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mization problem is NP-hard, so exact computational methods are not useful to solve
real-world instances. Our research introduces a parallel evolutionary algorithm to effi-
ciently configure and synchronize traffic lights and improve the average speed of buses
and other vehicles. The Bus Rapid Transit on Garzén Avenue (Montevideo, Uruguay) is used
as a case study. This is an interesting complex urban scenario due to the number of cross-
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Bu}; Rapid Transit ings, streets, and traffic lights in the zone. The experimental analysis compares the numer-
Traffic lights synchronization ical results computed by the parallel evolutionary algorithm with a scenario that models
Evolutionary algorithms the current reality. The results show that the proposed evolutionary algorithm achieves

better quality of service when compared with the current reality, improving up to 15.3%
the average bus speed and 24.8% the average speed of other vehicles. A multiobjective opti-
mization analysis also demonstrates that additional improvements can be achieved by
assigning different priorities to buses and other vehicles. In addition, further improvements
can be achieved on a modified scenario simply by deleting a few bus stops and changing
some traffic lights rules. The benefits of using a parallel solver are also highlighted, as
the parallel version is able to accelerate the execution times up to 26.9x when compared
with the sequential version.
© 2018 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

The number of vehicles has been growing steadily worldwide in the last twenty years. This growth is one of the main
causes of serious problems related to traffic congestion, which severely affect the development of cities and the quality of
life (Bull, 2003). Urban intelligence methods have been widely applied to address several issues in modern smart cities
(Fernandez et al., 2016). One of the main problems in big urban areas is related to citizens mobility, especially when using
public transportation. A large number of private vehicles in circulation impacts negatively on the efficiency of public
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transport service, thus lowering its acceptance. To deal with these problems, a number of intelligent solutions have been
proposed, which are included in the paradigm of Intelligent Transportation Systems (ITS).

ITS integrate synergistic technologies, computational intelligence, and engineering concepts to develop and improve
transportation. ITS are aimed at providing innovative services for transport and traffic management, with the main goals
of improving transportation safety and mobility, and also enhancing productivity (Sussman, 2005). The ITS paradigm can
be applied in combination with other innovative approaches for public transportation (Pefia et al., 2018). Bus Rapid Transit
(BRT) is a mass transit system that has gained popularity because it provides a good user experience and reduced implemen-
tation costs when compared against more expensive solutions, such as metros (Bafiobre and Romero, 2009; Wright and
Hook, 2007).

Traffic optimization methods aim at improving the flow of vehicles on the road network. The strategies are classified in
two main categories: (i) those that influence drivers’ behavior (by setting traffic lights, installing signs, etc.) and (ii) those
that propose changing the infrastructure (adding new lanes, widening streets, etc.) (McKenney and White, 2013). Infrastruc-
ture modifications can significantly improve traffic flow, but they are expensive and need physical space that is not often
available. For this reason, strategies to influence drivers’ behavior are usually a better (or even the only viable) option in
many scenarios. Methods for synchronizing traffic lights are among the most effective in speeding transit and avoiding con-
gestion, improving the development of cities and the quality of life of citizens.

The traffic lights synchronization problem is complex when dealing with real-world scenarios. Thus, computational intel-
ligence and metaheuristics are applied to find accurate solutions within reasonable execution times (Garcia-Nieto et al.,
2013; Rouphail et al., 2000; Sanchez et al., 2008).

In this line of work, this article presents a nature-inspired computational intelligence methodology for traffic lights opti-
mization. A complex real-world problem is addressed applying a parallel Evolutionary Algorithm (EA), computing accurate
solutions for decision-makers and authorities to implement in order to improve the quality of service offered to citizens.

Several authors have addressed the traffic lights planning problem using computational intelligence methods before.
However, traffic lights planning proposals in the context of BRTs are scarce in the related literature. Our research contributes
with a traffic planning method that takes into account the point of view of both public transportation users and city admin-
istrators. We focus on BRTs, which are relevant scenarios for modern cities, studying the problem of traffic lights synchro-
nization to streamline public transportation. Several features are included in the problem model and also in the field
research performed, including: time to board the buses (including time to pay the ticket, with and without smart card), time
to alight from the buses, real traffic data gathered in situ, traffic lights phases/offset and traffic rules, etc. Furthermore, we
apply a novel methodology that combines an efficient parallel evolutionary optimization technique with microscopic sim-
ulations, and study multiobjective variants of the traffic lights synchronization problem that account for different priorities
for public transportation (buses) or private transportation (other vehicles). This approach provides the decision maker sev-
eral options to speed up the travel times and improve the user experience on BRTs. As a case study we apply the optimization
approach in a real world scenario, the BRT defined on Garzén Avenue, Montevideo, modeled using real data collected in situ.

