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ABSTRACT 

An improved swarm-based optimisation algorithm from the Bees Algorithm 

family for solving complex optimisation problems is proposed. Like other Bees 

Algorithms, the algorithm performs a form of exploitative local search combined 

with random exploratory global search. This thesis details the development and 

optimisation of this algorithm and demonstrates its robustness. 

The development includes a new method of tuning the Bees Algorithm called 

Meta Bees Algorithm and the functionality of the proposed method is compared 

to the standard Bees Algorithm and to a range of state-of-the-art optimisation 

algorithms. 

A new fitness evaluation method has been developed to enable the Bees 

Algorithm to solve a stochastic optimisation problem. The new modified Bees 

Algorithm was tested on the optimisation of parameter values for the Ant 

Colony Optimisation algorithm when solving Travelling Salesman Problems. 

Finally, the Bees Algorithm has been adapted and employed to solve complex 

combinatorial problems. The algorithm has been combined with two 

neighbourhood operators to solve such problems. The performance of the 

proposed Bees Algorithm has been tested on a number of travelling salesman 

problems, including two problems on printed circuit board assembly machine 

sequencing. 
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CHAPTER 1 

INTRODUCTION 
1.1 PROBLEM STATEMENT 

The challenges faced by industry today to increase efficiency, especially in 

relation to the use of expensive resources within tighter time constraints, 

have posed difficult issues for engineers. These challenges have been met 

with new approaches to processing embodied in new optimisation 

techniques as traditional optimisation techniques are no longer adequate.  

New intelligent optimisation algorithms have emerged in the field of 

artificial intelligence, many of them inspired by nature. One such algorithm 

is the Bees Algorithm which mimics the foraging behaviour of honeybees. 

The Bees Algorithm has been initially applied to a range of continuous 

problems only. Also, it has not yet been tested for dynamic problems. 

Finally, it has a large number of parameters that need to be tuned to produce 

good results. However, the tuning normally has to be carried out manually, 

which can be a laborious process. 
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The main motivations for the research presented in this thesis were: 

1. To improve the Bees Algorithm, enabling it to address the above-

mentioned issues. The improvement includes a new method of 

automatically tuning the Bees Algorithm called the Meta Bees Algorithm. 

2. To demonstrate the robustness and efficiency of the new algorithm 

in comparison to existing algorithms. 

3. To ascertain the applicability of the algorithm to challenging 

optimisation problems by implementing it for a Travelling Salesman 

Problem, a Printed Circuit Board problem and a stochastic optimisation 

problem.  
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1.2 RESEARCH AIM AND OBJECTIVES 

The overall aim of this work was to prove the hypothesis that the new Bees 

Algorithm is able to solve complex optimisation problems faster than other 

optimisation techniques. 

The following objectives were set to achieve this aim: 

1. Survey current swarm-based optimisation algorithms, including the 

Bees Algorithm. 

2. Develop a new method of evaluating the fitness function of the Bees 

Algorithm to accommodate non-deterministic types of problems. 

3. Implement new local search operators into the neighbourhood search 

process with the aim of reducing the number of parameters needed to 

run the Bees Algorithm. 

4. Apply the proposed optimisation tools to different categories of 

continuous and combinatorial optimisation problems. 

5. Validate the different versions of the proposed algorithm by 

applying them to different benchmark optimisation problems and 

compare the results obtained with those of other optimisation 

methods. 
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To achieve the above objectives, the following methodology was adopted: 

• Review of previous work: an extensive survey was performed of the state 

of the art in swarm-based optimisation techniques, focusing on bees-

inspired algorithms, to identify research trends and potential solutions. 

• Algorithm development and evaluation: the standard Bees Algorithm was 

extended by adding a new evaluation method for the fitness function of both 

local and global search parts of the Bees Algorithm. The performance of the 

new version of the algorithm was assessed by running it on a number of 

benchmark problems. The results obtained were compared with those of 

other optimisation techniques to test the effectiveness of the proposed 

method. 
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1.3 THESIS ORGANISATION 

The remainder of the thesis is organised as follows: Chapter 2 reviews the 

background literature on swarm-based optimisation algorithms relevant to 

the work presented in the thesis. This covers material on the Evolutionary 

Algorithms (EA), the Genetic Algorithms (GAs), Ant Colony Optimisation 

(ACO), Particle Swarm Optimisation (PSO) and bees-inspired algorithms 

including the Bees Algorithm itself. A number of recent papers concerning 

the optimisation of the Bees Algorithm are also discussed. 

Chapter 3 describes a study of the main characteristics of the standard Bees 

Algorithm. This is undertaken through an exploration of the parameters of 

the algorithm in order to help understand the methods by which its 

performance is improved, such as avoiding premature convergence. The 

study reveals the implementation of a new method of tuning the Bees 

Algorithm called Meta Bees Algorithm (a Bees Algorithm within a Bees 

Algorithm). The results of this study were tested with five benchmark 

problems and compared with those obtained by other optimisation 

algorithms. 

Chapter 4 describes the use of the Bees Algorithm to solve a stochastic 

optimisation problem using statistical analysis. The algorithm employed to 

carry out this task was designed with a new fitness evaluation method based 

on computing the average fitness value for each bee over a number of trials 
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rather than computing the value of a single trial. The method enabled the 

algorithm to be applied to those situations where the fitness value changes 

even when the location visited by a bee remains the same. To test the 

algorithm, the parameter value optimisation of a metaheuristic method is 

employed. This test took the shape of parameter setting for the Ant Colony 

Optimisation algorithm which is employed to solve a Travelling Salesman 

Problem (TSP). 

Chapter 5 studies the applications of the Bees Algorithm to combinatorial 

problems. The development of the Bees Algorithm for the TSP serves as an 

illustrative example for such applications and provides a platform to 

demonstrate the characteristics of the proposed algorithm. The chapter also 

discusses those features of the Bees Algorithm employed in solving more 

complex combinatorial optimisation problems and their application to 

facilitate the optimisation of a solution to two problems associated with a 

Printed Circuit Board (PCB) assembly line, namely, component sequencing 

and feeder arrangement. 

Chapter 6 summarises the main contributions of this work and the 

conclusions reached and provides suggestions for future work. 
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CHAPTER 2 

OPTIMISATION ALGORITHMS AND THEIR 

APPLICATIONS 

This chapter introduces optimisation techniques and algorithms and some 

terms and definitions employed in optimisation. It briefly reviews the state 

of the art optimisation algorithms employed in this work for comparison 

with the Bees Algorithm. The chapter emphasises two main algorithms, 

namely those inspired by ants and honeybees. How they function both in 

nature and in engineering practice is looked at. The application of these two 

algorithms to different types of problems is also considered.  

2.1 OPTIMISATION 

Optimisation seeks to find the “best” solution to a problem and it also 

studies algorithms or methods applied to solve that problem.  

2.2 OPTIMISATION PROBLEMS 

Each optimisation problem consists of four essential components: an 

objective function or fitness function to be optimised, a set of variables that 

need to be calculated to find the value of the objective function(s), a set of 

constraints that determine the allowed values of the variables, and the search 

space that encompass all possible solutions to a problem. With regards to 

these four components: 



  

 26 

 

1. The degree of nonlinearity of the objective function determines whether 

the problem solved is a linear or nonlinear problem. In addition, if the 

criteria of the optimisation problem can be expressed in one objective 

function it is called a single-objective problem, otherwise, in a multi-

objective problem a number of objective functions are needed. 

2. The type of variables employed divide problems into either continuous 

problems, or discrete and combinatorial problems must be considered. In 

continuous problems the variables employed in the objective function are 

real values, whereas in discrete and combinatorial problems they are 

restricted to assume only discrete values. 

3. If the problem has no constraints or conditions that satisfy it, it is called 

an unconstrained problem, otherwise it is called a constrained problem 

where it contains one or more constraints that must be satisfied. 

4. The search space determines if the problem is a static/deterministic 

problem which does not change over time, or if it is a dynamic/stochastic 

problem where the search space changes over time (Blackwell and Branke, 

2004). 

2.3 OPTIMISATION ALGORITHMS 

The theory and applications of optimisation algorithms have recently been 

developed rapidly in the field of artificial intelligence and the following 
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provides a brief description of the various elements of these algorithms 

(Eberhart et al., 2001). 

1. On the types of searches applied to solve the optimisation problem there 

are two possibilities: Single Point Search (Trajectory) (SPS) which is also 

known as a Direct Search (DS), and Population-Based Search (PBS) which 

is also known as a Swarm Based Search (SBS). With SPS the algorithm 

generates a single solution. Whereas with PBS, a strategy is employed that 

generates variations of the tuning parameters. Most search methods use a 

greedy criterion to make this decision, which accepts the new parameter if 

and only if it reduces the value of the objective or cost function. 

2. On the number of solutions generated, there are two possibilities: a 

Single Optimum Solution (Single Objective) and a Multi Objective 

Optimisation/Multiple Optimal Solution.  

3. On the search space of candidate solutions algorithms have employed 

two methods: Exploration (Diversification) also known as a Global Search 

and Exploitation (Intensification) also known as a Local Search. Local 

Search algorithms exploit neighbourhoods while Global Search algorithms 

explore the entire search space.  

4. On the accuracy of generated solutions (Time/accuracy), three outcomes 

are possible (Laporte, 1992): 
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o Exact algorithms are methods which utilise mathematical models and try 

to find an optimal solution if it is allowed to complete their execution and 

they try to prove that the solution obtained is actually an optimal one.  

Unfortunately these types of techniques are time consuming. Some 

instances in the exact methods category are Branch and Bound (Wiener 

2003) and Integer Linear Programming (Rego and Glover, 2002). 

o Approximate/Heuristic Solution: This provides high quality solutions in 

short computation time but the algorithm does not guarantee finding an 

optimal solution and may fall in local optima missing the true optimum 

solution. Approximation algorithms make use of certain heuristics and 

iterative improvements to the problem solving process. The approximation 

algorithms can be further divided into two groups: constructive heuristics 

and improvement heuristics. Instances in constructive heuristics include 

Nearest Neighbourhood, Greedy Heuristics and Insertion Heuristics 

(Rosenkrantz et al., 1977).  

o Metaheuristic algorithms: These are general-purpose techniques for 

guiding and modifying problem-specific constrictions or local search 

heuristics. They consist of concepts that can be employed to define heuristic 

methods and they can be applied to different optimisation problems with 

relatively few modifications. They can produce solutions beyond those that 

are normally generated in a search for local optimality. Procedures based on 



  

 29 

 

evolutionary approaches, Tabu Search, Simulated Annealing, and Multistart 

strategies fall into this category. Hybrid procedures based on metaheuristic 

frameworks are also considered as metaheuristic algorithms (Glover and 

Kochenberger, 2003). 

5. In the way the algorithm builds a solution, there are two methods: 

o The first is known as constructive, where the algorithm generates 

solutions from scratch by adding solution components systematically (step 

by step). They are speedy and return reasonably good solutions but not 

always guaranteed. An example of this algorithm is the Greedy Constriction 

Heuristic (GCH). 

o The second is known as Improvement (Local Search), where the 

algorithm improves the current solution by movements to neighbouring 

solutions. Iterative Improvement Algorithms (IIAs) use this method to find a 

better solution and replace the current one. However it may get stuck in a 

poor quality local optimum. An example of an IIAs is the Two (two paths) 

Optimal (2-Opt) algorithm (Okano et al., 1999) that will be described in 

detail in chapter five of this thesis. There are algorithms that employ both 

techniques, they initially use the constructive method then follow it up with 

the Improvement method such as the Ant Colony Optimisation (ACO). 

Instances in improvement heuristics include k-opt (Chandra et al., 1999), 
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Lin-Kernighan Heuristics (Aarts et al., 1988; Helsgaun, 2000), Simulated 

Annealing (Knox, 1994), Tabu Search (Freisleben and Merz, 1996), 

Evolutionary Algorithms (Merz and Freisleben, 1997; White and Yen, 

2004), the Ant Colony System (Stützle and Hoos, 1997) and the Bee System  

(Lucic and Teodorovic, 2003; Sato and Hagiwara, 1997). 

6. In the method used to improve solutions, algorithms have employed two 

techniques:  

o Deterministic and Stochastic: with the first approach, random elements 

are not employed whereas with the second approach random elements are 

employed such as the pheromone value used in the Ant Colony 

Optimisation (ACO). This approach will be explained later in the chapter 

discussing ACO. 

7. Algorithms can also be classed according to where they draw their 

inspiration from. Of the most recent are a group of algorithms which get 

inspiration from natural systems such as social, ecological, biological, 

physical and chemical systems. Two examples of nature-inspired algorithms 

are Artificial Intelligence (AI) and Swarm Intelligence (SI) (Bonabeau et al., 

1999).  

8. Search History: Memory-less algorithms use the current state of the 

search process to determine the next action. Other algorithms incorporate a 
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memory of the past history of the search such as recently performed steps 

and the generated solutions. 

9. Encoding solutions: Algorithms, like the Bees Algorithm, encode 

solutions with real-value variables when solving continuous problems, while 

the same algorithm encodes solutions with discrete variables when solving 

discrete or combinatorial problems. 

After this introduction to essential definitions and terms in the field of 

optimisation for both algorithms and problems, a review of current 

metaheuristic algorithms is presented. 

2.3.1 Neural Networks (NNs) 

In the field of Artificial Intelligence (AI), Artificial Neural Networks 

(ANNs) are composed of simple interconnecting elements called artificial 

neurons. These elements are inspired by biological nervous systems. As in 

nature, the network function is determined largely by the connections 

(weights) between elements and thus the neural network can be trained to 

perform a particular function by adjusting the values of these connections 

(Pham and Liu, 1995). 

The ANN in general consists of three layers; an input layer connected to a 

hidden layer, which is connected to an output layer. Each layer comprises of 
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a set of vectors. The weights on the connection between the input vectors 

and the hidden vectors determine the activity of each hidden layer. ANNs 

are trained by comparing the output and the target of the network until they 

are matched. 

Neural networks have been trained to perform complex functions in various 

fields of application including pattern recognition, identification, 

classification, speech, vision and control systems. 

There are many types and structures of ANNs such as Feed-forward neural 

networks (Kennedy and Eberhart, 1995; Pham and Sholedolu, 2008), 

Spiking Neural Networks (Pham and Sahran, 2006) and Learning Vector 

Quantisation (LVQ) (Pham et al., 2006a).  

Learning Vector Quantisation (LVQ) 

The LVQ neural network was developed by Kohonen (Kohonen, 1989) and 

has been successfully employed for many classification problems. Figure 

2.1 shows an LVQ network, which consists of three layers of neurons: an 

input layer (buffer), a hidden layer and an output layer. 

The network is fully connected between the input and hidden layers and 

partially connected between the hidden and output layers, with each output 

neuron linked to a different cluster of hidden neurons (also known as 
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Kohonen neurons). The weights of the connections between the hidden and 

output neurons are fixed at 1. The weights of the input to hidden neuron 

connections form the components of "reference" vectors, with one reference 

vector assigned to each hidden neuron. When an input vector is supplied to 

the network for recognition, the hidden neuron whose reference vector is 

closest in terms of Euclidean distance to the input vector is said to win the 

competition against all the other hidden neurons to have its output set to "1". 

All other hidden neurons are forced to produce a "0". The output neuron 

connected to the cluster of hidden neurons that contains the winning neuron 

also emits a "1" and all other output neurons, a "0". The output neuron that 

produces a "1" gives the class of the input vector, each output neuron being 

dedicated to a different class. 

The learning method is supervised (Jain and Dubes, 1988) and based on 

"competitive" learning, in which neurons compete to have their weights 

updated. During learning, the neurons in the hidden layer compete amongst 

themselves in order to find the winning neuron whose weight vector is most 

similar to the input vector (Kohonen, 1990). The winning neuron gives the 

class of the input vector. Only the winning neuron will modify its weights 

using a positive or negative reinforcement learning formula, depending on 

whether the class indicated by the winning neuron is correct or not. If the 

winning neuron belongs to the same class as the input vector (the 

classification is correct), it will be allowed to update its weights and move 
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slightly closer to the input vector (positive reinforcement). On the contrary, 

if the class of the winning neuron is different from the input vector class 

(the classification is not correct), it will be made to move slightly further 

from the input vector (negative reinforcement). 

 

 

 

 

 

 

 

 

 

Figure 2.1 Topology of an LVQ Network 
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LVQ Network Training Procedure 

The training of an LVQ network can be regarded as the minimisation of an 

error function. The error function defines the total difference between the 

actual output and the desired output of the network over a set of training 

patterns (Pham and Oztemel, 1992). Training proceeds by presenting to the 

network a pattern of known class taken randomly from the training set. If 

the class of the pattern is correctly identified by the network, the error 

component associated with that pattern is null. If the pattern is incorrectly 

identified, the error component is set to 1. 

