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Abstract  

CACNA1C encodes the Cav1.2 L-type voltage gated calcium channel.   Generic variation in 

CACNA1C has been consistently identified as associated with risk for psychiatric disorders 

including schizophrenia, bipolar disorder, major depressive disorder and autism. Psychiatric 

risk loci are also enriched for genes involved in the regulation of synaptic plasticity. Here we 

show that the expression of Cacna1c is regulated in the rat hippocampus after context 

exposure, contextual fear conditioning and fear memory retrieval in a manner that 

correlates to specific memory processes.  Using quantitative in situ hybridisation the 

expression was down-regulated in CA1 by brief exposure to a novel context and to a 

conditioned context, and up-regulated in the dentate gyrus after contextual fear 

conditioning. No changes were measured after prolonged context exposure followed by 

conditioning, a procedure that retards fear conditioning (latent inhibition), nor with fear 

memory recall leading to extinction. These results are consistent with a selective role for 

Cav1.2 in the consolidation of context memory and contextual fear memory, and with 

processes associated with the maintenance of the fear memory after recall. The 

dysregulation of CACNA1C may thus be related to associative memory dysfunction in 

schizophrenia and other psychiatric disorders.  
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Introduction 

Long-term potentiation and the synaptic plasticity underlying long-term memory formation 

require de novo gene transcription and protein synthesis[1][2][3][4][5].  Previous research 

has shown changes in the expression of specific genes accompanying different aspects of 

associative learning; identifying separable molecular signatures of distinct memory 

processes including consolidation, recall and extinction[6][7][8][9][10]. Notably both early 

and late phases of transcriptional regulation following the induction of plasticity have been 

recognised[11][12]. 

Calcium influx into the post-synaptic neuron plays a critical role in regulating the changes in 

gene expression which accompany synaptic plasticity [13]. This calcium signal acts via 

signalling cascades to regulate the activity of transcription factors such as CREB.  There are 

multiple routes for calcium to enter the cell, including via N-methyl-D-aspartate receptors 

(NMDA-R), GluA2-lacking calcium permeable α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPA-R) and indirectly, metabotropic glutamate receptor 

(mGluR), and voltage gated calcium channels (VGCCs).  The regulation of expression of 

subunits of NMDA-Rs and mGluRs has been investigated following long term potentiation 

(LTP) revealing increased NR2B and mGluR1c expression evident in a late phase from 24 hrs 

following the induction of LTP in dentate gyrus granule cells [14]. These results demonstrate 

key channels are themselves subject to activity-dependent regulation following the 

induction of plasticity, with a late phase profile of transcriptional regulation. However much 

less is known about the regulation of expression of VGCCs during learning and plasticity 

events. 

L-Type VGCCs are known to play a central role in controlling activity-dependent synaptic 

plasticity[15–17]. Cav1.2 channels, the predominant form of L-Type VGCCs in the mammalian 

brain, are ideally situated somato-dendritically to link neuronal activation to calcium 
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signalling and the regulation of gene expression[15, 16]. The C-terminal tail of the α1c 

subunit of Cav1.2 (encoded by CACNA1C) directly binds calmodulin, a high affinity calcium 

binding protein, that through its interaction with target molecules including calcium-

calmodulin kinases is key to triggering the signalling cascades which transmit the calcium 

signal to the nucleus, contributing to the regulation of activity-dependent genes such as 

BDNF.  

Notably L-Type VGCCs, in particular the CACNA1C gene, have been strongly associated with 

risk for psychiatric disorders. Genome-wide association studies have shown a highly 

significant association between genetic variation in CACNA1C and risk for both bipolar 

disorder and schizophrenia, and cross disorder studies have suggested that genetic variation 

in the CACNA1C gene contributes risk across a range of psychiatric disorders including major 

depressive disorder and autism[18][19][20] [21][22] [23]. These findings are consistent with 

the more general observation that psychiatric risk loci are enriched for genes involved in the 

regulation of synaptic plasticity, including VGCCs, components of the NMDA receptor 

complex and the interactors of the Fragile X Mental Retardation Protein FMRP [24]. 

However, it is not clear whether CACNA1C is itself regulated transcriptionally during learning, 

and if so whether the regulation of CACNA1C is associated with specific phases of learning 

and memory. 