The studied BRT poses a complex challenge because it includes an extensive urban area with many crossings and traffic
lights, rules for exclusive lanes, and different types of traffic (on Garzén Avenue and crossing streets). We study different
options for improving the speed of both buses and vehicles, analyzing trade-off solutions, and a new scenario that accounts
for modifications to bus stop locations and traffic lights rules to further improve speed and travel times. The main results
demonstrate that the proposed parallel EA is able to improve the average speed of buses and other vehicles when compared
with the current non-optimized scenario. Additional experiments demonstrate that further speed improvements can be
achieved when considering different priorities for buses and other vehicles, and new traffic/bus stop settings in the new sce-
nario. Furthermore, we also demonstrate the benefits of using a parallel model for evaluating the different configurations of
traffic lights: the parallel version of the proposed EA improves the execution times up to 26.9x when compared with the
sequential version. These results have been presented to the public transportation administrators in Montevideo.

The article is organized as follows. Section 2 reviews related works. Section 3 presents the problem description and the
optimization model. The EA proposed to solve the problem is described in Section 4. Section 5 presents the experimental
analysis using realistic case studies on Garzén avenue. Finally, the conclusions and the main lines of future work are dis-
cussed in Section 6.

2. Related works

Computational intelligence has been applied to traffic lights planning, as this is a complex nonlinear stochastic problem and
exact algorithms cannot compute solutions efficiently (Araghi et al., 2015). Furthermore, exact methods require mathematical
models to model the traffic dynamics, which are hard to build. Thus, combining computational intelligence and simulations
provides a robust methodology to handle stochastic events, uncertainty, and dynamic environments (Zhao et al., 2012).

Early related works focused on small problem scenarios (Peng et al., 2009). Adaptive methods (Chen and Xu, 2006) and
vehicular networks (Massobrio et al., 2017a,b) are useful in real urban areas but usually demand large infrastructure invest-
ments (vehicles and roadside) to guarantee on-line information exchange. Another popular strategy for traffic lights plan-
ning is green wave (Wu et al., 2014), which coordinates traffic lights in the same street to achieve continuous traffic in
one direction. The main problem of this methodology is the limited urban topologies where it can be applied.
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Regarding BRTs, a few recent proposals applied bioinspired computing for traffic lights planning. Lopez et al. (2011) pro-
posed a multiagent simulation model for Transmillenio BRT in Bogotd, Colombia, using Petri nets to describe the dynamic of
the system (people, road traffic dynamics, bus network operations). The capabilities of the system to fulfill mobility demands
in rush hours minimizing the number of buses was studied. The main finding is that there is an optimal number of buses to
attend the demand. Beyond that number, using more buses does not reduce the traveling times of passengers. This can lead
to a more efficient system from the point of view of environmental protection, resources utilization, etc.

Zhou et al. (2017) proposed a real-time signal priority control algorithm for single intersections based on vehicles com-
municating with signal controllers on BRTs. Buses location and speed are sent in real-time to roadside units and the algo-
rithm computes the estimated arrival time of buses to each intersection and the timetable deviations. This information is
used to implement signal priority at intersections for delayed buses, to improve quality of service. Eight different strategies
are proposed according to the traffic lights phase when the bus arrives. A BRT in Jinan China with simulated traffic data was
studied. Results indicated that average passenger delay can decrease up to 25.3% and speed of BRT vehicles can be improved
in up to 7.6%.

Closer to our research, Sanchez et al. (2008) applied EA for traffic lights synchronization to improve traffic flow in Santa
Cruz de Tenerife, Spain. The road network has 42 traffic lights, 26 input roads, and 20 output roads. Nine hand-made solu-
tions from traffic administrators are used as initial population and a two-point crossover is applied to explore the search
space. The fitness function evaluates the travel time for vehicles in the simulated road network. Results from the experimen-
tal evaluation indicate that the EA was able to improve up to 26% the trip times over the baseline solutions, but no details
about the benefits for public transportation are reported.