The procedure is repeated for all the patterns in the training set and the error 

components for all the patterns are summed to yield the value of the error 

function for an LVQ network with a given set of reference vectors. 

2.3.2 Simulated Annealing (SA) 

Annealing is the process of heating up a material and then cooling slowly 

until it crystallises which allows the metal to achieve a better crystal 

structure which is more stable and hard-wearing. Heating up the atoms of 

this material increases their energies and these energies give these atoms a 

great deal of freedom in their ability to restructure themselves. As the 

temperature is reduced the energy of these atoms decreases. Ideally the 

temperature should be deceased at a slower rate. If this cooling process is 
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carried out too quickly many irregularities and defects will be seen in the 

crystal structure. A slower fall to the lower energy rates will allow a more 

consistent crystal structure to form. 

Simulated annealing was developed by Scott Kirkpatric in the mid 1970’s to 

simulate the actual process of annealing (Pham and Karaboga, 2000). 

Simulated annealing begins at a very high temperature where the input 

values are allowed to assume a great range of random values. As the 

training progresses the temperature is allowed to fall. This restricts the 

degree to which the inputs are allowed to vary. This often leads the 

simulated annealing algorithm to a better solution. 

2.3.3 Tabu Search 

Tabu Search (TS) is a metaheuristic algorithm that uses a local or 

neighborhood search procedure to iteratively move from a solution x(i) to a 

solution x(i+1) in the neighborhood of x(i). TS explores new areas of the 

search space by modifying the neighborhood structure of each solution as 

the search progresses until some stopping criterion has been satisfied. It uses 

a short-term memory structures to determine the new solutions. A Tabu list 

contains the solutions that have been visited in the recent n number of 

previous solutions. These solutions will be excluded in the search unless one 

of these solutions is better than the recently-discovered best solution (Pham 
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and Karaboga, 2000). The TS can be employed for solving combinatorial 

optimisation problems, such as the travelling salesman problem (TSP). 

2.3.4 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are stochastic search algorithms that are 

inspired by the metaphor of natural Darwinian biological evolution. Natural 

selection and adaptation in Darwinian evolution are the key sources of 

inspiration, driving the EAs candidate solutions towards the optimum by 

‘survival of the fittest’. An EA consists of a population of individuals each 

having a fitness value, and a genome encoding the main features of the 

candidate solution to the given problem. The methods employed in EAs 

have been described by several researchers (Michalewicz, 1996 and 

Goldberg, 1989). General to all EAs is also a selection pressure mechanism 

that removes poor individuals from the population, thus allowing better 

individuals to monopolise the evolutionary process. EAs also modify the 

individuals to refine the population of candidate solutions.  

Four different implementations of the EAs led to the following four 

techniques. The following describes the different EAs. 

2.3.4.1 Evolutionary Strategies 

In the 1960s, Rechenberg and his colleagues were the first to apply the 

principle of Darwinian evolution to the study and design of engineering 
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systems and modern technology (Rechenberg, 1965). Standard Evolutionary 

Strategies (ES) use a population of individuals then apply mutation, 

recombination, and selection operators in order to evolve (evaluation the 

evolution) iteratively better and better solutions (Baeck et al., 1991). 

2.3.4.2 Evolutionary Programming 

Evolutionary Programming (EP) (Fogel et al., 1966) traditionally employed 

a representation tree to develop automata recognising strings in formal 

languages. However, it was only ten years later that EPs gained worldwide 

popularity following the creation of Genetic Algorithms (GAs) by Holland 

(1975). 

2.3.4.3 Genetic Algorithms 

Genetic Algorithms (GAs) are in many ways very similar to Evolution 

Strategies (ESs). However, the original applications for which GAs and ESs 

were developed are different. While ESs were applied first to continuous 

parameter optimisation problems associated with laboratory experiments, 

GAs were designed to solve discrete or integer optimisation problems. 

In its basic structure, a GA utilises three separate operations for generating a 

new solution. These operations are population selection, recombination and 

mutation. Candidate solutions in the traditional GA are encoded in binary 

bit strings (`chromosomes') for integer and decision variables (Goldberg, 

1989). While continuous control variables are approximated and rescaled by 
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equivalent integer variables. A GA initially selects its population randomly 

then it applies the principle of `survival of the fittest'. A GA attempts to 

construct new improved solutions by combining the features of good 

existing ones in a procedure called crossover. To maintain diversity within 

the population, a GA runs a mutation operator that changes the bit value, in 

the case of a binary coding, from 0 to 1 and vice versa. A GA evaluates the 

function(s) of the problem as a fitness value for each member of each 

population to assess that particular population. Mutation rate and crossover 

rate are two essential parameters required to be tuned carefully. 

2.3.5 Particle Swarm Optimisation 

The natural flocking and swarming behaviour of birds studied by Craig 

Reynolds in the late 80s inspired Russel Ebenhart and James Kennedy to 

introduce the PSO algorithm as a recognised and suitable technique 

(Kennedy and Eberhart, 1995).  

PSO consists of a number of individuals referred to as particles. Each 

particle in a PSO has a position and a velocity. These particles are attracted 

to positions in the search space that have high fitness. Each particle has a 

memory function that remembers two pieces of information, the first piece 

of information results from the memory of the particle of its past states as 

the best-so-far position that it has visited, called the local best, and the 

second piece of information results from the collective experience of all 
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particles as the global best position attained by the whole swarm, called the 

global best. Both the local best position of each particle and the global best 

position of the entire swarm guide the movements of all particles towards 

new improved positions and eventuality to find the global minima/maxima. 

PSO has been applied to many problems such as the training of Feed-

forward neural networks (Pham and Sholedolu, 2008) and Clustering 

(Omran et at., 2005). 

2.3.6 Ant Colony Optimisation (ACO) 

ACO is one of the most successful metaheuristic algorithms inspired by the 

foraging behaviour of real ant colonies and was proposed by Dorigo and 

colleagues for the solution of combinatorial optimisation problems (Dorigo 

et al., 1996). The collective trail laying and trail following behaviour of ants 

enable them to find the shortest path from the food source to their nest.  

2.3.6.1 Foraging Behaviour in Ants 

Ants start their journey for food from their nest by exploring the 

surrounding area randomly. When food is found, some of it will be carried 

back to the nest by the ants which will also lay a chemical substance called 

pheromone on the ground while walking back. The amount of pheromone 

trails laid by ants recruits more ants to choose the same path to the food 

source and guides others to the nest. When an ant deposits pheromone on a 
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path that is not one of the shortest, the pheromone will evaporate. As time 

passes the path will not be followed by other ants and this mechanism is 

called negative feedback. The more ants that follow a certain path, the more 

pheromone will be deposited and this reinforces the quality of this path. 

This mechanism is called positive feedback. Hence the ants find the shortest 

paths between the nest and food sources (Dorigo and Stützle, 2004; 

Deneubourg et al., 1990). 

2.3.6.2 Ant Colony Optimisation Algorithms 

The Ant Colony Optimisation (ACO) algorithm is a constructive search 

algorithm based on the simultaneous exploration of different solutions by a 

colony of identical ants. All ant-based algorithms use the positive feedback 

mechanism represented in the trail-laying trail-following behaviour of real 

ants by reinforcing good solutions or parts of them. The negative feedback 

mechanism is implemented through pheromone evaporation to avoid 

premature convergence (Stagnation) and being trapped in local optima. 

Ant colony optimisation has been studied thoroughly and many algorithms 

have been developed such as the Ant System (AS), Max-Min Ant System 

(MMAS), Ant Colony System (ACS) and others (Engelbrecht, 2005). The 

major differences between these algorithms are:  

 The way the pheromone update is performed 
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 The management of the pheromone trails 

The following summarises one of the successful algorithms of the ACO, 

namely the Ant Colony System (ACS). This algorithm has been tested and 

researched the most. 

2.3.6.3 Ant Colony System 

The Ant Colony System (ACS) is based on four elements that are employed 

to solve the optimisation problem. These elements are an 

exploration/exploitation transition rule, a global pheromone trail updating 

rule, a local update for the pheromone trail, and the use of a candidate list 

(Stützle and Hoos, 1997). 

The first element of the ACS is that ants use an exploration/exploitation 

decision rule, called the pseudo-random-proportional rule, in which an ant k 

located at city i chooses a city j Є 
k

iN to move to using Equation (2.1) 

(Dorigo and Stützle, 2004). 
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Equation (2.1) 

(Dorigo, 2004) 

Where ij  is the pheromone intensity and it represents the effectiveness of 

the move from node i  to node j  as expressed in the pheromone intensity of 
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the corresponding link, ηij =1/dij is a heuristic value which is the reverse of 

the distance between the two cities i and j, β is a parameter that determines 

the relative influence of the heuristic value, 
k

iN is the feasible 

neighbourhood of ant i when at city k. 

q is a random variable uniformly distributed over [0,1], q0 is a tuneable 

parameter (0 ≤ q0  ≤ 1), and J is a random variable selected according to the 

probability distribution given by Equation (2.2) (Dorigo, 2004). 
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Equation (2.2) 

(Dorigo, 2004) 

Where   is a parameter to control the influence of ij ( is equal to 1 when 

q ≤ q0). This decision rule is employed to balance between exploration and 

exploitation and has a double function. When q ≤ q0, the decision rule 

exploits the knowledge available about the problem such as the heuristic 

knowledge about distances between cities in the case of TSP problem, and 

the learned knowledge memorised in the form of pheromone trails. 

However, when q > q0 it operates a biased exploration of other tours (arcs). 

The second element of ACS is where ants perform online step-by-step 

pheromone local updates to favour explorations of other new solutions 

(cities in case of the TSP) instead of the best current solution. The local 
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pheromone trail updates are performed by applying Equation (2.3) (Dorigo, 

2004). 

0)()1()(   tt ijij  

Equation (2.3) 

(Dorigo, 2004) 

where 0 < ρ ≤ 1 is a parameter governing local pheromone decay. τ0 is the 

initial value of the pheromone trails. It was experimentally found that 

setting τ0 = (n.Lnn)
-1

, where n is the number of cities in the TSP instance and 

Lnn is the length of a tour produced by the Nearest Neighbour Heuristic 

(NNH), produced good results. The effect of the local update rule is that 

each time an ant uses an arc (i, j) its pheromone trail τij is reduced, so that 

the arc becomes less desirable for the following ants. This allows an 

increase in the exploration of arcs that have not been visited and avoids 

stagnation. Stagnation occurs when pheromone accumulates on a certain 

path, which is usually a local optimal solution, and more ants keep choosing 

this path over and over until eventually all ants choose this path and the 

algorithm prematurely converges to this local optimal solution. 

The third element of the ACS is the global pheromone trail update where at 

the end of an iteration of the algorithm, once all the ants have built a 

solution, a pheromone trail is added to the arcs (edges) employed by the ant 

that found the best tour from the beginning of the trial. The rule of this 
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offline global pheromone trail update is shown in Equation (2.4) (Dorigo, 

2004). 

)()()1()1( ttt ijijij    

Equation (2.4) 

(Dorigo, 2004) 

where τij is the pheromone trail level on the edge (ij), φ Є  (0, 1) is a 

parameter governing the global pheromone decay (evaporation), )(tij  = 

1/L
best 

where L
best

 is the length of the global-best tour T
gb

 found since the 

beginning of the trail or the length of the iteration-best tour T
ib

 found during 

the current iteration (t).
 

With the forth element, the ACS exploits a data structure called the 

candidate list that provides additional local heuristic information and 

reduces computational time when solving large problems. A candidate list is 

a list of preferred cities to be visited from a given city. The candidate list of 

a city contains a number of cities ordered by increasing distance. In the ACS 

when an ant is in city i, instead of examining all the unvisited neighbours of 

city i, it chooses a city to move to that is on the candidate list but has not 

been previously visited by that ant. All visited cities are placed on a list 

called the Tabu list which is referred to before visiting a city. After visiting 

all cities on the candidate list, other cities are then examined. 
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To explain how the ACS operates, the following simple example is 

employed where the ACS is applied to solve a TSP which is considered a 

minimisation problem and the candidate solution is defined as a sequence of 

cities. In this example, there are eight cities (A to H) and for simplicity, it is 

assumed that ant one is placed in city A, ant two is placed in city B and so 

on. Every time an ant (k) needs to move from city i to city j, it adds its 

current location to its Tabu list and then uses Equation (2.1) where it 

generates a random value for the parameter q, when q ≤ q0, ant (k) becomes 

greedy and exploits the knowledge available about the problem and goes to 

city (j) which has the maximum product of the amount of pheromone on the 

edge (ij) and the shortest distance between the two cities. While when q > 

q0, the ant (k) explores new solutions using a probability decision from 

Equation (2.2). Each city has a candidate list; its length is defined by the 

number of cities listed (cl). In this example, cl = 2, where cities (B) and (H) 

are on the candidate list of city (A) and they will be explored by ant (1) 

before other cities.  In this example, it is assumed that ant (1) moves from 

city (A) to city (B), then city (B) will be added to the Tabu list to avoid 

being visited twice by the same ant. After moving from city (A) to city (B), 

ant (1) updates the pheromone on the link between the two cities using local 

update Equation (2.3). For the next step, ant (1) again calculates the 

possibilities of moving from its current city (B) to those cities that are not in 

its Tabu list (C to H) using the same Equation (2.1) and so on until ant (1) 
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visits all the seven cities as shown in Figure 2.2. The length of the tour made 

by ant (1) will be calculated by adding the length of the arc between each 

two cities from the tour. The process will be accomplished by each ant and 

at the end of the iteration there will be eight tours generated by eight ants. 

The shortest of these tours will be selected as the best tour and the arcs that 

form this tour will be updated using the global update formula in Equation 

(2.4). The ants are placed again randomly for a second iteration. The 

algorithm goes on until a stopping criterion is met such as the minimum 

number of iterations or the global tour length has been found. 
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Figure 2.2 Application of the ACS for a Simple TSP problem 
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2.3.6.4 ACO and the Speed of Convergence 

This section provides an introduction on the effect of the stochastic nature 

of the optimisation problem on the speed of convergence in metaheuristic 

methods in general and ACO in particular. 

The time and number of evaluations consumed in finding the best solution 

in metaheuristic optimisation methods depends on two factors. The first 

factor is controllable and the other is not. The first factor is the right 

selection of the values of the set of parameters for the metaheuristic method. 

The other factor is the stochastic nature of these types of methods i.e. the 

randomness that resides in some parts of the algorithm. An example of this 

can be seen when the ACS is applied to solve a TSP problem. It is initialised 

by setting the value of its parameters such as the number of ants (M) and the 

exploitation/exploration ratio (q0). Here, the randomness of the algorithm is 

in the distribution of the ants over the available cities. It should be noted 

that, for each iteration, these positions are always chosen randomly. 

Experiments have been conducted to study the effect of various parameters 

on the speed of convergence, here are a summary of these experiments. 

- A small size of candidate list (cl) decreases the convergence time 

(Dorigo and Gambardella, 1997). 
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- A value of q0 define close to one decreases the convergence time but 

the quality of solution is lower (Bonabeau et al., 1999). 

- Large numbers of ants increase the solution quality as it widens the 

search space but also increase the computation time to a large extent 

(Wong and Komarudin, 2008). 

- The overall quality of solution is increased when the local 

pheromone evaporation rate is close to one but it slows down the 

convergence speed and this leads to a suboptimal solution while if it 

is close to zero then no cooperative behaviour can emerge (Hao et 

al., 2006). 

2.3.6.5 ACS Parameters Tuning 

Research in parameter setting has provided many ways of approaching the 

problem; some researchers, Adenso-Diaz and Laguna (2006) have studied 

parameter setting for metaheuristics in general. Their approach is based on a 

developed procedure called CALIBRA, however, this approach has the 

limitation of tuning only five parameters and the values obtained are not 

guaranteed to be the best. (Coy et al., 2001) have provided an approach 

based on a statistical design of the experiment and applied it to a vehicle 

routing problem. Their method, however, required a rough approximation 

based on human experience for the initialisation of the method itself. 

Research accomplished by Bartz-Beielstein and Markon (2004) proposes a 



  

 51 

 

method to determine relevant parameter setting based again on the statistical 

design of experiments and a tree based regression analysis. Birattari (2002) 

proposed a procedure that empirically evaluates a set of candidate 

configurations by discarding bad ones as soon as statistically sufficient 

evidence is gathered against them. It can be noticed from these publications 

on general parameter optimisation for metaheuristics that they are based on 

statistical analysis. 