Here we sought to further investigate the involvement of L-Type VGCCs in plasticity by 

investigating the regulation of the expression of the Cacna1c gene (the rodent homologue 

of CACNA1C) during associative learning. To examine learning related changes in Cacna1c 

expression we focussed on contextual fear conditioning (CFC) and memory (CFM), a form of 

associative learning known to depend on protein synthesis in the hippocampus [11].  In 

addition, we investigated the transcriptional regulation of Cacna1c after the recall of CFC 

under conditions of recall that promote the maintenance of the CFM (“reconsolidation”) or 
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extinction, both of which are independent associative memory mechanisms that depend on 

hippocampal protein synthesis[25][26], and in latent inhibition (LI), an effect in which pre-

exposure to neutral stimulus retards subsequent conditioning [27] that depends on L-Type 

VGCCs [28]. We here report the selective regulation of Cacna1c during specific phases of 

associative memory formation, results that are likely to be of relevance in understanding the 

contribution of genetic variation in this gene to risk for psychiatric disorders.   

Methods 

Animals 

Sixty-four male Lister Hooded rats (250 – 300 g) were housed in pairs in conventional NKP 

RC2R cages within a holding room maintained at 21°C on a 12h reversed light/dark cycle 

(lights on 8:00pm) and with ad libitum access to food (Harlan 2014 global rodent diet) and 

water.  Experiments were conducted in the dark period.  Animals were sacrificed from their 

home cages using a rising concentration of COz at specific time points following each 

behaviour of interest. All procedures were conducted in accordance with local Cardiff 

University Ethical Committee approval and the United Kingdom 1986 Animals (Scientific 

Procedures) Act (Project license PPLs 30/2236 and 30/2722). 

Behavioural procedures 

Contextual fear conditioning (CFC) took place in a rat conditioning box with a metal grid floor 

(Standard modular test chamber for rat, Med Associates Inc., Vermont, USA).   For CFC, 

individual animals were placed into the novel conditioning chamber for 2 mins prior to 

receiving a 0.5 mA scrambled footshock for 2 secs. They remained in the chamber for an 

additional 1 min before being returned to home cages.   A Novelty group was exposed to the 

context for 2 mins without receiving a footshock and were returned to home cages.   

Conditioned animals were sacrificed 2, 4, 8 and 24 hrs later. Naïve home cage litter mates 

were sacrificed at the same time.  Novelty animals were sacrificed 4 hrs following exposure.  
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A separate group of animals were individually pre-exposed to the context for 8 hrs before 

receiving the footshock to induce latent inhibition (LI) to control for gene expression 

associated with the experience of the footshock in the absence of CFM formation [6].  A pre-

exposure (PreExp) group was also used to assess altered gene expression by the prolonged 

exposure to the context, spending 8 hrs in the box without a subsequent footshock.  Both of 

the latter groups were sacrificed 4 hrs following return to home cages. Thus, a 4 hrs post-

training to sacrifice delay is represented in all experimental groups.  

A further cohort underwent CFC to measure the regulation of Cacna1c expression after recall 

and extinction.  Forty-eight hrs later animals were returned to the conditioning context for 

either 2 mins (Recall (2 min)) or 10 mins (Extinction (10 min)).  The 2 min exposure induces a 

cellular mechanism typically associated with reconsolidation of the recalled fear memory 

and which is required for the maintenance of the memory, whereas the prolonged re-

exposure leads to the formation of an inhibitory associative extinction memory 

characterised by reduced conditioned freezing behaviour [29].  The recall groups were 

sacrificed 2 hrs following re-exposure to the context along with the conditioned group that 

were not re exposed to the training context (No Recall). This time was selected because our 

own previous data suggest that altered gene expression can be measured at this delay after 

recall (e.g. Trent et al. 2015) and that molecular events associated with recall occur in a 

shorter temporal span than after learning (Alberini et al. 2005). 

n = 6 for all groups except CFC groups sacrificed 2 and 8 hrs after conditioning (n = 4) 

Behavioural analysis 

Freezing behaviour served as a measure of unconditioned and conditioned fear to the 

context during the training and recall tests and was defined as complete immobility except 

for respiration. The behaviour was digitally recorded and quantified by two independent 

scorers blind to the experimental group. One unit of freezing behaviour was defined as a 
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continuous absence of movement sampled 1s in every 10s. Th percentage of time spent 

freezing was calculated every 2 min, or 1 min immediately after the footshock (post-

unconditioned stimulus (Post-US)).  The data by the two scorers were concordant.  The 

scores were expressed as mean ± SEM.  Repeated measures ANOVAs using Mauchley’s test 

for sphericity with Greenhouse-Geisser correction were used to compare freezing levels 

before US (Pre-US) and post-US phases during conditioning and to analyse freezing levels in 

the Recall (2min) and Extinction (10min) groups during the subsequent recall test. 