Olivera et al. (2015) applied Particle Swarm Optimization for traffic lights planning and reducing pollution in Seville and
Malaga, Spain. Objectives are integrated in a single objective function applying a linear aggregation approach. Results are
compared with Differential Evolution over two scenarios of 0.75 km?. Results show significant improvements in fuel con-
sumption, time delay, and pollutant emissions. The obtained traffic lights configurations reduce CO and NOx concentrations
by 25%. Improvements on fuel consumption reached 18.2%. However, the single objective approach does not model a global
vision of the traffic network: solutions with traffic jams are wrongly considered as “good” solutions, because vehicles that do
not move produce low emissions and have minimal fuel consumption.

The analysis of related work indicates that computational intelligence has been applied to solve traffic lights planning
problems. However, specific solutions for BRTs are scarce. Our research proposes applying to BRTs a model that considers
several features previously used for traffic lights planning in generic urban scenarios. As case study, the methodology is
applied to Garzén BRT. This scenario is larger than the ones studied in most related works: it includes 6.5 km and a total
area of more than 30 km?. Several distinctive features are also included: a significantly larger number of intersections, all
28 bus stops in the zone, real traffic data collected in situ, and specific mobility logic due to the BRT regulations (exclusive
lines, priorities, and allowed/forbidden turning corners).

3. Methodology for public transport optimization via traffic lights optimization

This section describes the problem model and the applied methodology.

3.1. Problem model for traffic lights synchronization in BRT

The problem model simplifies the reality, considering only those features relevant for traffic lights synchronization. A
map of the geographical area to study is built including real data collected in situ. Microscopic simulations are applied to
evaluate the solutions. The methodology and tools used in the research are described in the following paragraphs.

Map. The first step of the modeling process is to design a map of the area of study. For this purpose, the Open Street Map
(OSM) service (Haklay and Weber, 2008) is used to design a map of the studied area, which is compatible with the micro-
scopic simulator used for evaluation. The Java OSM editor is used to correct and adapt the map, keeping only those elements
that are relevant to the problem. The validation of the designed map can be assessed by comparing it with data gathered
in situ and from other services (Google Maps/Bing Maps). The map is downloaded from OSM and the NetConvert application
is used to include real data for traffic lights collected in situ, as described next.

Field research for gathering real data from traffic lights, buses, and vehicles. The real mobility data for the area of study (e.g.,
number of vehicles, traffic lights data) may not be freely available. Thus, a field research might be needed to get the real traf-
fic data corresponding to the studied area. For this purpose, we propose applying the recommendations for vehicle counting
proposed by Smith and McIntyre (2002) to avoid bias: normal traffic should be characterized counting vehicles on a working
day, with normal weather, and in representative (non-peak) hours. In addition, other traffic scenarios, especially high traffic
on peak hours, should be considered. For the case study presented in this article, a field research was performed to gather
information about the traffic density and the traffic patterns in Garzén Avenue and surrounding streets for different traffic
conditions (low, normal, and high). The details are presented in Section 5.1.

Using information from field research and ITS is a generic methodology that can be applied to other related traffic and
public transportation optimization problems (Nesmachnow et al., 2017; Massobrio et al., 2018; Fabbiani et al., 2018).
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Traffic simulator. Candidate solutions (i.e., traffic-light configurations) are evaluated using SUMO (Behrisch et al., 2011), a
free open-source traffic simulator that allows modeling streets, vehicles, public transport, and traffic lights. SUMO applies a
microscopic model, performing an explicit simulation of each element in a scenario. The simulator is simple to operate: it
takes as input a set of configuration files that represents the road network, vehicles, traffic, and traffic lights, and generates
output files with useful information from the simulated scenario: simulation time, number and speed of vehicles, travel
duration, and other relevant metrics. SUMO also allows including specific features to model BRTs, including bus stops,
bus trajectories and frequencies, number of passengers boarding buses, time to board, etc. Initial experiments were per-
formed to analyze and validate the results of BRT scenarios simulated using SUMO, including different traffic lights phases,
different traffic patterns, and specific modifications on the scenario. Results showed that the microscopic simulation offered
by SUMO is able to accurately model the reality of urban traffic for buses and private vehicles, particularly in the context of
BRTs, matching the results obtained in the field research.

3.2. Metaheuristics

Metaheuristics are generic strategies for designing computational methods to find approximate solutions for complex
problems (e.g., search, optimization, and learning problems) (Glover, 1986; Nesmachnow, 2015).

In practice, many optimization problems are NP-hard, intrinsically complex, and demand a large amount of computing
effort. Many of the problems arising in real-world applications from science and technology are within this high-
complexity class of problems, due to several reasons: they have very large search spaces, they include hard constraints that
make the search space very sparse and hard-to-evaluate optimization functions, or they manage very large volumes of data.
This is the case for many traffic optimization problems (Pefia et al. 2018, 2017a,b).

