotypic variance,  is the genetic variance and  the environmental 

variance. 

The broad sense heritability H2 is defined as the proportion of the observed trait variances 

that is due to all genetic factors: 

The genetic variance can then be defined as the following: 

Where is the variance of additive effects,  is the variance of dominant effects and 

the variance of interaction effects. 

The narrow-sense of heritability h2 is defined as the proportion of the observed trait 

variances that is due to additive genetic factors only: 
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Where is the variance of additive effects,  is the phenotypic variance. 

Schizophrenia is a highly heritable disorder in which genetic factors account for 80% of the 

variability in liability (Sullivan et al. 2003). Estimates of heritability from twin studies 

(Cardno and Gottesman 2000) varies from 80-85%. 

11..11..44..22 GGeennoommee WWiiddee AAssssoocciiaattiioonn SSttuuddiieess

Association studies such as Genome Wide Association Studies (GWAS) take the following 

approach: the location of the causal variants is not assumed to allow an unbiased search 

using association principles (Hirschhorn and Daly 2005).  Moreover, such a method is more 

suited to identify variants of smaller effect than those detected by early linkage studies 

(Risch and Merikangas 1996). 

GWAS assume that common variations contribute to the heritability of common diseases 

(Reich and Lander 2001). This method focuses on comparing allele frequencies between 

individuals affected by schizophrenia (cases) and healthy individuals (controls). If an allele 

has a higher frequency in cases than in controls, then this allele will be considered to be 

associated with the disease. Using such a method has only been possible because of the 

characterisation of linkage disequilibrium (LD) between SNPs via the HapMap project 

(International HapMap Consortium 2003). LD exists when genotypes at different loci are 

not independent of another: there is a non-random association. By sequencing millions of 

variants, the HapMap project (International HapMap Consortium 2003) examined LD 

patterns between SNPs and concluded that because neighbouring SNPs are very likely to 

be correlated, only a subset of variants need to be selected in order to look for association 

across the genome (Hirschhorn and Daly 2005). Consequently, if a SNP has been found to 

be associated with the disease, either this marker is causal (directly associated) or it is in 

LD with the causal variant (Bergen and Petryshen 2012), which is more likely. Statistical 
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analysis is carried out to investigate the likelihood of each variant to be associated with the 

disease (or trait). The power of GWAS depends on the effect size, the frequency of the 

SNPs and the sample size (Klein 2007). 

Using a case-control population, hundreds of thousands of variants are genotyped across 

the genome using commercial SNPs arrays. Imputation methods are used in order to 

increase the number of SNPs: the genotype of one variant can be used to predict the 

genotype of the neighbouring markers as neighbouring SNPs are almost always at least 

partially correlated with each other (Hirschhorn and Daly 2005). 

In order to evaluate interesting results and to limit false positive results, a threshold for 

genome-wide significance is used. Conservative approaches such as Bonferroni determine 

the threshold by using the number of tests performed. However it has been showed that 

the number of tests should not be the only determining factor but rather best practice 

should estimate the probability to obtain a true association at any loci. Indeed the strength 

of evidence in a GWAS depends on the likely number of true associations and on the power 

to detect true interactions. But the latter depends on effect sizes and sample size. As a 

result a threshold of 5e−8 has become the significance standard in GWAS (International 

HapMap Consortium 2005). 

One of the first GWAS of schizophrenia was published in 2006 (Mah et al. 2006) showing 

only suggestive association. Other GWAS results for schizophrenia then came from the 

results of three studies (Stefansson et al. 2009; Shi et al. 2009; International Schizophrenia 

Consortium 2008) using the following samples: the International Schizophrenia 

Consortium sample (3,322 cases and 3,587 controls), the Molecular Genetics of 

Schizophrenia (MGS) sample (3,967 cases, 3,626 controls), the SGENE sample (2,663 cases 

and 13,498 controls). Those three studies were combined and produced an important 

genome-wide significant result for schizophrenia: an association signal was found within 

the major histocompatibility complex (MHC) region. In addition, the SNP for the gene 
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ZNF804A (Williams et al. 2011) reached genome-wide significance. These studies showed 

that schizophrenia was a highly polygenic disorder, even more than expected (Kavanagh et 

al. 2015). 

Further efforts have been made and sample size has been increased thanks to international 

collaborations. The Psychiatric Genomics Consortium has successfully coordinated the 

largest collaboration for schizophrenia. The latest GWAS results showed 108 loci 

associated with schizophrenia, 83 of which have not been observed before (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium 2014). This could lead to the 

identification of new mechanisms involved in schizophrenia (Doherty et al. 2012). 

However, as with every method, GWAS have limitations and including data from different 

samples comes with challenges. The lack of well-defined cases and controls, heterogeneity 

across samples or population stratification are commonly cited as limitations of the 

method (McCarthy et al. 2008). In addition to a very high number of SNPs being processed, 

there is a pressing need for a strict control of multiple testing in order to limit the discovery 

of false positive results. 

To overcome that difficulty, other methods have been used such as gene-based 

approaches. These methods consider a group of SNPs instead of a single marker. It is then 

possible to include all the variations from each SNP within a gene and to obtain more 

functional information. One commonly used method is based on the smallest SNP p-value 

within a gene and on the number of SNPs within the same gene. Moreover, as the number 

of genes is significantly smaller than the number of markers, it eases the multiple testing 

problem (Hirschhorn and Daly 2005). However the presence of LD between SNPs implies 

that tests are not independent rending the correction applied by some methods 

insufficient.  

Other approaches have been based on the Brown method (Brown 1975) to combine non-

independent p-values. This method is derived from Fisher’s combined probability test 
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(Littell and Folks 1971) and uses a theoretical approximation of Fisher’s statistics  

(Moskvina et al 2011).  

The approximation Fisher’s statistic combines probabilities and has a chi-square 

distribution (2N degrees of freedom, N being the number of variants) as described below: 

with  representing the gene wide p-values for the gene  and  is the number of values 

being combined (here k = 2).  

It calculates the significance of a set of variants in a gene by combining p-values from SNPs 

and by taking into account the number of variants and the LD between them. The resulting 

gene-wide significance p-value reflects the degree of association of a gene with the 

disease. 

Moreover, when looking for rare variants through linkage disequilibrium with common 

SNPs, detecting such variants with a GWAS can be very challenging. In conclusion, GWAS 

approaches have allowed for the discovery of new loci associated with susceptibility for 

schizophrenia. But this approach is also complementary with the previously known method 

such as linkage studies. 

11..11..44..33 CCNNVV ssttuuddiieess

Copy Number Variations (CNVs) are structural variants. A CNV is a portion of DNA larger 

than 1000 bp that is either duplicated or deleted. As a result one individual could have a 

different number of copy of any genes. Algorithms have been developed over the years in 

order to detect such variations and to allow genome-wide calling using data from GWAS 

genotyping (McCarroll et al. 2006). 

Several studies have showed that individuals affected by schizophrenia tend to have an 

increased number of CNVs (Walsh et al. 2008; International Schizophrenia Consortium 

2008; Kirov et al. 2009). It seems that the effect size of CNVs is larger than those detected 
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by GWAS. Moreover it has also been reported that CNVs associated with schizophrenia are 

involved in other disorders including autism and ADHD (Sebat et al. 2007; Williams et al. 

2010). 

11..11..44..44 RRaarree vvaarriiaannttss

Rare variants correspond to alleles having a population frequency under 1%. 

In order to detect rare risk variants that contribute to the heritability, variants need to have 

a relatively large effect size. However there might be rare variants of small effect that 

contribute to disease but that are extremely hard to detect even when using a large sample 

size. 

Rare variants with large enough effects cannot be detected by common methods such as 

GWAS, Next Generation Sequencing (NGS) methods need to be used, for example exome 

sequencing or whole genome sequencing. Whole genome sequencing involves obtaining 

the sequences of the entire genome of an individual, whereas exome sequencing targets 

the protein coding genes in an individual’s DNA. Exome sequencing is often preferred to 

whole genome sequencing as its cost is reduced hence preventing the limitation of small 

studies. 

Recently two studies (Purcell et al. 2014; Fromer et al. 2014) took a closer look at rare 

variants that could potentially contribute to schizophrenia. The first study (Purcell et al. 

2014) compared the exome sequences from 1,500 cases and 2,500 controls of a Swedish 

population. 

The second study (Fromer et al. 2014) looked for de novo mutations within protein-coding 

genes by analysing 600 trios (affected probands with healthy parents). De novo mutations 

are mutations that are present in the offspring but that does not exist in both parents. 

Both studies confirmed the polygenic nature of schizophrenia and that the disease tends 

to involve functionally related genes: genes related to neuronal function or synaptic 

signalling. 
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11..22 IInntteerraaccttiioonn aanndd eeppiissttaassiiss

11..22..11 GGeennee--ggeennee iinntteerraaccttiioonnss

11..22..11..11 HHiissttoorryy

The idea of gene-gene interaction was first introduced by William Bateson in 1909 in his 

book Mendel’s Principle of Heredity. By looking at flower colour in peas and combs in 

chicken, he observed that the transmission rates of some variants deviated from the 

Mendelian ratios. In his report he suggested that a pair of gene alleles could affect the 

alleles from another gene. Translating to genetics, one variant could prevent another one 

from expressing its effect. This can be viewed as an extension of the concept of dominant 

and recessive genes: one gene has an ascendant effect over another one. As a 

consequence, in the presence of a variant, a phenotypic change could be observed or could 

modify a mechanism of gene expression. 

In 1918, Fisher gave another definition of epistasis. He argued that alleles from different 

genes could have an additive effect on the considered phenotype and that any deviation 

from this effect should be considered as epistasis. This definition made it possible to define 

a mathematical model that describes the relationship between a phenotype and a 

genotype under or not the influence of an interaction. 

11..22..11..22 DDeeffiinniittiioonn

Epistasis could simply be defined as an interaction between genes that affect a phenotype. 

However distinction is often made between three type of epistasis (Moore and Williams 

2005): compositional epistasis, functional epistasis and statistical epistasis.  

Compositional epistasis is comparable to Bateson’s original definition. It refers to the 

masking effect of one locus to another locus (Moore and Williams 2005).  
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Functional epistasis corresponds to physical interactions among proteins or other 

molecules with an impact on the phenotype. This type of epistasis cannot be inferred from 

genetic data, it needs biological experimental validation.  

Statistical epistasis is closer to Fisher’s definition of epistasis. It refers to a phenotypic 

deviation from an additive effect due to combinations of loci.  

The latter definition allows the use of mathematical modelling to detect epistasis in disease 

traits and will be the one used in this thesis. The working hypothesis is that if two SNPs 

interact to increase the disease risk, then the combination of alleles associated with 

increased risk will occur more frequently within the case population than within the control 

population.  

11..22..11..33 HHeerriittaabbiilliittyy aanndd ggeennee--ggeennee iinntteerraaccttiioonnss

While it has been established that there are potentially hundreds of loci associated with 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics Consortium 

2014) these findings do not fully explain the risk of disease: only a proportion of the 

heritability is explained (Lee et al. 2012). In the case of schizophrenia, the latest estimates 

suggests that one half to a third of the genetic contribution of risk is captured by the 

variants detected by GWAS (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium 2014). This ‘missing’ heritability could also be attributed to gene-gene or gene-

environment interactions (Zuk et al. 2012). Indeed, other non-additive effects are likely to 

contribute to disease heritability although the size of their contribution is difficult to 

estimate (Zuk et al. 2012). 

11..22..11..44 EEvviiddeennccee ffoorr ggeennee--ggeennee iinntteerraaccttiioonnss

From a biological standpoint, there is no a priori reason to expect that traits should only be 

additive (Zuk et al. 2012). Evidence for genetic interactions has been reported in many 

model organisms; for example detection of two-loci interactions in a yeast cross (Bloom et 
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al. 2013), positive epistasis involving essential genes in Escherichia coli and Saccharomyces 

cerevisiae (He et al. 2010). 

Many methods have been developed to identify genetic interactions in human GWAS data 

(Wei et al. 2014) and will be discussed in the next section.  

Even though most of the studies only looked at pair-wise interactions between two SNPs, 

there is a possibility that high-order interactions also play a role. However these are harder 

to detect: the number of interactions to calculate is extremely high and as a result very 

large sample sizes are needed (Cordell 2009). 

1.2.1.4.1  In complex disorder 

Several large-scale interaction studies have now evaluated evidence for interactions across 

the genome for several complex disorders (Wei et al. 2012). Among those studies, different 

methodologies have been used to evaluate gene-gene interactions. For example a 

genome-wide interaction-based association using data from the Wellcome Trust Case–

Control Consortium identified interaction for Crohn's disease and coronary artery disease 

(Liu et al. 2011). Still using the WTCCC data, two genome-wide searches for pairwise 

interactions in each of the seven traits studied reported significant interactions (Lippert et 

al. 2013; Wan et al. 2010) however many detected effects were in the MHC region and 

replication was not attempted.  

Significant interactions between SNPs have also been reported for Bipolar Disorder 

(Prabhu and Pe’er 2012). 

Multiple sclerosis is another complex trait in which epistasis has been demonstrated to 

have an impact (Lincoln et al. 2009; Gregersen et al. 2006). Analysis in human populations 

showed an association between a form of multiple sclerosis and interacting loci (Gregersen 

et al. 2006). 

Unfortunately out of these potential interactions, only a few have a functional basis 

(Phillips 2008). 
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1.2.1.4.2  In schizophrenia 

Genome-wide interaction studies have been quite unexplored in schizophrenia. A few 

studies have provided evidence supporting a role for gene-gene interactions in the disease. 

Epistatic interaction between DISC1, CIT and NDEL1 have been reported to impact risk for 

schizophrenia and was validated by functional neuroimaging (Nicodemus et al. 2010). The 

same group also reported significant interactions between the genes NRG1, ERBB4, and 

AKT1 (Nicodemus et al. 2010). Other studies have also shown evidence that genes interact 

in schizophrenia the two genes DISC1 and PDE4B have been found to interact (Millar et al. 

2005). 

11..22..22 MMeetthhooddss ttoo ddeetteecctt ggeennee--ggeennee iinntteerraaccttiioonnss

Different methods have been explored in order to detect epistasis (Cordell 2009). These 

methods can be classified into broad groups, described in more detail below: regression 

based methods, LD-haplotype based methods, Bayesian methods, Data filtering methods, 

artificial intelligence based methods. 

11..22..22..11 RReeggrreessssiioonn--bbaasseedd mmeetthhooddss

Regression-based methods are the most frequently used approach to calculate statistical 

gene-gene interactions. Such models test whether the relationship between one or several 

predictor variables and an outcome (phenotype) variable is captured by a linear or logistic 

model (Cordell 2009). In order to perform such an analysis it is necessary to test for 

interactions by comparing two models: one containing the interaction term and one 

without. 

Considering a case-control study this can be translated into a mathematical model. 

Let  and  be two independent variables with three levels (0/1/2) corresponding to the 

genotypes of the considered markers (aa/Aa/AA). 
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Let  be the dependent variable that represents the disease status of each individual. In a 

case-control analysis, this outcome variable would be the log odds of the phenotype: the 

disease status of an individual (i.e. case or control). This variable is a function of the 

previous variables  ,  and , the latter represents the interaction. 

Let  the standardized beta coefficients:  is the Y-intercept. 

Let  be the random error component. 

Translating this into a mathematical formula would correspond to the following equation: 

 (1) 

Testing for interaction between the two markers corresponds to a comparison of the above 

model (which contains both the main effect and the interaction terms) with another model 

where only the main effects are present, testing whether the regression coefficients 

associated with the interaction term in the above equation equal zero or not. This 

corresponds to a one-degree freedom test of . 

While it is possible to use GWAS data to perform a genome-wide study of epistasis (Wei et 

al. 2014), this approach suffers from several limitations. The sample size required to detect 

interaction signals needs very large. Indeed it scales inversely with the square of the effect 

size (Zuk et al. 2012): for n loci, the sample size to detect the n2 interactions scales with n4. 

As a result the power to detect interactions in current studies is low (Zuk et al. 2012). 

Additionally, genome-wide interaction studies suffer from the high burden of multiple test 

correction. To account for all pair-wise interactions between markers, 

interactions must be calculated. For example using 5,000 markers will result in 12,497,500 

interactions calculated. If the Bonferroni multiple testing correction were to be used, the 

level of detection for a single test p-value would be 4e-9. 
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11..22..22..22 LLDD aanndd hhaapplloottyyppee bbaasseedd mmeetthhooddss

LD based methods compare LD between SNPs within cases and controls in order to detect 

interactions. Studies have been performed and seem to detect interactions within genes 

using LD rather than within SNPs (He et al. 2011). 

Haplotype based methods infer haplotypes from genotypes issued from GWAS and use 

estimates of linkage between SNPs (Zhang et al. 2012). However simulation studies have 

shown a greater risk of type I error when the two SNPs are highly correlated or have 

significant main effects (Ueki and Cordell 2012). 

11..22..22..33 BBaayyeessiiaann mmeetthhooddss

Bayesian methods are based upon Thomas Bayes theorem, which calculate conditional 

probabilities based on prior distributions of parameters in a model as well as in the 

observed data (Wei et al. 2014). Such methods offer a different approach for selecting key 

predictor variables (and interactions between them) in order to best predict the phenotype 

(Cordell 2009). Because of the specification of prior distributions of the parameters, this 

approach differs from frequentist-based statistics (Cordell 2009). 

For example, the Bayesian epistasis association-mapping (BEAM) algorithm identified 

epistasis associations in case-control studies using a Markov chain Monte Carlo method, 

incorporating prior knowledge about each marker in order to identify interactions (Zhang 

and Liu 2007). 

In addition several studies have tried to combine a Bayesian framework with generalized 

linear models in order to detect epistasis (Yi et al. 2011). This approach can be 

advantageous as it can take into account covariates or gene-environment interactions. 

11..22..22..44 DDaattaa ffiilltteerriinngg mmeetthhooddss

Data filtering methods make use of biological knowledge (Turner et al. 2011) such as 

disease pathways, protein-protein interactions or features such as the frequency of a 
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variant (Ackermann and Beyer 2012) in order to select a subset of SNPs prior to pair-wise 

interaction analysis. By identifying groups of markers between which interactions are more 

likely to appear, interactions may be easier to detect due to the reduced multiple testing 

burden. However prior selection of the SNPs could lead to miss detection of certain 

interactions as SNPs that interact together might not have been all selected (Wei et al. 

2014). 

Data-filtering methods considerably improve the interpretability of results especially when 

the analysis is driven by a biological hypothesis. However such methods can be a source of 

bias due to their initial hypothesis (Wei et al. 2014): analysis implies less tests to perform 

and less severe correction. 

11..22..22..55 MMaacchhiinnee LLeeaarrnniinngg

In recent years, machine learning methods and data-mining algorithms have been used to 

search for epistasis (Wei et al. 2014). Despite limited success so far, these methods could 

be a potential asset in the search for higher order interactions. Regression models are 

limited in such analyses due to the curse of dimensionality: if the number of predictors 

increases, so does the number of interactions in an exponential way. Due to this 

combinatorial complexity, regression methods are limited in the number of predictors used 

in their analysis and machine learning based methods could be useful to deal with this issue 

(Hu et al. 2013). However, despite the fact that computational efficiency improves, even 

machine-learning methods struggle to analyse higher order interactions (Cordell 2009). 

11..22..33 CChhaalllleennggeess ttoo ddeetteecctt eeppiissttaassiiss

When performing genetic interaction analysis, many challenges arise and power to detect 

interactions can be influenced by many factors described below (Wei et al. 2014). 
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11..22..33..11 LLiinnkkaaggee ddiisseeqquuiilliibbrriiuumm

While the most highly associated variants detected by GWAS may be true causal variants, 

they are more likely to be in LD with the true causal variants. In the latter case a problem 

arises as the variance explained by such SNPs would be less than the variance explained by 

the causal markers (Wei et al. 2014). Indeed, the additive effect of the observed marker is 

correlated with the LD between that marker and the causal variants, thus if there is low LD 

between the causal and the observed SNPs then the additive effect will be little and any 

epistatic effect will be very hard to detect. To counteract this, denser genotype or high 

quality imputation can be use and could help to detect epistasis. 

11..22..33..22 CCuurrssee ooff ddiimmeennssiioonnaalliittyy

When performing a gene-gene interactions analysis, all pair-wise interactions between all 

the SNPs are calculated, assuming the analysis is reduced to a search for binary 

interactions. In that case, the number of possible combinations increases exponentially. If 

N markers are considered, then the number of calculated interactions is   . If higher-

order interactions are calculated, this number rises even more. With so many results, there 

is a risk that any true signal will be obscured by the noise produced by such analysis: this is 

the curse of dimensionality (Wei et al. 2014). 

Moreover the significance level required to survive multiple testing correction is much 

more stringent for interactions than main effect association. This reinforces the need to 

increase the sample size in order to detect any epistatic effect (Wei et al. 2014). 