In situ hybridisation 

As described previously [30], brains were removed immediately post-mortem, fresh frozen 

on dry-ice and stored at – 80°C. Coronal sections (14 µm) through the dorsal hippocampus 

were made (Leica Microsystems CM1860UV), mounted on poly-L-lysine coated glass 

microscope slides and air-dried at RT. Sections were fixed in 4 % PFA solution and 

dehydrated before storage at 4°C in 95% ethanol until required.  

For hybridisation, a cDNA antisense probe (45-mers, 3’ - TCGAAGTAGGTGGAGTTGACCACG-

TACCACACTTTGTACT GGTGC -5’ complementary to nucleotides 3940-3896, NM_012517.2) 

were synthesized commercially (SigmaGenosys). The probe was 3′-end labelled with [α-thio 

35
S] dATP (1200 Ci/mmol; Perkin Elmer-NEN) in a 30:1 molar ratio of radiolabeled 

ATP:oligonucleotide using terminal deoxynucleotidyl transferase (30U/µl, Promega). 

Specific activity of the 
35

S-labelled probe was between 2.0 × 10
5 

and 3.0 × 10
5 

dpm/µL 

probe. To define non-specific hybridization, adjacent slide-mounted sections were 

incubated with radiolabeled oligonucleotide in the presence of an excess (80X) 

concentration of unlabelled oligonucleotide probe. After hybridization, sections and a 14C 

ladder (American Radiolabelled Chemicals, Saint Louis, USA) for quantification, were 

exposed to Kodak BioMax MR X-ray film (Sigma-Aldrich Company Ltd) for 7 days before the 

autoradiograms were developed. 



 8 

In situ hybridisation semi-quantitative analysis  

Films were analysed using ImageJ software (http://rsbweb.nih.gov/ij/).  Optical density 

values were converted to concentrations using a standard curve calculated by reference to 

the 14C ladder.  Measurements were taken from each region of interest including 

corresponding regions that defined the non-specific hybridisation signal. A specific signal 

was then calculated for each region of interest by subtracting the mean total and non-

specific values for an individual rat. The mean concentration in each region for each animal 

was then divided by the region mean in the respective control group to give a standardized 

grain count (percent) for each group. Results were expressed as mean ± SEM. Standardized 

results were analysed by ANOVA. Dunnett’s test was used for comparisons to the control 

Naïve group, and Bonferroni tests for other comparisons were conducted where ANOVAs 

were significant. Pearson correlation analysis was performed to investigate the association 

between freezing behaviour and Cacna1c expression.  

 

Results 

CFC rats exhibited an increase in freezing behaviour after footshock 

Freezing behaviour was scored for all animals that were exposed to the training context.   

There were no differences in freezing behaviour during the first 2 mins exposure to the 

context between groups (F(3,20)ε = 1  = 1.990, p = 0.148, Fig. 1.).  In those animals that 

received a footshock (CFC and LI groups), there was a significant interaction between 

freezing behaviour during Pre-US and Post US-training phases and group (F(1,10) ε = 1 = 

34.747, P < 0.000). During the Post-US phase, rats in the CFC group exhibited greater 

freezing following the footshock compared to LI animals that experienced prolonged pre-

exposure to the context (F(1,10) ε = 1  = 25.879, P < 0.001). Thus the CFC but not LI group 

showed successful acquisition of CFM [31]. 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Basal expression of Cacna1c 

ISH was conducted to determine the basal expression profile of Cacna1c.  Basal levels of 

expression were compared between the prefrontal cortex (PFC), cerebellum and 

hippocampus (Fig. 2.).  Expression of Cacna1c was highest in the dentate gyrus (dg) and CA3 

sub-regions of the hippocampus. Relatively high levels were also seen in the granule layer of 

the cerebellum.  While much lower, expression in the PFC was highest in the medial PFC.  