The problem addressed in this article, i.e., optimizing traffic lights to improve the speed of public transportation in a BRT,
is an instance of a NP-hard problem. Metaheuristics provide efficient and accurate methods for solving realistic instances of
the problem, which cannot be solved using classical exact resolution methods for optimization (e.g., enumerative search,
backtracking/branch and bound, dynamic programming) which are extremely time-consuming.

3.3. Evolutionary algorithms
EAs are non-deterministic metaheuristic methods that emulate the evolution of species in nature to solve optimization,

search, and learning problems (Bick et al., 1997). In the past thirty years, EAs have been applied to solve many highly com-
plex optimization problems. Algorithm 1 presents a pseudocode of a generic EA.

Algorithm 1. Pseudocode of an EA.

t+0

initialize( P (t))

evaluate(P(t))

while not stop_condition do

P'(t) < selection(P(t))

P’ (t) < recombination(P'(t)) {according to pr}
P"'(t) < mutation(P"(t)) {according to par}
evaluate( P (t))

P(t) + replacement(P"(t), P(t))

t—t+1

end

AW N =

© 0w N o wm

=
=}

=
[

return best individual found

=
N

EAs are iterative methods that apply stochastic operators on a set of individuals (the population). Each individual in the
population encodes a candidate solution for the optimization problem. The initial population is generated by applying a ran-
dom procedure or by using a specific heuristic for the problem (line 2 in Algorithm 1). A fitness value is assigned to every
individual by the evaluation function (line 3), indicating how good the solution is at solving the problem. The search is
guided by a probabilistic selection-of-the-best technique (for both parents and offspring) towards tentative solutions of
higher quality (line 5). Iteratively, new solutions are built during the search by applying probabilistic variation operators,
including mixing parts of two individuals (recombination, line 6) or performing random changes in the individual (mutation,
in line 7). Specific policies are used to select the groups of individuals to recombine and to determine which new individuals
are inserted in the population in each new generation (the criterion used by the replacement function, in line 9).
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The stop condition usually involves a fixed number of generations or fixed execution time, a quality threshold on the best
fitness value, or the detection of a stagnation situation. The EA returns the best solution found in the iterative process, taking
into account the fitness function (line 12).

Parallel models for EAs have been proposed to accelerate the computing time required for the search, especially when
dealing with complex objective functions or hard search spaces (Alba et al., 2013). In this work, we apply a master-slave
model for parallelization, in order to reduce the execution time of performing the traffic simulations for the studied scenario.

As suggested in related works, simple EAs such as basic genetic algorithms (Goldberg, 1989) are not powerful enough to
find the best traffic lights configuration efficiently, mainly because the search space is intrinsically complex. Ad-hoc opera-
tors are needed to properly explore the search space and avoid getting stuck in local optima. Furthermore, a parallel model is
needed to overcome efficiency issues when dealing with large real scenarios via simulations. Thus, we propose applying a
custom EA implemented in C++, using the skeleton available in the Malva library for optimization (Fagiindez and
Massobrio, 2014). We performed specific modifications of the Malva code in order to implement the parallel model for fit-
ness evaluation using multiple threads, suitable for execution in modern multi-core computers. The main features of the pro-
posed EA are described in the next section.

4. A parallel evolutionary algorithm for traffic lights synchronization

This section describes the proposed parallel EA for traffic lights synchronization.

4.1. Optimization model

The applied optimization model is described in the following paragraphs.

Optimization criteria. The mathematical model for optimization combines two goals regarding the quality of service pro-
vided to the users: the average speed for buses (53) and the average speed for other vehicles (5p) in the studied scenario. We
optimize (i.e., maximize) both speeds simultaneously, by applying a linear aggregation approach defined by the fitness func-
tion f = wg x S5 + Wo x Sp, used for solution evaluation in the proposed EA (0 < wg,Wo < 1;wp + Wwo = 1). This way, we can
focus on assigning a higher priority to public transport (buses), by choosing appropriate values for weight wg.