11..22..33..33 RReepplliiccaattiioonn

In order to confirm putative genetic interactions, results need to be replicated. However 

this has proven to be difficult for epistasis analysis (Combarros et al. 2009): replication 

rates for gene-gene interactions are expected to be lower than those for additive effect 

studies (Wei et al. 2014). Indeed, finding the same direction of effect for one interaction 
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within two independent populations will be extremely hard due to LD differences between 

the populations. When looking at variants in high LD within a sample, the same variants 

might not have the same LD within a population resulting in bias within the discovery 

sample (Cordell 2009). The use of very dense and similar data could help to overcome this 

problem. 

11..22..44 CChhooiiccee ooff mmeetthhooddoollooggyy

In this thesis, two methods were combined to calculate SNP-SNP interactions: filtering on 

LD and logistic regression model. By filtering on LD, the number of variants used in the 

interaction analysis is significantly reduced. It allows avoiding collinearity problems and to 

limit the number of interactions to calculate as well as the multiple tests burden. As 

interaction analysis is time consuming and computationally intensive reducing the number 

of variants is vital for feasibility. However by applying such filter information can be lost 

(SNPs that interact together might bot be selected) but the variants analysed are semi-

independent. 

In addition the logistic regression model is the most natural and used model to calculate 

interactions (Cordell 2009). Many tools such as Plink (Purcell et al. 2007; Chang et al. 2015) 

are available to use this method. 

11..33 PPrrootteeiinn--pprrootteeiinn iinntteerraaccttiioonnss

11..33..11 IInnttrroodduuccttiioonn

Protein-protein interactions (PPIs) have a key role in many processes in a cell. Activities of 

PPI complexes range from protein folding to transport, degradation, transcription, 

transduction or cell signalling for example.  This makes PPI complexes one of the most 

important components in a cell. 

The human genome contains approximately 19,000 protein-coding genes suggesting that 

the possible number of interactions is very large and that the number of discovered 
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interactions is probably very low (Rual et al. 2005). Several powerful methodologies and 

techniques have been developed to discover protein–protein interactions data such as 

Yeast two-hybrid (Ito et al. 2001), co-purification or fluorescence energy transfer. 

Finding PPIs has been an important challenge in the last decade to identify all the complex 

mechanisms used at a cellular level. With a better knowledge of PPIs it is possible to 

understand a protein’s function and behaviour or to characterise proteins complexes and 

pathways (Koh et al. 2012). 

11..33..22 DDaattaabbaasseess

11..33..22..11 PPrriimmaarryy aanndd sseeccoonnddaarryy ddaattaabbaasseess

Primary databases include interactions that are experimentally determined. Those 

databases generally contain information on the data model and the data extraction 

method that has been used. New records are added after manual curation of interactions 

from the literature. In some cases, users are allowed to submit their own interactions 

pending verification. Most of those databases contain added information such as 

functional annotations, sequence information, gene references. 

Some example of this resources includes but is not limited to the Biomolecular Interaction 

Network Database (BIND) (Bader et al. 2003), the Biological General Repository for 

Interaction Datasets (BioGRID) (Stark et al. 2011), the Database of Interaction Proteins 

(DIP) (Salwinski et al. 2004), the Human Protein Reference Database (HPRD) (Mishra et al. 

2006), the protein InterAction database (IntAct)(Kerrien et al. 2007), the Molecular 

INTeraction database (MINT) (Ceol et al. 2010)and the Munich Information Center for 

Protein Sequence (MIPS)(Pagel et al. 2005). Table 1.1 displays the main characteristics of 

primary databases including the number of interactions available in each of them. 
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Often called meta-databases, secondary databases combine interactions from several 

primary databases in one repository. For example the IMEx consortium combines 

interaction data from 10 databases (Orchard et al. 2007). 

11..33..22..22 PPrreeddiiccttiivvee ddaattaabbaasseess

Predictive databases contain interactions that have been identified using either algorithms 

to predict potential interactions using existing data (verified interactions) from curated 

databases, or the protein structures to determine potential interactions. 

11..33..22..33 LLiimmiittaattiioonnss

Despite the effective techniques available to experimentally detect protein-protein 

interactions (Klapa et al. 2013), the above-mentioned databases have limitations. Many 

false positives and false negatives rates are founds within the findings (Berggård et al. 

2007). Moreover the content of the databases often overlaps and is redundant (Cusick et 

al. 2009). 
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Acronym Full Name Species # proteins # interactions # proteins (human) # interactions (human)

BIND Biomolecular Interaction Network Database All 31,972 58 266 NA NA

BioGRID Biological General Repository for Interaction 

Datasets

All(H) 18401 147500 18401 147500

DIP Database of Interacting Proteins All(H) 27098 78191 4283 7140

HPRD Human Protein Reference Database Human 30047 41327 30047 41327

IntAct IntAct Molecular Interaction Database All 83417 454515 NA NA

MINT Molecular Interaction Database All(H) 35528 241458 8751 26830

MIPS-MPPI MIPS Mammanlian Protein-protein Interaction 

Database

Mammals NA NA NA NA

Table 1.1: Main characteristics (acronym, name, species, number of proteins and interactions total, number of proteins and interactions in human data) of 
primary databases 
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Many newly discovered PPI published in small-scale studies are not captured by existing 

interaction databases, resulting in a huge amount of data only available through curating 

the literature using databases such as PubMed (Figure 1.1). Manually extracting such 

information is infeasible on a large scale, especially for data-driven approaches. 

In addition there is a need to further analyse the details of PPIs experimentally identified 

on order to better verify the accuracy of experiments. 

All those arguments explain the pressing need to use text-mining methods. 

Figure 1.1: Growth of the PubMed database when searching for “protein-protein 
interactions”

11..33..33 UUssee ooff tteexxtt--mmiinniinngg ttoo eexxttrraacctt PPPPII ffrroomm tthhee lliitteerraattuurree

The number of available literature is growing at an exponential rate as generating 

experimental data has become easier. Specifically for protein-protein interactions the 

growing trend is clearly visible (Figure 1.1). 

Retrieving interactions from the published literature has become an important task. 

However such analysis can be extremely time-consuming due to the huge amount of data 

to process. Automated analysis of text can help researchers to evaluate the available 

literature. 
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Text mining was first defined by Marti Hearst as the following: “Text Mining is the discovery 

by computer of new, previously unknown information, by automatically extracting and 

relating information from different written resources, to reveal otherwise "hidden" 

meanings.”

Text mining allows the extraction of precise information (PPI for example) based on more 

than just a simple search for keywords. It searches for entities, concepts, relationships, 

phrases, sentences or information in a specified context. In order to achieve that task, it is 

possible to use different techniques such as text processing or machine learning 

techniques. Three main steps are part of the text mining process: information retrieval, 

Name Entity Recognition and information extraction. 

Information retrieval is the first phase of a text-mining process. In order to extract 

information from the literature, the relevant texts need to be retrieved. This step is usually 

performed using keywords to query a database such as PubMed. It is also possible to use 

other source such as patients’ records for example. PubMed is often chosen as it includes 

Medline as a subset and allow the use of Mesh (MEdical Subject Headings) terms. 

The second step of the text-mining process is the Name Entity Recognition (NER). NER is 

the use of search algorithms in order to find occurrence of specific keyword such as protein 

or gene names for example. This complex process is the key to the text mining process. 

NER techniques can allow searching for several keywords associated with unique entity. 

For example, it is possible to search for a gene by its full name or its symbol and it will be 

identified as the same entity. Some text mining tools rely on machine learning techniques 

for NER using Hidden Markov Models (Zhang et al. 2004) or support vector machines 

(Habib and Kalita 2010). These techniques can be combined with rule-based methods 

(Fleuren and Alkema 2015). 

The Information extraction process is purely the detection of the relationship between the 

elements identified by NER. Co-occurrence and natural language processing (NLP) are the 
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most commonly used methods. Co-occurrence methods rely on the idea that if two entities 

are related then they will often appear in the text together (Jensen et al. 2006). Such 

methods can correct for false positives by using a scoring system based on frequency or 

degree of significance (Alako et al. 2005). This method is easy to implement but tends to 

have a lower precision than NLP–based methods. NLP methods are based on the structure 

of a specific language and hence linked to detect information in that language. Additionally 

NLP methods can provide information about the type of the relationship between two 

identities (Ben-Hur and Noble 2005). Compared to co-occurrence method, the precision of 

NLP method is higher but this method can be limited as the detection of relationship 

between entities is only possible by pre-defining the relationships that are searched for. 

Additionally, text mining competitions as the BioCreative challenge (Krallinger et al. 2011) 

have been taking place in the hope of improving the development of text mining tools 

(Fleuren and Alkema 2015). 

11..44 AAiimmss aanndd oobbjjeeccttiivvee ooff tthhee tthheessiiss

This thesis is divided in two parts. 

The first aim was the comparison of different methods to identify genetic interactions by 

taking into account population structure. 

The second objective was to try to identify sets of genes enriched for SNP-SNP interactions 

by investigating two different approaches. The first approach was based on genetic 

information alone. The second approach was based on functional information using 

protein-protein interactions. 

11..55 CChhaapptteerr’’ss oouuttlliinnee

Chapter 2 details the two GWAS datasets as well as the quality control steps applied to it. 

These datasets will be used in Chapters 3, 4 and 5. 
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Chapter 3 explores different ways to account for population structure. Three different 

models that include covariates into an interaction analysis were used on the same GWAS 

dataset. Strength and limitations of each method were evaluated. 

Chapter 4 assesses interactions within two independent GWAS datasets. By calculating 

SNPs pair-wise interactions in both datasets, the distribution of interaction p-values is 

analysed after ranking them by the gene-wide main effects. 

Chapter 5 investigates whether protein-protein interactions can be used to identify subsets 

of genes between which significant interactions are more likely to be present. Several PPI 

datasets are compared. 

Chapter 6 will conclude the thesis with a general discussion of the findings, their 

implications and limitations. 
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Chapter 2 - Description of datasets 

22..11 IInnttrroodduuccttiioonn

This chapter describes the ISC (International Schizophrenia Consortium 2008) and CLOZUK 

(Hamshere et al. 2013) Genome-Wide Association Studies (GWAS) datasets that are used 

in the thesis and the quality control (QC) tests that were applied to them. It is known that 

the ability of GWAS to recognize true associated genetic variants relies on the overall 

quality of the data (Turner et al. 2011). Moreover bad quality samples can lead to the 

detection of false positive and negative associations in the data (Turner et al. 2011). In 

addition to this QC is an important step for the reliability of case-control studies (Blomgren 

et al. 2006). 

22..22 QQuuaalliittyy ccoonnttrroollss aapppplliieedd:: oovveerrvviieeww

All of the QC procedures applied to the two datasets are detailed in the section below: the 

chosen order followed best practice and commonly used QC methods for GWAS (Anderson 

et al. 2010; Wellcome Trust Case Control Consortium 2007; Turner et al. 2011). The QC 

steps at the exception of the Principal Component Analysis (PCA) were performed using 

the genetic analysis tool-kit PLINK (Purcell et al. 2007). The PCA was done using the 

Eigenstrat software (Price et al. 2006). 

22..22..11 CCaallll rraatteess

Call rates were checked at both variant and individual levels for missing or incomplete data 

in order to exclude them from the analysis. In case-control studies, it is essential to check 

for significant differences in individual call rates between sub populations to ensure that 

the combined set will be homogenous (Anderson et al. 2010). Furthermore, markers with 
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below-average call rates indicate low DNA quality and/or concentration and need to be 

excluded from the analysis. 

Two different thresholds for the variants call rates were compared: 1% and 2%. These 

threshold values are standardly used and indicate a good coverage of the SNPs. In addition 

to this, by comparing the different thresholds, it is ensured that there will be a fair balance 

between having the best genotyping quality possible and dropping a minimum number of 

samples and SNPs (S. Turner et al. 2011). After comparison of the results, the chosen 

threshold was applied to each dataset prior to similar investigation of individual call rates.   

22..22..22 MMiinnoorr AAlllleellee FFrreeqquueennccyy ((MMAAFF))

The MAF threshold applied varies between studies, usually lying between 1% and 5% 

(Anderson et al. 2010). By applying such thresholds and removing rare variants from the 

analysis, the multiple testing and computational burdens are reduced (S. Turner et al. 

2011) . This has little impact on studies given that the power of detection of associations 

for these variants is low (Morris and Zeggini 2010).  

Moreover, variants with very low frequency can potentially generate additive effects 

statistically (Gibson 2012), which could introduce a bias in an interaction analysis if those 

variants were included. 

22..22..33 HHeetteerroozzyyggoossiittyy

The distribution of mean heterozygosity for all individuals was inspected in order to identify 

which individuals to remove: samples with unusually high heterozygosity indicate possible 

sample contamination whereas samples with low heterozygosity indicate samples that do 

not belong to the population (Anderson et al. 2010). Similarly, the distribution of the 

inbreeding coefficient was inspected: samples with unusually low inbreeding coefficient 

indicate contamination. In addition, samples with high inbreeding coefficient also need to 

be removed because standard case-control analyses assume individuals are independent. 
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Individuals with outlying heterozygosity rates and outlying inbreeding coefficients were 

identified and removed from the analysis. 

22..22..44 CCrryyppttiicc rreellaatteeddnneessss

Relatedness among samples leads to an over-representation of selected alleles and can 

confound the analysis and the discovery of true associated variants (S. Turner et al. 2011). 

Related individuals were then excluded from the analysis. The identity by descent (IBD) 

threshold used was 0.1875 as it is intermediate between second and third degree relative 

(Anderson et al. 2010). 

22..22..55 HHaarrddyy WWeeiinnbbeerrgg

Markers with significant deviation from the Hardy Weinberg equilibrium need to be 

excluded as this could indicate potential genotype errors (Anderson et al. 2010). The 

threshold was decided at 10-4 for both cases and controls. 

22..22..66 PPrriinncciippaall CCoommppoonneenntt AAnnaallyyssiiss ((PPCCAA))

PCA was used to investigate differences between cases and controls due to ancestry 

dissimilarities. Following the results of the PCA, a clustering algorithm was used to select 

cases and controls that couldn’t be separated in two different groups and to exclude outlier 

individuals. This was done using the library Mclust in R (Fraley and Raftery 2002). 

22..33 IISSCC DDaattaasseett

22..33..11 IInnttrroodduuccttiioonn

This GWA study of schizophrenia, performed by the International Schizophrenia 

Consortium (International Schizophrenia Consortium 2008) is used in Chapter 3 and 4 of 

the thesis. 
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22..33..22 SSaammppllee ddeettaaiillss

The initial dataset consists of a total of 3,322 individuals with schizophrenia and 3,587 

healthy subjects from 8 different populations (Table 2.1). 

Sample Ancestry Cases (N) Controls (N)

University of Aberdeen Scottish 720 702

University College London British 523 505

Portuguese Island Collection Portuguese 347 216

Karolinksa Institutet Swedish 170 170

Karolinska Institutet Swedish 390 230

Cardiff University Bulgarian 528 611

Trinity College Dublin Irish 275 866

University of Edinburgh Scottish 369 287

TOTAL 3,322 3,587
Table 2.1: Origin of case and control samples for all individuals (N=6909) by samples in 

the initial ISC dataset. 

All of the cases had a diagnosis of schizophrenia based upon DSM-IV, ICD-10 or 

ascertainment through hospital records. The general population of each site was used to 

draw controls often using blood banks. Controls were screened for mental illness in most 

samples. 

22..33..33 GGeennoottyyppiinngg

DNA was extracted from whole blood. The genotyping was performed at the Broad 

Institute of Harvard and MIT in Boston, USA. Different chips were used: the Affymetrix 

Genome-Wide Human SNP 5.0 and 6.0 Arrays. To reduce the batch effect, duplicated, 

poorly genotyped and contaminated samples were removed from the dataset. 

More details on the samples and the GWAS are available in the primary manuscript 

(International Schizophrenia Consortium, 2008).  
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22..33..44 QQuuaalliittyy ccoonnttrroollss

Initially, the dataset contained 6,909 individuals (3,587 controls and 3,322 cases) and 

739,995 SNPs were genotyped. 

22..33..44..11 CCaallll rraatteess

Call rates for both individuals and variants were investigated separately in each sub-

population: SNP coverage was investigated before the individuals. After comparing the two 

different thresholds (Table 2.2), the threshold for analysis was established at 2%: the best 

balance between the number of variants to exclude and the best genotyping quality 

possible. After removing SNPs with call rates above this threshold in each sub-population, 

all call rates were above 0.96 in every sub-population (Figure 2.1). After exclusions, 

246,455 SNPs remained. No individuals were excluded. 

Pop ISC1 ISC2 ISC3 ISC4 ISC5 ISC6 ISC7 ISC8

1% 75,608 102,262 101,397 66,942 419,822 420,861 378,894 470,808

2% 42,951 57,612 53,117 35,864 392,891 397,529 366,999 446,025

Table 2.2: Number of SNPs to be removed in each chip using the different cut-off 
thresholds (1% and 2%) for call rates 

22..33..44..22 HHeetteerroozzyyggoossiittyy

No specific threshold was applied, as the results were acceptable in the first instance: no 

outlier was identified (Figure 2.2). 

22..33..44..33 CCrryyppttiicc RReellaatteeddnneessss

No individual was above the chose IBD threshold. 

22..33..44..44 HHaarrddyy WWeeiinnbbeerrgg

251 variants were excluded. 
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Figure 2.1: Ordered individual call rates and Ordered SNP coverage in each population of the ISC dataset after QC.  
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Figure 2.2: Histograms of the mean heterozygosity and of the inbreeding coefficient for the 8 populations of the ISC dataset. No unusual sample is visible as the 
histograms shows a normal distribution in each chip.  
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22..33..44..55 AAddddiittiioonnaall IInnffoorrmmaattiioonn

For every SNP in the dataset, minor allele frequencies were above 1%, suggesting that rare 

variants were previously excluded. 

22..33..55 SSuummmmaarryy

After applying all the various quality control steps mentioned in section 2.2, the final dataset 

contains 3,322 cases with schizophrenia and 3,587 healthy controls. 246,204 SNPs remained 

for the analysis. 

22..44 CCLLOOZZUUKK DDaattaasseett

22..44..11 IInnttrroodduuccttiioonn

The CLOZUK sample, used in Chapters 4 and 5 of the thesis, was part of a larger GWA study of 

schizophrenia performed by the Psychiatric Genomics Consortium (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium 2014). 

22..44..22 SSaammppllee ddeettaaiillss

The CLOZUK sample (Hamshere et al. 2013) consists of cases ascertained through facilitation 

with Novartis, the manufacturer of a proprietary form of clozapine (Clozaril). Cases consisted 

of individuals with a clinical diagnosis of treatment-resistant schizophrenia. Controls were 

drawn from Wellcome Trust Case Control Consortium 2 (WTCCC2, Wellcome Trust Case 

Control Consortium 2007). No screening for psychiatric illness was performed. 

22..44..33 GGeennoottyyppiinngg

DNA was extracted from blood. The cases samples were genotyped at the Broad Institute of 

Harvard and MIT in Boston, USA. The genotyping, described in (Hamshere et al. 2013), was 

done on two different chips: Illumina HumanOmniExpres-12v1 and OmniExpresssExome-8 that 
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will be denominated as Combo and Omni. The controls from WTCCC2 were genotyped at the 

Wellcome Sanger Institute. 

After imputation, 7,763 individuals and 10,670,661 SNPs were genotyped on the Combo chip 

and 4,233 individuals and 10,663,800 SNPs on the Omni chip. 

22..44..44 QQuuaalliittyy ccoonnttrroollss

22..44..44..11 PPhheennoottyyppeess

Individuals with missing phenotypes were excluded from both datasets. Originally the Combo 

chip contained 7,763 individuals including 32 with missing phenotypes. After exclusion, 7,731 

individuals remained, corresponding to 4,285 controls and 3,446 cases. The Omni chip 

contained 4,233 individuals including 111 with missing phenotypes. After exclusion, 4,122 

individuals remained, corresponding to 2,014 controls and 2,108 cases. 

22..44..44..22 CCaallll RRaatteess

After imputation the Combo chip contained 10,670,661 SNPs and the Omni chip contained 

10,663,800 SNPs. Comparison between allowing 1% or 2% of missingness in SNPs call rates was 

performed (Table 2.3). 

Cut-off threshold Combo Chip Omni Chip

1%
6,454,563 SNPs

(60% of total SNPs)

5,478,552 SNPs

(51% of total SNPs)

2%
4,772,338 SNPs

(45% of total SNPs)

3,969,836 SNPs

(37% of total SNPs)

Table 2.3: Number of SNPs to remove in each chip using two different cut-off thresholds (1% 
and 2%) for the SNPs call rates. 