Other approaches have been carried out to optimise the parameters of ant 

systems. These approaches can be divided into three groups; the first group 

is that of proposed methods to find the best parameter settings for one or 

some of the parameters, the second group proposes experimental analysis to 

find the proper parameter set, while the third group tries to connect the 

problem instance with the optimal parameters.  

Of the first group (Dorigo and Gambardella, 1997) presented a formula for 

the optimum number of ants based on the value of ρ and q0. Watanabe and 

Matsui (2003) proposed an adaptive control mechanism of the parameter 

candidate sets based on the pheromone concentration for improving the 

ACO algorithms. Zecchin et al., (2005) developed parametric guidelines for 

the application of the ACO to the optimisation of a water distribution 

system. Hao et al., (2006) have chosen three parameters to optimise (β, ρ 

and q0) and have developed a parameter study strategy based on PSO. A 
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hybridised algorithm using GA and ACS-TSP was attempted by Pilat and 

White (2002) to solve the TSP faster but their attempt failed to bring results 

better than those of the original ACS (Dorigo and Gambardella, 1997). 

Pellegrini et al., (2006) employed the F-Race algorithm to find the four 

optimum parameters (m, ρ, α and q0) for the Max-Min Ant Colony System 

(MMAS). 

Of the second group Pilat and White (2002) proposed a Meta ACS using the 

GA as another layer wrapping the ACS to optimise its parameters. They had 

better results on their study which considered only three parameters (β, ρ, 

q0). Socha (2003) proposed computational studies on some parameters. 

Also, Solnon (2002) made computational studies on some parameters of the 

ACS as a pre-processing step.  

Of the third group Gaertner and Clark (2005) presented a design of an 

experiment based on an exhaustive search to find the optimum values of the 

three parameters (β, ρ and q0) for a TSP instance. In doing so they tried to 

connect the TSP class with the optimum set of parameters. Also, Figlali et 

al. (2005) investigated the parameters of the ACS with the randomly 

generated job-shop scheduling problem. 
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2.3.6.6 ACO and Local Search 

Most ACO algorithms are coupled with operators or local search techniques. 

The outcome in performance has been similar to that of the best heuristic 

approaches employed (Stützle and Hoos, 1997).  

Local search techniques such as 2-Opt or 3-Opt work as improvement 

heuristics. When an ACO algorithm provides a feasible tour, local search 

techniques repeatedly perform operations (exchanges or moves) which 

reduce the tour length until no further improvement is possible (these 

operators will be explained in details in chapter 5 section 5.2.2). 

2.3.6.7 Applications and optimisation problems 

Ant colony optimisation algorithms have been applied to solve a range of 

combinatorial (Dorigo et al., 1999) and continuous (Dréo and Siarry, 2004) 

optimisation problems. ACO was first employed to tackle combinatorial 

problems like the TSP, scheduling problems e.g. the job-shop scheduling 

problem (Figlali et al. 2005), the vehicle routing problem (Farooq, 2008), 

the quadratic assignment problem (Stützle, 1997) and they were also 

employed as classifiers (Martens et al., 2007). The ACO was then employed 

for continuous optimisation by Bilchev (Bilchev and Parmee, 1995; Mathur 

et al., 2000). 
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2.3.7 Honeybees Inspiration: Behaviour, Algorithms and Application 

Honeybees inspired algorithms are a branch of Swarm Intelligence 

algorithms which are motivated by the fascinating behaviour of honeybees. 

Their behaviour is studied in order to develop metaheuristic algorithms 

which can mimic the bees searching abilities. The algorithms are then 

employed to find solutions to real life problems. Four forms of honeybee 

behaviour have emerged in the literature, namely, the nesting site selection 

(Seeley and Visscher, 2003; Passino et al., 2008), the mating behaviour 

(Haddad et al., 2006; Sung, 2003), the honeybee teamwork strategy (Sadik 

et al., 2006) and the foraging behaviour (Seeley, 1996) and. These types of 

behaviour have been modelled to derive various Bees Algorithms with 

many applications. 

2.3.7.1 The Nesting Site Selection 

A swarm of honeybees choosing its future home is one of the most 

impressive examples known of an insect group functioning as an adaptive 

decision maker. In honeybee nest-site selection (Seeley and Visscher, 2003) 

when the size of the hive becomes too small for the honeybees to live in, a 

swarm of half the old colony with the mother queen flies a few meters from 

the hive and gathers in a tree or on a branch to form a cluster. Then only the 

scout bees from this swarm cluster begin to search for potential nest sites in 

all directions and at distances of up to several kilometres from the swarm. 



  

 55 

 

Scouts assess the quality of sites based on cavity volume, entrance height, 

entrance area, and other attributes that are likely correlated with colony 

success. A dozen or more potential nest sites are initially advertised by the 

returning bees through a representative dance they perform. Eventually the 

bees advertise just one site which is not necessarily the one that was first 

advertised to the swarm.  

During the first stages of this optimisation technique, each returning bee 

advertising a site is watched by other ‘‘unemployed’’ scouts which seek to 

observe dances. If they easily find a dancer they get recruited to a relatively 

high quality site. If they must wait too long to find a dancer, this would 

indicate that there are not many good nest-sites currently being assessed so 

they explore the environment for more sites. The number of recruits to each 

nest-site is in proportion to the number of dances for each site. 

At each nest-site there is a quorum-sensing process, where once there are a 

certain number of bees at the site, the bees from that site ‘‘choose it’’ by 

returning to the cluster to prompt lift-off and then they guide the swarm to 

its new home (Beekman et al., 2006). There is significant time–pressure to 

complete the nest-site selection process as fast as possible since weather and 

energy losses pose significant threats to an exposed colony. However, 

enough time must be dedicated to ensure that many bees can conduct 

independent evaluations of the site and establish a quorum at a site that is 
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likely to be the best site that the swarm has found. Hence, during nest-site 

selection the swarm strikes a balance between time minimisation and site 

quality choice maximisation. Agreement among the dancers appears and 

within an hour or so of the appearance the swarm lifts off. There is an 

increase of dancing just before liftoff. The analysis of the dancing records of 

individual scout bees confirmed that there is much turnover in the dancing 

bees over the course of a decision making process (Passino et al., 2008). 

Most bees that dance for a site cease doing so after a few hours, letting the 

next “generation” of dancers carry on the deliberations. Thus it became clear 

that a choice of a swarm of a future home is broadly distributed among the 

scout bees, and that this leaderless process of group decision-making 

consists of friendly competition among the different groups of dancers 

representing the different potential nest sites. The groups compete for 

additional dancers. Sooner or later, one group of dancers grows numerous 

and ultimately excludes its competitors. The site whose dancers prevail in 

this winners-take-all contest becomes the new home of the swarm.  

2.3.7.2 Honeybees Mating Behaviour 

Each normal honeybee colony consists of the queen, drones, workers, and 

broods. Queens represent the main reproductive individuals in some types of 

honeybees and specialise in laying eggs. Drones are the sires or fathers of 

the colony. They are haploid and act to amplify the genome of their mothers 

without alteration of their genetic composition except through mutation. 
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Therefore, drones are considered agents that propagate one of the gametes 

of their mother and function to enable females to act genetically as males. 

Workers specialise in brood care and sometimes lay eggs. Broods arise 

either from fertilised or unfertilised eggs. The former represent potential 

queens or workers, whereas the latter represent prospective drones. 

The marriage process in honeybees was hard to observe as the queens mate 

during their mating flight far from the nest. A mating flight starts with a 

dance performed by the queens who then start a mating flight during which 

the drones follow the queens and mate with them in the air. In a typical 

mating-flight, each queen mates with seven to twenty drones. In each 

mating, sperm reaches the spermatheca and accumulates there to form the 

genetic pool of the colony. Each time a queen lays fertilised eggs, she 

retrieves at random a mixture of the sperms accumulated in the spermatheca 

to fertilise the egg. 

Just as the queen bee is the only bee in a hive that breeds with the others, the 

best solution in the pool of solutions is selected to crossbreed with a random 

set of others. Thus the algorithm aims to retain the best solutions in the 

"gene pool," and achieve a better answer. This differs from the traditional 

approach, which selects both parents randomly from the whole pool 

(Abbass, 2001). This natural behaviour also led to the Queen-Bee Evolution 

method where in a generation the fittest individual crossbreeds with the 
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other bees selected as parents by a selection procedure. This method when 

combined with a GA increases the exploitation of the GA. However, it also 

increases the probability that the GA will fall into premature convergence 

and results in a decrease in the performance of the GA. To decrease the 

probability of premature convergence and to reinforce the exploration of a 

GA, some individuals in Queen-bee evolution are strongly mutated (Sung, 

2003; Azeem and Saad 2004). 

2.3.7.3 Honeybee teamwork strategy 

In Honeybees, the queen controls the nest and all the other bees provide 

various services to the queen. Honeybees move from flower to flower 

extracting nectar which they deliver back to the nest where it is employed to 

make honey. When a queen dies, a new queen is raised by feeding a normal 

worker bee with special food.  

Abstract mapping has been done of similarities between this Honeybee 

behaviour and agent teamwork strategies, which are later employed in the 

design of teamwork architecture and elaborated using prototype case studies 

(Sadik et al., 2006). 

 2.3.7.4 Foraging Behaviour of the Honeybees 

Honeybees can exploit a vast number of flower patches by extending their 

search over enormous fields surrounding the hive. They search for flower 
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patches that provide plentiful amounts of nectar or pollen that are easy to 

collect with less energy usage (Frisch, 1976; Seeley, 1996).  

The foraging process during the harvesting season begins in a colony by 

employing scout bees to search for adequate flower patches where nectar is 

plentiful, easy to extract, and rich in sugar content. Scout bees search 

randomly through their journey from one patch to another. Moreover, 

during the whole harvesting season, a colony continues its exploration, 

keeping a percentage of the whole population as scout bees (Seeley 1996). 

When they return to the hive, those who have found a high-quality food 

source that is above a certain threshold (a combination of certain 

constituents, such as sugar percentage), they deposit their nectar or pollen 

that they have collected during the search process and then signal the 

position of their discovery to resting nestmates through a ritual known as the 

“waggle dance” on the dance floor (Frisch, 1976). The mysterious waggle 

dance is essential for colony communication and is performed in a particular 

area of the hive called the “dance floor”, and communicates three basic 

pieces of information regarding the flower patch: the direction where it is 

located, its distance from the hive, and its quality rating (Frisch, 1976; 

Camazine et at., 2003). After the waggle dance, the dancer bee goes back to 

the flower patch, followed by other nestmates recruited from the hive. The 

number of recruited bees depends on the quality rating of the patch. Flower 
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patches that contain rich and easily available nectar or pollen sources attract 

the largest number of foragers (Bonabeau, 1998; Seeley, 1996). The 

information guides the colony to send its bees to flower patches precisely, 

without any supervisory leader or blueprint. The knowledge of each 

individual of the outside environment is gleaned solely from the waggle 

dance. This dance gives the colony a chance to evaluate different patches 

simultaneously in addition to minimising the energy usage rate (Camazine 

et al., 2003). This allows the colony to gather food quickly and efficiently.  

While harvesting the source, the bees monitor the food level. This 

information will be necessary when deciding on the next waggle dance 

when they return to the hive (Camazine et al., 2003). If the food source is 

still good enough and calls for more recruitment, then that patch will be 

advertised by making a waggle dance and recruiting more bees to that 

source.  

Once a recruited forager returns to the hive, it will in turn waggle dance to 

direct other idle bees towards the food source. Thanks to this mechanism, 

the most profitable food sources attract the largest number of foragers 

(Tereshko and Lee, 2002), and thus the bee colony optimises the efficiency 

of the food collection process (i.e. the amount of food collected versus the 

cost of harvesting it). 
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During harvesting when the bees detect that there is no more nectar in a 

flower patch, bees will abandon it and interrupt the dances intended to 

attract other bees to that location. 

A number of algorithms has been inspired by bee swarming behaviour and 

employed in discrete space, in the next section we will examine several: 

1. BeeHive Algorithm 

A model borrowing from the principles of bee communication is presented 

in (Wedde et al., 2004). The artificial bee agents are employed in packet 

switching networks to find suitable paths between nodes by updating the 

routing table. Two types of agents are employed – short distance bee agents 

which disseminate routing information by travelling within a restricted 

number of hops and long distance bee agents which travel to all nodes of the 

network. Though the paper talks in terms of bees, it only loosely follows 

their natural behaviour. 

The BeeHive algorithm (Wedde et al., 2004) was introduced and applied to 

routing problems in packet switching networks (Farooq, 2008) where agents 

called BeeAgents were employed to route packets among network nodes. 

2. BeeAdHoc Algorithm 

A new routing algorithm for energy efficient routing in mobile ad hoc 

networks was developed by (Wedde et al., 2005) based on the foraging 
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behaviour of honeybees. The algorithm mainly utilises two types of agents, 

scouts and foragers, for doing routing in mobile ad hoc networks. The 

algorithm, BeeAdHoc, is a reactive source routing algorithm and it 

consumes less energy as compared to existing state-of-the art routing 

algorithms because in using the principals of foraging behaviour, it utilises 

less control packets to do routing. The results showed that the BeeAdHoc 

algorithm consumes significantly less energy as compared to state-of-the-art 

routing algorithms, without making any compromise on traditional 

performance metrics (packet delivery ratio, delay and throughput). 

3. The Honey Bee Algorithm 

A model generated by studying the allocation of bees to different flower 

patches to maximise the nectar intake is described in (Tovey, 2004). This 

was subsequently applied to distribute web applications at hosting centres.  

4. The Virtual Bee Algorithm 

In (Yang, 2005), the author describes a virtual bee algorithm where the 

objective function is transformed into virtual food. Unfortunately no 

information about how the transformation from objective function to food 

source or how agent communication is carried out is given in this work. Nor 

are there any comparative results to check the validity of the algorithm. 



  

 63 

 

5. The ABC algorithm 

For applications in the area of continuous function optimisation, Karaboga 

and Basturk (2008) proposed the ABC algorithm. Although the two 

algorithms were developed independently, there are strong analogies 

between the ABC and the BA. The two optimisation methods can be 

described using the same flowchart, and the site abandonment procedure is 

also employed in the ABC algorithm. Differently from the BA, the ABC 

uses the roulette wheel selection method (Karaboga and Basturk, 2008) to 

simulate the recruiting of foragers through the waggle dance. The main 

difference between the two algorithms is in the implementation of the local 

search procedure. The ABC generates foragers (parents) by a floating point 

crossover operation (Pham and Karaboga, 2000) between the dancer bee and 

a second bee randomly selected from the population. This operator 

calculates the components of the new forager as a weighted average of the 

components of the parents. The weight of each component of the parents is 

randomly determined. Since the second bee is randomly selected from the 

whole population, the crossover operation may generate a forager bee which 

is relatively far from the dancer bee. In particular, the forager bee may be 

placed outside the fitness peak that it is meant to exploit. For this reason, the 

effectiveness of the exploitative search may be reduced, and the extent of 

the neighbourhood search is more difficult to control. 
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6. Bee Colony Optimisation 

Another implementation of bee behaviour was presented by (Teodorovic et 

al., 2006) to solve transportation problems and was called Bee Colony 

Optimisation. This algorithm uses a constructive approach that is similar to 

ACO. 

2.4 THE BEES ALGORITHM AND ITS SUCCESSORS  

The Bees Algorithm is a population based search algorithm that imitates the 

food foraging behaviour of honeybees to find the optimal solution for both 

continuous and combinatorial problem. 

2.4.1 Standard Bees Algorithm 

The Bees Algorithm balances between the global and the local search. The 

BA randomly explores the solution space looking for areas of potential 

optimality(s). Then the Bees Algorithm exploits these areas by conducting a 

local search, until either a satisfactory solution is found, or a pre-defined 

number of iterations has been reached. More detailed explanation of the 

Bees Algorithm is discussed in the next chapter. 

2.4.2 Improvements and Applications 

Various versions of the Bees Algorithm were successfully developed to 

solve different engineering problems more efficiently. Their application was 
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also extended to a vast number of new continuous and combinatorial 

optimisation problems. 

The Bees Algorithm was first applied to solve continuous function 

optimisation (Pham et al., 2006b). The Bees Algorithm was tested on a 

range of well-known benchmark function optimisation problems of different 

degrees of complexity and the experimental results proved the reliability of 

the Bees Algorithm (Pham and Castellani, 2009). 

The Bees Algorithm was also applied to train different types of neural 

network such as the training of the Learning Vector Quantisation networks 

(Pham et al., 2006a), the training of Multi-Layered Perceptrons neural 

network (Pham et al., 2006c; Pham et al., 2006e), the training of the Radial 

Basis Functions network (Pham et al., 2006d), the training of the Spiking 

Neural Networks (Pham and Sahran, 2006) and the training of the Support 

Vector Machine (Pham et al., 2007a). These trainings were for recognising 

patterns in control charts employed for identifying wood defects. In general, 

results showed the testing and training accuracies using the Bees Algorithm 

as a classifier were either higher than or very close to those accuracies 

produced by other classifiers.  