Optimization using evolutionary algorithms. The optimization process using evolutionary algorithms is described in the dia-
gram on Fig. 1. The diagram clearly separates the two main components of the resolution strategy: the optimization algo-
rithm and the procedure using simulations for solution evaluation. The optimization algorithm, i.e.,, a master-slave
parallel EA, performs the search of the best traffic lights configuration, considering the optimization criteria defined in
the previous subsection. In turn, the simulation procedure is used to evaluate the speed objectives sz and s, for each solution
considered by the parallel EA. Simulations are performed using SUMO, according to the problem model defined in Section 3.1,
and using the specific problem features and real data (map, traffic patterns and volume, etc.). The interface between these
two modules is via the communication of solutions and fitness values. Each slave process in the parallel EA sends solutions
(i.e., traffic lights configurations) to the evaluation module, which performs the corresponding simulation and returns the
fitness value taking into account the two evaluated speeds.

The conceptual separation between the problem and the optimization objective is twofold. On the one hand, the clear
separation between problem and resolution method allows applying a modular design for the optimization software. This

optimization algorithm | solution evaluation

Master-slave
parallel EA

master

e em

Best traffic lights
“configuration

EIEINN B [ ESEN

imulation

fitness value .1i OETE:t

Fig. 1. Diagram of the optimization model.
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way, from the point of view of the software design, it is easy to incorporate new algorithms (e.g., heuristics, other meta-
heuristics, or ad hoc methods) to solve the problem. On the other hand, the modular design allows applying the proposed
optimization approach and the metaheuristic method to solve the traffic lights synchronization problem over different sce-
narios, by incorporating maps, traffic data, and traffic-lights location for a given area.

The traffic speed optimization is performed not only on the BRT, but over a portion of the road network including several
surrounding streets. This global optimization approach is crucial to achieve a traffic lights configuration that guarantees a
sustainable improvement on the mobility patterns. This improvement cannot be assured if the problem model considers
only some streets or optimizes each intersection separately.

4.2. The proposed implementation

Solution encoding. The proposed encoding includes the elements needed for traffic lights planning: (i) the duration for
each of the multiple phases allowed in every intersection, and (ii) the offset, indicating the time the light cycle starts.

Fig. 2 graphically explains the concept of traffic lights phases. Crossings are classified according the number of phases for
traffic lights operation. For instance, in a crossing with two phases (Crossing 1 in the figure), one of them allows going for-
ward in the main street and the other one allows turning right. In a crossing with three phases (Crossing 2 in the figure), one
of them allows going straight in the main street, a second one allows vehicles coming from a specific direction in the sec-
ondary street (in the image, from the left) to go straight and turn (right, and left when allowed), and the third phase allows
vehicles coming from the opposite direction in the secondary street (in the image, from the right) to go straight and turn.

In the proposed encoding, all values for traffic lights phases and offsets are natural and expressed in seconds. Following
previous works on the topic and regulations defined by the Highway Capacity Manual of the Transportation Research Board,
USA (Transportation Research Board, 2010), a limit of 120 s per phase was adopted. The corresponding cycle length depends
on the number of traffic lights phases defined in each intersection (two phases in most intersections and three phases in
those intersections where it is allowed to turn left). For the minimum phase duration, especially for green lights, the field
research performed in Garzén was taken into account: vehicles counting and queue analysis were performed to define a min-
imum green phase duration of 16 s, corresponding to an average of 6-7 vehicles in the average queue, according to traffic
engineering rules (Transportation Research Board, 2010). Offset values are within the range [0,60] and they are cyclic, i.e.
they depend on the phase and cycle duration: if a cycle is larger than 60 s, the encoded value is interpreted as cycle length
modulus 60 to define the real offset.

The solution encoding logically groups this information into crossings, storing the time for each phase. Numeric values
correspond to the duration of green lights, red lights, and the offset of initiation. Every traffic light starts on its first phase.
Amber lights are omitted as they do not affect the times of passing vehicles; they are assumed to last for four seconds, as
specified by international standards. Fig. 3 presents an example of the solution encoding for the traffic lights in Garzén Ave-
nue, the case study used for the experimental evaluation.

The length of an encoded solution depends on the number of crossings and the number of phases defined to optimize in
the scenario. Using this encoding allows optimizing the complete scenario: all intersections are optimized simultaneously,
unlike some proposals in the related works where intersections are configured and optimized separately.

Fitness function. The fitness function, defined in Section 3, accounts for the optimization of the average speed of buses and
other vehicles over the defined scenario. Several weight combinations are used to explore different priorities between buses
and other vehicles, according to suggestions provided by city administrators.