A cut-off threshold of 2% was applied for the SNP coverage in each chip. After applying this 

threshold, all individuals call rates were above 0.98 in both chips indicating high genotype 

reliability (Figure 2.3). 
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Figure 2.3: Call rate and SNP coverage for the Combo chip (Figure A) the Omni chip (Figure B) 
after applying the cut-off threshold of 2% for the SNP coverage. For both chips, the call rate 

and the SNP coverage are above 98% 

After applying the 2% cut-off the numbers of SNPs contained in each chip were as follows: 

5,898,323 variants in the Combo chip and 6,693,964 markers in the Omni chip. 

22..44..44..33 MMiinnoorr AAlllleellee FFrreeqquueennccyy

Two different MAF thresholds were used to compare the number of SNPs that could be 

removed: 1% and 5 % (Table 2.4). 

MAF threshold Combo chip Omni chip

1% 1,030,426 SNPs 1,061,764 SNPs

5% 2,336,133 SNPs 2,491,123 SNPs

Table 2.4: Number of SNPs to remove using different MAF threshold in each chip 

A threshold of 1% was chosen, as it was a good balance between the number of SNPs to exclude 

and the exclusion of rare variants. After applying the control on minor allele frequency, the 

Combo chip retained 4,867,897 SNPs and the Omni chip 5,632,300 SNPs. 
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22..44..44..44 HHeetteerroozzyyggoossiittyy

After checking heterozygosity plots, a few outliers were removed (9 individuals). The final plots 

showed a normal distribution for both the mean heterozygosity and the inbreeding coefficient 

without any outliers (Figure 2.4). 

After removal of outliers, 7,719 individuals were retained on the Combo chip and 4,107 

individuals on the Omni chip. 

Figure 2.4: Histograms of the mean heterozygosity and of the inbreeding coefficient for the 
Combo chip (A) and the Omni chip (B). The outliers were previously excluded as those samples 
could have been contaminated or do not belong to the same population. After the removal of 

every unusual sample all the histograms shows a normal distribution in each chip. 

22..44..44..55 CCrryyppttiicc rreellaatteeddnneessss

12 pairs of individuals from the Combo chip were identified as being related, as were 7 pairs of 

individuals from the Omni chip. One individual from each pair was chosen at random and 

removed from the data. 

22..44..44..66 HHaarrddyy WWeeiinnbbeerrgg

All variants passed the Hardy Weinberg thresholds, perhaps indicating that there were 

removed prior to this analysis. 
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Figure 2.5: PC Plots for the CLOZUK dataset (A: Combo chip, B: Omni chip) 
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22..44..44..77 PPrriinncciippaall CCoommppoonneenntt AAnnaallyyssiiss

Plots of principal components (PC) against each other were drawn and analysed for each 

chip (Figure 2.5). The principal component analysis showed some discrepancies. For the 

Omni chip, cases and controls respectively represented in black and red can be separated 

visually from each other using the first two PCs (Figure 2.5 Right panel B PC1/PC2). For the 

Combo chip, a tail of outliers is clearly visible (Figure 2.5 Left Panel B PC1/PC2), indicating 

non-European ancestry. Following clustering (Section 2.2.6), outliers were then excluded 

from the analysis: 262 in the Combo chip and 472 in the Omni chip. 

22..44..55 SSuummmmaarryy

The CLOZUK dataset contains data genotyped using two different chips: Omni and Combo. 

After QC, the Combo chip retained 7,445 individuals: 3,283 cases and 4,276 controls. The 

Omni chip retained 3,628 individuals: 1,917 cases and 1,711 controls. 

Regarding the number of SNPs in each chip, the Combo chip retained 4,867,897 SNPs and 

the Omni chip 5,632,200 SNPs that will be used in the analysis of Chapter 3 and 5. 
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Chapter 3 - Interaction analysis in GWAS dataset with 

covariates 

33..11 IInnttrroodduuccttiioonn

33..11..11 BBaacckkggrroouunndd

In complex diseases, gene-gene interaction refers to a phenotype that cannot be explained 

by adding the independent effects of two loci but can modified the prediction by their joint 

effect (Carlborg and Haley 2004). This effect can be modelled by adding an interaction term 

in the analysis. 

The most frequently used model to calculate statistical interaction is based on a 

linear/logistic regression depending on the phenotype distribution. The regression model 

describes the relationship between one outcome variable and one or several predictor 

variables, including the interaction term (Cordell 2009). For a case-control study, the 

interaction model describes the effect of those predictor variables on the log odds of the 

disease. The method consists of testing the interaction term only and was described in 

detail in Chapter 1 based on Cordell (2002). 

The motivations behind the inclusion of covariates into a statistical model are the 

improvement of the precision of the model’s estimates in the presence of potential 

confounders and the maximization of the statistical power (Sham and Purcell 2014). By 

including confounding covariates into an analysis, false positives and false negative 

associations can be reduced, increasing the power of interaction testing (Sham and Purcell 

2014). 

When including covariates into an interaction analysis, the most widely used method 

consists of simply adding the covariate terms into the logistic regression model. However 

it was demonstrated by Yzerbyt et al. (2004) that in specific situations, to be detailed later, 
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this could result in the presence of bias. This paper suggested adding not only the covariate 

terms into the equation but also adding interaction terms between each covariate and 

each predictor variable to control for covariate’s effects.

33..11..22 AAiimmss ooff tthhee cchhaapptteerr

In this chapter three different models for including sub-population covariates into an 

interaction analysis were used on the same GWAS dataset. The first model (widely used) 

consists of adding the covariate terms into the model. The second one follows the 

recommendation by Yzerbyt et al. (2004): it adds into the model the covariates terms as 

above and additional interaction terms between each covariates and each predictor 

variables. In the last model, interactions are calculated independently in each sub-

population and a meta-analysis is used to combine the results. 

The aim of this chapter is to compare the three methods and assess the strengths and 

limitations for each of them. 

33..22 MMaatteerriiaall aanndd mmeetthhooddss

33..22..11 DDaattaa

For this analysis, the International Schizophrenia Consortium (ISC) dataset was used 

(International Schizophrenia Consortium 2008) as it has a natural population-based 

structure. It consists of a total of 3,322 individuals with schizophrenia and 3,587 healthy 

subjects collected from 8 different populations (Chapter 2, Table 2.1). The data and the 

quality control steps are described in Chapter 2. 

33..22..22 SSNNPPss sseelleeccttiioonn aanndd pprruunniinngg

SNPs outside genes were removed and chromosomes X and Y were excluded from the 

analysis as well as insertions and deletions, retaining 95,124 genetic variants. Insertions 

and deletions (indels) were excluded from the analysis due to their rarity as well as the 
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potential inaccuracy of the calling for indels (Hasan et al. 2015). In order to perform SNP-

SNP interactions on X and Y chromosomes, a separate analysis of female and male 

subsamples would have been needed. This would have resulted in analysing samples of 

small sizes resulting in an important loss of power for detection of potential interactions 

as well as an increase number of tests.  

When undertaking a pair-wise interaction analysis there is an interest in reducing the 

number of variants studied (see Chapter 1, section 1.2.3.2). As comprehensive pair-wise 

SNP-SNP interaction analysis is time consuming and computationally intensive when using 

data from genome wide association studies. For this reason, the number of SNPs involved 

in the study needed to be reduced (Moskvina, et al. 2011). 

Linkage disequilibrium (LD) based pruning was used to reduce the number of SNPs by using 

the –clump option in PLINK (Purcell et al. 2007). The following parameters were chosen: a 

window of 2,000 Mb, the significance threshold p1 of 0.01 and r2 of 0.1. LD-based pruning 

also has the advantage of avoiding SNP collinearity. Collinearity happens when a predictor 

variable in a multiple regression model can be estimated from the others variables with a 

high level of accuracy. As the regression model takes into account this uncertainty it does 

not affect the predictive power of the model. However it does increase the standard error 

and affects calculations regarding each predictor. By using LD-based pruning, the 

probability of having linear-dependent variables is decreased.  

Furthermore, as suggested by Price et al. (2008), the major histocompatibility complex 

(MHC) region, known as a high-LD region, was excluded prior to clumping. 

33..22..33 TTeessttiinngg ffoorr iinntteerraaccttiioonnss

As explained in detail in Chapter 1, statistical interactions are based on a linear/logistic 

regression model and estimate an outcome variable as a function of predictor variables 

(Cordell 2009). Here the analysis is based on a case-control binary phenotype, therefore 

the outcome variable will be the log odds of the disease. 
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Let  and  represent two independent variables with three levels (0/1/2) 

corresponding to the possible genotypes of the markers (aa/Aa/AA). 

 is the dependent variable that represents the disease status of the individuals: 1 for the 

presence of the disease in the individual (case) and 0 for the absence of the disease in the 

individual (control).  is a function of the previous variables  ,  and , the final 

term representing the interaction. 

Let Ci be the covariate term for covariate variable i. and K be the total number of covariates 

(for the ISC dataset this corresponds to the number of sub-populations). 

Let  be the standardized beta coefficients:  is the Y-intercept. 

Let  be the random error component. 

When testing for statistical interactions between two independent variables, the effect size 

of the interaction term between those two variables is tested as shown by the following 

equation: 

      (1) 

In order to assess the significance of the interaction term, the following hypothesis are 

tested: 

using a log-likelihood ratio test and corresponding to the difference in deviances of the fits 

of the two models. 

However the effect of covariates needs to be accounted for. It has been shown in previous 

studies that when performing an interaction analysis (Arya et al. 2009), the inclusion of 

covariates into the model can change the overall results.  

The widely accepted method simply adds the covariates into the regression model. 

However it was suggested by Yzerbyt et al. (2004) that just entering the covariates into the 
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model did not control properly for the effect those covariates might have on each marker, 

as it may not only be the main effects that can be influenced by those variables. A 

demonstration of this bias was described in Yzerbyt et al. (2004). Details on specific 

situations, which are outlined as in Yzerbyt et al. (2004), were also shown in Keller (2014) 

and illustrated well the problem for genetic data analysis. One of the main examples cited 

(Kaufman et al. 2004) investigated if a repeat polymorphism (short/long) at the serotonin-

transporter linked region was dependent on childhood maltreatment and social support. 

In that analysis, ethnicity (African-Americans, biracial and non-African Americans) and sex 

were taken into account. The main finding was that the interaction between the 

polymorphic region and childhood maltreatment was significant: the individuals with the 

s/s allele were found to have significantly higher depression scores. It was also found that 

African-Americans have a high frequency of the long repeat than non-African Americans. 

However as the interaction between environment and ethnicity and between the 

polymorphism and ethnicity were not included, it is not possible to completely eliminate 

alternative explanations for the finding. For example the detected interaction could have 

been influenced by ethnicity if due to difference in cultural norms one group does not 

report depression. In a similar way, this example can be translated to SNP-SNP interactions 

and can raise similar issues when integrating covariates into interactions studies. 

33..22..33..11 MMeetthhoodd 11:: IInncclluussiioonn ooff ccoovvaarriiaatteess iinn tthhee rreeggrreessssiioonn aannaallyyssiiss

As outlined above, the typically used method includes information about population as 

covariates. It simply involves adding the covariates into the regression model as additional 

terms described in Equation 1. 

(2) 
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33..22..33..22 MMeetthhoodd 22:: IInncclluussiioonn ooff ccoovvaarriiaatteess aanndd eeffffeeccttss bbeettwweeeenn tthhee ccoovvaarriiaatteess aanndd tthhee

mmaarrkkeerrss iinn tthhee iinntteerraaccttiioonn aannaallyyssiiss

This second method controls for all the effects between the covariates and all the markers. 

Like in Method 1 it adds the covariates into the model but it also adds extra interactions 

terms between all the covariates and all the markers as suggested by (Yzerbyt et al. 2004). 

(3) 

33..22..33..33 MMeetthhoodd 33:: IInntteerraaccttiioonnss bbyy mmeeaannss ooff mmeettaa--aannaallyyssiiss ooff ssuubb--ppooppuullaattiioonnss

This last method analyses separately the 8 populations and takes into account the 

directionality of effect size with a meta-analysis as shown below: 

(4) 
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33..22..33..44 IImmpplleemmeennttaattiioonn ooff tthhee iinntteerraaccttiioonn aannaallyyssiiss

The first two methods were run using an R script. The last one used two different software 

packages: Plink 1.9 (Purcell et al. 2007; Chang et al. 2015) and METAL (Willer et al. 2010). 

Plink 1.9, a command line tool designed for large-scale genetic analyses, was used to 

calculate the interactions in each of the 8 samples. METAL, a computationally efficient 

software for genome-wide scans, was used to combine the results. All the analyses were 

run on the Cardiff University High Performance Cluster Raven. 

33..22..44 NNoottaattiioonnss

In this chapter, Method 1 will be used to describe the approach adding the covariates as in 

equation 2. Method 2 will describe the approach where the covariates terms and the 

interaction terms between each marker and the covariates are included in the regression 

model as in equation 3. Method 3 will refer to the method using meta-analysis (equation 

4). 

33..33 RReessuullttss

Following the quality control steps described in Chapter 2 and the LD-pruning described in 

section 3.2.2, 5,135 SNPs within 3,105 genes remained. All pair-wise interactions between 

those variants (13,181,545 interactions) were calculated using the three methods specified 

above. 

In all three methods, there was no interaction effect, which passed the multiple testing 

correction threshold corresponding to a corrected p-value of 0.05 (Bonferroni threshold 

p=3.79e-9) as shown in Table 3.1. 
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Method 1 Method 2 Method 3

Number of interactions with p-value 
below Bonferroni threshold (p=3.79e-9) 0 0 0

Number of interactions with p-value p≤1e-

5 129 138 101

Number of interactions with p-value 
p≤0.001 13,586 14,446 10,921

Lowest observed p-values 7.56e-8 4.62e-8 8.79e-8 

Table 3.1: Number of interactions with a p-value below different thresholds in each 
method. For the three methods, no interaction passed the Bonferroni threshold (p=3.79e-

9). Method 2 detects more interactions below the thresholds 10-5 and 0.001. Method 1 has 
similar results to Method 2, whereas Method 3 detects the least number of interactions 

below a give threshold. 

33..33..11 CCoommppuuttaattiioonnaall ppeerrffoorrmmaannccee

When comparing the computational time for the three methods (Table 3.2), Method 3 was 

the fastest with a running time of approximately 2 hours. It used two software packages 

(PLINK and METAL) that are designed and optimised for genetic data processing and 

therefore can run these analyses efficiently. The analyses with Method 1 and Method 2 

took significantly longer (5 days for Method 1 and 1 week for Method 2) for the 

calculations. Both of these methods were implemented in R, which in general is not the 

most efficient statistical software and the running time for these two methods is not 

directly comparable with the running-time of Method 3. 

Method 1 Method 2 Method 3

Computational 

methodology
R script R script PLINK and Metal

Running time 5 days 1 week 2 hours

Table 3.2: Running time of each method for the interaction analysis. 
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33..33..22 DDiissttrriibbuuttiioonn ooff rreessuullttss ffoorr tthhee tthhrreeee mmeetthhooddss

Visually comparing the distribution of the calculated interactions p-values between the 

three methods, Q-Q plots from Method 1 and Method 2 look quite similar whereas Method 

3 produced slightly less significant results than we would expect to have by chance at the 

higher significant thresholds (Figure 3.1). 

33..33..33 CCoorrrreellaattiioonn bbeettwweeeenn tthhee rreessuullttss ffrroomm tthhee tthhrreeee mmeetthhooddss

Correlation coefficients were calculated between the three methods, based on all 

interaction p-values for each SNP (Table 3.3).  

M1 / M2 M1 / M3 M2 / M3

Pearson
R 0.964 0.793 0.815

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16

Pearson (-log10P) 
R 0.981 0.847 0.861

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16

Spearman
R 0.965 0.793 0.815

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16

Table 3.3: Correlation between the three methods. The correlation coefficients were 
calculated with three methods: Pearson, Pearson using a log transformation of p-values 

and Spearman. 

The correlation between Methods 1 and 2 is very high as can also be seen from Table 3.3

and Figure 3.2 (left panel). When comparing Method 3 with either Method 1 or 2, the 

degree of correlation is reduced, although still high as is shown in Table 3.3 and Figure 3.2

(middle and right panel). Despite the obvious correlation of p-values with extremely low p-

values, Figure 3.2 also indicates that the interactions with low p-value are correlating well. 
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Figure 3.1: Quantile-quantile (QQ) plots for all pair-wise interactions analysis calculated for each method. The QQ plots show a representation of the deviation 
of the observed p-values (expressed as the negative log of the p value) from the null hypothesis: the observed P values for each interaction (y axis: Observed) 
are sorted and plotted against expected values from a theoretical χ2-distribution (x axis: Expected). λ is the genomic inflation factor and λ1000 the estimated 

genomic control (value that would be expected in a study of 1,000 cases and 1,000 controls). The left panel represents Method 1, the middle panel Method 2 
and the right panel is Method 3. The observed p-values in Method 3 are less significant than expected.  
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Figure 3.2: Scatter plot of interactions p-values using logarithmic scale for Method 1 against Method 2 (left panel), Method 2 against Method 3 (middle panel) 
and Method 1 against Method 3 (right panel). 
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As shown by (Bland and Altman 1986) a strong correlation between two methods does not 

automatically imply agreement between them: correlation coefficients only measure the 

strength of the relationship between two variables. For example, a change of scale will not 

affect the correlation coefficients but will change the agreement. 

Bland Altman plots were used to check the agreement between the results of the three 

methods. This is a simple way of graphically comparing the agreement between two methods. 

It plots the difference between the results calculated by the two methods as a function of the 

average of those two results (Bland and Altman 1986). If the points on the Bland Altman plot 

are randomly distributed, above and below zero, then it is possible to conclude that there is no 

consistent bias of one method versus the other. But for example if one method always gives a 

different results e.g. with all points above or below the zero line, it would be possible to 

conclude that one method over or underestimates the results. However there would be no 

certainty on which one is responsible for the over/underestimation. The three plots in Figure 

3.3 shows the Bland Altman plots respectively for Method 1 against Method 2 (left panel), 

Method 1 against Method 3 (middle panel) and Method 2 against Method 3 (right panel). The 

results are above and below zero in all the cases, which tends to indicate that there are no 

visible biases. However a trend is visible when looking at Method 3 against the other two 

methods (Figure 3.3 middle and right panel), indicating that the difference between the 

methods is reduced when looking at high values (very low p-values as the logarithmic scale is 

used). This would confirm that the overall performance of each method is comparable, with 

closest agreement for the most significant interactions. 
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Figure 3.3: Bland Altman plots using logarithmic scale to check agreements between the methods: Method 1and 2 (left panel) Method 1 and 3 (middle panel) 
and Method 2 and 3 (right panel). Difference refers to the difference between the results calculated for the two methods. Mean refers to the average of those 

two results. The blue doted lines show the 95 percent confidence intervals. 
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33..33..44 IInntteerraaccttiioonn rreessuullttss wwiitthh lloowweerr pp--vvaalluueess

To further investigate the lower end of the p-value distribution interactions with (both) 

p≤0.001 in each pair of methods were compared (Table 3.4). 

Methods 1 and 2 Methods 1 and 3 Methods 2 and 3

Number of interactions 

with p≤0.001 in both methods
11,465 6,733 7,374

Table 3.4: Number of interactions with a p-value p≤0.001 for each pair of methods. 

As can be seen from the scatter plots (Figure 3.4), all the methods produced similar result 

and showed positive correlation. The scatter plot of Method 1 and Method 2 (Figure 3.4, 

left panel) showed the strongest positive correlation. 

The results of the correlation analysis between each pair of methods reflect what is 

observed in the scatter plots (Table 3.5, Results). The correlation coefficients are obviously 

lower than the one previously observed when comparing the whole distributions of 

interactions (Table 3.5, previous results). However when comparing the lower end of the 

distribution, it shows a very strong positive correlation between Method 1 and Method 2 

(Table 3.5, Results). The correlation between Method 3 and Methods 1 and 2 is lower but 

still shows positive correlation (Table 3.5, Results). 
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Previous Results Results

M1 / M2 M1 / M3 M2 / M3 M1 / M2 M1 / M3 M2 / M3

Pearson
R 0.964 0.793 0.815 0.776 0.492 0.546

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16

Pearson (-log10P) 
R 0.981 0.847 0.861 0.901 0.675 0.721

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16

Spearman
R 0.965 0.793 0.815 0.805 0.545 0.595

p-value p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16 p<2.2e-16

Table 3.5: Correlations between the three methods after selecting interactions with a p-value p≤0.001 in each method. The correlation coefficients were 
calculated with three methods: Pearson, Pearson using a log transformation of p-values and Spearman. 
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Figure 3.4: Scatter plots of interactions with p-values (log scale) below 0.001 selected in each pair of methods. Method 1 against Method 2 (left panel), Method 
1 against Method 3(middle panel), Method 2 against Method 3 (right panel). All scatter plots show positive correlation. 
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33..33..55 IInnvveessttiiggaattiioonn ooff ddiiffffeerreenncceess bbeettwweeeenn mmeetthhooddss

This section is focused on interactions that are identified as below the threshold (p≤0.001) 

in at least one method and more specifically on interactions passing that threshold in one 

method but not in another method. In addition, it explores one of the potential 

explanations for the differences observed. Other approaches that were not explored due 

to lack of time will be detailed in the discussion section. 