Pareto multi-objective optimisation was another extension of the Bees 

Algorithm applied to the welded beam design problem. The objective of the 
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design is to minimise the cost of fabrication while finding a feasible 

combination of weld thickness, weld length, beam thickness and beam 

width. The Bees Algorithm produced better results (less cost) than almost 

all the examined algorithms (Ghanbarzadeh, 2007).  

The Bees Algorithm was also applied to environmental/economic power 

dispatch problems with weighted-sum multi-objective optimisation (Lee and 

Haj Darwish, 2008) and with Pareto optimality (Pham et al., 2008a). 

 A new formulation of the Bees Algorithm was proposed for solving a 

chemical engineering process as a dynamic optimisation problem. It 

includes new search operators, and a new selection procedure that enhances 

the survival probability of newly formed individuals. The proposed 

algorithm was tested on six benchmark dynamic optimisation problems. For 

all the problems, the Bees Algorithm found very satisfactory optima and the 

results proved the high reliability of the proposed technique (Pham et al., 

2008b). 

In a biological application involving protein structures, the Bees Algorithm 

was adapted to search the protein conformational search space to find the 

lowest free energy conformation (Bahamish et al., 2008). Proteins perform 

many biological functions in the human body. The structure of the protein 

determines its function. In order to predict the protein structure 
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computationally, the protein must be properly represented. The algorithm 

was able to find the lowest free energy conformation. 

One of the first implementations of the Bees Algorithm in discrete space for 

combinatorial problems was in designing cellular manufacturing systems 

where the Bees Algorithm was employed for solving the cell formation 

problem (Pham et al., 2007b). Experimental results indicated that the Bees 

Algorithm is very effective for large-scale problems. 

Another application of the Bees Algorithm is the scheduling of jobs with a 

common due date for a machine to minimise the penalties associated with 

early or late completion (Pham et al., 2007c). Results proved it to be more 

stable and robust than other existing optimisation techniques such as GA, 

PSO and TS. 

The Bees Algorithm was successfully applied for PCB assembly planning 

(Pham et al., 2007d). The computational experiments showed that the Bees 

Algorithm gives a significant reduction in assembly time compared to the 

results obtained with the GA and EP on a benchmark assembly task. The 

Bees Algorithm was also copped with TRIZ-inspired operators for the same 

application (Ang et. al, 2009) where a shorter time was obtained as 

compared to previous work. 
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The Bees Algorithm was also applied to solve the Scholar Timetabling 

Problem. Experimental results showed promising results (Lara et al., 2008). 

Preliminary design is another application of the Bees Algorithm (Pham et 

al., 2007e). The algorithm has been also employed to design mechanical 

components (Pham et al., 2008c; Pham et al., 2009). 

The algorithm was also employed to obtain the optimal sink path for large-

scale sensor networks (Saad et al., 2008). Another usage of the Bees 

Algorithm was in robotics. It was employed for learning the inverse 

kinematics of a robot manipulator (Pham et al., 2008e). 

The Bees Algorithm was also applied to clustering problems to improve the 

results of the K-means (Pham et al., 2007f) and the C-means (Pham et al., 

2008f) algorithms 

Interpolation and extrapolation operators were introduced to unselected bees 

in the Bees Algorithm by (Ghanbarzadeh, 2007) to improve these bees by 

mating them with the selected ones.  Also, two new methods were proposed 

for the Bees Algorithm namely the ‘shrinking’ method for neighbourhood 

size and the idea of ‘abandon sites’ which is employed when stuck in a local 

optimum or when no new information is found. 
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In another arrangement, an adaptive neighbourhood search and random 

particles were added to the global search by proposing a hybrid PSO-Bees 

Algorithm to solve the problem of premature convergence in the basic PSO 

algorithm (Pham and Sholedolu, 2008). 

2.5 SUMMARY 

Various optimisation techniques and algorithms were briefly introduced in 

this chapter alongside the terms and definitions often employed in the study 

of optimisation. The natural inspiration of these algorithms and their 

application to the field of engineering were discussed. Applications of these 

algorithms to different type of problems were also examined. 
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CHAPTER 3 

THE META BEES ALGORITHM FOR SOLVING 

CONTINUOUS OPTIMISATION PROBLEMS 

This chapter describes the main characteristics of the standard Bees 

Algorithm and a study to explore the parameters of the algorithm to help 

understand the methods by which its performance is improved, such as 

those employed to avoid premature convergence. The chapter presents a 

new method of tuning the Bees Algorithm called Meta Bees Algorithm (a 

Bees Algorithm within a Bees Algorithm). The tuned Bees Algorithm has 

been applied to a range of function optimisation problems. The results 

obtained have been compared against those produced by other optimisation 

algorithms. 

3.1 A STUDY OF THE STANDARD BEES ALGORITHM 

PARAMETERS 

As mentioned in the previous chapter, the Bees Algorithm takes its 

inspiration from the food foraging behaviour of honeybees to search for the 

best solution to a given optimisation problem. As shown in Figure 3.1, the 

algorithm randomly samples the solution space looking for areas of high 

performance. Throughout the search it performs an exploitative 

neighbourhood search combined with a random explorative search. In order 

to study these two main searches performed by the Bees Algorithm, a set of 

experiments was run where the Bees Algorithm was applied to several 
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function optimisation problems. The effects of the Bees Algorithm 

parameters are then discussed. 

3.1.1 Random Initialisation 

The bee population size is fixed to n scout bees. These bees randomly 

sample the solution space with uniform probability across the space. Each 

scout bee evaluates the visited site (i.e. solution) via the fitness function. 

The population size n is one of the key parameters in the Bees Algorithm. 

The effect of changing the population size on the mean number of iterations 

to arrive at the correct answer is shown in Figure 3.2. The variation of 

population size against the number of evaluated points to arrive at the 

correct solution is shown in Figure 3.3. Also shown in Figure 3.4 is a graph 

demonstrating the performance of the algorithm with increasing population 

size. 

Figure 3.2 shows that the number of iterations required to obtain the 

solution reduces with increasing population size. 
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Figure 3.1 Flowchart of the Standard Bees Algorithm
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Figure 3.2 Mean Iteration versus Population Size 
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Figure 3.3 Mean Number of Function Evaluations versus Population Size 
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Figure 3.4 Performance for Different Population Sizes 
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Figure 3.3 shows how an increase in population size leads to an increase in the 

number of function evaluations, which is predictable. Here, the mean generated 

points is defined as the mean of the number of times the objective function was 

called. 

To achieve higher algorithm reliability, a minimum size of population is 

required as shown in Figure 3.4 (where Fails represents a case where the 

optimum solution of the optimisation problem could not be reached). In order to 

arrive at the solution with fewer iterations, the population should be larger than 

the population used. To obtain a reasonable number of function evaluations, the 

population has to be as small as possible. Within these three constituent parts 

(the algorithm reliability, the number of iterations and the number of function 

evaluations) a range needs to be set to choose a proper population size. 

 

3.1.2 Neighbourhood / Local Search 

As in all the evolutionary algorithms, the neighbourhood search is an essential 

concept of the Bees Algorithm. After ranking the sampled solutions and 

locating the most promising ones (i.e. the highest ranking locations), other bees 
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are recruited to search the fitness landscape in the neighbourhood of these 

solutions. 

The neighbourhood search is based on a random distribution of bees in a 

predefined neighbourhood range. For each selected site, bees are randomly 

distributed to find a better solution. As shown in Figure 3.5, only the best bee is 

chosen to advertise its source after which the centre of the neighbourhood field 

is shifted to the position of the best bee (i.e. from A to B).  

In undertaking the study of this form of local search, three issues have been 

taken into account; the number of recruited bees in the neighbourhood range, 

the width of range and the method of site selection.  

(A) The Number of Recruited Bees 

The number of recruited bees around selected sites should be defined properly. 

When the number is increased, the number of function evaluations will also be 

increased and vice versa, when the number decreases, the chance of finding a 

good solution decreases. 
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Figure 3.5 Graphical Explanation of the Neighbourhood Search 
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(B) The Patch Size (Neighbourhood Range)  

When the neighbourhood range can be arranged adequately, the number of 

recruited bees will depend on the complexity of a solution space. The 

neighbourhood range is a variable which needs to be tuned for different types of 

problem spaces. Three different strategies have been applied to improve the 

efficiency and robustness of the Bees Algorithm. These are (1) a fixed 

neighbourhood region width strategy, (2) a region changing according to 

iteration strategy and (3) hybrid strategies combining the two previous 

strategies where, for instance, the first strategy can be employed up to the 50
th

 

iteration and then the second strategy employed up to the stopping criteria.  

With the first strategy, a neighbourhood width for all selected sites was fixed to 

a certain range that is sufficient to deal with the complexity of the problem 

space. In this strategy, beginning from the first iteration, all the bees harvest on 

the same size fields which are defined as (ngh) in Equation (3.1).  

Neighbourhood_Range = ngh Equation (3.1) 

However, in the second strategy, the region changes proportional to the number 

of iterations. All sites have the same range value and this range will be 
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narrowed down depending on the iteration as shown in Equation (3.2). This 

strategy has been established to increase the accuracy of the solution. 

Neighbourhood_Range = (ngh / iteration) Equation (3.2) 

Finally, the third strategy was implemented as a combination of the first two 

strategies to improve their efficiency.  

These neighbourhood range strategies have been tested using the De Jong 

function benchmark presented in Table 3.1. These tests were run independently 

10 times and the mean of these 10 runs is presented in Figure 3.6 with the 

number of iterations being set to 1000. The parameters set for this test were as 

follows: 

The population is set to 15, the selected sites are 5, the elite sites 2, bees around 

elite points numbered 4, bees around selected points numbered 2. A 

neighbourhood spread of 0.01 is defined as an initial range for all strategies. For 

the third, mixed, strategy the first 20 iterations of the algorithm employed the 

first strategy (fixed ranges) and thereafter the second strategy of narrowing 

down the ranges was employed. It is clear from the results in Figure 3.6 that the 

first strategy reaches its minimum value before any of the other strategies. 
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However, the second and third strategies gave similar results for this relatively 

simple problem space. Thus, it does not make sense to employ the more 

complex second and third methods as the first strategy can be said to be both a 

simple and efficient method for neighbourhood searching. 
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Table 3.1 Test Functions (Mathur et al., 2000) 
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Figure 3.6 Comparison of Different Neighbourhood Strategies for the De Jong 
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(C)  The Recruitment Strategy (Site Selection) 

Two different techniques were implemented: Probabilistic Selection and Best 

Site Selection. 

With the Probabilistic Selection technique, the roulette wheel method is 

employed and sites with better fitness have more chance of being selected. 

However, with the Best Selection technique (greedy selection), the best sites 

according to fitness will be selected. Different combinations of the selection 

methods, ranging from pure Probabilistic Selection (q=0) to pure Best Selection 

(q=1), have been investigated. The mean number of iterations required to reach 

the answer and the success of each combination are shown in Figures 3.7 and 

3.8. 

From the experimental results, the Best Site selection technique demonstrated 

higher success. It is simpler to implement as is does not involve the use of a 

roulette wheel which causes the algorithm to take longer and makes it more 

complicated, and thus the Best Site selection has been recommended for use. 
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Figure 3.7 Mean Iterations required for Different Combinations of methods 
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Figure 3.8 Performance of Different Combinations of the Selection Method 
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3.2 THE BEES ALGORITHM PARAMETER TUNING 

The Bees Algorithm, like all other metaheuristic search algorithms including 

Tabu Search (TS), Simulated Annealing (SA) and ACO, invariably requires a 

set of parameters in order to solve complex optimisation problems. These 

parameters directly impact on the performance of the solver and as such, the 

researcher will often hand-tune parameter values before the application of the 

Metaheuristic or use a standard set of values that have been found to be 

traditionally well-suited by other researchers.  

As shown in the first section of this chapter, the search strategy of the Bees 

Algorithm combines global random exploration with local neighbourhood 

sampling. The explorative search (scout bees) and exploitative search (recruited 

foragers) are clearly differentiated and they can be independently varied 

through a set of learning parameters. This clear decoupling between exploration 

and exploitation facilitates the tuning of the algorithm. 

In spite of the fact that most of the work that has been carried out in this field 

states the need for a mechanism to tune the Bees Algorithm parameters, 

comparatively very little research has been carried out into the analysis of the 

parameter values or the way they can be automatically derived or tuned. The 

optimisation of the Bees Algorithm has been carried out, in the past, according 
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to experimental trial and error and the values of its parameters were decided 

empirically. Once the learning parameters were manually optimised by 

conducting a number of trials, they were fixed and kept unchanged for all the 

optimisation problems. A trial to understand the effect of the parameters of the 

Bees Algorithm on its performance and the speed of convergence had been 

carried out (Pham et al., 2005). The experiments were conducted to test 

different parameters of the algorithm and the effects of changing one parameter 

while keeping other parameters fixed. Researchers (Pham et al., 2006b) have 

indicated that one of the drawbacks of the original Bees Algorithm is the 

number of tuneable parameters used and that further work should target the 

reduction of the number of learning parameters. There was a trial conducted by 

(Pham et al., 2007d) to drop these numbers which concluded that even though 

the performance of the Bees Algorithm is fairly robust to reasonable variations 

of the learning parameters, a smaller parameter set would ease the optimisation 

of the algorithm performance.  

No research has been conducted into either the statistical analysis of the Bees 

Algorithm parameter values or the way they can be automatically derived or 

tuned by metaheuristic algorithms themselves. However, it is possible to run the 

Bees Algorithm on top of another Bees Algorithm during the parameter search 
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process and find the optimal settings, although this may incur a computational 

overhead.  

The proposed combined Bees Algorithm, called Meta Bees Algorithm, is used 

to evolve suitable parameter values using its own optimisation process while 

solving complex problems. 

3.2.1 The Meta Bees Algorithm 

In this chapter a technique employed by the Bees Algorithm allows it to self-

adapt its own parameters to minimise the sensitivity of these parameters by 

finding an area where the effects of these parameters on the algorithm are less. 

The approach adopted uses a standard mechanism of the Bees Algorithm to 

modify and determine the appropriate parameter values while the problem is 

being solved. Therefore it is conceptually simple to integrate this approach into 

the standard Bees Algorithm. 

For this work, the Bees Algorithm was ‘wrapped around’ a second Bees 

Algorithm (the Wrapper). Figure 3.9 shows the pseudocode of the Meta Bees 

Algorithm and Figure 3.10 demonstrates the flow of information between the 

two Bees Algorithms. It can be seen that each bee of the Wrapper Bees 

Algorithm represents a set of Bees Algorithm parameters and, again, the fitness 
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values are the total number of function evaluations required by the Bees 

Algorithm to find the optimum solution for the function optimisation. The Bees 

Algorithm uses the same mechanisms for generating solutions to evolve 

appropriate values for its parameters. 

3.3 COMPUTATION EXPERIMENTS 

3.3.1 The Function Optimisation Problem 

The performance of the Meta Bees Algorithm was evaluated on a set of five 

continuous function minimisation benchmarks (Mathur et al., 2000). Using the 

proposed method for each problem, the results obtained were compared with 

the results given by the standard Bees Algorithm an with the other optimisation 

algorithms. The function minimisation problems represent a varied set of 

learning scenarios that were chosen from amongst widely used benchmarks in 

the literature (Mathur et al., 2000). Table 3.1 shows the equations of the five 

continuous function minimisation benchmarks. For each function, the equation 

is given together with the range of the variables and the global minimum. The 

Martin and Gaddy benchmark is a fairly simple unimodal function. The 

Rosenbrock benchmark is unimodal, the minimum lies at the bottom of a long, 

narrow, parabolic shaped valley. Finding the valley is trivial, however locating 

the minimum is difficult. The Griewank function has an overall unimodal 
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behaviour, with a rough multi-modal surface created by a cosinusoidal “noise” 

component. 

 

 

 

 

1- Initialise the Bees Algorithm Wrapped population with random parameter 

values from the Wrapper Bees Algorithm 

2- Evaluate fitness of the population of the Wrapped Bees Algorithm. 

3- Select the solutions that satisfy the criterion and add them to the solution set 

4- While (stopping criterion not met) 

//Forming new population. 

5- Select sites for neighbourhood search. 

6- Determine the patch size. 

7- Recruit bees for selected sites (more bees for best e sites) and evaluate 

fitness. 

8- Select the fittest bee from each patch. 

9- Assign remaining bees to search randomly and evaluate their fitness. 