Regulated expression of Cacna1c in CA1 by exposure to a novel context and in dg after CFC 

There was a reduction in Cacna1c expression in the CA1 in the Novelty group compared to 

naïve controls (t (10) = 2.933, P = 0.015, though this did not survive Dunnett’s correction for 

multiple comparisons across all control groups (P = 0.120)(Fig. 3.). This reduction was 

measured 4 hrs after novel context exposure.  No differences were observed in the CA3 or 

dg (F (3,23) = 1.331, P = 0.292 and F (3,23) = 1.229, P = 0.325, respectively) in the Novelty, 

PreExp or LI groups. 

Expression of Cacna1c increased following CFC specifically in the dg (F (4,21) = 2.823, P = 

0.048) when compared with naïve controls.  Post-hoc Bonferroni tests revealed a significant 

difference between expression at 2 hrs and 24 hrs post conditioning, with increased 

expression of Cacna1c at 24 hrs (P = 0.046).  

There was no effect of CFC at any time point on expression in the CA1 or CA3 regions of the 

hippocampus (F(4,21) = 0.149, P = 0.961 and F(4,21) = 0.666, P = 0.622, respectively). 

An association between freezing behaviour and gene expression selectively in the dg is 

further highlighted since responses during training (post-US or novel context exposure) was 

correlated with the expression of Cacna1c 4 hours later in the dg (r(12) = 0.540, P = 0.046), 

but not in CA3 (r(12) = 0.191, P = 0.506) or CA1 (r(12) = 0.253, P = 0.384). 
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Prolonged exposure to the conditioned context results in reduced freezing behaviour 

All animals successfully acquired CFM as observed by increased freezing following the 

footshock compared to the 2 mins before the US during conditioning (F(1,15) ε = 1  = 293.515, 

p = 0.000;  Group X Freezing Behaviour F(2,15) ε = 1  = 1.238, p = 0.318), Fig. 4.). Forty-eight 

hours after CFC, animals re-exposed to the training context exhibited high levels of freezing 

indicative of successful recall of CFM.  There were no Group X Freezing Behaviour differences 

between Post-US phase and the first 2 mins of recall (F (1,10) ε = 1   = 0.237, p = 0.637).  

Prolonged 10 min exposure to the context resulted in reduced levels of conditioned freezing 

indicative of the extinction of CFM (F(2.296, 11.479) ε = 0.574  = 14.531, p = 0.001).  Freezing 

levels were significantly reduced in the last 2 mins of the session compared to the first 2 min 

after recall (F(1, 5) ε = 1  = 93.889, p = 0.000).      

Reduced expression of Cacna1c in the CA1 following brief recall  

Cacna1c expression differed in the CA1 region between the Recall (2 min) and Recall (10 min) 

extinction groups 2 hr after recall of CFM (F (2,15) = 4.628, p = 0.027, Fig. 5.).  Post-hoc 

Bonferroni tests revealed a significantly reduced expression in animals that underwent the 

short 2 min recall session compared to those that experienced the 10 min extinction session 

(p = 0.029). There were no differences in expression of Cacna1c in the CA3 or dg region of 

the hippocampus in any of the three groups (F(2,15) = 0.358, P = 0.705 and (F(2,15) = 0.196, 

P = 0.824, respectively). There was weak negative correlation between freezing behaviour in 

the last 2 min of the recall test and Cacna1c expression in CA1 (r(10) = 0.504, P= 0.094), but 

not in CA3 (r(10) = 0.027, P = 0.933) or dg (r(10) = 0.088, P = 0.785). 
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Discussion 

We show that the expression of Cacna1c was regulated in the hippocampus in an activity-

dependent manner and specifically with distinct learning and memory events.  Basal 

expression of Cacna1c was found to be highest in the dg region of the hippocampus, 

followed by the CA3, and much lower levels measured in CA1.  In situ hybridisation revealed 

that exposure to a novel context down regulated Cacna1c expression in the CA1. Increased 

expression was seen in the dg 24 hrs following CFC. Decreased expression in the 

hippocampal CA1 field also followed re-exposure to the conditioned context. However, the 

retrieval-associated decrease was seen in rats exposed for 2 min but not a 10 min context 

exposure, which is associated with the extinction of CFM, indicating that retrieval associated 

regulation of Cacna1c expression is not related to extinction processes. 