In each pair of methods compared, interactions were selected if in at least one of the two 

methods the p-value was below the threshold p≤0.001 (Table 3.6). 

Methods 1 or 2 Methods 1 or 3 Methods 2 or 3

Number of interactions with 

p≤0.001 in at least one method
16,563 17,770 17,989

Table 3.6: Number of interactions with a p-value p≤0.001 in one of each pair of methods. 

As previously, scatter plots were drawn to observe the distribution of p-values in each 

method (Figure 3.5). Compared to previous section (Figure 3.4), interactions with a p-value 

below the threshold in both methods were removed. Comparison between Method 1 and 

Method 2 (Figure 3.5, left panel) produced results very similar to those previously 

observed, with no major differences between the two methods. Comparing Method 3 with 

the other two methods, the scatter plots (Figure 3.5, middle and right panels) looks 

different. In some cases, Method 3 is able to identify interactions with reasonably low p-

values and the other method does not. In other cases, the opposite is observed.  



73 

Figure 3.5: Scatter plots of interactions with p-values (log scale) below 0.001 selected in each method. Method 1 against Method 2 (left panel), Method 1 
against Method 3(middle panel), Method 2 against Method 3 (right panel). The first scatter plot of Method 1 and Method 2 shows positive correlation. The 
other scatter plots Method 1 and Method 3 (middle panel) Method 2 and Method 3 (right panel) are more different but interactions with very low p-values 

have closer results. 
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33..33..55..11 RRoollee ooff tthhee ddiirreeccttiioonn ooff eeffffeeccttss

The software METAL, used in Method 3, calculated the direction of the effect for each 

study. Since only interaction terms were meta-analysed, the direction of the main effects 

was ignored. In the present analysis, as there are 8 different studies that are combined, 

the number of identical direction of effects varies between 4 and 8. Scatter plots (Figure 

3.6) were drawn to investigate whether or not the direction of the interaction effects could 

explain the observed results (Figure 3.5). This showed that when the directions of effect 

are identical in four or five out of 8 studies, Method 3’s results are different from Methods 

1 and 2 (Figure 3.6 A, B, D and E). However when the directions of effect are uniform across 

the 8 studies, Method 3 produces results that more closely match those of the other 

methods (Figure 3.6, C and F). This indicates that the direction of the interaction effect 

might be playing a role in Method 3’s results. Perhaps taking into account the SNPs main 

effects could enhance this method.  
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Figure 3.6: Scatter plots of interactions with p-values below 0.001 selected in at least one 
method. Method 1 against Method 3 (left panel), Method 2 against Method 3 (right 

panel). In A and D plots, the black dots show interactions where the direction of effects is 
different in 4 samples out of 8. In B and E plots, the black dots show interactions where 

the direction of effect is the same in four or five samples out of 8. In C and F plots the blue 
dots show interactions where the direction of effect is identical in all the samples. All 
graphs show that the direction of interaction effects might play a role in explaining 

Method 3’s results.
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33..44 DDiissccuussssiioonn

33..44..11 MMuullttiippllee tteessttiinngg

No interactions survived Bonferroni correction for multiple testing in any analysis 

performed using the three methods. As the number of calculated interactions is very high, 

the penalty for multiple testing is severe (Bonferroni threshold p=3.70e-9). 

One possible explanation for the absence of significant interactions could be the sample 

size: the ISC dataset contains 3,322 cases and 3,587 controls. A bigger sample would 

increase the statistical power as shown by (Gauderman 2002) and as will be detailed in the 

next Chapter. 

33..44..22 CCoorrrreellaattiioonn bbeettwweeeenn tthhee rreessuullttss ooff tthhee tthhrreeee mmeetthhooddss

Methods 1 and 2 were found to have extremely similar result: the correlation coefficient 

between the results of the two methods is close to the perfect linear association 

(correlation almost equal to 1) indicating a strong positive relationship between both 

approaches (Table 3.3). Method 1 only adds the covariates into the primary equation (see 

Equation 2). Method 2 differs from Method 1 by the fact it deals with the bias explained 

by Yzerbyt et al. (2004): it takes into account the possible effect between the covariates 

and each marker by adding interactions terms between covariates and markers into the 

equation (see Equation 3). As the presented results between those two methods are 

comparable, it seems that the bias mentioned above does not play a large role, at least in 

the analysed dataset. However, a large-scale simulation study would be needed in order to 

definitely prove this assertion. 

The correlation between Method 3 and the other methods (Method 1 and Method 2) 

appears to be quite high as well (Table 3.3). It also showed that interactions with low p-

value (i.e. greater significance) seem to be moderately well correlated (Figure 3.2). 
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Scatter plots and Bland Altman agreements plots between the results of the three methods 

showed very strong relationship between Method 1 and 2, and less strong but good 

association between Method 3 and the other two methods. In addition, the Bland Altman 

agreements plots do not show evidence of bias of one method versus the other as the 

observed values tend not to be consistently above or below zero. This confirmed the results 

observed by looking only at the correlation coefficients (Table 3.3).  

33..44..33 IInntteerraaccttiioonnss wwiitthh lloowweerr pp--vvaalluueess

As the interest in this analysis was focused on significant results, the lower tail of the 

distribution of p-values was examined in more detail. 

When selecting interactions with a p-value below the threshold p≤0.001 in each method, 

it was observed that Method 1 and 2 again produced similar results: the correlation 

coefficients were high (Table 3.5) and the scatterplot shows a strong positive relationship 

between the two approaches (Figure 3.4, left panel). Some differences were visible 

between Method 3 and the other two methods (Figure 3.4, middle and right panel): 

Method 3, which uses the meta-analysis, did not identify as many interactions with a p-

value p≤0.001 as the other methods (Table 3.4). However, the calculated correlation 

coefficient between Method 3 and Methods 1 and 2 showed positive correlation (Table 

3.5).  

33..44..44 DDiiffffeerreenncceess oobbsseerrvveedd aatt tthhee lloowweerr eenndd ooff tthhee ddiissttrriibbuuttiioonn

When investigating interactions with a p-value below the threshold p≤0.001 in either 

method, two main observations were made. First, there is no major difference between 

Methods 1 and 2. Secondly, when comparing Method 3 with the other two methods, 

differences were observed. In some cases, Method 3 was able to identify interactions with 

reasonably low p-values while the other method (Method 1 or Method 2) was not, and vice 

versa. 
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Several explanations can be given for this observation. Firstly, differences in the direction 

of interaction effect between populations could be a factor influencing the model used by 

Method 3. When the direction of the interaction effect was investigated, it was found that 

when the direction of effect was identical in only four or five out of eight studies, Method 

3’s results tended to differ most from those of Methods 1 and 2. 

A second hypothesis is that this observation is due to an over-estimation of the results by 

Method 3. Method 3 uses METAL for the meta-analysis but only meta-analyse the 

interaction term, ignoring the two SNP main-effects. In contrast, Method 1 and 2 take into 

account the main effects. It is possible that not including the main effects results into an 

over-estimation of the interaction effect size in Method 3, as it may lead to the interaction 

term capturing some of the main SNP effects. To investigate this, a multivariate approach 

taking into account the covariance between the SNPs main effects and the interaction 

effects could be used. Further work would include the application of a different meta-

analysis method, such as the one described in Van Houwelingen et al. (2002), to account 

for this and to see if this ameliorates the results. 

33..44..55 CCoovvaarriiaatteess,, ppoowweerr aanndd eeppiissttaattiicc mmooddeell

The power of interaction detection in statistical analysis can be influenced by many factors 

such as the increase of sample size or the inclusion of covariates (Sham and Purcell 2014). 

Often the inclusion of appropriate covariates into linear regression models leads to 

improved power of detection (Sham and Purcell 2014). However there is one interesting 

exception for case control studies in complex diseases: including covariates into a logistic 

regression model can result in a loss of power of detection when the disease prevalence is 

low (Pirinen et al. 2012). Potentially this can be translated to gene-gene interactions and 

raises the question of the need to adjust for covariates. However if the covariates are well 

known confounds, such as population structure, there is a need to introduce them to 

properly control for their effects and thus accepting the loss of power. 
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Furthermore the choice of scale is crucial. The scale depends on a link function that models 

the relationship between the phenotype and the predictors (Frånberg et al. 2015): in this 

thesis the logistic regression was used. The choice of link function has important 

implications: it can impact on the definition and interpretation of epistasis (Clayton 2012). 

Indeed, Clayton (2012) argued that the logistic regression model with no statistical 

interaction between genes is quite strongly epistatic. 

Ultimately the choice of scale is problematic as it depends on the data and its underlying 

biological model, which is unknown (Frånberg et al. 2015). For this reason it is possible to 

choose a scale that would reveal interaction despite having a biological model that does 

not present any interaction (Clayton 2012). On the other hand, a true interaction effect 

would be weakened by an inappropriate choice of scale (Frånberg et al. 2015).  

For this reason further work could include the use of different link functions in order to 

investigate this issue: assuming true interactions in the biological model, the detection of 

such interactions should not depend on the choice of scale (Frånberg et al. 2015; Knol and 

VanderWeele 2012). 

33..44..66 SSuummmmaarryy ooff tthhee cchhaapptteerr

This chapter compared three different ways to include covariates in an interaction analysis. 

The comparison presented showed that the overall performance of the three methods is 

similar. No evidence of bias in one method versus the other was observed as seen through 

the Bland Altman and scatter plots. 

Efficiency and running time is a strong factor in the choice of the method to use. Method 

3 is the simplest and most efficient method by far compared to the other two methods. In 

addition, Method 3 is extremely memory efficient making it the easiest and fastest method 

to carry out interaction analysis for thousands of SNPs. This supports the use of Method 3 

to perform SNP-SNP analyses in Chapter 4 and 5. The possible influence of the direction of 
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interaction effects in the samples will not be addressed in the following chapters as work 

exploring that effect was done a posteriori. 
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Chapter 4 - Interactions in GWAS datasets 

44..11 IInnttrroodduuccttiioonn

44..11..11 BBaacckkggrroouunndd

Genome-wide association studies (GWAS) have demonstrated that there are hundreds of 

loci associated with schizophrenia (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium 2014). In addition CNVs and rare variants studies have also shown 

evidence of association with the disease (Rees et al. 2014). However the cumulative effects 

of these findings only account for a minority of the heritability of schizophrenia (Sullivan et 

al. 2003): there are indications that some of the unexplained heritability may be attributed 

to interactions between loci (Zuk et al. 2012).  

Evidence for genetic interactions has been reported in many model organisms including 

for the prediction of complex traits (Bloom et al. 2013; He et al. 2010; Mackay 2013; 

ÁLvarez-Castro et al. 2012). Many methods have been developed to identify genetic 

interactions in human GWAS data (Wei et al. 2014): several large-scale interaction studies 

have now evaluated evidence for interactions genome-wide for several complex disorders 

(Wei et al. 2012; Moskvina et al. 2011; Prabhu and Pe’er 2012). Among those studies, only 

a few interactions have reached an appropriate level of significance and have been 

replicated (Hemani et al. 2014; Chu et al. 2014) .  

Genome-wide interaction studies have been quite unexplored in schizophrenia. A few 

studies have provided evidence supporting a role for gene-gene interactions in 

schizophrenia (Nicodemus et al. 2010; Burdick et al. 2008). In this chapter the focus is 

drawn on disease associated pair-wise interactions through exhaustive genome-wide 

testing. 
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44..11..22 AAiimm ooff tthhee cchhaapptteerr

The main aim of this chapter is to assess SNP-SNP interactions in two non-overlapping 

GWAS dataset (ISC and CLOZUK). Two interaction analyses will be presented: one using 

SNPs specific to each dataset and the other one will be restricted to the SNPs common to 

both dataset. 

The second aim of this chapter is to investigate whether genetic information alone could 

be used to identify sets of genes enriched for interactions.  

44..22 MMaatteerriiaall aanndd MMeetthhooddss

44..22..11 DDaattaa

The datasets used were the CLOZUK dataset (Hamshere et al. 2013) and ISC studies 

(International Schizophrenia Consortium 2008). CLOZUK consists of a total of 5,200 

individuals with schizophrenia and 5,987 healthy subjects. ISC consists of 3,322 cases and 

3,587 controls. The data, including the quality control steps applied to it, are described in 

Chapter 2. 

44..22..22 MMeetthhoodd aanndd hhyyppootthheessiiss

The method used to calculate SNP-SNP interactions was described in detail in Chapter 3: 

Method 3. SNP-SNP interactions are calculated independently in each sub-datasets using 

PLINK 1.9 (Purcell et al. 2007; Chang et al. 2015) and the meta-analysis tool METAL (Willer 

et al. 2010) combines the results. Only the interaction terms are meta-analysed: 

interaction p-values are independent from the main effects.  

This chapter investigates if genetic information (in the form of SNP main effects) can help 

to identify group of genes enriched for ‘significant’ interactions. Pairwise SNP-SNP 

interactions were calculated then ranked by the gene wide (main effect) significance of the 

genes involved: the highest ranking SNP-SNP interactions will be those linked to genes 

highly associated with schizophrenia and the lowest ranking SNP-SNP interactions will be 
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those linked to genes least associated with the disease. The distribution of interaction p-

values in high- and low-ranking gene pairs was compared to assess the evidence for an 

enrichment of SNP-SNP interactions within gene pairs most highly associated with the 

disease. 

44..22..33 SSNNPP sseelleeccttiioonn

Firstly, only SNP inside genes were kept. The present work is focusing on interactions 

between SNPs: insertions and deletions (in-dels) were excluded from the analysis due to 

their rarity as well as the inaccuracy of their calling (Hasan et al. 2015). 

Secondly, the analysis focuses on autosomal chromosomes: all variants on X and Y 

chromosomes were removed as a separate analysis of male and female would have been 

needed. In addition, a separate analysis would have led to a smaller sample size and 

resulted in a loss of power for detection.  

 For the common-SNP comparison, a supplementary step was added: the selection of SNPs 

present in both datasets. 

44..22..44 CClluummppiinngg pprroocceedduurree

As detailed in Chapter 1, section 1.2.3, getting enough power to identify significant 

interactions between correlated variants is unlikely: the inclusion of every variant in the 

interaction analysis would massively increase the multiple testing burden (under simple 

Bonferroni type correction) (Moskvina et al. 2011). Moreover it is important to prevent 

collinearity problems that can arise when SNPs are highly correlated (see Chapter 3, section 

3.2.2) 

For these reasons linkage-disequilibrium (LD) pruning was used to reduce the number of 

SNPs involved in the analysis: the most highly associated SNPs were selected and any other 

SNPs in LD with them were removed.  
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In addition all the SNPs within the major histocompatibility complex (MHC) region were 

excluded due to extensive LD in that specific region (Price et al. 2008). 

In the independent analysis where SNPs specific to each dataset are used, ISC and CLOZUK 

were clumped separately. The same parameters were chosen for the window and the R-

square threshold (Table 4.1). However due to the high difference of number of variants 

after QC in each dataset (Chapter 2), different parameters were used for the significance 

threshold p1 (Table 4.1) to obtain a similar number of SNPs within each dataset. 

For the common-SNPs analysis, only the CLOZUK dataset was clumped, as it has a larger 

number of cases and controls than the ISC dataset. The parameters used were the same 

as previously indicated (Table 4.1). 

Clumping parameters Independent analysis Common-SNPs analysis

ISC CLOZUK ISC CLOZUK

Window w in kb 2,000 2,000 NA 2,000

R-square threshold r2 0.1 0.1 NA 0.1

Significance threshold p1 0.1 0.01 NA 0.01 

Table 4.1: Clumping parameters used in the two analyses: window, R-square threshold 
and significance threshold. The Independent analysis refers to the interaction analysis 

performed using SNPs specific to each dataset. The common SNPs analysis refers to the 
interaction analysis that used SNPs common to both datasets: the clumping was 

performed only on the CLOZUK dataset. NA: Not applicable. 

44..22..55 SSNNPP--SSNNPP iinntteerraaccttiioonn aannaallyyssiiss

In this chapter, statistical interactions were calculated using a logistic regression model 

that estimates the disease status of individuals as a function of independent predictor 

variables corresponding to the genotypes of the considered markers. The method used to 

calculate SNP-SNP interactions was previously described in details in Chapter 3 section 

3.2.3.3. Briefly, the 8 different sub-populations in the ISC dataset as well as the two chips 

in CLOZUK were analysed separately using PLINK 1.9 (Purcell et al. 2007; Chang et al. 2015). 

The results were then combined by means of inverse variance meta-analysis for each 
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dataset using METAL (Willer et al. 2010). The interaction p-values are independent from 

the main effects as only the interaction terms are meta-analysed. 

44..22..66 RRaannkkiinngg ooff tthhee iinntteerraaccttiioonnss

Gene wide significance for each gene was calculated using Brown’s method (Brown 1975). 

This approach is derived from Fisher’s statistics and allows combining p-values from 

dependent results. In order to calculate the gene-wide significance for each gene, the 

method combines the association p-values of every SNP for that gene taking into account 

the number of SNPs and the degree of LD between them (Moskvina et al. 2011). The 

resulting p-value reflects the overall degree of association between SNPs in this gene and 

disease. 

SNP-SNP interactions were then ranked using the gene-wide p-values for the 

corresponding genes.  If the interaction involved two SNPs in the same gene, the gene-

wide p-value of this gene was used. When the interaction involved two SNPs from two 

different genes, Fisher’s method was used to combine the gene-wide p-values from the 

two genes as shown in the following equation: 

with  representing the gene wide p-values for the gene  and  is the number of genes 

being combined (here k = 2). As a result, the highest-ranking SNP-SNP interactions are 

those corresponding to pairs of genes most highly associated with the disease, whereas 

the lowest ranking SNP-SNP interactions are those linked to genes least associated with 

the disease. 

To check for potential confounding factors, the interactions were also ranked by gene-wide 

p-values from other psychiatric disorders: Alzheimer disease (Lambert et al. 2013), 

Parkinson disease (Nalls et al. 2014) and Bipolar disorder(Psychiatric GWAS Consortium 

Bipolar Disorder Working Group 2011). The Alzheimer disease GWAS (Lambert et al. 2013) 
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was a large, two-stage meta-analysis of individuals from European ancestry: it used 

genotyped and imputed data for 17,008 cases and 37,154 controls in stage one and 

genotyped data in 8,572 cases and 11,312 controls for stage 2 and identified 19 variants 

associated with the disease. The Parkinson disease GWAS (Nalls et al. 2014) was a meta-

analysis of 13,708 cases and 95,282 controls using genotyped and imputed variants: it 

identified 28 independent loci linked to the disease. The Bipolar Disorder GWAS 

(Psychiatric GWAS Consortium Bipolar Disorder Working Group 2011) used 11,974 cases 

and 51,792 (combining discovery and replication set) and identified 34 SNPs associated 

with the disease, among which 18 replicated.  

In addition the interaction results from one dataset were ranked by the gene-wide 

significance from the other dataset: the CLOZUK interactions were ranked using the ISC 

gene-wide p-values and vice versa. Finally interactions in both dataset were also ranked by 

gene-wide p-values calculated from the Psychiatric Genomics Consortium 2 GWAS SNP 

association statistics (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium 2014). 

44..22..77 TTeessttiinngg ffoorr eennrriicchhmmeenntt

44..22..77..11 TTeessttiinngg tthhee ffuullll iinntteerraaccttiioonn ddiissttrriibbuuttiioonn

To test the hypothesis that interactions are more likely to occur within genes associated 

with schizophrenia, a Spearman rank correlation test was performed between the 

interaction p-values and the corresponding (combined) gene-wide significance p-value. 

To further investigate the hypothesis, a linear regression was used as described in the 

following equation.  

Let  be the Fisher's combined gene-wide p-values (-log10) as described in 

section 4.2.6  . 
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Let  be the interaction p-values (-log10). 

Let  be the number of variants in the genes involved in the interaction. 

Let  be the length of the genes involved in the interaction. 

Let  the standardized beta coefficients:  is the Y-intercept. 

Let  be the random error component. 

The linear regression model will assess whether SNPs from genes with greatest disease 

effects (largest  values) tend to have more significant interactions (larger ) 

while taking into account the number of SNPs and the length of each gene. 