10- End While. 

 

 

Figure 3.9 Pseudocode of the Meta Bees Algorithm 
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Figure 3.10 A Bees Algorithm Wraps another Bees Algorithm 
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3.3.2 The Meta Bees Algorithm Implementation 

The Bees Algorithm is characterised by a number of core parameters which are: 

the number of scout bees, n, the number of high-quality sites that are selected 

for neighbourhood search, m, the number of elite (top-rated) sites amongst the 

best m sites, e, the number of bees recruited for a neighbourhood search around 

the e elite sites, nep, the number of bees recruited for a neighbourhood search 

around the remaining (m-e) sites, nsp, the initial size of each flower patch, ngh, 

and the stopping criterion. 

In addition to the above seven main parameters, two extra parameters have been 

introduced by Ghanbarzadeh (2007) in his thesis; the neighbourhood shrinking 

parameter and the site abandonment parameter. However, these two extra 

parameters have not been included in this study as the aim of the research was 

to show how well the standard Bees Algorithm can perform without the need to 

introduce extra parameters.  

At each iteration, the standard Bees Algorithm is augmented by allowing each 

bee to select a value for each parameter before commencing the selection of the 

solution components. Thus each bee maintains its own parameter values and in 

turn uses these to adapt the parameter values. Selection of a parameter value is 
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based exclusively on the fitness of the solution i.e. if an improvement in the 

fitness is found by a particular value of a set of parameters, the search exploits 

around this value to get a better result and so on.  

As shown in Figures 3.10 and 3.11, the Meta Bees Algorithm consists of two 

Bees Algorithms namely the Wrapper Bees Algorithm and the Wrapped Bees 

Algorithm. The parameters values of the Wrapper Bees Algorithm have been 

setup empirically by using a pilot test and these are; n1 = 10, m1 = 3, e1 = 1, 

nep1 = 5, nsp1 = 3, ngh1 = 0.1 and the stopping criterion is 10000 iterations or 

50000 numbers of evaluations. 

Each parameter of the Wrapped Bees Algorithm of the Meta Bees Algorithm is 

given a suitable range in which its value can lay (Table 3.2). The initial value of 

each parameter is randomly chosen within the range. 

Every time a value needs to be assigned to a parameter, a point will be 

randomly generated within the range given in the table (3.2) with the following 

two constrains (Equations 3.3 and 3.4) 

 

m   ≤   n Equation (3.3) 

    

e ≤ m Equation (3.4) 
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Figure 3.11 Illustration of the Meta Bees Algorithm
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Table 3.2 Range of Values Available to the wrapped Bees Algorithm 

Bees Algorithm Parameters Symbol 

Value 

Minimum Maximum 

Number of scout bees n 3 20 

Number of best selected sites m 3 10 

Number of elite sites amongst the best m sites e 1 10 

Number of bees recruited for neighbourhood 

search around the e elite sites 

nep 1 10 

Number of bees recruited for best m sites nsp 1 5 

The initial size of each flower patch ngh 0.01 0.2 
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3.3.3 Experimental Results 

The experiments were performed using the Meta Bees Algorithm to evolve its 

own parameter values. It was run 100 times for each parameter setting on each 

benchmark problem. For each of the 100 trials, the Wrapped Bees Algorithm 

F

50000 learning cycles had elapsed. The number of evaluations was recorded. 

The final accuracy result (E) was found to be: 

 
 









elsexF

xF
E

f

f 001.00
     Equation (3.5) 

Where xf is the final solution generated by the algorithm. 

The computing platform used to perform the experiments was a 2.00GHz 

Intel(R) Core(TM) 2 Dual CPU PC with 1.99 GB of RAM. The experimental 

programs were coded in the C language and compiled with Microsoft Visual 

C++. Each problem instance was run across 100 random seeds. 



  

 99 

3.3.4 Comparison between the Standard Bees Algorithm and the Meta 

Bees Algorithm 

Table 3.3 shows the empirically derived Bees Algorithm parameter values used 

with the different test functions (Pham et al., 2006b). 

Table 3.4 shows the results of running the Meta Bees Algorithm to optimise the 

parameter values employed in the Wrapped Bees Algorithm while solving the 

minimum function optimisation problem. 

The characteristic values of each parameter are summarised as follows: 

- n: The values were generally between 3 and 7, with 4 being most common. 

- m: The value was the same (3) for all the optimisation functions. 

- e: The value was the same (1) for all the optimisation functions. 

- nsp: The value was the same (1) for all the optimisation functions. 

- nep: The range of values was between 7 and 8, with 8 being the more 

common. 

- ngh: Generally the range of values was between 0.02 and 0.06 with 0.02 

being the most common. 
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Table 3.3 Standard Bees Algorithm Parameter Settings 

Function No. n m e nsp nep 

ngh 

(initial) 

1 De Jong 10 3 1 2 4 0.1 

2 Martin and Gaddy 20 3 1 1 10 0.5 

3 Rosenbrock (2D) 10 3 1 2 4 0.1 

4 Rosenbrock (2D) 6 3 1 1 4 0.5 

5 Griewank 50 5 2 10 20 5 
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Table 3.4 Meta Bees Algorithm Parameter settings 

Function n m e nsp nep ngh  

1 De Jong 4 3 1 1 8 0.03 

2 Martin and Gaddy 4 3 1 1 8 0.02 

3 Rosenbrock (2D) 7 3 1 1 7 0.04 

4 Rosenbrock (2D) 4 3 1 1 8 0.02 

5 Griewank 3 3 1 1 8 0.06 

Most common value 4 3 1 1 8 0.02 
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Table 3.5 shows a comparison of the results obtained with the Meta Bees 

Algorithm and those obtained using the standard Bees Algorithm 

(Ghanbarzadeh, 2007), the Deterministic Simplex Method (SIMPSA) (Mathur 

et al., 2000), the Stochastic Simulated Annealing Optimisation Procedure (NE 

SIMPSA) (Mathur et al., 2000), the Genetic Algorithm (GA) (Mathur et al., 

2000) and the Ant Colony System (ACS) (Mathur et al., 2000). 

The average number of evolutions i.e. the numbers of points visited is shown 

for 100 independent runs in Table 3.5. Inspection of the runtimes (number of 

evaluations) for both algorithms, the Meta Bees Algorithm and standard Bees 

Algorithm, reveal that overall, the Meta Bees Algorithm produced more stable 

values for the Bees Algorithm parameters with a smaller number of evolutions 

for most of the minimisation functions except the second function (Martin and 

Gaddy). 

A T-Test and Random Distribution test were performed to evaluate the results 

obtained using the standard Bees Algorithm and Meta Bees Algorithm to see if 

their means are statistically different from each other. These were to ensure 

rigorous statements could be made regarding each set of results. 
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Table 3.5 Experimental Results 

Funct. no. 

SIMPSA NE-SIMPSA GA ACS 

Standard Bees 

Algorithm (*) 

Meta Bees Algorithm 

su
cc

 %
 Mean no. 

of evaluations 

su
cc

 %
 Mean no. 

of evaluations 

su
cc

 %
 Mean no. 

of evaluations 

su
cc

 %
 Mean no. 

of evaluations 

su
cc

 %
 Mean no. 

of evaluations 

su
cc

 %
 Mean no. 

of evaluations 

1 *** *** *** *** 100 10160 100 6000 100 868 100 683 

2 *** *** *** *** 100 2844 100 1688 100 526 100 608 

3 100 10780 100 4508 100 10212 100 6842 100 631 100 571 

4 100 12500 100 5007 *** *** 100 7505 100 2306 100 1471 

5 *** *** *** *** 100 200000 100 50000 100 20998 100 16920 

*** Data not available 

*    (Pham et al., 2006b) 
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3.3.5 Statistical Analysis of the T-Test 

An optimisation algorithm is more robust and stable when the variance of a 

performance criterion over a number of simulation runs is small (Engelbrecht, 

2005). Engelbrecht showed the robustness of a swarm to be in the range: 

Robustness(S(t)) = [θ - σθ, θ + σθ] 

Equation (2.1) 

(Engelbrecht, 2005) 

Where θ is the average of the performance criterion over a number of 

simulation runs, and σθ is the variance in the performance criterion. The smaller 

the value of σθ the smaller the range performance values unto which the 

simulations converge – the more stable the swarm. 

To check the statistical significance of the result by the Bees Algorithm, a T-

Test is performed. The T-Test checks the relationship between two variables, in 

this case two different sets of parameters of the same algorithm and it tries to 

answer two questions: 

1. What is the probability that a relationship exists? 
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2. If it does, how strong is the relationship? 

In other words, tests for statistical significance are employed to address the 

question: what is the probability that the relationship between two variables is 

really just an occurrence of chance? 

T-Tests are often employed in several different types of statistical tests: 

- to test whether there are differences between two groups on the same 

variable based on the mean (average) value of that variable for each group; 

- to test whether a mean (average) value of a group is greater or less than 

some standard; 

- to test whether the same group has different mean (average) scores on 

different variables; 

The test is employed for comparing the means of two samples even if they have 

different numbers of replicates. The test compares the actual difference between 

two means in relation to the variation in the data (expressed as the standard 

deviation of the difference between the means). A null hypothesis or an 

expectation to test against is required. In this case, for the Bees Algorithm and 

the Meta Bees Algorithm, the null hypothesis is that there is no difference in the 

performance of the two algorithms. The T-Test will help to decide if the data is 
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consistent with this or departs significantly from this expectation. The T-Test 

assesses whether the means of two groups are statistically different from each 

other by providing an alpha (α) parameter. The parameter has three ranges: 

Where  

 α < 0.05, there is a significant difference in the group means. 

 α < 0.01, there is a more significant difference in the group means. 

 α < 0.001, there is a most significant difference in the group means. 

The formula for the T-Test is a ratio. The numerator of the ratio is the 

difference between the two means or averages. The denominator is a measure 

of the variability or dispersion of the scores. 

3.3.5.1 T-Test Results 

The first test applied to the obtained results was the T-Test (Schneider and 

Kirkpatrick, 2006). The T-Test was applied to all pairs of solutions and the 

difference in mean values was found to be significant at the 99% confidence 

level. That is, the Meta Bees Algorithm requires significantly fewer evaluations 

to solve the benchmarking functions than the Bees Algorithm, as shown in 

Figure 3.12 (a-e). 
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To demonstrate this significance graphically, the number of evaluations for 

each independent run for both the Bees Algorithm and Meta Bees Algorithm 

that were required to optimise the five functions studied in this chapter are 

shown in Figure 3.12 (a-e) (in figure (e), the line representing the original 

parameters is on the X axis and cannot be shown). It can be seen that on 

occasion the Bees Algorithm required fewer evaluations but that on average, 

over 100 runs, the Meta Bees Algorithm required fewer evaluations. The T-Test 

was conducted on the Meta Bees Algorithm and the original Bees Algorithm. 

Table 3.6 shows the alpha values of each test function after applying the T-Test 

to these functions. 

These values indicate that the results obtained by both the Meta Bees Algorithm 

and the original Bees Algorithm are most significantly different with a 

confidence level above 99%. 
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Table 3.6. The Values of Alpha of each Test Function 

Funct. no. 1 2 3 4 5 

Alpha 7.135×10
-17

  1.148×10
-19

 2.646×
-19

 5.735×10
-16

 1.235×10
-15
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(a) De Jong function 
 

 
(b) Martin and Gaddy function 

 

 
(c) Rosenbrock function 2D (a)  
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(d) Rosenbrock function 2D (b)  

 
(e) Griewank function 

Figure 3.12 (a-e) Student T-Tests for both the Bees Algorithm and Meta Bees 

Algorithm 

0

50000

100000

150000

200000

250000

300000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

solutions

N
u

m
b

e
r 

o
f 

Ev
al

u
at

io
n

s

Original Parameters

Optimised Parameters

0

500

1000

1500

2000

2500

3000

3500

4000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

solutions

N
u

m
b

e
r 

o
f 

Ev
al

u
at

io
n

Original Parameters

Optimised Parameters



  

 111 

3.3.5.2 Random Distribution Test 

A Random Distribution test was also performed to the both results obtained 

using the standard Bees Algorithm and Meta Bees Algorithm to ensure the 

quality of the random numbers generated by the system. The Bees Algorithm 

includes some randomisation in its two local and global searches such as the 

initial distribution of the scout bees over the search space and the recruitment of 

bees within the neighbourhood search area. This requires generating a sequence 

of random numbers. As the possible amount of generable random number is 

finite, after a certain number of calls the sequence of random numbers that has 

already been produced is repeated again. Hence, the larger this sequence length 

is, the better the number generator should be. Random number generators 

always need at least one integer value called the seed to get started. Different 

seeds do not usually lead to different sequences of random numbers, but the 

random number generator starts at different points in its finite sequence of 

random numbers which often leads to different results. Various tests have been 

developed to check the quality of randomness of these random number 

generators. The Bees Algorithm uses a uniform distribution of the random 

number which means that every point of the search space has the same 

probability of being chosen and not being biased to certain parts of the search 

space otherwise the randomness of the algorithm would be meaningless which 
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will affect the mechanism of how the Bees Algorithm explores new solutions as 

discussed in chapter 3. 

To test the quality of the random numbers a normalised distribution test was 

used (Schneider and Kirkpatrick, 2006).  To visualise the distribution in this 

test, the interval is divided into certain number of subintervals called bins and 

then how many numbers there are in each bin are displayed. Figures 3.13 to 

3.17 show two series of histograms that show the distribution of the generated 

random numbers during the Bees Algorithm search. One histogram is divided 

into 10 bins and the other is divided into 100 bins. For the value of bins equal to 

10, some intervals get more random numbers than others, but as bins grow, the 

distribution of the random numbers becomes more and more equal among the 

intervals and graphs are smoother thus more acceptable randomness in the 

generated random numbers is provided for each benchmark. 
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(a) 10 bins 

 
(b) 100 bins 

Figure 3.13 Distribution of Random Numbers in both 10 and 100 Bins for the 

De Jong Function
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(a) 10 bins 

 

 

(b) 100 bins 

 

Figure 3.14 Distribution of Random Numbers in both 10 and 100 Bins for the 

Martin and Gaddy Function 
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(a) 10 bins 

 
(b) 100 bins 

Figure 3.15 Distribution of Random Numbers in both 10 and 100 Bins for the 

Rosenbrock (a) Function
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(a) 10 bins 

 

(b) 100 bins 

Figure 3.16 Distribution of Random Numbers in both 10 and 100 Bins for the 

Rosenbrock (b) Function 
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(a) 10 bins 

 

(a) 100 bins 

Figure 3.17 Distribution of Random Numbers in both 10 and 100 Bins for 

the Griewangk Function 
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3.4 SUMMARY 

The aim of the study reported in this chapter was to characterise the behaviour 

of the Meta Bees Algorithm, highlight its strengths and weaknesses and show 

the differences between the performance and reliability of the proposed method 

and those of competing algorithms. 

The search strategy of the Bees Algorithm is to combine global random 

exploration with local neighbourhood sampling. Explorative search (using scout 

bees) and exploitative search (employing recruited foragers) are clearly 

differentiated and they can be independently varied through a set of learning 

parameters. This clear decoupling between exploration and exploitation 

facilitates the tuning of the Bees Algorithm. 

Parameter tuning for metaheuristic search algorithms can be a time-consuming 

and inexact way to find appropriate parameter values to suit various classes of 

problems. An alternative approach has been explored in this chapter in which 

the algorithmic mechanics of the Bees Algorithm are used to produce suitable 

values while problems are being solved. 

The performance of the Meta Bees Algorithm was evaluated using five 

benchmark minimisation tasks. The results were compared with those produced 
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by the Standard Bees Algorithm, the SIMPSA, the NE SIMPSA, the GA and 

ACS. 

The results for the function optimisation instances used to test this notion 

suggest that its performance, in terms of solution costs and run times, is 

comparable to the standard implementation in which values from (Pham et al., 

2006b) were employed. In fact the performance in terms of objective cost was 

often an improvement over the standard set. This may be attributed to the 

ability of the new Meta Bees Algorithm to tailor parameter values to the 

problem instance being solved. 

The results reveal that the improved solver generally performs well against one 

that uses standard/fixed parameter values. This is attributed to the fact that 

parameter values suitable for a particular problem instance can be automatically 

derived and varied throughout the search process. 

The results also highlight the importance for the Bees Algorithm to conduct a 

sustained and thorough exploitation of the parameter search space. In addition, 

the results show that good quality solutions are achieved for a range of function 

optimisation problems. 
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The tests proved the strength of the Bees Algorithm in terms of accuracy, 

learning speed and robustness. In four of the five benchmark cases considered, 

the Bees Algorithm ranked amongst the top performing optimisation 

procedures.  