Delayed regulated expression of Cacna1c in the dg following CFC 

There was an increased expression of Cacna1c 24 hrs compared to levels 2 hrs following CFC.  

There were no changes observed in other regions of the hippocampus, or at other time 

points investigated.  This indicates that the expression of Cacna1c is related to the 

consolidation of CFM, selectively in the dg.  

This increase in expression 24 hrs following CFC suggests a role for Cav1.2 channels in a long-

lasting alteration in the synapse as a result of plasticity.  Previous studies have found delayed 

upregulation of gene expression in subunits of glutamate receptors in the dg following the 

induction of LTP in hippocampus [14, 32].  Thomas et al., (1996)[14] found an increase in the 

GluRN2B subunit of NMDA receptors evident from 24 hrs, peaking at 48 hrs, along with 

increases in mGluR1c which only became evident at 96 hrs following induction of LTP.  It was 

proposed that these late-phase profiles of expression may relate to cascades of events that 

are required for the maintenance of LTP.  Persistence of long-term memory has also been 

found to be related to delayed protein synthesis of BDNF at around 12 hrs following CFC 
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[33]. The increase of expression in Cacna1c observed here may indicate a delayed role in 

consolidation and long-term maintenance of CFM. Increases in Cacna1c expression in the dg 

with CFC are consistent with a role for this hippocampal region in CFM acquisition[34][35]. 

As the changes were specifically seen in the dg, it is also possible that this increase in Cacna1c 

in relation to learning could contribute to the recently reported role of α1c subunit-

containing Cav1.2 channels in regulating neurogenesis in the dg[36][37]. 

Selective reduced expression of Cacna1c in CA1 following context exposure  

We show that both unconditioned and conditioned context exposure leads to a decrease in 

Cacna1c expression in the CA1.  This regulation in CA1 may not be directly linked to novelty 

processing per se, a function co-ordinated by the dg and CA3 regions [38][39], but with the 

role of the hippocampus in the formation and storage of the conjunctive representation of 

the context necessary for the consolidation and reconsolidation of CFC[40][41][42]. The 

regulation of Cacna1c expression in CA1 is therefore consistent with its role as a key region 

for the consolidation and reconsolidation of contextual fear (CS-US) memory[43][44][45]. 

The regulation of Cacna1c expression in both dg and CA1 after acquisition but not recall (CA1 

only) is consistent with the differential contributions of these two hippocampal regions to 

CFM acquisition and retrieval [46].    

We also noted that the regulation in Cacna1c expression was sensitive to the duration of 

context exposure with reductions in mRNA levels seen after short exposures (Novelty and 

Recall (2 min) groups), but not longer periods (PreExp and Recall (10 min) groups).  This 

observation may relate to a selective role for Cav1.2 in context memory processing during 

consolidation & reconsolidation rather than pavlovian CS-US and CS-no US events related to 

CFM encoding, LI and extinction.  

In summary, the regulation of Cacna1c transcription in the hippocampus after conditioned 

or unconditioned context exposure and following CFC indicate a role for Cav1.2 in specific 
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memory processes; down-regulation of expression correlated with CA1-associated 

contextual memory and upregulation of expression in the dg associated with CFM encoding. 

To determine a causal role for Cav1.2, in these distinct memory processes by region requires 

more refined genetic or molecular rodent models.     

Implications for the role of Cav1.2 in hippocampal-dependent learning and memory  

There has been long standing pharmacological evidence for the role of LVCCs in the 

consolidation and extinction of fear memory[28][25]. Genetic models have indicated that 

there may be differential contribution of the major brain isoforms Cav1.2 and Cav1.3 

(encoded by the CACNA1D gene linked to risk for bipolar disorder[47] to different 

components of associative memory. Mice with forebrain knock out of Cacna1c show no 

deficits in consolidation and extinction of CFC[48] and the consolidation of cued fear 

memory[49], while Cacna1d null mutants show impaired consolidation, but not extinction 

[50]. These data may indicate a specific role for Cav1.3 with fear memory formation. 