44..22..77..22 TTeessttiinngg wwiitthh pprriioorr sseelleeccttiioonn ooff iinntteerraaccttiioonnss

To further compare interactions between associated genes to those between non-

associated genes, a one-sided Wilcoxon Mann Whitney test was used on the ranked SNP-

SNP interactions: the top N% of SNP-SNP interactions (‘top’ referring to interactions 

involving genes most highly associated with schizophrenia) was tested against the bottom 

N% of SNP-SNP interactions (‘bottom’ referring to interactions involving genes that are 

least associated with schizophrenia), with N varying from 1% to 50%. This test compares 

the distribution of SNP-SNP interaction p-values between SNPs in ‘top’ genes (highly 

associated with schizophrenia) to the distribution of SNP-SNP interaction p-values between 

SNPs in ‘bottom’ genes (those least associated with disease).

To further quantify the observed effect, ratios were calculated of the number of SNP-SNP 

interactions with p-value p < α in ‘top’ genes to the number of interactions with p-value p< 

α in ‘bottom’ genes for a range of significance thresholds α. This provided more detail on 

the level of significance driving the effect. A ratio above one would indicates an excess of 

SNP-SNP interactions with P < α in the set of ‘top’ genes.
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44..22..88 NNeettwwoorrkk ooff SSNNPP--SSNNPP iinntteerraaccttiioonnss

To further assess interactions between associated genes to those between non-associated 

genes, networks were drawn to visualise and compare links between the two groups of 

ranked interactions: the top N% of SNP-SNP interactions (‘top’ referring to interactions 

involving genes most highly associated with schizophrenia) against the bottom N% of SNP-

SNP interactions (‘bottom’ referring to interactions involving genes that are least 

associated with schizophrenia), with N varying from 1% to 50%. In both groups, SNP-SNP 

interactions with a p-value p<0.01 were selected.  

While many SNP-SNP interactions with a p-value p < 0.01 are likely to be false positive, it is 

possible that a proportion of SNPs could potentially contribute to multiple true interactions 

and therefore be of interest. 

The network comparison was done at both the SNP and the gene level. In figures illustrating 

these networks, each SNP (or gene) is represented by a node and interactions with p < 0.01 

between two SNPs (or genes) are represented as a link between the corresponding nodes.  

To further assess the networks, the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Sherman et al. 2007) was used to investigate shared biological 

processes (GO terms) between genes (Ashburner et al. 2000). 

44..22..99 FFuunnccttiioonnaall aannnnoottaattiioonn ooff ssiiggnniiffiiccaanntt iinntteerraaccttiioonnss

Genes involved in interactions with an interaction p-value p < 10-4 were further examined 

(genes sizes were not taken into account) The biological functionalities of those genes were 

analysed using the DAVID (Sherman et al. 2007). The background list of genes was built 

with the genes from the interaction that did not pass the selection threshold. For the 

functional annotation, it was decided to use the summarised version of the Biological 

processes in the Gene Ontology (Ashburner et al. 2000). A modified Fisher’s exact test was 

used to determine whether genes involved in interactions with an interaction p-value p < 

10-4 were enriched for GO terms compared to a background list of genes. An enrichment 
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threshold was chosen for p=0.05: an annotation category is considered of interest at that 

threshold (Sherman et al. 2007). The analysis was performed on the results for the 

independent comparison as well as on the ones form the common-SNPs comparison. 

44..33 RReessuullttss

44..33..11 OOvveerraallll aasssseessssmmeenntt ooff tthhee iinntteerraaccttiioonn aannaallyysseess

For the independent analysis, each dataset was studied separately. Out of the SNPs present 

in all 8 subpopulations of the ISC dataset, 2,898 SNPs within 2,080 genes were left after 

linkage disequilibrium pruning (Table 4.3). All pair-wise interactions were assessed 

separately for each population using logistic regression analysis and then combined by 

meta-analysis (Figure 4.1). No interaction survived the multiple test correction (Table 4.3). 

Similarly after LD pruning, 3,318 SNPs within 2,418 genes remained out of the selected 

SNPs in the CLOZUK dataset (Table 4.2). All possible pair-wise interactions were calculated 

separately for each chip and combined as explained previously. Once again, none of the 

interactions passed a Bonferroni corrected p-value threshold of 0.05 (Table 4.3). 
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Figure 4.1: Quantile-quantile plots for all pair-wise interactions analysis calculated for 
each dataset. The top panels show the independent SNPs analysis for the ISC (top left) and 
the CLOZUK (top right) datasets. The bottom panels show the common-SNPs analysis for 

the ISC (bottom left) and the CLOZUK (top right) datasets. 



91 

Independent analysis Common SNPs analysis

ISC CLOZUK ISC CLOZUK

Number of SNPs before LD 
pruning 92,860 1,751,178 71,038 71,038

Number of SNPs after LD 
pruning 2,898 3,318 4,318 4,318

Number of associated genes 2,080 2,418 2,791 2,791

Number of calculated 
interactions 4,197,753 5,502,903 9,320,403 9,320,403

Table 4.2: Number of SNPs (before and after LD pruning), number of associated genes and 
number of calculated interactions in the two analyses (Independent and common-SNPs) 

for each dataset. 

For the common-SNPs analysis, after selecting the common variants between the two 

populations, 71,038 SNPs remained. LD pruning was performed on the larger sample 

(CLOZUK) resulting in the selection of 4,318 SNPs within 2,791 genes that were used to 

perform the pair-wise analysis (Table 4.2). Out of the calculated interactions, none survived 

Bonferroni correction in either dataset (Table 4.3). 

Independent analysis Common SNPs analysis

ISC CLOZUK ISC CLOZUK

Smallest observed p-value 6.15e-7 1.47e-6 2.02e-08 9.06e-08

Bonferroni Threshold 1.19e-8 9.09e-9 5.36e-09 5.36e-09

Number of interactions below 
the Bonferroni Threshold 0 0 0 0

Table 4.3: Smallest interaction p-value, Bonferroni threshold and number of calculated 
interactions below that threshold in the two analyses (Independent and common-SNPs) 
for each dataset. None of the interactions passed the Bonferroni threshold correction. 

44..33..22 RRaannkkiinngg tthhee iinntteerraaccttiioonnss

44..33..22..11 RRaannkkiinngg bbyy ggeennee--wwiiddee pp--vvaalluueess lliinnkkeedd ttoo eeaacchh ddaattaasseett

As detailed in section 4.2.6, interactions were first ranked by gene-wide significance 

calculated in the same dataset.  
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4.3.2.1.1  Spearman ranked correlation 

Spearman ranked correlation coefficients were calculated between interaction p-values 

and the combined gene-wide significance of the genes involved in each interaction (Table 

4.4). While both independent analyses showed a significant relationship between 

interaction p-values and gene-wide significance, the correlation was very small (Table 4.4) 

and probably only detected due to the very high number of degrees of freedom. For the 

common-SNPs analyses the correlation coefficient was either extremely low (CLOZUK) or 

low and negative (ISC) with non-significant p-values, indicating no relationship between 

the interaction p-values and gene-wide significance. 

Independent 
analysis

Common-SNPs 
analysis

ISC CLOZUK ISC CLOZUK

Spearman ranked 
correlation R 2.36e-3 5.14e-3 -1.63e-04 2.72e-04 

P-value 1.36e-6 2.2e-16 0.618 0.406

Table 4.4: Spearman ranked correlation calculated for each dataset (ISC and CLOZUK) in 
both analyses (Independent and common-SNPs) between the interaction p-values and the 

gene-wide p-values. 

4.3.2.1.2  Linear Regression Model 

To assess whether SNPs from genes with greatest disease effects tend to have more 

significant interactions, a linear regression model taking into account the number of 

variants per genes and the length of the gene was used. For the independent analysis, the 

adjusted R-square (Table 4.5) showed that a small part of the variance in the gene-wide 

significance variable can be explained by the predictor variables (SNP-SNP interaction p-

values, number of SNPs and length of each gene). In addition it was found that the 

interaction p-values were significant predictors but did not play a big role. However for the 
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common SNPs analysis, the adjusted R-square are very low and the interaction p-values 

are not significant predictors (Table 4.5). 

Independent 
analysis

Common-SNPs 
analysis

ISC CLOZUK ISC CLOZUK

Adjusted R-squared
0.107 0.0726 1.131e-3 0.0436

Coefficient for 
interaction p-
values

Estimate 4.37e-3 6.88e-3 1.05e-3 5.07e-04 

P-value 1.23e-3 3.15e-10 0.141 0.435

Table 4.5: Adjusted R-squared, beta coefficient for interaction p-values in the linear 
regression. 

4.3.2.1.3  Ranking test 

As explained in section 4.2.7 a one-sided Mann Whitney Wilcoxon ranking test was used 

to quantify the over-representation of small interactions p-values within the most highly 

schizophrenia associated genes compared to interactions within genes least associated 

with the disease. 

The comparison was done in both analyses (Figure 4.2): the independent analysis and the 

common SNPs analysis. In the independent analysis, the over-representation p-values 

were significant in both ISC and CLOZUK datasets (Figure 4.2, top panel) indicating an 

excess of significant interactions within the genes that are most highly associated with the 

disease. The effect was much more pronounced for the CLOZUK dataset than it was for the 

ISC dataset (Figure 4.2, top panel). In the common-SNPs analysis the over-representation 

p-values were not significant in both ISC and CLOZUK datasets (Figure 4.2, bottom panel) 
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Figure 4.2: Histograms of the ranking test (-log10(p-value)) for the independent analyses 
(top panel) and the common SNPs analysis (bottom panel) for both datasets (ISC and 

CLOZUK). This test compares the distribution of N% SNP-SNP interaction p-values between 
SNPs in genes highly associated with schizophrenia to the distribution of N% SNP-SNP 

interaction p-values between SNPs in genes least associated with disease. GWP refers to 
gene-wide p-value. The red line shows the multiple test significance thresholds for a 

corrected p-value of 0.05 (Bonferroni correction p-value p=0.0022). An excess of 
significant interactions within the genes that are most highly associated with the disease 

is observed for ISC and CLOZUK in the independent analysis (top panel).
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44..33..22..22 RRaannkkiinngg bbyy ggeennee--wwiiddee pp--vvaalluueess ffrroomm tthhee ootthheerr ddaattaasseett aanndd tthhee PPGGCC

In this section, interactions were ranked by gene-wide significance of the corresponding 

genes as calculated in the other dataset (CLOZUK interactions ranked by gene-wide p-

values calculated in the ISC dataset and vice versa) and from the Psychiatric Genomics 

Consortium 2 (PGC2). The ISC and CLOZUK datasets are both part of the PGC2 dataset. 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). As in the 

previous section ranking was done for both analyses (independent and common-SNPs) to 

compare the results (Figure 4.3).  

In the independent analysis when ranking interactions from the CLOZUK dataset using the 

gene-wide p-values calculated for the ISC dataset (and vice versa), the enrichment for 

significant interactions disappeared in both cases (Figure 4.3, top panel) However when 

ranking by the gene-wide p-values calculated for the PGC2 dataset (which contains both 

ISC and CLOZUK data), in both ISC and CLOZUK dataset an enrichment is detected. 

In the common-SNPs analysis, only when ranking interactions from the ISC dataset using 

gene-wide p-values from CLOZUK was enrichment observed in some cases (35%, 40% and 

45% of the distribution) (Figure 4.3, bottom panel). 

Furthermore, comparison of correlation coefficients between the ISC, CLOZUK and PGC2 

gene-wide significance p-values (Table 4.6) revealed low correlation between the ISC and 

CLOZUK. The strongest observed relationship is between the CLOZUK and PGC2 gene-wide 

significance (R=0.294).
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Figure 4.3: Histograms of the ranking test ((-log10(p-value)) for the independent analyses 
(top panel) and the common SNPs analysis (bottom panel) for both dataset (ISC and 

CLOZUK). The ISC interactions were ranked by ISC, CLOZUK and PGC2 GWP. The CLOZUK 
interactions were ranked by CLOZUK, ISC and PGC2 GWP. GWP=gene-wide p-value. The 
black line shows the multiple test significance thresholds for a corrected p-value of 0.05 
(Bonferroni correction p-value p=0.0015). An excess of significant interactions within the 
genes that are most highly associated with the disease is observed for ISC and CLOZUK in 
the independent analysis (top panel) when ranking by the GWP (gene-wide p-value) from 

the dataset (ISC for ISC and CLOZUK for CLOZUK) or from the PGC2.  

Correlation between: ISC and 
CLOZUK GWP

ISC and 
PGC2 GWP

CLOZUK and 
PGC2 GWP

Pearson 
correlation R 0.049 0.109 0.272

P-value 5.20e-9 <2.2e-16 <2.2e-16

Spearman 
rank 
correlation

R 0.049 0.128 0.294

P-value 6.85e-9 <2.2e-16 <2.2e-16

Table 4.6: Calculated correlation coefficients (Pearson and Spearman) between the gene-
wide significance p-values (GWP) of ISC, CLOZUK and PGC2.  
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44..33..22..33 RRaannkkiinngg bbyy SSNNPP pp--vvaalluueess

To investigate whether SNP-SNP interaction p-values were influenced by the SNP p-values, 

a similar ranking by the SNP p-values was performed (Figure 4.4). In the independent 

analysis, when ranking interactions in the CLOZUK dataset by SNP p-values (Figure 4.4, top 

right) an enrichment was consistently detected. In the ISC dataset, enrichment was only 

observed when comparing 35 and 40% of interactions in high ranked genes with 

interactions in low ranked genes (Figure 4.4, top left). In the common-SNPs analysis, no 

enrichment was detected in either dataset (Figure 4.4, bottom). 

Figure 4.4: Histograms of the ranking test (log scale) for the independent analyses (top 
panel) and the common SNPs analysis (bottom panel) for both dataset (ISC and CLOZUK). 
GWP refers to gene-wide p-value. The ISC interactions were ranked by ISC GWP and the 

SNP association p-values. The CLOZUK interactions were ranked by CLOZUK GWP and the 
SNP association p-values. GWP=gene-wide p-value. The black line shows the multiple test 

significance thresholds for a corrected p-value of 0.05 (Bonferroni correction p-value 
p=0.0015). 
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44..33..22..44 RRaannkkiinngg bbyy ggeennee--wwiiddee pp--vvaalluueess ffrroomm ootthheerr ddiissoorrddeerrss

The ability of gene-wide p-values to identify genes enriched for nominally associated 

interactions suggests that disease-relevant interactions are indeed more likely to occur 

between genes themselves associated with the disorder but also that some interactions 

are specific to each dataset. To investigate whether this result could instead be driven by 

confounding factors (e.g. differences in SNP density or genotyping quality) present in 

GWAS data but unrelated to disease, interactions were re-ranked using gene-wide p-values 

from other neuro-psychiatric/-degenerative disorders: Alzheimer Disease (Lambert et al. 

2013), Parkinson Disease (Nalls et al. 2014) and Bipolar Disorder (Psychiatric GWAS 

Consortium Bipolar Disorder Working Group 2011). Of these, only Bipolar Disorder is 

known to have a strong genetic overlap with schizophrenia (Lichtenstein et al. 2009). 

Assuming the effect to be genuine, Bipolar Disorder gene-wide p-values might potentially 

have the ability to identify genes enriched for schizophrenia-associated interactions.   

In the independent analysis, when ranking the interactions results of the ISC dataset using 

the gene-wide association p-values from Alzheimer Disease and Parkinson Disease, no 

enrichment was observed (Figure 4.5, top left). However, there was an enrichment of 

significant interactions when ordering the interactions using gene-wide p-values for Bipolar 

Disorder (Figure 4.5, top left). The observed effect was the strongest when N=10% (p-

value=3.72e-4). When ranking interactions calculated on the CLOZUK dataset, no ranking 

test passed the multiple correction threshold for a corrected p-value of 0.05, the smallest 

p-value occurring when ranking by the Parkinson gene-wide p-value (p-value=2.21e-3 when 

N=35%). 

In the common-SNPs analyses, when ranking the interaction from the ISC dataset using 

gene-wide p-values form other psychiatric disorders, no test was significant; the same was 

observed in the CLOZUK dataset (Figure 4.5, bottom). Consequently this shows that  the 

observed results are probably not due to confounding factors inherent to GWAS data. 
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Figure 4.5: Histograms of the ranking test (log scale) for the independent analyses (top 
panel) and the common SNPs analysis (bottom panel) for both dataset (ISC and CLOZUK). 

The interactions were ranked by Alzheimer disease, Bipolar disorder and Parkinson 
Disease GWP. GWP refers to gene-wide p-value. The black line shows the multiple test 
significance thresholds for a corrected p-value of 0.05 (Bonferroni correction p-value 

p=0.0015). For the independent analysis, using the ISC dataset, an excess of significant 
interactions within the genes that are most highly associated with the Bipolar Disorder is 

observed. 

44..33..22..55 RRaattiiooss

To further quantify the enrichment effect observed in the independent analysis, ratios of 

the number of interactions below a significance level α were computed. As for the ranking 

test, the ranked SNP-SNP interactions were divided in two groups: N% of the ‘top’ SNP-SNP 

interactions (top referring to interactions involving genes most highly associated with the 

disease) and N% of the ‘bottom’ SNP-SNP interactions (bottom referring to interactions 
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involving genes least highly associated with schizophrenia), N varying from 1% to 50%. 

Then, interactions with a p-value below the significance level α were counted in each group 

in order to calculate the ratio between them. This provided more detail on the level of 

significance driving the effect: a ratio above 1 indicates an excess of interactions with a p-

value below the significance level α within interactions in high ranked genes compared to 

interactions in low ranked genes (Figure 4.6). 

When comparing interaction ratios in both the CLOZUK and ISC datasets, there was an 

excess of interactions below the significance level α in high ranked genes (i.e. ratio >1) for 

almost all α. The greatest excess occurred when α is between 0.01 and 1e-4. The highest 

ratio observed for the CLOZUK dataset is 1.531 (N=1%, α=10e-3) and for the ISC dataset is 

1.571 (N=10%, α=10e-4). 

Figure 4.6: Calculated ratios for the ISC (top panel) and CLOZUK (bottom panel) datasets 
of SNP-SNP interactions with a p-value below the significance level α (from 0.5 to 1e-4) in 
two groups: interactions involving genes most highly associated with schizophrenia and 

interactions involving genes that are least associated with the disease. 
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44..33..22..66 NNeettwwoorrkkss

As explained in section 4.2.8, it is possible that a proportion of disease-relevant SNPs (or 

genes) will contribute to multiple interactions. Two sets of the ranked interactions were 

plotted as network: 1% of SNP-SNP interactions involving genes most highly associated 

with the disease (highly ranked) and 1% of SNP- SNP interactions involving genes least 

associated with schizophrenia (lowest ranked). This particular threshold was used as it 

gives the clearest visualisation, however the same phenomenon is observed at different 

thresholds with a more complex graph structure. 

Each node represents a SNP (or a gene) and the link joining two SNPs (or genes) represents 

the existence of a pairwise interaction between them with p<0.01. 

This was done on the independent comparison for both the CLOZUK and the ISC datasets. 

ISC CLOZUK

HRG LRG HRG LRG

Number of interactions

with p<0.01
435 366 512 414

Number of SNPs 427 218 478 354

Number of genes 368 302 437 306

Table 4.7: Number of interactions, number of SNPs and genes in each dataset after 
selecting 1% of SNP-SNP interactions involving genes most highly associated with the 

disease (highly ranked) with a p-value below 0.01 and 1% of SNP- SNP interactions 
involving genes least associated with schizophrenia (lowest ranked) with a p-value below 

0.01. (HRG: high ranked genes and LRG: low ranked genes) 

When plotting the network graphs (Figure 4.7 for CLOZUK and Figure 4.8 for ISC), different 

patterns can be observed. For the CLOZUK dataset in the network of interactions in high 

ranked genes (Figure 4.7A) for both the SNPs and the genes network, interactions are 
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clearly concentrated around a small number of hub SNPs (or genes). This is not observed 

in the networks of interactions in low ranked genes (Figure 4.7B). The same phenomenon 

was also observed in the ISC dataset (Figure 4.8). This indicates that a handful of SNPs are 

responsible for driving the interactions in the top of the distribution (Table 4.7).
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Figure 4.7: Networks of SNPS and Genes interactions in the CLOZUK 
dataset. Interactions were ranked by gene-wide significances. 1% of 
interactions was selected with the highest ranking (A) (genes highly 

associated with schizophrenia) and with the lowest ranked interactions (B) 
(genes least associated). In both groups, interactions with p< 0.01 were 

selected to drawn the network. For interactions in high ranked genes, the 
network appears to present hubs both in SNPs and Genes networks (A).  

Figure 4.8: Networks of SNPS and Genes interactions in the ISC dataset. 
Interactions were ranked by gene-wide significances. 1% of interactions 
was selected with the highest ranking (A) (genes highly associated with 
schizophrenia) and with the lowest ranked interactions (B) (genes least 
associated). In both groups, interactions with p< 0.01 were selected to 
drawn the network. For interactions in high ranked genes, the network 

appears to present hubs both in SNPs and Genes networks (A). 
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The hubs were further examined to assess whether additional biological information could 

be derived from them. The top 5 hubs (the hubs with the highest degree) in each dataset 

were selected. The DAVID database (Sherman et al. 2007) was used to assess whether any 

biological process (GO term) was shared between genes connected to the same hub 

compared to other genes present in the network. This GO analysis looked for evidence 

supporting a link between the observed hubs and biological processes. In both datasets, 

no enrichment for GO term was detected.  