The results reveal that for the function optimisation problem, the use of the 

Meta Bees Algorithm solver generally performs well against one that employs a 

standard set of parameter values. This is attributed to the fact that parameter 

values suitable to a particular problem instance can be automatically derived 

and varied throughout the search process. 
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CHAPTER 4 

MODIFIED BEES ALGORITHM FOR SOLVING 

STOCHASTIC OPTIMISATION PROBLEMS 

This chapter describes the application of the Bees Algorithm and statistical 

analysis to the solution of a stochastic optimisation. The algorithm employed to 

carry out this task was designed with a new fitness evaluation method based on 

computing the average fitness value for each bee over a number of trials rather 

than computing the value of a single trial. The method enabled the algorithm to 

be applied to those situations where the returned value of the fitness function of 

a site is different every time this function is called. Hence, there is a need to 

evaluate this site a number of times by sending a number of bees to the same 

site (point) and then calculating their average value. This means that the 

number of bees sent to each site is not constant and it is based on feedback 

information gathered from the bees recruited so-far to the same point. To test 

the algorithm, the parameter value optimisation of a metaheuristic method is 

employed. This test took the shape of parameter setting for the ACS algorithm 

which is employed to solve a TSP as a stochastic problem. 

The chapter is organised as follows: the new modified Bees Algorithm for 

solving stochastic optimisation problems is presented in the next section. 

Section three details the analysis of the algorithm and the steps that it takes to 
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converge to the near optimum solution. The application of the algorithm to 

parameter setting for the ACS-TSP problem and a description of the 

experimental conditions concludes the chapter. 

4.1 PROPOSED MODIFIED BEES ALGORITHM FOR SOLVING 

STOCHASTIC PROBLEMS 

This section proposes a modified Bees Algorithm for solving stochastic 

problems. The algorithm works like the original Bees Algorithm (see Figure 

3.1) but with the inclusion of a new statistical part which leads the Bees 

Algorithm to evaluate the performance of each bee (see Figure 4.1). The 

original Bees Algorithm involves calling the fitness function of the site where 

the bee has been placed either randomly or directly within the patch. In 

deterministic problems such as those the Bees Algorithm has dealt with before, 

the value of the fitness function is fixed for the same site visited by a bee and 

hence evaluating it only once is enough. However, with the new algorithm, the 

modified Bees Algorithm is tested on stochastic problems where the fitness 

function consists of a set of parameters which change randomly. This means 

that every time the fitness function is called, its return value will be different so 

there is a need to evaluate each site a number of times by sending a number of 

bees to the same site and then calculating their average value. The number of 

bees sent to each site is not constant and it is based on feedback information 

gathered from the bees recruited so-far to the same point. The feedback 
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information that will determine the number of bees sent to the same point is 

based on the slope of the line formed from the linear regression of the fitness 

values of the sent bees. The algorithm will stop sending more bees to the same 

site when it indicates a near horizontal line. By adopting this technique, a more 

accurate average fitness value for the sent bees to the same site is guaranteed 

while at the same time consuming the minimum number of evaluations. The 

accuracy of this average value will depend on the minimum number of bees 

sent to the same point and the minimum acceptable slope value.  

Figure 4.1 shows the pseudocode of the new algorithm. It is exactly like the 

standard Bees Algorithm, the only difference being in the way that a bee is 

evaluated. A subroutine replaces the direct evaluation method. The acceptable 

slope value will determine the accuracy and the speed of convergence of the 

algorithm. If the acceptable slope value is very small, the algorithm will take a 

longer time to converge but its accuracy will be very high. On the other hand, if 

a higher acceptable slope value is chosen, the running time will drop, but so 

will the accuracy. 
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1. Initialise population with random solutions. 

2. Evaluate fitness of the population by calling the subroutine. 

3. While (stopping criterion not met) 

// forming new population. 

4. Select sites for neighbourhood search. 

5. Recruit bees for selected sites (more bees for best e sites) and evaluate 

fitness by calling the subroutine. 

6. Select the fittest bee from each patch. 

7. Assign remaining bees to search randomly and evaluate their fitness. 

8. End While. 

 

// Subroutine for bees fitness evaluation. 

1. Evaluate fitness. 

2. While (minimum slope value not reached) 

3. Evaluate the fitness and store its value. 

4. End while. 

5. Calculate the mean from the stored values and return it. 

6. End Subroutine. 

 

 

Figure 4.1 Pseudocode of the Modified Bees Algorithm for Solving Stochastic 

Problems 
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4.2 COMPUTATION EXPERIMENTS  

The experimental analysis was conducted in three stages; the first stage was to 

answer the question of why there was a need to evaluate the same point in a 

search space more than once in a stochastic problem. To address this, a study 

on the parameters of the ACS and their influence on the speed of convergence 

of the TSP instance was performed. Secondly, a study and analysis was 

conducted on when to stop the evaluation of a point. This was achieved by 

studying the relationship between the slope of the line formed from the linear 

regression of the average fitness values of the sent bees and the accuracy of 

these values obtained by the algorithm. Finally, based on these two previous 

stages, the proposed method was applied on the ACS to find the best 

combination of parameters that guarantees the fastest convergence to the best 

solution on a TSP instant. The stages outlined above are now discussed in 

detail. 

4.2.1 Analysis of the Speed of Convergence of ACS 

The speed of convergence is represented graphically in the following figures for 

two different experiments with different sets of parameter values. Figure 4.2 

shows the first experiment on the variation of the number of function evolutions 

that the ACS uses to find the optimum solution of a TSP instance called 
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Oliver30 (Oliver et al., 1987) and is illustrated in Figure 4.3 over 50 runs using 

the same set of parameters shown in Table 4.1. Statistical information, see 

Table 4.2, shows that the average value of the fitness which represents the value 

of speed of convergence is 463. 

Figure 4.4 shows the second experiment using a different set of parameters as 

shown in Table 4.3 for the same TSP instance. Table 4.4 shows statistical 

information from this experiment where the average value over 50 runs is 2370. 
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Table 4.1 Parameters employed in the First Experiment 

m β ρ q0 

11 4 0.2 0.7 
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Figure 4.2 Fitness Values for the First Experiment over 50 Runs 
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Figure 4.3 Oliver30 TSP Problem 
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Table 4.2 Statistical information for the first experiment 

Runs Min Max Average 

50 22 1584 463 
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Table 4.3 Parameters employed in the Second Experiment 

m β ρ q0 

25 13 0.7 0.2 
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Figure 4.4 Fitness Values for the Second Experiment over 50 Runs. 
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Table 4.4 Statistical Results from the Second Experiment 

Runs MIN MAX Average 

50 275 13050 2370 
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The above two experiments demonstrated: 

1. The importance of tuning the parameters of the algorithm to generate a 

higher quality solution (fitness function) because for every set of 

parameters totally different statistical values (minimum, maximum and 

average) are produced, and 

2.  Although the same set of parameters were employed for each of the two 

experiments over 50 runs each, the fitness value was never the same. 

This indicates, unlike with deterministic problems, the importance of 

evaluating the same point (a set of parameters in this case) several times 

and hence the need for the proposed method. In summary, this revealed 

that the parameter setting for the metaheuristic method can be 

considered a stochastic optimisation problem and it is affected directly 

by its parameters values. 

4.2.2 Analysis of Calculating the Average Fitness  

To demonstrate the relationship between the slope of the line formed from the 

linear regression of the average fitness values of the sent bees and the values 

obtained by the algorithm, an analysis was performed on a stochastic 
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optimisation problem. Figures 4.5, 4.6 and 4.7 show three different variations 

of fitness values obtained from many evaluations of the same stochastic 

problem. Figure 4.5 shows the variation of fitness values for five runs. In this 

figure the slope is not equal to zero, which means more evaluations and fitness 

values are needed to obtain a more accurate average value. This means that five 

evaluations are not sufficient to calculate the precise average value. 

Figure 4.6 shows the variation of fitness values obtained from evaluating the 

same stochastic problem over 22 runs, the slope of the line formed is near to 

zero and the line is nearly horizontal. When the average value of slope of the 

line for 22 runs is compared to the average of 90 runs, Figure 4.7, it shows that 

they are nearly the same. 

The slope of the line formed by applying a least-squares liner regression on the 

bees sent to the same point is an indication of the number of evaluations that is 

required of this particular point to be able to represent a more accurate average 

value of its fitness. By using this type of feedback in the modified Bees 

Algorithm, it will ensure having a more accurate average value while requiring 

only a minimum number of evaluations. In conclusion, adding the statistical 

feature to the Bees Algorithm allows it to solve stochastic optimisation 

problems. 
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Table 4.5 shows the average obtained for three different numbers of runs; 5, 22 

and 90 runs, where the average values found were 658, 472 and 471 

respectively. 
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Figure 4.5 Non-Zero Slope of Regression Line Shows an Insufficient Number 

of Evaluations for Calculating the Average Value 
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Figure 4.6 Number of Evaluations - a Representation for 22 Runs 
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Figure 4.7 Number of Evaluations - a Representation for 90 Runs 
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Table 4.5 Fitness Values for 5, 22 and 90 Runs 

Number of Runs 

Fitness Value 

MAX MIN Average 

5 1232 88 658 

22 1584 22 472 

90 3267 22 471 
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4.2.3 The Proposed Bees Algorithm 

The problem of setting parameters can now be solved using the modified Bees 

Algorithm. To examine the efficiency of the modified Bees Algorithm, it is 

tested on the problem of finding the best parameter values for the ACS by 

solving TSP instances.  

The fitness value is the total number of evaluations consumed by the ACS to 

find the optimum solution of the TSP instance (see Figure 4.8). 

The ACS parameters chosen to be optimised are the number of ants (m), the 

parameter that determines the relative influence of the heuristic value (β), the 

parameter that balances between exploration and exploitation behaviours of the 

algorithm (q0) and the parameter that governs the local pheromone evaporation 

(φ). The search spaces for these parameters are shown in Table 4.6. The other 

parameters (the length of the candidate list (cl = 10), the parameter that governs 

global pheromone decay (φ=0.1) and the initial value of the pheromone trails 

value (τ0) are initialised by their default values as mentioned in section 2.4.6.3.
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Figure 4.8 Layers Showing the Bees Algorithm Wrapping the ACS-TSP



  

 143 

Table 4.7 shows the best parameters obtained by applying the modified Bees 

Algorithm on the ACS-TSP Oliver30 dataset. A comparison of the results with 

other research found in the literature is also presented.  

Experiments were produced on a 2.00GHz Pentium Dual Core processor with 

1GB of RAM. The process took three days to arrive at the best parameters for 

the Oliver30 dataset using the programming language C#.Net 2008 and the .Net 

framework 3.5. 
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  Table 4.6 Search Spaces of the ACS Parameters 

Parameter  m β ρ q0 

Min value 2 0 0 0 

Max value Number of Cities 14 1 1 
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Table 4.7 The Optimum Results Obtained from the Modified Bees Algorithm Compared to 

Suggested Values in the Literature 

References m β ρ q0 
Mean no. 

of evaluations 

(Dorigo and Gambardella, 1997)  10 2 0.1 0.9 7839 

Pilat and White (2002) 20 6 0.2 0.7 7443 

Modified Bees Algorithm 12 4 0.2 0.8 2984 
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4.3 SUMMARY 

The chapter has described a method to solve stochastic optimisation problems. 

The key operation in this method was the multiple evaluation of the fitness of 

each parameter setting tried, when using a modified version of the Bees 

Algorithm to optimise stochastic problems based on statistical analysis. The 

new algorithm was tested on the problem of finding the best values of the 

parameters for an ACS-TSP. 

The results obtained show that the algorithm was able to effectively find near 

optimum solutions of such stochastic optimisation problems. Also, the results 

show that parameter setting produced by the Bees Algorithm outperformed 

parameter sets that were suggested by other parameter settings methods such as 

the ACS and the GA 

Further work could investigate the possibility of using the variation in the 

values of the fitness with a particular parameter setting as an indicator of the 

stability of that setting. For such an investigation, it might be useful to adopt a 

multi-objective optimisation technique such as that presented in 

(Ghanbarzadeh, 2007). Also, this modified Bees Algorithm can be applied to 

many well-kown TSP benchmarking instances for finding the best parameters 
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for them by taking the average of these optimum parameters for different 

instances. 

 

 

 

 

 

 

 

 

 

 

 

 



  

 148 

CHAPTER 5 

APPLICATION OF THE BEES ALGORITHM TO THE 

SOLUTION OF COMBINATORIAL OPTIMISATION 

PROBLEMS 

This chapter discusses the use of the Bees Algorithm to solve combinatorial 

optimisation problems. The problems belong to the general class of Travelling 

Salesman Problems. In particular, the application studied is that of optimising 

the scheduling of operations for a printed circuit board (PCB) assembly 

machine.  

5.1 BEES ALGORITHM CHARACTERISTICS FOR 

COMBINATORIAL OPTIMISATION PROBLEMS 

In general, the Bees Algorithm is a population-based stochastic search 

algorithm designed to solve specific types of optimisation problems 

(Ghanbarzadeh, 2007). When the Bees Algorithm is applied to combinatorial 

optimisation problems, these problems are generally characterised by the 

following: 

 the search space is discrete; 

 there is a set of finite constraints; 

 a solution is represented as an ordered sequence of components; 
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 there is a cost function which associates a cost to each solution generated by 

the search algorithm, where each component added to a solution contributes to 

the total cost of the solution; 

 there is a finite set of components from which solutions are constructed; 

 there is a finite set of possible transitions among the complements; 

 there is a finite set of sequences of components representing all possible 

valid combinations of components. 

Given these characteristics, the purpose of the Bees Algorithm is to construct a 

feasible sequence of components such that the cost of the solution is minimised 

when implemented in the minimisation problem (Pham et al., 2007a) and such 

that the sequence of components represents only valid transitions. 

The Bees Algorithm applied to combinatorial problems requires a graphical 

representation of these problems i.e. a graph that consists of a finite number of 

nodes and links between nodes (Engelbrecht, 2005). Each node represents one 

of the components, and a link represents a transition from one node to the next. 

A cost is associated with each link. The objective of the Bees Algorithm is to 

traverse this graph, in order to construct a minimum cost path. The constructed 
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path represents a sequence of components, i.e. a solution to the optimisation 

problem. In the case of the Bees Algorithm, a path is constructed by randomly 

generating all the nodes at once. 

The Bees Algorithm models a colony of honeybees searching for multiple 

solutions in parallel. To achieve the task of constructing optimal paths, bees 

have the following properties and characteristics: 

  A bee has a memory to store information on the path constructed. The memory 

is employed mainly to enforce constraints, such as the inclusion of a component 

only once. 

  One or more termination conditions are associated with each bee. These 

conditions include: ‘A solution with acceptable cost has been constructed’, ‘A 

maximum number of iterations has been exceeded’ or ‘Stagnation behaviour is 

observed’. 

To demonstrate the characteristics of the proposed algorithm for solving 

combinatorial problems, the Bees Algorithm has been applied to the TSP as it is 

easy to understand, has numerous applications and has been studied extensively 

by researchers from various disciplines (Aarts et al., 1988; Chandra et al., 1999; 

Freisleben and Merz, 1996; Gambardella and Dorigo, 1996; Helsgaun, 2000; 
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Knox, 1994; Laporte, 1992). In addition, the TSP is considered difficult to 

solve as it is a non-deterministic polynomial-time (NP-hard) problem, which 

means that the time complexity of finding an optimal solution to these types of 

problems grows exponentially with the problem size (e.g. the number of cities) 

(Laporte 1992). In a TSP with N cities, there are 
 

2

! 1N
 possible tours that 

must be computed in order to determine the optimal path. Rather than searching 

all possible tours to find an optimal solution, a common approach for this class 

of problem is to find a solution that is “good enough”. 

Many of these “satisfying” solutions can be determined in polynomial time. 

The TSP is a problem of finding the shortest tour that visits all the nodes of a 

fully connected graph, the nodes of which represent locations, and the arcs 

representing paths with associated costs (normally assumed to be distance).  

5.2 THE BEES ALGORITHM FOR SOLVING THE TRAVELLING 

SALESMAN PROBLEM 

The TSP has been one of the most popular combinatorial optimisation problems 

studied. A TSP can be either symmetric or asymmetric. A TSP is considered 

symmetric if travelling from city A to city B is given the same weight as 

travelling from city B to city A. This would be the case if we only consider 

distance, however if other factors are taken into account then we may not be 
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able to assign the same weight to travelling in both directions between two 

cities. Such cases are called asymmetric TSPs or ATSPs (Freisleben and Merz, 

1996). There are numerous techniques employed for tackling this class of 

combinatorial optimisation problem, including methods that are specifically 

tailored to the TSP as well as more general-purpose metaheuristics which can 

be applied to a number of hard combinatorial problems such as the graph 

partitioning problem and the quadratic assignment problem (Garey and 

Johnson, 1979).  