Population initialization. A seeded initialization procedure (Reeves and Rowe, 2002) was applied to generate the initial pop-
ulation of the proposed EA. A set of initial solutions for the problem is built using the data collected from the current reality
on the area of study, where traffic lights are not optimized neither for buses nor for other vehicles. Over this real setting,
small perturbations to both phase durations and offsets were applied to provide diversity to the initial population. Phase
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Fig. 2. Phases in an intersection.
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Fig. 3. Example of the solution encoding applied in the parallel EA.

duration values were modified using a Gaussian distribution with deviation ¢ = 0.4, empirically determined as an appro-
priate value to sample interesting configurations and to provide diversity. Phase offset values were modified applying a uni-
form distribution in the range of candidate offset values. These settings allow generating an appropriate diversity to start the
search.

The proposed initialization method is based on similar approaches from the related literature (Sanchez et al., 2008;
Olivera et al., 2015), where real information was combined with stochastic procedures to generate initial candidate
solutions.

Recombination. We apply a one point crossover (Spears, 2010), considering the information of each street crossing as a
group, and only taking into account the positions between groups as possible crossover points.

Mutation. Two mutation operators are applied: (i) Gaussian mutation (Spears, 2010) to modify the values of phases; and
(ii) random modification (according to a uniform distribution) (Miihlenbein, 1992) of the offset values. Both mutations are
applied according to a given mutation probability.

Selection and replacement. We use the standard tournament selection operator, configured to consider three individuals
that participate in the tournament, where the best one survives. Regarding the replacement policy, the proposed EA applies
the (i + 1) evolution model, where parents and offspring compete for survival (Reeves and Rowe, 2002).

Parallel model. A master-slave model is applied for fitness function evaluation: a master process handles the population
and a pool of threads. In each generation, the master assigns a set of solutions to be evaluated on slave processes, executing
in those threads. Slaves perform the simulations to evaluate each traffic lights configuration and return the results to the
master to be used in the evolution.

5. Experimental analysis
This section reports the experimental evaluation of the proposed EA for traffic optimization on Garzén Avenue.
5.1. Problem instances

In Montevideo, the capital city of Uruguay, there is a growing problem of traffic congestion, similar to the issues arising in
many other cities in Latin America. Local authorities have taken steps towards reducing the impact of this problem by imple-
menting an Urban Mobility Plan to improve the efficiency of public transport (Intendencia de Montevideo, 2017). The Urban
Mobility Plan proposes including BRTs, with priority for buses, in the city. One of the first elements of the Urban Mobility
Plan was the BRT implemented in Garzén Avenue, located in the north of Montevideo. This avenue includes 24 intersections
with traffic lights and exclusive lanes for buses. Open to the public since 2012, the BRT on Garzén Avenue has been much
criticized for failing to streamline public transport.
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Fig. 4. Left: OSM map. Right: processed version compatible with SUMO (Garzén Avenue in red, alternative parallel paths in blue and green).

The studied area includes the BRT in Garzén Avenue and two alternative paths running on parallel streets and internal
roads on both sides of Garzén Avenue. Each alternative path includes two-way streets or two one-way streets to guarantee
connectivity. Fig. 4 presents the studied area. Crossings in the studied scenario have traffic lights with two and three phases.

The real mobility data for Garzén Avenue is not available from the local government of Montevideo. Thus, a field research
was needed to get the real traffic data. The field research included many activities devoted to gather information about the
traffic density and the traffic patterns in Garzén Avenue and surrounding streets. Several static measurements were per-
formed in situ using manual counting methods and also automatic counting using video cameras to determine the traffic
density. In addition, dynamic counts were performed in the studied area (especially the BRT in Garzén Avenue), traveling
in public transportation (bus) and private transportation (car) to evaluate the travel times using each vehicle type. The num-
ber of vehicles and several other relevant traffic data were gathered in different days an different hours.

Table 1 summarizes the number of vehicles counted in the field research on five representative intersections of the stud-
ied area.

A baseline scenario was built using the real data and the actual configuration of traffic lights on Garzén Avenue and sur-
rounding streets. The baseline scenario is used as a reference to compare the results computed by the proposed parallel EA.
This baseline scenario models the current reality on the area of study, where traffic lights are not optimized neither for buses
nor for other vehicles.