In order to assess whether the observed hub-effect was a statistical artefact, I investigated 

the relationship between the gene degree (number of link) in each network (Figure 4.7 and 

Figure 4.8) and the gene length. As showed by the correlation table (Table 4.8), there is no 

relationship between the gene length and the gene degree in the high ranked genes 

network. The opposite is observed for the lowest ranked genes network. 

Correlation between number gene 

degree and gene length

ISC CLOZUK

HRG LRG HRG LRG

Pearson 

correlation

R 1.03e-2 0.513 0.0625 0.280

P-value 0.843 < 2.2e-16 0.262 1.53e-6 

Spearman rank 

correlation

R -5.27e-3 0.399 -4.72e-2 0.222

P-value 0.919 1.27e-10 0. 3976 1.57e-4 

Table 4.8: Calculated correlation coefficients (Pearson and Spearman) between the 
number of gene degree and the gene length in the hub network for both the ISC and 

CLOZUK dataset. HRG=High Ranked Genes. LRG=Least Ranked Genes. 

Similarly, the relationship between the gene degree in the hub network and the number 

of SNPs per gene was investigated. The correlation table (Table 4.9) showed a strong 

relationship between the gene degree and the number of SNPs per gene in both high 

ranked genes and low ranked genes networks. 
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Correlation between number of gene 

degree and number of SNPs

ISC CLOZUK

HRG LRG HRG LRG

Pearson 

correlation

R 0.479 0.784 0.458 0.622

P-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Spearman rank 

correlation

R 0.599 0.608 0.435 0.408

P-value < 2.2e-16 < 2.2e-16 < 2.2e-16 1.10e-13

Table 4.9: Calculated correlation coefficients (Pearson and Spearman) between the 
number of gene degree and the number of SNPs per gene in the hub network for both the 

ISC and CLOZUK dataset. 

44..33..33 OOvveerraallll aasssseessssmmeenntt ooff tthhee ffuunnccttiioonnaall aannnnoottaattiioonn

SNP-SNP interactions with a p-value below 1x10-4 were further analysed using the DAVID 

database to investigate if biological processes were shared among them (Table 4.10). I 

compared the results obtained for the CLOZUK dataset with those for the ISC dataset. This 

purely descriptive analysis was performed both for the results obtained from the 

independent comparison (using different SNPs for both datasets) and for those from the 

common-SNP comparison. Due to lack of time, this analysis only aims to give a brief 

description of preliminary results that would need further investigation to be complete. 

Annotation category with a p-value equal or smaller than 0.05 was considered as 

potentially relevant (Sherman et al. 2007).  

Independent analysis Common-SNPs analysis

ISC CLOZUK ISC CLOZUK

Number of genes 502 600 1,036 1,102

Number of genes used 

as background list
2,080 2,418 2,791 2,791

Table 4.10: Number of genes into the main and the background list for the analysis in 
David.  
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In the independent analysis, 14 GO-terms were identified as significant for the ISC dataset 

and 6 GO-terms for the CLOZUK dataset (Figure 4.9, top). No shared process between the 

two was found.  

In the common SNPs analyses, 7 GO-terms were found to be enriched in the ISC dataset 

and 5 in the CLOZUK dataset (Figure 4.9, bottom). One shared process was identified 

between the two dataset: GO:0007156 homophilic cell adhesion via plasma membrane 

adhesion molecules. Other similar functions are shared: transmembrane transport and 

calcium ion transmembrane transport.  

Taking into account multiple test correction (FDR rate), no GO terms was found to be 

significant in either analyses. 
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Figure 4.9: GO-terms analysis for the independent and same-SNPs comparison in both ISC 
and CLOZUK datasets. 
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44..44 DDiissccuussssiioonn

44..44..11 TToowwaarrddss aa bbeetttteerr uunnddeerrssttaannddiinngg ooff ggeennee--ggeennee iinntteerraaccttiioonnss iinn sscchhiizzoopphhrreenniiaa

A detailed study of genetic interactions was performed on two non-overlapping 

schizophrenia GWAS datasets. Analyses were first performed independently in each 

dataset; the SNPs used being different and specific to each dataset. To investigate whether 

results were sensitive to differences in the SNP content of the genotyping chips used in 

each study, and to make the analysis more directly comparable, the procedure was re-run 

after selecting for common variants present in both datasets. In every analysis, no 

interaction survived correction for multiple testing. This is unsurprising as the sample sizes 

are still insufficient to reliably detect individual interactions statistically. 

To investigate whether genetic information alone could be used to identify sets of genes 

enriched for interactions, SNP pair-wise interactions were calculated and ranked by the 

gene wide significance of the genes involved in each interaction. First the comparison of 

Spearman correlation coefficients between the interaction p-values and the gene-wide 

significance p-values revealed a weak relationship between the two in the independent 

analysis (for both CLOZUK and ISC datasets). However this was not the case for the 

common-SNPs analyses. 

The distribution of interaction p-values in high ranked genes (for which there was greatest 

gene-level evidence of main effects contributing to disease) was then compared to that in 

low ranked genes. Analysing samples independently (selection of SNPs being specific to 

each datasets), there was evidence for an enrichment of significant interactions amongst 

genes with the highest gene-level evidence of association when compared to interactions 

involving the least associated genes. The observed effect was stronger for the CLOZUK than 

the ISC dataset: this is probably due to an insufficient power to detect the effect in the 

smaller set of genes in the ISC dataset (the dataset being smaller). Furthermore, as 
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indicated by the ratio comparison the observed effect was the strongest when comparing 

the distribution of interaction p-values between the 1% of SNP-SNP interactions between 

SNPs in genes highly associated with schizophrenia with the 1% of SNP-SNP interactions 

between SNPs in genes least associated with the disease. This is the first consistent 

evidence that genes contributing to schizophrenia risk also interact.  

Investigating interactions with a p-value <0.01 in those groups, it was found that several 

SNPs acted as hubs for the interactions within the genes most highly associated with 

schizophrenia. When looking at the interactions within the other group (genes least 

associated with schizophrenia) no SNP hub was evident. Further assessment of the genes 

involved in the top five hubs did not reveal any shared biological process in the CLOZUK 

dataset.  

Potential statistical artefacts were investigated. The relationship between the degree of 

each gene (number of links) and the gene length was assessed: for the low ranked genes 

networks in both the ISC and CLOZUK datasets the correlation coefficients showed a stable 

relationship whereas the opposite was observed for the high ranked genes networks. As 

high ranked genes tend to be larger in size than low ranked genes, it does not appear to 

create a bias in the high ranked genes networks as no correlation is observed between the 

degree and the length of each gene. A second relationship was assessed between the 

degree of each gene and the number of SNPs per gene. For both the high ranked genes 

and the low ranked genes networks a strong correlation between the variables was 

observed. As this effect is present in every network it does not seem to play a role in the 

hub pattern observed. 

When performing the common-SNP comparison the previously detected enrichment 

effect of significant interactions within highly associated genes was no longer evident. One 

explanation for this would be that common SNPs between the CLOZUK and the ISC datasets 
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are contributing less to the interactions effects than the ones identified with the 

independent comparison. It is also possible that interaction effects are more sensitive to 

sample differences than main effects. Other factors could also explain this difference and 

will be detailed in the following section. 

To further investigate the observed effect, different rankings were performed on the 

interaction data. The ranking by the gene-wide significance calculated on the PGC2 dataset 

showed similar effect to those previously observed: enrichment was detected in both ISC 

and CLOZUK datasets in the independent analysis but not in the common-SNPs analysis. 

However when the ranking was done using the gene-wide significance from the other 

dataset (using ISC gene wide significance to rank CLOZUK interactions and vice versa), no 

effect was observed in both the independent and the common-SNPs analyses. Several 

factors could contribute to these observations. Firstly the sample size, the ISC dataset is 

significantly smaller: perhaps there is a lack of power to evaluate the gene-wide 

significance in this dataset. This would explain why when using PGC2 gene-wide 

significance to rank ISC interactions, a bigger enrichment of ‘significant’ interactions in high 

ranked genes is detected. However this does not explain why there is enrichment in ISC 

interactions ranked by ISC gene-wide significance. If it is simply power that is needed to 

identify gene-wide association, then using the CLOZUK gene-wide significance to rank ISC 

interactions should be better than ranking the same interactions by ISC gene-wide 

significance, which is not the case. Nevertheless, PGC2 dataset is closer in size to CLOZUK 

dataset than ISC dataset but the ranking by PGC2 seems to produce a stronger signal in the 

ISC dataset than in the CLOZUK dataset. Secondly the chip type, the CLOZUK dataset uses 

more recent and more similar genotyping chips than many of the PGC2 samples. In 

addition, the ISC dataset uses a mix of Affymetrix chips. Perhaps the chip quality influences 

the power to detect true effects and having to correct for multiple chips, this decreases 

their power to identify interactions. Thirdly the sample homogeneity, the CLOZUK dataset 



111 

is a more homogeneous sample with less population sub-structure than the ISC (or the 

PGC2) dataset. Perhaps by using the CLOZUK dataset, population-specific effects are picked 

up whereas the ISC (or the PGC2) dataset will pick up more generic effects. This could 

explain the similarity between ISC and PGC2 and their difference to CLOZUK. The disease 

biology, as cases in the CLOZUK dataset are treatment-resistant it may be that a large 

proportion of the interactions picked up are specific to treatment-resistance. Finally 

looking at gene-wide p-value between the three datasets, ISC and CLOZUK are more highly 

correlated with PGC2 than with each other. This would explain why ranking with PGC2 

gene-wide p-values gives more similar results than ranking ISC with CLOZUK gene-wide 

significance (and vice versa). Also it is worth noticing that the correlation between the two 

largest datasets (CLOZUK and PGC2) is moderate (R~0.3) indicating that gene-wide 

significance are still quite variable in samples of these sizes. 

Following those results, I further investigated if some of the interactions results could be 

driven by confounding factors present in GWAS data but not related to disease. In order to 

assess it, all the interactions were re-ranked using gene-wide p-values from others neuro-

psychiatric/-degenerative disorders. Regarding the independent comparison, the results of 

this cross-disorder analysis showed no evidence that the interaction results were driven by 

such confounds. Indeed no enrichment was detected when ranking interactions by gene-

wide significance from GWAS from genetically unrelated (as far as it is known) disorders. 

In addition, it was found that Bipolar Disorder gene-wide p-values could be used to identify 

genes enriched for schizophrenia-associated interactions in one dataset, which could be 

explained as Bipolar Disorder and Schizophrenia share genetic factors (Lichtenstein et al. 

2009) if it is a genuine effect. No replication was observed in CLOZUK, indicating that 

perhaps the effect is not genuine. When performing the cross-disorder investigation on 
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the common-SNPs comparison, no enrichment was observed in either the CLOZUK or the 

ISC datasets. 

Finally interactions with a p-value below 1x10-4 were further investigated in order to assess 

if biological processes were shared among them.  

The preliminary results from this descriptive analysis showed that some interesting 

biological processes (GO terms) involving synapses or ion transport are involved among 

‘significant’ interactions in both datasets. In the common-SNPs analysis some processes 

are common between CLOZUK and ISC. In addition DAVID does not take into account gene 

size or the number of semi-independent variants. The larger the gene, the more likely it is 

to have multiple semi-independent SNPs and the more SNPs, the more likely it is to find a 

‘significant’ interaction by chance. As brain genes tend to be larger, gene size can influence 

both probability of finding an interaction and the functional annotation. Further work 

would need to use an enrichment test that accounts for those differences. 

44..44..22 DDeetteeccttiioonn aanndd rreepplliiccaattiioonn ooff rreessuullttss:: cchhaalllleennggeess aanndd ccoonncclluussiioonn

The main challenge in a genetic interaction study has often been the detection of 

significant results (McCarthy et al. 2008). Indeed, very few genome-wide epistasis studies 

have discovered significant interactions (McCarthy et al. 2008). In this chapter, none of the 

individual interactions studied in the four analyses survived correction for multiple testing. 

Indeed, the sample sizes are still insufficient to detect individual interactions statistically. 

This indicates a lack of power and that individual interactions contributing to disease risk 

are likely to have extremely modest effect sizes. This problem could be overcome by using 

bigger sample size. For comparison, one of the first GWAS to detect a genome-wide 

significant main effect in schizophrenia required 3,322 cases and 3,587 controls (Purcell et 

al. 2009). For interactions, the sample size needed would be bigger (Wang and Zhao 2003). 

The sample size required to detect an interaction effect is inversely proportional to the 
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square of the effect size (Zuk et al. 2012): for N loci with similar effects, the sample size to 

detect N2 interactions scales with N4. 

Reducing the number of SNPs in the interaction analysis would also contribute to diminish 

the multiple testing burden and make the threshold for significance less stringent. 

However if the effect sizes of the interactions are lower than the size of the main effects 

then it will become extremely unlikely to detect such effects. In addition, it could be argued 

that by reducing the number of SNPs in the analysis, a increasing number of the 

interactions passing the multiple correction thresholds could be in fact false positives. For 

example, we can see a parallel with early candidate genes studies where most of the 

significant results obtained were in fact false positive. As a result a threshold of 5e−8 has 

become the significance standard in GWAS (International HapMap Consortium 2005). In 

this thesis, a stringent Bonferroni correction is applied and sets the significance threshold 

as 0.05 divided by the number of tests. As the number of interactions tested is substantial, 

the threshold is highly conservative: the cost of avoiding too many type I error can then 

result in a loss of power (Musani et al. 2007). Perhaps best practice should be that no 

matter of the number of variants used in an interaction analysis, an appropriate genome-

wide significance threshold should be used for pairwise interactions (Musani et al. 2007).  

In addition, to deal with population stratification, the analysis was done separately on the 

eight populations of the ISC dataset. Similarly the two chips of the CLOZUK data have been 

analysed independently and the results have then been combined for analysis. Perhaps 

true interactions have been lost in that process. 

Another challenge for gene-gene interaction studies is the replication of results (Hemani 

et al. 2014; Chu et al. 2014). In this chapter, some results are partially replicated. For 

example, when performing an independent comparison, when the SNPs are specific to 

each dataset, there is an excess of significant interactions within genes that related to 

schizophrenia: this effect is strongly observed in the CLOZUK dataset as well as the ISC 
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dataset. The difference of sample size in term of both number of cases and controls as well 

as number of SNPs between the CLOZUK and the ISC dataset might explain the difference. 

In addition as gene-wide p-values are quite variable between the datasets, the ranking of 

interactions is not stable: large samples are certainly needed to overcome this. 

Supposing that there are multiple reasonably distinct sets of biological pathways 

contributing to schizophrenia, it may be that one sample is (by chance) more enriched for 

individuals with perturbations of one set of pathways and the other sample enriched for a 

different set of pathways. Then the SNP/gene main effects and interactions within each 

dataset would be drawn from the same set of genes but there would be much less overlap 

between datasets. A bigger sample, similar to PGC2, would be needed to identify signals in 

both sets of pathways at the same time. In addition ranking by gene-wide p-values in this 

better powered dataset should reveal evidence for interactions in the smaller datasets.  

44..44..33 SSuummmmaarryy ooff tthhee cchhaapptteerr

In this chapter, I investigated SNPs-SNPs interactions in two independent and non-

overlapping GWAS datasets. When performing the independent comparison (markers 

specific to each dataset), an enrichment of significant interactions within genes that are 

most highly associated with schizophrenia was detected. However that effect was not 

observed when using the common SNPs between the datasets. 
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Chapter 5 - Interaction in GWAS datasets using data from 

protein-protein interactions 

55..11 IInnttrroodduuccttiioonn

55..11..11 BBaacckkggrroouunndd

Finding gene-gene interactions in human genetic data has proven to be a difficult task 

(Gilbert-Diamond and Moore 2011). As illustrated in section 4.2.5 of Chapter 4, many 

factors contribute to the explanation of a lack of success in interaction detection: low 

statistical power, severe multiple testing correction, small effect size, lack of large sample 

size (Moskvina et al. 2011). 

To help overcome such problems, the prioritisation of the SNPs used in the interaction 

analysis is a key factor (Moskvina et al. 2011). In Chapter 4, SNPs within genes were 

selected using LD pruning. In this chapter I investigate whether functional information such 

as protein-protein interactions can be used to prioritise genes. 

Protein-protein interactions (PPI) are physical contacts between proteins that allow the 

formation of more complex functional units. As protein rarely acts alone, such units are 

particularly important as many molecular processes depend on it. This explains the growing 

interest in the study of such units: for example one study (Pawson and Nash 2000) have 

shown that the specificity in signal transduction relies on PPI. 

As detailed in section 1.3.3 of Chapter 1, large-scale studies of PPI have allowed the 

identification of thousands interactions as well as the creation of several public PPI 

databases such as BIND (Bader et al. 2003), HPRD (Mishra et al. 2006) or Intact (Kerrien et 

al. 2007).  

Furthermore some efforts have been made to obtain comprehensive screens (which 

investigate all potential interactions within a particular set of proteins) with PPI thoroughly 
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verified. However while comprehensive screens are more likely to contain good quality PPI, 

they are still far from complete and a large proportion of all potential interactions have yet 

to be investigated. 

Nevertheless, newly discovered PPI are mostly found in small studies rather than in large 

comprehensive screenings. Furthermore their number keeps increasing exponentially with 

the progress of the technologies allowing their detection. As a result, the majority of newly 

discovered PPI will be available mostly in the literature, which renders the task of extracting 

all that information very difficult. 

55..11..22 AAiimm ooff tthhee cchhaapptteerr

The aim of the chapter is to investigate the relationship between biological interactions 

such as PPI and statistical interactions. PPI from both databases and literature curation will 

be used to assess the relationship.  

The first part of the chapter reviews three text-mining tools extracting PPI from abstracts 

and compare their performances. The best tool was then used to identify a set of PPIs 

through analysis of PubMed abstracts. 

The second part of the chapter will assess whether significant SNPxSNP interactions are 

enriched within sets of PPI from different source. 

In this chapter, screen PPI will refer to PPI discovered through high throughput screens 

(e.g. yeast two hybrid assays). Literature PPI will refer to PPI discovered through the 

analysis and curation of the literature (i.e. the results of numerous small-scale interaction 

studies), using text-mining tools for example. 

55..22 MMaatteerriiaallss aanndd MMeetthhooddss

55..22..11 GGWWAASS ddaattaa

For this analysis, the CLOZUK dataset was used (Hamshere et al. 2013). It consists of a total 

of 5,200 individuals with schizophrenia and 5,987 healthy subjects from 8 different 
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populations. The data, including the quality control steps applied to it, was described in 

Chapter 2. 

The CLOZUK dataset was preferred to the ISC dataset (International Schizophrenia 

Consortium 2008) due to its larger sample size: higher number of cases and controls. A 

meta-analysis of both datasets would have also solved the sample-size issue but the 

number of common variants between the two datasets was deemed too low to proceed. 

55..22..22 TTeexxtt MMiinniinngg

55..22..22..11 BBaacckkggrroouunndd

As discussed in Chapter 1, advances in Natural Language Processing (NLP) techniques have 

allowed the development of tools for extracting information such as PPIs from text. 

After reviewing the available literature on the different PPI extraction tools, three were 

selected for further comparison (Table 5.1): ODIN (Rinaldi et al. 2014), PPIInterFinder (Raja 

et al. 2013) and @Note (Lourenço et al. 2009). The selection criteria for this review 

included the availability of the tools as well as the described performance. 

Name Type Limitations Strengths

PPIInterFinder Web based
Limited number of abstracts to 

be processed (10)

Three different options to 

upload the input

ODIN Web based
Not fully publicly available for 

personal use

Processed on the entire 

PubMed

@note2
open 

source

Limited number of abstracts to 

be processed (100)
Very user friendly

Table 5.1: Limitations and strengths of the different PPI extraction tools 

ODIN is a web service that allows the extraction of PPI from abstracts. It uses the 

annotation standard BioC (Comeau et al. 2013). BioC is a data format based on the XML 

language: it facilitates the data exchange for systems that process biological texts. In 

addition ODIN has been presented at the Bio Creative challenge II.5 (Krallinger et al. 2011), 

where the results proved it to be an efficient and competitive tool. Its high ranking (best 
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results for the detection of protein-protein interactions) and its availability (not every tool 

participating to the challenges were public available) made it a strong candidate for the 

analysis.  

PPIInterFinder is a web-based tool that extracts human PPIs from abstracts of the 

biomedical literature. This tool uses the co-occurrence of protein names combined with a 

search for relational keyword in order to identify PPI candidate (Raja et al. 2013). The 

upload was limited to 10 abstracts at one time, making it quite hard to use for a large-scale 

analysis. 