In the subsequent section, the main steps required to implement the Bees 

Algorithm when applied to solve the TSP will be presented. 

5.2.1 Implementing the Bees Algorithm for the Travelling Salesman 

Problem 

The TSP can be represented as a sequence of N cities to be visited, where the 

actual order of the sequence determines a particular solution to the problem 

(Johnson and McGeoch, 1997). Thus in general the search space consists of all 

N! permutations. 

The Bees Algorithm can be applied to the TSP in a straightforward way. Where 

each bee represents a candidate tour and where the first and the last element of 
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the bee represent the city of origin. For example, the bee b (B, D, A, E, C, B) 

represents a tour from city B, via cities D, A, E and C, then back to city B. 

When applying the Bees Algorithm to a TSP as shown in Figure 5.1, the 

algorithm starts with an initial population of n scout bees randomly distributed 

in the search space by generating a set of sequences representing the visiting 

sequence of each bee. Each bee becomes a symbolic string representing the 

sequence of cities. For N cities to be visited by a salesman, a string with a 

length of N is needed to encode each candidate solution where each bee will 

visit (C) number of cities generated randomly from one to (C), which 

formulates (C) links employed as the initial population for each bee. 

To generate b(B, D, A, E, C, B), a random number generator is employed to 

generate letters between A and E and once a letter is generated (i.e. B in this 

example) it will not be allowed to appear again. The first letter generated will 

appear again at the end to give a closed tour. Then the generator generates 

another letter (D in the above example), and so on until all the five letters are 

generated to constructed a full and closed tour. 

In step 2, the fitness computation process (i.e. the performance evaluation of the 

candidate solutions) is carried out for each patch visited by each bee. This is 

completed by calculating the distance between each two adjacent cities in the 
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sequence and adding all the distances together to find the total length of each 

tour using the objective function shown in Equation 5.1: 

),(),()( )1()(

1

1

)1()(  ccdccdf N

N
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




                                       Equation 5.1 

Where d(ci,cj ) is the distance between cities i and j, and (i) for i=[1], N 

defines a permutation. 

For the next step, step 3, the m patches (i.e. the tours) with the highest fitness 

levels are designated as “selected patches” and chosen for a neighbourhood 

search. 

Once completed, step 4, is commenced. The algorithm searches around the 

selected patches using a local search algorithm. Various operators could be 

employed to create neighbours to a given bee, including monadic operators 

such as mutation, inversion, swap and insertion (single or multiple). For the test 

problems considered in the next section, the single-point insertion and the two-

paths optimal (2-Opt) operators (Burke et al., 1999) are adopted and shown. 

In step 5, each tour created by a local operator represents a neighbour to the 

selected patches, and more tours will be created for the best e patches. In step 6, 

only the bee with the highest fitness (lowest tour length) in each patch will be 
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selected to form the next bee population. In step 7, the remaining bees in the 

population are placed randomly around the search space to scout for new 

potential solutions (tours). 

Steps 4-7 are repeated until either the best fitness value (which will be 

designated as the ‘global best tour’) has been found or the specified maximum 

number of iterations has been reached. 

At the end of each iteration, the colony will have two parts to its new 

population: representatives from the selected patches, and scout bees assigned 

to conduct random searches. These steps are repeated until a stopping criterion 

is met. 
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1- Initialise population with random solutions. 

2- Evaluate fitness of the population. 

3- While (stopping criterion not met) 

 //Form new population. 

4- Select sites for a neighbourhood search using a neighbourhood operator. 

5- Recruit bees for selected sites (more bees for best sites) and evaluate fitness. 

6- Select the fittest bee from each patch. 

7- Assign remaining bees to search randomly and evaluate their fitness. 

8- End While loop. 

 

Figure 5.1 Pseudocode of the Standard Bees Algorithm 
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5.2.2 The Bees Algorithm with Neighbourhood operators 

Given a feasible solution, x, to the problem, its neighbourhood is a set of 

solutions obtained from x by disturbing its components in some specified 

manner (Ibaraki, 1997). Two neighbourhood operators for the TSP have been 

implemented for the Bees Algorithm. These are: 

A. Single-point insertion 

Illustrating this process with an example, a closed sequence C B E A D C 

shown in Figure 5.2a, will be modified in the following way. The insertion 

operator breaks up the sequence by removing a section, in this case BE, 

between two randomly chosen positions B and E. This section is then inserted 

at a randomly selected point within the sequence; in this case, it is placed after 

point D. It must be noted that this is carried out while preserving the visiting 

order of the positions on the inserted section, producing the new sequence: C A 

D B E C. The sequence is then reconnected, as shown in Figure 5.2b. 
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                                                 Original closed sequence :  C B E A D (C) 

             Sequence after removal of section (BE) :  C A D (C) 

        Sequence following insertion of (BE) after point D :  C A D B E (C) 

Figure 5.2a Single-Point Insertion 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2b Single-Point Insertion 
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B. The 2-Opt operator 

The two (two paths) optimal (2-Opt) algorithm is a tour improvement procedure 

(Okano et al., 1999). The best-known tour improvement procedures have been 

found to be edge exchange procedures (Lin and Kernighan, 1973) such as the k-

Opt algorithm where all exchanges of k edges are tested until there is no 

feasible exchange that improves the current solution; this solution is said to be 

k-optimal. Since the number of operations increases rapidly with increases in k, 

k = 2 and k = 3 are most commonly employed.  

A 2-Opt operator involves randomly breaking a sequence into two paths. The 

visiting order of the positions (cities) on one of the paths is then reversed before 

the two paths are reconnected. The application of a 2-Opt operator to a closed 

sequence of five positions (cities) can be seen in Figure 5.3a below.  

In addition to the use of single-point insertion, the 2-Opt local search algorithm 

will be applied to the Bees Algorithm for the TSP. In the 2-Opt algorithm, two 

tours are considered neighbours if one can be obtained from the other by 

deleting two edges, reversing one of the resulting two paths, and reconnecting 

them. In the TSP, the 2-Opt neighbours of the tour are pair-wise part exchanges 

within the current solution sequence. For example, with a number of cities n = 5 
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and an original solution sequence of (C, B, D, A, E) shown in Figure 5.3b, it 

will be modified in the following way. Two edges will be deleted randomly 

(e.g. BD and EC), thus breaking the sequence into two paths (CB) and (DAE). 

One of the paths (DAE) will be reversed to become (EAD) and then the two 

paths will be reconnected. The new sequence is C B E A D. The sequence is 

then reconnected.  
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Original closed sequence:  C B D A E (C) 

Broken-up sequence:  C B  -- D A E 

Path 1:  C B 

Path 2:  D A E 

Path 2 (after reordering):  E A D 

Re-connected sequence:  C B E A D (C) 

Figure 5.3a 2-Opt Operator 
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Figure 5.3b 2-Opt Operator 
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In addition to the random way, there are different ways to generate a starting 

tour for the initial application of the 2-Opt algorithm. A typically way is to use 

a random number generator. In addition, a greedy solution obtained by a greedy 

algorithm can be employed. For example, applying a greedy algorithm (such as 

the Nearest Neighbourhood algorithm) to the TSP yields the following 

instruction: "At each stage visit the unvisited city nearest to the current city" 

(Lawler et al., 1985). In this study however, the starting point is rapidly attained 

using the Bees Algorithm as explained in Section 5.2.1. 

5.2.3 Experiment Results using the Bees Algorithm 

For the purpose of comparison with other optimisation techniques, the Bees 

Algorithm was tested on three specific benchmark TSPs. The dimensions of 

these problems were 16, 44 and 91 cities with optimum solutions equal to 

377.006mm, 569.706mm and 581.421mm respectively. The Euclidean metric 

which is the distance between two points is employed in these examples. Table 

5.1 presents the results produced by the Bees Algorithm along with those 

produced by three other approaches for the same TSPs. These approaches are 

the GA, SA and Ant Colony System (ACS) (Stützle and Hoos, 1997). 
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Table 5.1 Performance of the Bees Algorithm Compared to the GA, SA and ACS 

The algorithm 

TSP instances 

16 Cities 44 Cities 91 Cities 

No. of 

iterations 

Tour length No. of 

iterations 

Tour length No. of 

iterations 

Tour length 

GA 269 377.006 1908 593.689 4780 721.074 

SA 4810 377.006 97392 670.938 307921 884.009 

ACS 213 377.006 9 569.706 7 581.421 

Bees Algorithm 190 377.006 450 569.706 500 669.096 
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The results show that the Bees Algorithm is able to find the optimal solution for 

two of the benchmark problems (16 cities and 44 cities) and a near optimal 

solution to the third problem. The Bees Algorithm required less time (a fewer 

number of iterations) to find the solution to all three problems than either the 

GA or SA. However, while it could outperform the ACS for the smallest sized 

problem (16 cities), it needed more time for larger numbers of cities. Table 5.1 

also shows that the performance of the Bees Algorithm generally drops when 

the size of the problem instances increases. One of the reasons could be the 

parameter settings that need to be fine-tuned to cater for different scenarios. 

The next part of this chapter discusses the use of the Bees Algorithm to solve 

more complex optimisation problems than the TSP and that is the Printed 

Circuit Board (PCB) assembly planning problem. This is carried out over four 

sections:  

The first part, Section 5.4.1, reviews the basic types of PCB assembly machines 

available and the assembly planning problems to which optimisation techniques 

have been applied. The second part, Section 5.4.2, describes the general use of 

the Bees Algorithm to generate optimal PCB assembly plans. The third part, 

Section 5.4.3, demonstrates the application of this algorithm to one type of 

placement machine. The final part, Section 5.4.4, presents the results obtained. 
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5.3 THE BEES ALGORITHM AS APPLIED TO THE PRINTED 

CIRCUIT BOARD ASSEMBLY OPTIMISATION PROBLEM  

PCB assembly is the process of placing electronic components of different 

shapes and sizes employing various types of surface mount technology (SMT) 

placement machines at specific locations on a PCB. These placement machines 

have the ability of fast component placement and can handle high and rapid 

production demands. In its simplest form, PCB assembly optimisation aims to 

minimise the time needed to process the different components. Similar to the 

TSP, this time grows exponentially with the problem size (i.e. the number of 

components). 

In order to make full use of the high speeds of these placement machines, many 

intelligent optimisation techniques have been applied to find the best-solution 

to the PCB assembly problem by optimising their operation. These optimisation 

techniques include GAs (Goldberg, 1989), SA (Mathur et al., 2000), and 

Evolutionary Programming (EP) (Nelson and Wille 1995). Results have shown 

that these techniques are able to provide near-optimal solutions in a short period 

of time. 
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5.3.1 Printed Circuit Board Assembly 

A. A PCB Assembly Machine 

A PCB assembly machine in its generic representation comprises of three parts: 

- a feeder F1 (or an array of feeders F2 ) which supplies components, 

- an assembly head H which picks up components from F1 or F2 and 

places them onto the PCB, 

- a table T which carries the PCB. 

Table 5.2 illustrates three types of machines for placing through-hole and 

surface-mount components in sequence onto a PCB (Ayob et at., 2002).  

In a type–1 machine, a single feeder F1, which can take the form of a magazine, 

provides components to a single assembly head H (there is no turret) at a fixed 

location in the horizontal x-y plane. The head H also deposits components onto 

the PCB at a fixed point in the x-y plane. The table T moves in the x-y plane so 

that components are placed at the desired locations on the PCB. This type of 

assembly machine is the simplest and is normally adopted when only one type 

of component needs to be placed. 
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In a type–2 machine, the feeder (or feeder array) and the table are stationary 

(and hence the PCB is also held in at a fixed location). The single assembly 

head H (again, there is no turret) moves in the x-y plane carrying components to 

the correct placement positions on the PCB. If an array of feeders is adopted, 

the machine can be employed to place components of different types onto a 

PCB.  

A type–3 machine is the most complex as it has three moving parts: 

(1) A turret carrying multiple pick-up/placement assembly heads H. The centre 

of rotation of the turret is fixed in the x-y plane. 

(2) A feeder array F2 that moves along the x-axis to bring the feeder with the 

required component to the fixed pick-up location. 

(3) A table T that moves in the x-y plane to position different points of the 

PCB, in sequence, at the fixed component placement location. 

Component pick-up and placement occur simultaneously after the correct 

feeder and the table have reached their designated positions and the turret has 

completed indexing the appropriate pick-up and placement heads (Ayob et al., 

2002). This type of machine can also place components of different types. The 
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synchronisation of the multiple feeders, the multi-head turret pick-and-place 

system and the assembly table is required to perform the task. 
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Table 5.2 Types of PCB Assembly Machines and their Characteristics (Ang et al., 2009), T: 

Table, F1: Single Feeder, F2: Multiple Feeders, H: Head. 
Machine Type Type–1 Type–2 Type–3 

Model of 

system 

 

 

 

 

 

 
 

 

Model of 

problem  

Travelling salesman 

 

Pick and place Moving Board with Time Delay (MBTD) 

Description of 

assembling 

process  

The machine assembles the 
components while only the table 

T that holds the PCB may move 

in the x-y axis. The component is 
fed directly into the assembly 

head H. 

The head H moves in the x-y axis to pick 
and place (assemble) the components 

while the table T that holds the PCB is 

stationary. The feeder array F2 is also 
stationary.  

 

The multi-head turret H picks the components 
from the feeder array F2 (which moves in a 

single axis to provide the right component for 

assembly) with one head while placing them 
with the other onto the PC board after rotating. 

The PCB is held by a table that moves in the x-y 

axis in accordance with the sequence and 
location of the component that needs to be 

assembled. 

Key 

characteristics 

of solution 

1. The path to assemble the 
components 

1. The feeder slot arrangement. 
2. The shortest path to assemble the 

components. 

1. The feeder slot arrangement. 
2. The shortest path to assemble the 

components. 

3. The number of heads on the assembly 
turret. 

H 

F1 

T F2 

Turret 

F2 
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B. Printed Circuit Board Assembly Planning 

PCB assembly planning involves two types of tasks: set-up management and 

process optimisation. In the context of planning for a single assembly machine 

with an array of feeders (type–1 machine), set-up management can include 

arranging the allocation of components among the different feeders which is 

referred to as the component allocation problem (CAP). In an alternative 

arrangement, the relative positioning of the feeders in the array requires setting 

up, this is referred to as the feeder arrangement problem (FAP). Both 

arrangements are set-up in a manner to reduce assembly cycle times. 

Process optimisation for an assembly machine is usually a component 

sequencing problem (CSP). The aim of component placement sequencing is to 

optimise the movements of the table (in a type–1 machine) or the assembly 

head (in a type–2 machine). This problem could be viewed as a typical TSP for 

which the objective function might be expressed as in Equation 5.1a: 





N

i

iiTotal CCDD
1

1),(  

Equation 5.1a 

(Ho and Ji, 2007b) 
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Where N is the total number of components to be placed onto a PCB and D(Ci, 

Ci+1) is the distance travelled by the table or the assembly head when moving 

from the placement position for component Ci to the placement position for 

component Ci+1. (Note that the placement position for CN+1 is usually taken to 

be the same as that for C1, the starting position, as CN is the last component to 

be placed onto a given PCB.) 

As the cycle time is the real factor of interest in this problem, the objective 

function is usually rewritten as in Equation 5.1b: 

V

D
T Total

Total   

Equation 5.1b 

(Ho and Ji, 2007b) 

Where V is the average speed of movement of the table or assembly head. 

In a type–3 machine, known as the Moving Board with a Time Delay (MBTD), 

as shown in Figure 5.4, the assembly time is affected by three factors. These are 

the movement of the PCB, the shifting time of the turret head, and the travelling 

time of the feeder carrier. The total assembly time needed for a PCB is the 

summation of the dominating times associated with these three factors for all 

board components. The formula for the total assembly time is defined in 

Equation 5.2. 
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



N

i

iTotal TT
1

 

Equation 5.2 

(Ho and Ji, 2007b) 

Where N is the total number of components to be placed and Ti, the time 

required to place the component Ci, is given by Equation 5.3. 

]),,(),,(max[ 31211 tfftcctT gigiiii   
Equation 5.3 

(Ho and Ji, 2007b) 

Where g is the number of assembly heads positioned between the pick-up and 

placement heads on the turret, t1 is the time for the table to move from the 

location of component Ci-1 to the location of component Ci. The location of C0 

is the starting position of the table, and is given by the Chebyshev metric: 





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v

xx
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11 ,max),(  

Equation 5.4 

(Ho and Ji, 2007b) 

Where xi = x coordinate of the component ci, and yi = y coordinate of the 

component ci,, vx and vy are the velocities of the x-y table in the x and y 

directions respectively (both velocities are assigned as 60mm/s for this study), 
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t2 is the time for the feeder array to change the pick-up feeder from the feeder 

supplying component Ci+g to that supplying component Ci+g+1.  