Three XML files are used in the SUMO simulation: (i) traffic lights configuration, defining the geographical location, phases
and offsets; (ii) vehicle routes, built using real data and the Traffic Modeler software (Papaleondiou and Dikaiakos, 2009); and
(iii) public transport details, including paths, frequencies, stop locations, and delay times in each stop. We decided to use a
between-areas mobility model in the problem scenario, which provides an appropriate granularity to define the traffic den-
sity. We collected data from all urban bus lines in the zone (G, D5, 2, 148, 409). We also analyzed one month of GPS data
(position/speed) from buses to determine mobility patterns and average speed on Garzén Avenue (14.5 km/h), based on
the travel time and the distance, using data from the field research and GPS records. Therefore, the speed values take into
account delays caused by traffic and by passengers boarding/alighting the bus. We evaluated the average times for phases
and the offsets of the current traffic lights configuration. Finally, we studied videos from cameras in the zone to compute the
average delays due to the times that passengers need to board and alight from the buses (validate card, pay ticket in cash,

Table 1
Summary of the traffic data gathered in the field research in Garzén area.

Intersection Traffic direction

Garzén South Garzoén North West East
Camino Colman 410 390 140 230
Plaza Vidiella 400 444 292 0
Aparicio Saravia 390 450 40 90
Batlle y Ordo ez 510 390 470 300
Camino Ariel 436 226 177 203
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etc.), which are between 20 and 35 s, depending on the bus stop. All these data were included in the proposed simulation
model.

Three traffic patterns are studied: (i) normal traffic, with the main bulk of data from the field research (e.g., working day,
sunny weather, non-peak hour), including 2000 vehicles and 70 buses; (ii) low traffic, using data collected during weekends
and night hours, with 1000 vehicles and 70 buses, and significantly shorter delays on the bus stops because fewer people use
public transportation; and (iii) high traffic using data from rush hours, including 3000 vehicles and 70 buses. Bus frequencies
change according to the city schedule and are not affected by the traffic density. All data were contrasted and verified with
the information provided by the city administration.

Our main goal is to advance in designing a methodology to be used operationally (as close as possible to real time) over
different traffic patterns.

5.2. Computational platform

The analysis was performed on an AMD Opteron 6272 at 2.09 GHz (64 cores, 48 GB RAM, CentOS Linux 6.5), from Cluster
FING, the High Performance Computing facility at Universidad de la Reptblica, Uruguay (Nesmachnow, 2010).

5.3. Parameters setting

EAs are stochastic methods, so a parameter setting analysis is needed to find the configuration that allows computing the
best results. We studied the values for population size, stopping criterion, recombination probability (pg), and mutation
probability (p,,) in the parallel EA. We also studied the simulation time in SUMO for the proposed scenarios.

In order to avoid bias in the results, a different set of instances was used for the parameter setting analysis: low traffic (500
vehicles/30 buses); normal traffic (1000 vehicles/60 buses); and high traffic (2000 vehicles/120 buses). Ten independent exe-
cutions of the proposed EA were performed for each problem instance in the parameter setting experiments. The main
results are summarized next.

Simulation time. The best results were obtained using 4000 simulation steps, which represent 66 min in the real scenario.
Using this simulation time, more than 85% of the vehicles are able to reach destination. The execution time to perform each
simulation is between 10 and 30 s, depending on the details and features of the scenario.

Stopping criterion. A specific goal of the optimization is to achieve a trade-off between solution quality and execution time.
Results showed that the best fitness values did not vary significantly after performing 400 generations. Thus, we decided to
use a limit of 500 generations as stopping criteria. Using this limit, the parallel EA demanded between 1 and 24 h of execu-
tion time.

Population size. We considered the quality of results, the execution time, and the computing elements available in the
platform, to find the best population size in the proposed EA. We analyzed using 32, 48, and 64 individuals in the population.
The results indicated that no significant improvements are achieved in the fitness values when using larger populations, so
we decided to use 32 individuals, in order to have the shortest execution times. Table 2 presents an example of the results
obtained in the population size analysis.

Operator probabilities. We explored all the combinations of the following candidate values: pg € {0.5,0.8,1}, and
pu € {0.01,0.05,0.1}. We performed a statistical analysis of the results applying the Student’s t-test, and concluded that
the best results are computed when using (pz = 0.5,p,, = 0.1) and (pg = 0.5,p,, = 0.01). Finally, we decided to choose the
parameter configuration (p; = 0.5,p,, = 0.01), which provides the fastest execution times. Table 3 presents an example of
the results for the analysis of the operator probabilities.

5.4. Numerical results for Garzén Avenue

We performed 30 independent executions of the proposed EA for each problem instance studied, and compared the
results against those obtained for the baseline scenario. The main results are summarized and discussed in the following
paragraphs.