@Note is a platform for Biomedical Text Mining that processes abstracts as well as full texts 

and retrieves PPI information within them. The software can be easily downloaded and has 

a very user-friendly interface (Lourenço et al. 2009). However the analysis was limited by 

an upload of 100 abstracts at one time. 

55..22..22..22 CCoorrppoorraa

In order to evaluate the different text-mining tools and to assess their performance, each 

tool was tested on two selected corpora. The first corpus consisted of a collection of 100 

abstracts, created by a simple query in PubMed using the following Mesh Terms: protein-

protein interactions. Every abstract was manually checked to insure that the corpus 

contained a sufficient number of PPI. The second corpus was a sample of 100 abstracts 

randomly selected from the ACT corpus used in a well-known text mining event: the 

BioCreative Challenge (Krallinger et al. 2011). 

55..22..22..33 IInnddiiccaattoorrss ffoorr ppeerrffoorrmmaannccee aasssseessssmmeenntt

The approach used here consisted of testing each PPI extraction tool against the two 

corpora defined above. Three main indicators are commonly used to evaluate the 

performance of text mining tools: the recall, the precision and the F-measure. Those 

indicators are defined using the number of correct interactions detected (true positives 
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TP), the number of missed interactions (false negatives FN), the number of false 

interactions detected (False positives FP). 

The recall is the true positive rate or sensitivity: it measures the true positives that are 

identified and takes into account the number of those missed. It is defined as the following: 

The precision sometimes known as positive predictive value measures the number of 

correctly retrieved PPI by a method. It is defined as the following: 

It has been showed that these two measures are often negatively correlated (Rebholz-

Schuhmann et al. 2012): if the precision is increased, the recall measure can decreased. 

The best tool is the one that manage the best balance between those two measures: the 

F-measure. The F-measure is the harmonic mean of precision and recall and provides a 

single indicator: 

55..22..33 PPrrootteeiinn--pprrootteeiinn iinntteerraaccttiioonn ddaattaa

55..22..33..11 BBaacckkggrroouunndd

Finding PPI has been an important challenge in the last decade to identify complex 

molecular mechanisms involved in a cell. As a result, the identification of thousands 

interactions has enabled the creation of numerous resources collecting the data together 

such as PPI databases as defined in Chapter 1, section 1.3.3. In addition, comprehensive 

screens of PPI have allowed the emergence of good quality and thoroughly verified PPI 

resource.  

However both types of resource present some limitations and challenges to overcome as 

seen in Chapter 1, section 1.3.3. For example comprehensive screens are highly dependent 
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on the number of proteins covered by the screen: in particular they might not cover 

synaptic PPI. 

For those reasons, I chose to use PPI issued from both resources: data from the Human 

Interactome Project (Rolland et al. 2014), a comprehensive screen of PPI, and data from 

two databases: the String database (Szklarczyk et al. 2015) and the synaptic set of PPI 

within the Intact database (Orchard et al. 2014). Differences between the sets will be 

briefly assessed in this chapter and I will investigate whether those sets are enriched in 

statistical interactions. 

55..22..33..22 HHuummaann IInntteerraaccttoommee PPrroojjeecctt

The Human Interactome Project (HIP) aims to build a reference map of the human PPI 

network by describing all of the physical interactions between each protein. The approach 

consists of using yeast two-hybrid assay (Y2H) experiments in Human Embryonic Kidney 

cells (HEK293) to obtain high quality interactions. As HEK293 is a cell line derived from 

kidney cells, it is indeed possible that this dataset contains tissue specific PPIs but it will 

also contains non-tissue specific interactions that are of interest. In addition, PPIs have 

rarely been identified in the context of distinct cell types but a few studies are aiming to 

correct this (Yeger-Lotem and Sharan 2015).  

Five datasets of PPI are available on the HIP website which were used to form two sets of 

PPI. 

The two proteome-scale efforts HI-I-05 (Rual et al. 2005) and HI-II14  (Rolland et al. 2014) 

were grouped with two other maps containing high quality interactions identified during 

the development of the protocol: Venkatesan-09 (Venkatesan et al. 2009) and Yu-11 (Yu 

et al. 2011). Hi-I-05 screened a space containing over 7,000 genes and identified over 2,700 

binary PPI of high quality. HI-II-14 generated over 14,000 PPI. Venkatesan-09 contains over 

200 high-quality Y2H PPI and Yu-11 over 1,200 interactions. 
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The second set of PPI drawn from the HIP consisted of PPI obtained by extraction of 

information from known PPI databases such as BIND, BioGrid or DIP: Lit-BM-13 (Rolland et 

al. 2014). Out of those preliminary results, HIP selected only the PPI that were supported 

by at least two pieces of evidence from the literature (Rolland et al. 2014). 

To conclude, in the following analysis, two sets of PPI were derived using the HIP data: one 

supported experimentally and the other one supported by the literature. 

55..22..33..33 IInnttaacctt DDaattaabbaassee

The Intact database (Orchard et al. 2014) is an open source database containing interaction 

data curated from the literature and also from direct depositions. Out of the 

computationally maintained datasets of the database, one consisted of PPI with proteins 

known to have a role in the pre-synapse. This set of PPI was selected for the analysis. 

55..22..33..44 SSttrriinngg DDaattaabbaassee

The String Database (Szklarczyk et al. 2015) contains PPI obtained from three different 

sources: experimentally obtained PPI (drawn from the following databases: BIND, DIP, 

GRID, HPRD, IntAct, MINT, and PID), computationally predicted PPI and PPI extracted from 

the literature by a co-occurrence method. Two large sets of interactions were drawn from 

the database: One containing PPI experimentally obtained and the other of PPI extracted 

from the literature. Predicted PPI were excluded from this study as PPIs prediction tools 

are not sufficiently precise: many datasets are highly skewed containing many non-

interacting PPIs (Browne et al. 2010).  

55..22..44 IInntteerraaccttiioonn aannaallyyssiiss

55..22..44..11 WWoorrkkffllooww

Figure 5.1 represents the workflow of the interaction analysis performed. Each step will be 

further detailed in the section below. 
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55..22..44..22 GGeennee SSeelleeccttiioonn aanndd PPPPII sseettss

Four gene sets were selected using the different sets of PPI previously detailed in this 

chapter, section 5.2.3. 

The first one, SET1, contained genes involved within the PPI obtained from text-mining 

using the results obtained by the best text mining tool. 

Two sets of genes were drawn from the Human Interactome Project: one from the set 

generated through high throughput screening of PPIs (SET2A) and the set curated from the 

literature (SET2B). The PPIs from the two groups were combined, forming the SET 2. Using 

SET 2 set of interactions, it was possible to compare the enrichment for the same 

interactions in the subset SET 2A and the subset SET 2B. In addition, SET 2A was analysed 

on his own in order to assess whether enrichment could be observed within that good 

quality dataset only. 

The third set of genes, SET 3, consists of the PPI drawn from the synaptic dataset of the 

Intact database. 

The last set of genes, SET 4, was drawn from the String database, which contains a very 

high number of interactions: PPI from screening origin (SET 4A) and PPI extracted from the 

literature (SET 4B). As for the second set of genes, the analysis was carried out after joining 

the two sets for comparison. 
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Figure 5.1:Workflow of the analysis. PPI data and CLOZUK data are merged in order to select the genes common to both.  
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55..22..44..33 SSNNPPss sseelleeccttiioonn aanndd cclluummppiinngg

Firstly, only SNPs inside chosen genes were kept. The analysis focussed on autosomal 

chromosomes: all variants on X and Y chromosomes were removed as a separate analysis 

of male and female would have been needed resulting in smaller sample size and loss of 

power for detection. In addition, all the insertions and deletions were excluded from the 

analysis. The same clumping procedure described in Chapter 3 and 4 was used to restrict 

the number of SNPs using linkage-disequilibrium pruning. Only the most highly associated 

SNPs were kept using the option –clump in PLINK (Purcell et al. 2007). The following 

parameters were chosen: a window of 2,000 kb and r2 of 0.1 and p1 threshold of 0.01. 

When further investigation was needed, different p1 thresholds were tested (p1=0.05 and 

p1=0.1) in order to increase the number of SNPs used in the analysis. By increasing the 

number of variants used, it was then possible to investigate how stable the result was. 

55..22..44..44 PPaaiirr--wwiissee SSNNPP iinntteerraaccttiioonn

As explained in detail in section 3.2.3 of Chapter 3 and section 4.2.5 of Chapter 4, 

interactions between all the possible pairs of clumped SNPs were calculated using PLINK 

1.9 (Purcell et al. 2007; Chang et al. 2015). As argued in section 4.2.3.3 of Chapter 4, the 

results obtained from the different chips were combined by means of a meta-analysis using 

the software METAL (Willer et al. 2010). 

55..22..44..55 AAnnaallyyssiiss ooff tthhee rreessuullttss

The analysis of the results relied onto the calculation of every possible pair of interactions 

between the clumped SNPs within genes previously identified in section 5.2.4.2.  

It also relied onto the comparison between the distribution of SNP interaction p-values for 

gene pairs linked to PPIs and the distribution of SNP interaction p-values for gene-pairs not 

linked by PPIs within the same set of genes. To assess if any enrichment of statistical 
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interactions could be detected, a Mann Whitney Wilcoxon rank test was used to compare 

the interactions in genes linked to PPI with the interactions in genes not involved with PPI. 

Then, a chi-square test was used to evaluate if there was an excess of genetic interactions 

with a p-value below two thresholds (p 0.05 and p 0.01) in interactions linked to PPIs 

compared to interactions not linked by PPIs within the same set of genes. When the count 

of interactions below the given threshold did not qualify for a chi-square test, Fisher’s exact 

test was used. 

55..33 RReessuullttss

55..33..11 CCoommppaarriissoonn ooff tthhee tthhrreeee tteexxtt--mmiinniinngg ttoooollss

The three text-mining tools identified in section 5.2.2: ODIN, PPIInterFinder and @Note 

were tested against the two corpora described in section 5.2.2.2. 

The first corpus tested was the 100 abstracts sampled from the ACT corpus. @Note 

performed best in term of recall with a score of 0.92. However when looking at the 

precision, ODIN performed better with a score of 0.672. Taking into account the F-Score 

(measure that combines precision and recall indicators), ODIN obtains the higher score 

with a F-measure of 0.754 (Figure 5.2). 
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Figure 5.2: Result of the three tests performed (Recall, Precision and F-score) using the 
three text mining tools (ODIN, PPIInterFinder and @Note) against 100 abstracts randomly 

selected from the ACT corpus. 

The second corpus was a collection of abstract from PubMed, carefully selected using 

Mesh Terms. As in the previous test, @Note performed the best for the recall with a score 

of 0.915 but a lower score for precision. PPIInterFinder obtained the best precision score 

with a score of 0.667. However, ODIN with a F-measure of 0.679 obtains the best overall 

score (Figure 5.3). The F-measure is a balance between the recall and precision scores: it 

was chosen as the main indicator of performance for each tool. Having the highest F-

measure score, ODIN was identified as the best text-mining tool. 

In 2015, ODIN was run across all PubMed in the search for PPI. ODIN ranks the interactions 

it finds, using a scoring system to assess the likelihood of each interaction being a true PPI 

(Rinaldi et al. 2012). The calculated score is based on a machine learning process that can 

select interesting articles based on the previously classified articles (Rinaldi et al. 2012). 

Only interactions with a confidence score > 100 were kept for further analysis in order to 

select highly ranked interactions only (Rinaldi et al. 2012). 
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Figure 5.3: Result of the three tests performed (Recall, Precision and F-score) using the 
three text mining tools (ODIN, PPIInterFinder and @Note) against 100 abstracts selected 

from PubMed using MeshTerms. 

55..33..22 SSuummmmaarryy ooff tthhee ddiiffffeerreenntt PPPPII sseettss uusseedd

PPI Set Description
Number of 
gene pairs Number of genes

SET 1 PPI extracted from the literature by 
the text mining tool ODIN 21,525 4,001

SET 2A Screen PPI from the Human 
Interaction Project 15,254 4,480

SET 2B Literature PPI from the Human 
Interactome Project 10,183 5,295

SET 3 Synaptic PPI from the Intact 
Database 3,453 1,720

SET 4A Screen PPI from the String database 2,511,242 14,392

SET 4B Literature extracted PPI from the 
String database 5,744,559 16,137

Table 5.2: Description of the different PPI sets analysed: number of gene pairs and number 
of genes 

Table 5.2 details the number of gene pairs and the number of genes involved in each PPI 

set or subset. As outlined in section 5.2.4.1 and showed by Figure 5.1, each PPI set was 

analysed independently. Both SET 2 and SET 4 contain PPI from screening origin as well as 

PPI extracted from the literature for comparison purpose between two sources of PPI. The 
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subset SET 2A was also analysed separately in order to assess interactions in a high quality 

PPI dataset. The same clumping parameters were used for each set. 

Table 5.3 describes the different samples with the number of genes in each set as well as 

the number of SNPs used for the interaction analysis. 

PPI Set Description Number 
of Genes

Number of SNPs 
prior to 
Clumping

Number of SNPs 
after Clumping
(p1=0.01)

SET 1 PPI extracted from the literature by 
the text mining tool ODIN

4,001 398,134 865

SET 2

PPI from the Human Interaction 
Project
Subset A: Screen interactions
Subset B: extracted from literature

7,879 775,445 1,583

SET 2A Screen PPI from the Human 
Interaction Project 4,480 357,087 830

SET 3 Synaptic PPI from the Intact 
Database 1,720 211,503 452

SET 4
PPI from the String database
Subset A: Screen interactions
Subset B: extracted from literature

16,192 1,570,015 2,849

Table 5.3: Description of the different PPI sets analysed: number of genes, number of SNPs 
before and after clumping. 

55..33..33 AAsssseessssmmeenntt ooff tthhee eennrriicchhmmeenntt ooff ssttaattiissttiiccaall iinntteerraaccttiioonnss wwiitthhiinn PPPPII sseettss

A Mann Whitney Wilcoxon rank test was used to compare the distribution of genetic 

interaction p-values for gene pairs linked by PPIs with the distribution of p-values for 

interactions within gene-pairs not linked by PPIs within the same set of genes. This test 

assessed if there was any enrichment of statistical interactions within gene pairs linked by 

PPIs.  

The results using the clumping parameter p1=0.01 (Figure 5.4) show that enrichment was 

only detected within the SET 3: the synaptic PPI from the Intact database: p=0.00031 

(Bonferroni threshold p=0.0071). 
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Figure 5.4: Ranking test for the enrichment of statistics interactions with low p-values 
performed on the different sets of PPI. The colour for each set corresponds to the ones in 
Figure 1.1. The black bar indicates the Bonferroni threshold (p=0.0071). Only SET 3 shows 

enrichment. 

In addition a chi-square test was used to see if an enrichment of interactions below the 

thresholds (p 0.05 and p 0.01) could be detected (Figure 5.5). When looking at 

interactions with p-values under the 0.05 threshold, only the synaptic PPI set (SET 3) shows 

an enrichment (p=0.0011, Figure 1.5A). However when performing the same test using a 

different threshold (p 0.01, Figure 1.5B) no enrichment is detected in any SET of PPI. 
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B

Figure 5.5: Chi-square test results for each set tested when selecting interactions with p-
values below 0.05 (A) and below 0.01(B). The colour for each set corresponds to the ones 

in Figure 1.1. The black bar indicates the Bonferroni threshold (p=0.0071). Only SET 3 
shows enrichment when looking at interactions with p-values below 0.05 (A).

Following the detection of enrichment of statistical interactions with low p-values within 

SET 3, further analysis were performed away. The number of SNPs used in the analysis (452 

SNPs) was quite small: the clumping parameters were altered in order to increase this 

number (p1=0.01 and p1=0.05, Table 5.4) and the same analysis was performed.  
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Number of SNPs in SET 3

Prior to clumping 211,503

After Clumping (p1=0.01) 452

After Clumping (p1=0.05) 1,439

After Clumping (p1=0.1) 2,435

Table 5.4: Number of SNPs in SET 3 prior to clumping and after clumping using three 
different parameters: p1=0.01, p1=0.05 and p1=0.1. 

Figure 5.6 shows the results of the Mann Whitney Wilcoxon rank test: the only enrichment 

detected remains the one observed initially. By increasing the number of SNPs in the 

analysis, no additional enrichment of interactions is detected in SET 3.

Figure 5.6: Ranking test for the enrichment of statistics interactions with low p-values 
performed on SET 3 using three different clumping parameters (p1=0.01, p1=0.05 and 

p1=0.1). . The black bar indicates the Bonferroni threshold (p=0.017). The same 
enrichment detected is the same as previously observed in Figure 5.4. No additional 

enrichment is observed by increasing the number of SNPs into the analysis. 
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55..44 DDiissccuussssiioonn

55..44..11 PPeerrssppeeccttiivvee oonn tthhee eexxttrraaccttiioonn ooff PPPPII bbyy tteexxtt--mmiinniinngg ttoooollss

Three different tools were compared to assess the feasibility of PPI extraction among a 

collection of abstracts. Three tools were selected for further comparison: ODIN 

PPIInterFinder and @Note. The F-score being a balance between the precision and the 

recall, it was the indicator of choice to compare the tool’s performance. Out of the three 

tools, ODIN was the one that performed the best, achieving a F-score of 0.754 and 0.679 

on the two corpora tested. In addition, ODIN was able to process the whole of PubMed, 

making it a superior candidate for this analysis. 

Despite those promising results, PPI detection from abstracts is not extremely precise and 

reliable: there are still place for improvement for PPI-extraction tools. Perfect PPI detection 

from text is not yet possible but current tools are likely to have an impact on simplifying 

the process of PPI article selection (Krallinger et al. 2011). One of the main challenges to 

be face by PPI-extraction tools is the recognition and extraction of novel interaction from 

text (Krallinger et al. 2011). Furthermore there is also an interest in being able to distinguish 

direct and non-direct interaction usually involving contact between more than two 

proteins (Krallinger et al. 2011). The current development of machine learning techniques 

such as graph kernel approaches (Airola et al. 2008) or support vector machines methods 

(Yang et al. 2010) should help to tackle those issues. Machine learning methods have the 

advantage of deriving information from their training dataset (Krallinger et al. 2011), 

making it interesting candidates for PPI-extraction tools. 

However with the rise of projects such as the Human Interactome Project (Rolland et al. 

2014) the potential interaction space is better covered by high throughput screens. As a 

result, in the future there may well be less need for tools that collect PPI information from 

small-scale studies.  
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55..44..22 PPeerrssppeeccttiivvee oonn PPPPII aanndd ssttaattiissttiiccaall iinntteerraaccttiioonnss

To investigate whether PPI could help to identify sets of genes enriched in significant 

statistical interactions, I selected PPI sets from four different sources. The first subset was 

generated from ODIN’s results: PPI extracted from abstracts of PubMed. Two subsets of 

PPI were drawn from The Human Interactome Project: one from comprehensive pairwise 

screens and the second from PPI supported by the literature. From the Intact database a 

third set was created that specifically contained synaptic PPI data. The final set was formed 

of PPI from the String database with two subsets: PPI supported by Y2H experiments and 

PPI extracted from the literature. 

Using a ranking test, I tested for an enrichment of significant SNPxSNP interactions within 

sets of genes linked to PPIs. The PPI set from the Intact database, containing the synaptic 

PPI was the only significant result that was detected. Using a chi-square test, this 

enrichment was further investigated in order to assess whether interactions with a p-

values below 0.05 and 0.01 were enriched in each set of PPI. In the first case, an enrichment 

was detected in the synaptic set of PPI (SET 3). However when examining interactions with 

p-values below 0.01, the effect disappear, probably due to the small number of 

interactions selected that results in a loss of power.   

Furthermore different clumping parameters were used on the synaptic PPI set in order to 

increase the number of variants used in the analysis. No enrichment was detected when 

performing the same analysis with a higher number of variants.  

The genes involved in this PPI set (SET 3, synaptic dataset from the Intact database) are 

brain-related genes linked with synaptic functionalities. As schizophrenia is a psychiatric 

disorder it is very likely that such genes would be relevant for the disease and hence be 

enriched with significant interactions.  
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However the analysis compared SNP-SNP interaction p-values for gene pairs linked by PPIs 

to gene pairs not linked by PPIs within the same set of synaptic genes. As a result the 

analysis controls for a general enrichment of significant interactions between synaptic 

genes. The result found here is a potentially interesting finding that would need to be 

followed-up in a larger sample. A bigger dataset composed of the ISC and CLOZUK datasets 

combined could have been used to that extend. The sample size issue would have been 

tackled but I choose not to use it: the number of common variants between the two 

datasets was low and I would have had to exclude many PPI pairs from my analysis. 

Imputing the ISC dataset might have solved that issue but it was not available at the time 

of the analysis. 