Ci+g+1 is the component that is to be picked-up when component Ci is placed 

onto the PCB. (As CN is the last component to be assembled onto a given PCB, 

CN+g and CN+g+1 are the g
th

 and (g+1)
th

 components to be placed onto the next 

PCB.) The Chebyshev metric essentially takes into consideration the x-y 

movement of the board table as independent motions. This is usually the case 

when the x-y table is controlled by two motors, each separately controlling the 

x and y movement. 

The distance between feeders is measured using the Euclidean metric. The 

travelling time of the feeder carrier between feeder ),( f

i

f

ii yxf  and ),( f

j

f

jj yxf  is 

given by Equation 5.5. 

f

f

i

f

j

f

i

f

j

ji
v

yyxx
fft

22

2 ),(


  

Equation 5.5 

(Ho and Ji, 2007b) 

Where xi is the x coordinate of the feeder fi, yi is the y coordinate of the feeder 

fi, and vf  is the speed of the feeder carrier (vf  is  60mm/s in the case study). 
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For the case study in this chapter, the feeders are arranged in a straight line (y-

axis) as shown in Figure 5.5 and separated by a y-distance of 15 mm. Hence, 

the x-coordinates for the feeders are the same throughout, and any variation due 

to any possible vibration will be negligible.  

t3 is the time taken by the turret to index the assembly heads by one position 

and is set as 0.25 seconds per step. Generally, indexing takes place one position 

at a time and always in the same direction.  

As there are three moving parts in this type of machine (a board, a feeder, and a 

turret), each moving part has to wait for the other two parts to complete their 

movements before the next component can be picked up or placed. Hence, the 

time Ti, defined in Equation 5.3, needed for the placement of component i is the 

maximum time between the board movement t1, the feeder movement t2, and 

the indexing time during each pickup and placement t3. The problem with this 

type of machine is that it needs to determine simultaneously the placement 

sequence of the board components and assign the various types of components 

to the feeders such that the total assembly time is minimised (Ho and Ji, 2007a). 

Another aspect of this process that must be addressed is the more complex, but 

also more realistic, problem of optimising both the arrangement of feeders 

denoted as, F = {f1…, fj, …, fR-1, fR}, where fj is the feeder for the j
th

 component 
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type, and the sequence of placement of components denoted as C ={c1…, ci, 

…, cN-1, cN}, where ci is the i
th

 component to be placed (Figure 5.5) in order to 

minimise the total assembly time TTotal as given by Equation 5.2. 
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Figure 5.4 PCB Assembly Machine of the MBTD Type (with 2 Rotary Turret Heads, 10 Feeder Slots and a 

Moveable Assembly Table) 
 

 

 

Multi-head 

turret (with 2 

heads in this 

diagram) 
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The x-axis movement of the PCB mounting 

table  
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system 

with 10 

slots 

PCB 

PCB mounting 

table 

The y-axis 
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the PCB 

mounting 

table 

The rotary movement 

of the multi-head turret 
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Component Assembly Link Feeder Arrangement Link 

c1 c2 c3 c4 . . . cN-3 cN-2 cN-1 cN f1 f2 . . . fR-1 fR 

Figure 5.5 Representation of a PCB Assembly Sequence 
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Previous researchers have applied a variety of techniques to provide a solution 

to this PCB assembly planning problem. The techniques employed have 

included the GA (Maimon and Brha, 1998; Wong and Leu, 1993; Ong and 

Khoo, 1999; Ho and Ji, 2007b), EP (Nelson and Wille, 1995), the minimal 

spanning tree technique (Leipala and Nevalainen, 1989), and rule-based expert 

system techniques (Yeo et al., 1996). The GA has been successfully employed 

to solve the Moving Board with a Time Delay (MBTD) problem (Wong and 

Leu, 1993; Ong and Khoo, 1999). Four genetic operators and two-links were 

employed to provide solutions for the component placement and feeder 

assignment problems. It was shown that the method is easily adaptable to the 

planning problems of many types of assembly machines. In (Ong and Tan, 

2002), the researchers focused on the application of the GA to solve the MBTD 

problem for a high-speed PCB assembly machine where eight operators (four 

crossover operators and four mutation operators) were employed. In another 

paper (Yeo et al., 1996), a rule-based frame system for PCB assembly was 

developed to generate the component feeder arrangement and placement 

sequence for concurrent chip placement machines. The system was 

implemented using an AI programming environment and led to significant time 

savings in PCB assembly. Ho and Ji (2007b) in their book, focused on the 

optimisation of the PCB assembly line efficiency. They integrated the 



  

 180 

component sequencing and the feeder arrangement problems together for the 

chip shooter machine. 

Of these four techniques, the GA and EP seem to be the most popular due to 

their simple implementation and robustness against local optimum traps where 

a local, but not global minimum is found. A comparison of the results obtained 

by other researchers using the GA and EP on a benchmark PCB assembly 

planning problem will be presented. These results were compared with the 

results found when applying the Bees Algorithm to the same problem. 

5.3.2 The Proposed Bees Algorithm for PCB Benchmark Problems 

Figure 5.6 shows the flowchart of the Bees Algorithm when applied to the 

Component Sequencing Problem (Type–3 PCB machine). After the parameters 

of the Bees Algorithm have been initialised; the algorithm generates initial 

solutions (i.e. scout bees) for both component sequencing and feeder 

arrangement problems. Hence each bee is comprised of two links (as shown in 

Figure 5.5). The first link represents the sequence of component placements and 

is generated as a simple TSP. The second link representing the feeder 

arrangement is generated randomly. 
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The scout bees are normally created by randomly generating feeder 

arrangements and placement sequences and then checking that they are valid. A 

valid feeder arrangement would be a permutation of feeder labels, each 

corresponding to a particular feeder and component type. For example, label 

(A) might correspond to feeder (A) which supplies 100 resistors. The 

number of labels in a valid feeder arrangement would be equal to the number of 

feeders in the assembly machine. A valid placement sequence would also be a 

permutation of labels. Each label representing a placement position on the PCB, 

with the total number of labels (i.e. the length of the sequence) being equal to 

the number of placement positions. 

Next, the fitness of each bee is measured, where each fitness is given as the 

assembly time, found using Equation 5.3. The fitness values are then sorted and 

the bees with higher fitness values are selected and a neighbourhood search is 

initiated using the 2-Opt local search heuristic for the first link and the single-

point insertion algorithm for the second link. The fittest bee from each site is 

then selected to form the next bee population. The remaining bees in the 

population are placed randomly around the search space to scout for new 

potential solutions (sequences). This process is repeated until either the best 

fitness value has been found or the specified maximum number of iterations has 

been reached. 
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Initialise Bees Algorithm parameters 

  

Initialise a scout bee population (n) 

  

Generate initial solutions for the component sequencing problem (1
st
 

link) randomly 

  

Generate initial solutions for the feeder arrangement sequencing 

problem (2
nd

 link) randomly 

  

Evaluate the fitness of population 

  

Select best bees (m) 

  

Select sites for neighbourhood search (n-m) 

  

Apply 2-opt Local Search for the 1
st
 link 

  

Apply single-point insertion for 2
nd

 link 

  

Evaluate the fitness of the neighbours 

  

Select fittest bees from each site 

  

Assign remaining bees to random search ( n- m ) 

  

New population of scout bees ( m + ( n – m ) ) 

  

 

Figure 5.6 Flowchart of Bees Algorithm Solving a PCB Problem 
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5.3.3 PCB Component Assembly Using a MBTD Machine 

The problem employed to test the ability of the BA to perform PCB assembly 

planning for a type–3 machine is detailed in (Leu et al., 1993). For this 

problem, the number of components to be placed onto a PCB is 50 and there are 

ten feeders, each supplying a different type of component. The coordinates of 

the placement positions and the parameters of the assembly machine (speed of 

movement of the table, assembly heads and indexing time of the turret) 

summarised in Table 5.3, are also given in (Leu et al., 1993). 

At first, the PCB problem was solved with the initial positions of the scout bees 

chosen completely randomly, as described above. Further improvement to the 

Bees Algorithm was then made by introducing a good patch (a good initial 

solution) to one of the scout bees. The location of that patch was found by 

optimising only the component placement sequence (the first link) thus treating 

the problem as a simple TSP.  
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Table 5.3 The Parameters of the MBTD Assembly Machine 

Number of components  50 

Number of feeders 10 

Number of turret heads 2 

Indexing time of turret 0.25s/index 

Average PCB mounting table speed 60mm/s 

Average feeder system speed 60mm/s 

Distance between feeders 15mm 
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5.3.4 Experimental Results 

The main features of the Bees Algorithm employed in this work have been 

chosen by running a set of trail experiments and shown in Table 5.4. As can be 

noticed from this table, the number of parameters in the Bees Algorithm has 

been reduced from six to three. This is because the elite sites parameter (e) was 

not employed and hence the number of recruited bees (nep) around it was not 

employed either. In addition, the patch size parameter (ngh) was not needed 

because a local search operator e.g. either the 2-Opt or single-point insertion, 

was employed for this type of combinatorial problem. 

Table 5.4 also shows that the population size n was initialised to 100 bees for 

the first iteration. This then dropped to be equal to the number of selected sites 

m (20 sites). The recruited bees were then:  nep, that is 50 bees for each of the 

best m sites. 

5.4 DISCUSSION 

Figure 5.7 shows the evolution of the best assembly time as the operation of the 

Bees Algorithm progresses for the first case where a good starting solution was 

not chosen (without “seeding”). After 160 iterations, the best assembly time 

was found to be 25.92 seconds. The corresponding component placement 

sequence is shown in Figure 5.8. 
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For the second case where seeding was employed, the sequence produced an 

assembly time of 29 seconds as shown in Figure 5.9. 

Figure 5.10 shows the evolution of the best assembly time and Figure 5.11 the 

optimal sequence after 100 iterations with an assembly time of 24.08 seconds. 

For comparison, Table 5.5 presents the above results found using the Bees 

Algorithm alongside those produced by other researchers for the same problem 

using the GA (Ho and Ji, 2007b; Leu et al., 1993; Ong and Tan, 2002) and EP 

(Nelson and Wille, 1995). 

According to Table 5.5, the performance of the Bees Algorithm with seeding 

(24.08 seconds) is superior to that of the simple Bees Algorithm (25.92 

seconds), the simple GA (51.5 seconds), the hybrid GA (25.5 second) and EP 

(36 seconds) when applied to a benchmark assembly task. In addition, the 

number of evaluations needed to perform the optimisation process using the 

Bees Algorithm with seeding is less than any of the others. 
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Table 5.4 The Parameters of the Bees Algorithm 

Bees Algorithm parameters Symbol 

Value 

Completely random 

initial population 

Seeding initial 

population with a 

good solution 

Population size n 

100  

(1st iteration only) 

100 

(1st iteration only) 

n = m 

(for iteration 2 

onwards) 

n = m 

(for iteration 2 

onwards) 

Number of selected sites m 20 20 

Number of recruited bees for best m sites nep 50 50 

Number of iterations itr 160 100 

 

  



  

 188 

 

 

 

 

 

 

 

Figure 5.7 Evolution of Best Assembly Time for Case 1 – Without Seeding 
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Figure 5.8 Optimal Assembly Sequence (25.92 sec) after 160 Iterations for 

case 1 – Without Seeding 
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Figure 5.9 Assembly Sequence (29.00 sec) Employed as a Seed for Case 2 – 

With Seeding 
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Figure 5.10 Evolution of Best Assembly Time (29.00 sec) for case 2 – 

With Seeding 
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Figure 5.11 Optimal Assembly Sequence (24.08 sec) after 100 Iterations for 

case 2 – With Seeding 
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Table 5.5 Results Obtained using Different Algorithms 

References 1 2 3 4 Bees Algorithm 

Optimisation technique GA EP GA HGA No seeding With seeding 

Best initial solution (sec) 70 n/a 60 28.83 54.59 29 

Number of evaluations 175,000 500,000 50,000 14,150 160,000 100,000 

Best assembly time (sec) 51.5 36 26.9 25.5 25.92 24.08 

1: (Leu et al., 1993) 

2: (Nelson and Wille, 1995) 

3: (Ong and Tan, 2002) 

4: (Ho et al., 2007b) 
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5.5 SUMMARY 

This chapter has described the application of the Bees Algorithm to the 

optimisation of pick-up and placement sequences for a PCB assembly machine. 

For a benchmark assembly problem, the optimal assembly time of 24.08 

seconds obtained by the Bees Algorithm was 6% shorter than the best assembly 

time reported in the literature to date, 25.5 seconds. If the assembly machine 

was employed continuously, 24 hours a day, 365 days a year, such a saving in 

assembly time would represent an annual increase in production of some 

72,000 PCBs. 

The performance of the Bees Algorithm for solving the component sequencing 

and feeder arrangement problems introduced, showed a significant 

improvement in the assembly time. However, this reduction in assembly time 

achieved by the Bees Algorithm was at the expense of a high number of 

candidate solutions that had to be generated and evaluated (as seen with the 

number of evaluations presented in Table 5.5).  

The computational experiments presented in the chapter have demonstrated that 

the Bees Algorithm provides a significant reduction in assembly time compared 

to the results obtained using the GA and EP when applied to a benchmark 

assembly task. 
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CHAPTER 6 

CONCLUSION 

This chapter summarises the main contributions of this work and the 

conclusions reached. It also provides suggestions for future work. 

6.1 CONTRIBUTIONS 

This research has introduced the Bees Algorithm as a swarm-based tool for 

solving complex optimisation problems. 

The specific contributions were: 

 Employing the Bees Algorithm for tuning its own parameters; 

 Using the Bees Algorithm for stochastic optimisation problems; 

 Explaining how the Bees Algorithm can be efficiently applied to 

combinatorial optimisation problems, namely, the Travelling Salesman and  

Printed Circuit Board problems; 

 Reducing the number of parameters in the Bees Algorithm from six to 

three. This was attained by making some of the parameters dependent on others 

and by the selection of the best sites only and not selecting the elite bees as is 
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the case with the standard Bees Algorithm. This in return eliminated the need to 

choose the number of recruited bees around the elite sites (nep). In addition, the 

patch size parameter was not required because a local search operator e.g. either 

the 2-Opt or single-point insertion, was employed for this type of combinatorial 

problem. 

6.2 CONCLUSIONS 

All algorithms have a set of parameters that control their behaviour. These are 

employed in order to improve the performance of the algorithm when trying to 

arrive at solutions to the problem at hand. This set of parameters depends on the 

problem being tackled and its dimension. Unfortunately, these parameters 

cannot be generalised to any type of problem of any size. 

To arrive at a suitable set of parameters, different algorithms employ different 

techniques. 

The use of the activity of foraging bees as model for an optimisation process 

was shown to provide substantial benefits especially when compared with other 

optimisation techniques.  

The research in this thesis has extended the application of the Bees Algorithm 

to the solution of complex optimisation problems. The new modified Bees 
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Algorithm was employed to optimise stochastic problems based on statistical 

analysis. The number of parameters of a standard Bees Algorithm was reduced 

from six to three which makes the tuning easier. The algorithm can also adapt 

itself to the problem it is dealing with.  

When combined with a local search algorithm (2-Opt), the Bees Algorithm was 

also able to handle combinatorial problems. 

6.3 FUTURE WORK 

There are a number of directions that can be pursued in order to enhance the 

Bees Algorithm and widen its application potential. 

1. The Bees Algorithm could be combined with any of the Ant Colony 

Optimisation Algorithms such as Ant Colony System (ACS) to ensure higher 

performance and solution quality. For example, a new algorithm could be 

developed that employs the Bees Algorithm as a global search and the ACS as a 

local search.  

2. The Bees Algorithm was employed to tune its own parameters. It can be 

tested on the tuning of other algorithms and techniques, for example, online 

tuning of the Particle Swarm Optimisation (PSO) algorithm. 
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3. The Bees Algorithm could be applied to other types of combinatorial 

optimisation problems, such as Vehicle Routing, Job-Shop Scheduling and 

Quadratic Assignment Problems and to other types of assembly machine such 

as Pick and Place Machines (PAPs). 

4. More statistical analysis could be added to the modified Bees 

Algorithm. For example, the standard deviation of the fitness values which 

indicates the stability of the solution, a smaller standard deviation meaning a 

more stable solution, could be added as part of a multi-objective function to the 

modified Bees Algorithm to find the best and most stable solution. 
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