However, these models show compensatory adaptations in activity-dependent neuronal 

signalling[49][51], which make these data difficult to interpret. The role of Cav1.2 with 

associative memory processing is indicated in a gain-of-function model that shows 

enhanced cued and contextual fear memory via altered consolidation, strengthening and/or 

extinction[52]. The causal role of Cav1.2, selectively, in fear memory and behaviour remains 

to be determined using better genetic or molecular animal models.     

Implications for psychiatric disorders 

The CACNA1C gene has been strongly associated with risk for psychiatric disorders including 

schizophrenia and bipolar disorder in genome-wide association studies [23][21][22][19][20]. 

These disorders are known to be associated with cognitive alterations that include 

alterations in learning, memory and affective processing. The current results show that 

Cacna1c expression is regulated in distinct regions of the hippocampus at the transcriptional 
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level and which correlate with context processing required for specific components of 

associative CFM formation and maintenance. Genetic variation in Cacna1c may impact on 

the plasticity during key phases of associative learning. It is likely that any distinction in the 

role of Cacna1c in these aspects of learning will be further revealed by investigating the 

functional regulation of calcium influx through LVGCCs. Our results thus provide additional 

evidence that a link exists between Cav1.2 and distinct behavioural domains associated with 

common behavioural phenotypic features of psychiatric disorders including schizophrenia, 

ASD and BD.  
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Fig. 1. Freezing behaviour (% time spent freezing) during Pre-US and Post-US phases of 

CFC.  Freezing behaviour in the fear conditioned CFC group was greater than in the LI group 

that underwent prolonged pre-exposure to the context before footshock.  Bars represent 

average freezing behaviour for each group.  Rats in the Novelty and PreExp groups were 

exposed to the context for 3 min and 8 hours respectively and did not receive a footshock. 

n = 6 for all groups. *** P < 0.001.  
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Fig. 2. Basal expression of Cacna1c mRNA. a Quantification of relative in situ hybridisation 

(ISH) density values. Specific hybridization was calculated by subtracting the “non-specific” 

signal, defined by excess unlabelled oligonucleotide probe, from “total” values normalised 

to the specific signal measured in the medial PFC (mPFC).  Greatest expression was observed 

in the dentate gyrus (dg).  Bars represent mean of the specific hybridisation values.  Error 

bars are +/- SEM. n = 4. b Representative ISH autoradiogram images of Cacna1c expression 

in the PFC, cerebellar and hippocampal subregions. Total hybridization of the probe is shown 

on the left-hand side and non-specific hybridization on the right.   
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Fig. 1. Expression of Cacna1c in CA1, CA3 and dg sub-regions of the hippocampus following 

different learning events. a Representative ISH autoradiogram images of Cacna1c expression 

in a Naive (left) and novel context (Novelty) exposed (right) rat. b A reduction in expression 

was measured in CA1 following exposure to novel context compared to naïve animals. 

Expression in the dg following CFC showed an increase at 24 hrs compared to levels at 2 hrs. 

Bars represent mean specific hybridisation values normalised to Naïve control.  Error bars 

are +/- SEM. n = 6 for all groups except 2 and 8 hrs (n = 4). * P < 0.05. 
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Fig. 2. Freezing behaviour during CFC and recall.  There was an increase in freezing following 

US presentation in all groups (t(17) = -16.898, P =< 0.001) indicating acquisition of CFM. The 

reduction in conditioned freezing following prolonged 10 min re-exposure indicates 

acquisition of extinction in the Extinction group. Data points represent the average time 

spent freezing (%) for each group during each training and testing epoch. *** P < 0.001 n = 

6 for all groups. 
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Fig. 3. Expression of Cacna1c 2 hrs following Recall (2 min) or Recall (10 min) session 

normalised to animals that underwent CFC alone (No Recall group).  a Representative ISH 

autoradiograms of Cacna1c expression in a No recall (left), Recall (2 min) (middle) and Recall 

(10 min) (Novelty) exposed (right) rat. b There was a reduction in expression in the CA1 in 

the Recall (2 min) compared to the Recall (10 min) groups (* P < 0.05 Bonferroni corrected). 

Error bars are +/-SEM. * P < 0.05. n = 6 for all groups. 
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