Furthermore many studies showed a link between schizophrenia and synaptic genes 

(Glessner et al. 2010; Fromer et al. 2014). For example the gene NRXN1 that encodes a 

membrane protein involved in the formation of synaptic contacts, has been found to 

increase the risk in schizophrenia (Kirov, Rujescu, et al. 2009). In addition schizophrenia 

was linked with de novo mutations in the ARC (activity-regulated cytoskeleton-associated 

protein) and NMRAM (N-methyl-D-aspartate receptor) complexes that are involved in 

synaptic functions (Kirov et al. 2012). These studies’ findings reinforce the interest in the 

main finding of this chapter: the link between PPI from a synaptic dataset with the 

interactions analysis on a schizophrenia dataset. 

55..44..33 SSuummmmaarryy ooff tthhee cchhaapptteerr

In this chapter, I investigated whether PPI could be used in order to detect significant 

interactions. After reviewing the literature, I compared three text-mining tools able to 

extract PPI from abstracts. The best tool was selected to identify a set of PPIs through 

analysis of PubMed abstracts. In addition, I also used other PPI sets from available 

databases and high throughput screens in order to assess whether significant SNPxSNP 
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interactions were enriched within those sets of PPI. Only the set of synaptic PPI from the 

Intact database presented an enrichment of significant interactions. This result is 

potentially interesting given that several studies showed a link between schizophrenia and 

synaptic genes (Fromer et al. 2014) and it needs to be follow-up in a larger sample. 
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Chapter 6 - Discussion 

66..11 SSuummmmaarryy aanndd iimmpplliiccaattiioonn ooff rreessuullttss

66..11..11 TTaakkiinngg iinnttoo aaccccoouunntt tthhee ppooppuullaattiioonn ssttrruuccttuurree iinn aann iinntteerraaccttiioonn aannaallyyssiiss

Regression-based methods are the most frequently used approach in an interaction 

analysis and show the effect of predictor variables on the disease. In a case-control 

analysis, this method consists of testing the interaction term only using a logistic regression 

model as described in Chapter 1. However, interaction analysis studies do not often 

account for population structure. In Chapter 3, I explored three different ways to account 

for population structure in an interaction analysis. The three models were tested on the 

same GWAS dataset where cases and controls belonged to 8 different sub-populations. 

This allowed the inclusion of the sub-population information as a covariate in the 

interaction analysis. When dealing with covariates, the most broadly used method consists 

of adding the covariates as extra terms into the equation. Following recommendations by 

Yzerbyt et al. (2004), the second method takes into account the possible effect between 

the covariates and each marker by adding interaction terms between covariates and 

markers into the equation. Indeed adding the extra interaction terms between covariates 

and markers allows to control for the effect those covariates could have on the main effect 

(Yzerbyt et al. 2004; Keller 2014). Finally in the last tested model, interactions were 

calculated independently for each sub-populations and a meta-analysis was used to 

combine the results. The methods produced similar results overall, indicated by a good 

correlation between them. The first two methods were found to have extremely similar 

result. Therefore while interactions between markers and covariates are possible, they do 

not seem to play a big role in practice and the bias mentioned by (Yzerbyt et al. 2004) is 

not observed in the analysed dataset. To definitely prove this hypothesis a large-scale 

simulation study is needed. It was interesting to assess the differences between these two 
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methods and the one using the meta-analysis. The produced results of the meta-analytic 

method were slightly more divergent from the other two methods but there was no 

evidence for any systematic differences. Such differences are likely due to increased 

variance for each individual study when analysing studies separately and results in a loss of 

power. 

In terms of running time and memory efficiency of the different methods, the meta-

analytic approach outperformed the other two, making it the easiest and fastest method 

to carry out interaction analyses for thousands of SNPs. 

Further comparisons between the three methods focused on the lower tails of the p-value 

distributions. The method adding covariates and the one suggested by (Yzerbyt et al. 2004) 

that adds covariates and the interaction terms between covariates and each marker 

showed good correlation. However, when comparing those two methods with the meta-

analytic approach some differences were observed. In some cases the meta-analytic 

method was able to identify interactions with reasonably low p-values while the other two 

methods were not. The opposite was also observed. Upon investigation of the direction of 

effect, the meta-analytic approach differs most from the other methods when the 

direction of effect is identical in only four or five out of 8 studies. In addition it is possible 

that the meta-analytic approach over-estimate the results, which could explain the 

differences observed. Indeed this method does not include the main effects: only the 

interaction terms are meta-analysed possibly resulting in the interaction term capturing 

some of the main SNP effects. Further investigation of this issue should include the 

application of a multivariate meta-analysis such as the one described in Van Houwelingen 

et al. (2002), to see if it improves the results. Finally it is also possible that a loss of power 

of detection is observed in the other two methods. By adding extra terms in the model the 

number of degree of freedom is increased and can cost precision in the estimation of 

parameters. 
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66..11..22 IIddeennttiiffyyiinngg sseettss ooff ggeenneess eennrriicchheess ffoorr SSNNPPss--SSNNPPss iinntteerraaccttiioonnss

66..11..22..11 AApppprrooaacchh bbaasseedd oonn ggeenneettiicc iinnffoorrmmaattiioonn

In Chapter 4 I aimed to determine whether genetic information could be used to identify 

set of genes enriched for disease-relevant statistical interactions. In order to investigate 

this, I assessed interactions in two independent and non-overlapping GWAS datasets. The 

first analysis was an independent one where the SNPs were specific to each dataset. The 

second analysis was performed after selecting the SNPs common to both datasets. LD 

clumping was performed in each dataset to reduce the number of variants in the analysis 

in order to avoid collinearity problems and diminish the multiple testing burden. All pair-

wise SNP interactions were then calculated.  

As expected, in every analysis, no interaction survived correction for multiple testing: the 

sample sizes were not large enough to detect individual statistical interactions. Interactions 

were ranked using gene-wide significance p-values. Spearman ranking correlation was 

calculated between the interactions p-values and the gene-wide significance. It showed a 

small positive relationship between the two in the independent analysis, meaning that 

there is slightly greater evidence for SNP interactions between genes more highly 

associated with schizophrenia. This was not observed for the common-SNPs analysis.  

I then investigated whether an enrichment for more significant interaction p-values was 

observed among the subset of genes that were most highly associated with schizophrenia 

when compared to genes that were least associated. 

When performing the independent comparison between the two datasets with variants 

specifically selected in each one, there was evidence for enrichment of more highly 

associated interactions amongst genes that are most highly associated with schizophrenia 

compared to interactions in the least associated genes. The observed effect was strongest 

for the CLOZUK dataset, which is the bigger dataset. In addition, the effect was the 

strongest when comparing the ranked distribution of SNP-SNP interactions p-values 



139 

between the 1% of SNP-SNP interactions involving genes most highly associated with the 

disease and the 1% of SNP-SNP interactions involving genes that are least associated with 

schizophrenia (i.e. after ranking interactions by gene main-effects). 

However, when performing the common SNP comparison, no evidence for an enrichment 

of associated interactions was observed. When ranking by the gene-wide significance of 

the PGC2 dataset, the same non-enrichment pattern was observed. 

Looking at correlation between gene-wide significance p-values ISC and CLOZUK are better 

correlated with PGC2 than with each other: this would explain why ranking CLOZUK SNP-

SNP interactions with PGC2 gene-wide p-values gives more similar results than ranking 

CLOZUK with ISC gene-wide significance (and vice versa). Also the best observed 

correlation between CLOZUK and PGC 2 (the two largest datasets R~0.3) was not high: this 

indicates that the gene-wide significances are quite variable from one samples to another. 

As a result, the ranking per gene-wide significance might not be extremely stable. 

On further investigating interactions with a p-value <0.01 in the independent analysis, it 

was found that several SNPs acted as hubs in the network formed by genetic interactions 

between high ranked genes. Potential statistical artefacts were explored (relationship 

between gene degree and length of gene and between gene degree and number of SNPs). 

Similar effect is observed when comparing gene degree and number of SNPs per genes. 

When comparing gene degree and gene length, good correlation was found between the 

two variables for the network involving the lowest ranked genes (network without the hub 

pattern). One explanation for this observation could be linked to the largest size of brain 

genes: as it is possible that brain genes are highly associated with schizophrenia it is unlikely 

that there are found into the lowest ranking genes network. As a result, smaller genes are 

probably involved in the lowest ranking genes network thus creating a bias.  

Several factors could further explain the observed differences between the two datasets. 

Cases in the CLOZUK dataset were treatment-resistant which was not true for the ISC 
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dataset where we would only expect roughly one third to be treatment resistant. This could 

lead to have slightly different genes associated with each phenotype and perhaps the 

interactions picked up could be specific to treatment-resistance. Furthermore the 

population of the two datasets is different: British population in the CLOZUK dataset and a 

mix of 8 different populations (British, Swedish and Bulgarian) in the ISC dataset. As a 

result, if interactions are enriched between the most associated genes and if a different 

set of genes is driving the association signal in each sample (due to phenotypic differences 

or variability of the population between the two datasets), interactions seen in one dataset 

might not be seen in the other. In addition, the presence of noise due to the small sample 

size could also explain the failure to identify enrichment within schizophrenia associated 

genes. Different genotyping chips were used in the two studies and the CLOZUK dataset 

uses more recent chips. Perhaps the chip quality influences the detection of true effects 

and having to correct for multiple chips, the power of detection is lowered. 

The results of the cross-disorder analysis within the independent comparison did not 

provide evidence that the observed effect was driven by confound inherent in GWAS data 

but unrelated to disease. Furthermore it is interesting to note that interactions within 

bipolar disorder genes are enriched for significant interactions using the ISC dataset. 

However this did not replicated in the CLOZUK dataset. 

The final step of this chapter was the investigation of interactions with a p-value below 

0.01. This consisted of a preliminary analysis of the biological functions shared among such 

interactions after selecting terms with p<0.05 which shows a small degree of enrichment. 

Some GO terms were shared between CLOZUK and ISC for the common-SNP analysis. 

However none of the terms identified passed multiple correction testing. 

It will need further work in order to see if biological process could help to identify groups 

of genes between which an enrichment of significant interactions is observed.  
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66..11..22..22 AApppprrooaacchh bbaasseedd oonn tthhee uussee ooff pprrootteeiinn--pprrootteeiinn iinntteerraaccttiioonnss aass ffuunnccttiioonnaall iinnffoorrmmaattiioonn

The aim of Chapter 5 was to investigate if protein-protein interactions could be used to 

identify sets of genes between which there is an enrichment of significant statistical 

interactions. 

Efforts have been made in order to create exhaustive protein-protein interactions 

databases. However such databases present some limits. Curating interactions form the 

many small-scale studies to be found in the literature is difficult as it is time consuming: as 

a result many interactions data present in the literature do not appear in databases. The 

quality of data is variable and working out what is of good or bad quality can became an 

enormous task. In addition databases overlap each other and the overlap shows difference 

in annotations due to the difference of interpretation by biologists (Mathivanan et al. 

2006). 

Thorough and comprehensive screens of PPI have emerged such as the Human 

Interactome Project. These resources are very valuable as they contain good quality PPI 

however it is also dependent on the coverage of the search space: the sets of proteins 

between which PPIs have been evaluated. In addition, the literature contains newly 

discovered PPI found in small studies and its number is also increasing. There is an interest 

in developing methods that will allow PPI information to be extracted from scientific 

published articles. 

In Chapter 5, I tested three text-mining tools capable of extracting PPI from abstracts. 

Following a comparison of their performances using standard indicators (precision, recall 

and F-measure) I was able to obtain a set of PPI extracted from PubMed using the best 

tool: Odin. 

I also selected PPI sets from four other sources. The Human Interactome Project data was 

classified into two subsets of PPI: one from comprehensive pairwise screens and the 



142 

second from PPI extracted from abstracts. A third set was formed by the synaptic set of PPI 

from the Intact database. The last set was comprised of PPI from the String database, which 

contains PPI backed up by Y2H experiments and PPI extracted from the literature. Using 

each set of PPI, I tested whether significant SNP-SNP interactions were enriched within 

such sets of PPI by using a ranking test. Only the set of PPI from the Intact database, 

containing synaptic PPI presented an enrichment of interactions with low p-values. 

However when including more SNPs into the analysis (by using different clumping 

parameters), this effect disappeared. Also the positive result does not necessary imply that 

it is specifically physically-interacting brain genes that are enriched for evidence of 

interactions, as opposed to brain-expressed genes in general. Indeed schizophrenia is a 

brain disorder so significant results could be explained by the selection of brain-related 

genes for the analysis: the genes are more likely to be relevant for the disease so perhaps 

they are also more likely to be enriched with significant interactions (in line with the 

evidence from previous chapters). This hypothesis could be tested by comparing PPI pairs 

form the Intact database with randomly selected pairs of genes known to be involved with 

brain functions. In addition using a bigger dataset is needed in order to fully investigate if 

the effect observed is real. A bigger dataset composed of the ISC and the CLOZUK datasets 

combined could have been used to that extent.  

66..22 SSttrreennggtthhss aanndd lliimmiittaattiioonnss

66..22..11 SSttrreennggtthhss

In this thesis I assessed statistical interactions within two independent GWAS datasets. The 

independent analysis in both datasets showed an enrichment of significant interactions 

between genes most highly associated with schizophrenia when comparing to interactions 

between least-associated genes. This provides consistent evidence that interactions could 

contribute to schizophrenia. 
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In addition, the methodology comparison of the three models gave a better insight for 

interactions analysis when dealing with covariates. This work could be useful for future 

analysis using the recommendation made here. 

I also performed a thorough analysis on the use of PPI data in order to identify sets of genes 

between which an enrichment of statistical interactions can be observed. Despite the 

various origin of the PPI set used (from comprehensive screens, databases or PPI extracted 

from the literature) no enrichment was detected except in the synaptic set of PPI. 

Considering many studies have showed a link between schizophrenia and synaptic genes 

(Glessner et al. 2010; Fromer et al. 2014; Kirov, Rujescu, et al. 2009; Kirov et al. 2012) this 

is a potentially interesting finding that needs  to be follow-up in a bigger sample.  

66..22..22 GGeenneerraall lliimmiittaattiioonnss

One of the major limitations in an interaction analysis is the lack of power to detect 

statistically significant interactions. Indeed individual interactions contributing to disease 

risk are likely to have modest effect sizes due to the sample size used (Manolio et al. 2009). 

Furthermore the high number of tests performed adds a supplementary challenge with 

regards to Bonferroni multiple testing correction. As the number of interactions tested is 

high, the threshold is highly conservative and result in a loss of power. Perhaps an 

appropriate genome-wide significance threshold should be used for pairwise interactions 

(Musani et al. 2007) such as the one used for the detection of variants in GWAS (p=5e-8). 

On the other side, the power of detection could greatly be improved by using bigger sample 

sizes. 

In this study the chosen SNPs for every interaction analysis were within autosomal genes 

as the main interest was the focus on gene-gene interactions. In addition LD clumping was 

use to restrict the number of SNPs in the analysis: analysing all pair-wise interactions 

without restricting the number of variants is computationally difficult. However it is 

important to be aware that some information may be missed by the use of stringent 
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thresholds. Given the lack of computational power to fully explore the search space of SNP-

SNP interactions, there is a need for a trade-off between computational capacities and 

having sufficient number of markers for the analysis. 

Regarding the different PPI sets used in Chapter 5, there are also some limitations. PPI 

available in database such as String or Intact needs to be better evaluated. In addition, 

while thorough screens contain better quality PPI data, the search space is not completely 

mapped, which can introduce bias in the analysis. For example, the data from the Human 

Interactome Project used here covers only 42% of the search space. With the efforts 

towards the search of the whole proteome, better data will be available and allow us to 

perhaps detect some effects. In addition, the investigation was only performed on the 

CLOZUK dataset and needs to be follow-up on a bigger sample. Imputing the ISC dataset, 

and combining it with the CLOZUK dataset could have resolved that issue but imputing data 

were not available at the time of the analysis.  

66..22..33 MMeetthhooddoollooggyy ccoonnssiiddeerraattiioonnss

In Chapter 3, I compared three different methods to take into account covariates in an 

interaction analysis. The meta-analytic method was used in Chapter 4 and 5 to perform the 

interaction analysis. This method could be improved: only interaction terms were meta-

analysed and perhaps taking into account the direction of the main effect could help to 

improve the accuracy of the method.  

It was argued in Chapter 3 that including covariates in a logistic regression model could 

result in a loss of power of detection when the disease prevalence is low (Pirinen et al. 

2012). As the method used to calculate interactions is based on a logistic regression model, 

perhaps by adjusting for covariates the power of detection is lowered. However if the 

covariates are well known confounds (as it is the case in this thesis), it Is necessary to 

control for their effects and thus to accept the loss of power.  
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In the method used to calculate interactions in this thesis, a logistic function was used as a 

link function to model the relationship between the phenotype and the predictors. This 

choice has important implications: it could be argued that no statistical interaction 

between genes is epistatic (Clayton 2012). However an inappropriate choice of scale could 

result in weakened interaction effects impossible to detect (Frånberg et al. 2015). To 

investigate this, different link functions could be use on the same datasets (Frånberg et al. 

2015; Knol and VanderWeele 2012). 

66..33 FFuuttuurree wwoorrkk

Regarding the method comparison in Chapter 3, further investigation could be done to 

develop the potential of the meta-analytic approach. For example, the approach used in 

this study meta-analysed the interaction terms only. It would be interesting to see if the 

accuracy of the method can be improved by taking into account the main effects. 

The three methods could also be applied to a different dataset in order to see if the 

correlations between methods replicated. Due to lack of time and computational 

capacities, the three methods weren’t tested on the CLOZUK dataset, which could be used 

for this follow-up analysis. 

In Chapter 4, I presented preliminary results of the analysis of interactions with a low p-

value to assess if biological processes were shared among them. However this analysis 

stays purely descriptive and a thorough investigation needs to be performed in order to 

evaluate if it is possible to identify groups of genes between which an enrichment of 

significant interactions is observed. In addition, DAVID (Sherman et al. 2007) does not take 

into account the gene size or the number of semi-independent SNPs into account. Further 

work could include an enrichment test that accounts for those differences. 

The main issue in current gene-gene interaction studies is the lack of sample size in order 

to detect significant interactions. It would be interesting to use a simulation study under a 
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range of plausible disease models in order to better estimate what sample size would be 

needed to detect interactions in schizophrenia. 

Replication is another major challenge in interaction analysis. It would be interesting to use 

two similar datasets (in term of population and phenotype) and to reproduce the analysis 

presented in Chapter 4. Using similar but larger datasets would allow better control over 

the genetic variability and would perhaps help with the replication of the results. 

The thesis is focused on two-way gene-gene interactions but three-way interactions could 

also be investigated.  

Furthermore and despite obvious computational issues, it would also be of interest to look 

at interactions outside genes: other functional regions of the genome could also play a 

role. Studies have shown that changes in regulatory regions (such as promoters or 

enhancers regions) influence the expression pattern of genes. For short-range interactions, 

extending the gene boundaries would allow to capture interactions between short-range 

enhancers and their genes. However long-range interactions present another challenge 

due to the looping property of the DNA. 

In addition, genes represent only a small portion of the genome and it would be interesting 

to further investigate the non-coding part of the DNA. As expected, computational issues 

would rise as the number of variants to include in such analysis would increase drastically. 

There is a need to prioritize the number of SNPs in the analysis, perhaps using information 

regarding the 3D structure of the DNA. 

The recent development of genome wide chromosome conformation capture (Hi-C) has 

permitted the study of chromatin interactions within the nucleus. The resulting interaction 

maps contain information on loop within the structure of the DNA and possible contacts 

points between enhancers and promoters. This information could perhaps help to narrow 

down the number of variants to test in an interaction analysis. Furthermore, the resulting 

interaction maps show that genomes can be divided into large local chromatin domains 
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termed Topologically Associated Domains (TADs) (Dixon et al. 2012). Within TADs, the 

genome appears to be organized to favour strong internal chromatin interactions rather 

than external interactions with neighbouring TADs. It has also been suggested that TADs 

might help to delineate basic genomic functions such as gene regulation. Further work 

could assess whether significant statistical interactions are enriched within TADs. 

66..44 CCoonncclluussiioonn

To conclude, in the first part of this thesis, I analysed different methods to account for 

population structure in an interaction analysis. 

In the second and third part I investigated two different approaches in order to identify 

sets of genes between which an enrichment of significant interactions can be observed: 

one based on the genetic information and the second one based on functional information 

using protein-protein interactions. Using genetic information, the independent analysis of 

the two GWAS dataset suggested that gene-gene interactions might play a role in 

schizophrenia. In addition there might be some enrichment for interactions amongst genes 

most highly associated with schizophrenia. Further work using GWAS dataset with bigger 

sample size would be needed in order to improve the power to detect interactions. When 

investigating protein-protein interaction datasets the only evidence for enrichment of 

significant interactions was observed in the synaptic dataset. This potentially interesting 

finding needs to be further investigated.  
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