Simulations of the baseline scenario. We performed a set of simulations over the current scenario in order to obtain the
baseline results for the comparison. Table 4 presents the numerical results for the baseline scenario, reporting the average
speed for buses and the average speed for vehicles (in km/h), as well as the corresponding fitness value according to the lin-

Table 2
Population size analysis.
#P Fitness Execution time (m)
Best Average +0

32 17.18 16.36 £ 0.48 80.8 £6.7
48 16.69 15.84+0.32 112.8+5.5
64 17.27 16.37 £ 0.60 169.7 £ 8.0
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Table 3
Operator probability analysis.

Dr Pum Average fitness 0

0.5 0.01 16.09 £ 0.30
0.5 0.05 15.60 +0.27
0.5 0.1 16.36 + 0.22
0.8 0.01 16.04 £ 0.45
0.8 0.05 15.82£0.32

0.8 0.1 16.12£0.34
1 0.01 16.08 + 0.25
1 0.05 15.83£0.34
1 0.1 16.04 £ 0.25
Table 4
Simulations of the baseline scenario.
Traffic Sg So Fitness
Low 15.9 325 134
Medium 14.6 28.8 121
High 14.3 26.4 113

Table 5

Numerical results of the proposed parallel EA on the baseline scenario, for different traffic patterns.
Traffic Baseline scenario Parallel EA results

Sg So Fitness Sg So Fitness Fitness improv.
Average +0 Best Average Best

Low 15.89 32.45 13.42 17.92 £0.18 34.30+0.40 14.50£0.14 14.88 8.0% 108 %
Medium 14.59 28.81 12.00 16.95+0.32 33.29+£0.29 13.95+0.15 14.19 15.7% 17.7 %
High 14.31 26.36 11.30 16.51 £0.61 32.90+0.25 13.72 £0.17 14.04 21.4% 242 %

ear aggregation function used for evaluation. The simulations confirmed that the results for average speed and time travel
matches those computed when processing the GPS data from the city authorities; thus validating the proposed approach
using simulations.

Results of the proposed parallel EA. Table 5 reports the results of the optimization using the proposed parallel EA. Speeds
are expressed in km/h and improvements are computed over the results of the baseline scenario.

Results in Table 5 indicate that the parallel EA allows improving the average speed for the three traffic patterns studied.
Speed improvements are up to 24.2% (in fitness values), up to 15.3% (in average bus speed), and up to 24.8% (in average
speed of other vehicles). We applied the Kruskal-Wallis test to analyze the results distributions. The proposed parallel EA
outperformed the baseline results with statistical significance in all scenarios (with a confidence level of 99%).

Analysis of travel times on Garzén Avenue. We also evaluated the travel times for buses and other vehicles on Garzén Ave-
nue (6.5 km). The comparison between the optimized traffic lights configuration and the baseline scenario is summarized in
Fig. 5: (a) for buses and (b) for other vehicles.

According to the results reported in Fig. 5a, the parallel EA optimization allowed reducing the travel times for buses on
Garzén Avenue from 27.3 to 23.6 min in the high traffic scenario. Similar results were obtained for the other traffic patterns.

baseline scenario

5 27.3
= parallel EA 5 baseline scenario 14.8
s parallel EA

o€ o -
=S baseline scenario 26.7
53 e § baseline scenario 135
So parallel EA 23 E3 .

& = ‘é’ parallel EA 11.7

g baseline scenario 24> 3 baseline scenario 120

= parallel EA 2 parallel EA 1.4

0 5 10 15 20 25 30 0 2 4 6 8 10 12 14
travel time for buses (minutes) travel time for vehicles (minutes)
(a) buses (b) other vehicles

Fig. 5. Travel times: optimized traffic lights configuration (parallel EA) vs. baseline scenario for buses and other vehicles.
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Table 6
Numerical results for different weights in the fitness function, for all traffic patterns.
Traffic Wi Wo 55 So Fitness ASg ASy
Low 0.5 0.5 17.92+0.18 34.30 £ 0.40 14.50 £ 0.14 - -
0.7 03 17.93+0.23 34.06 +0.17 12.65+0.11 +0.07% -0.7%
0.3 0.7 17.55 +0.20 34.71 £0.21 16.42 +0.10 —2.06% +1.18%
Normal 0.5 0.5 16.95+0.32 33.29£0.29 13.95+0.15 - -
0.7 0.3 17.29 £ 0.27 33.08 £0.14 12.24+0.12 +2.0% —0.62%
0.3 0.7 16.71 £ 0.42 33.70£0.31 15.92+0.11 -1.41% +1.49%
High 0.5 0.5 16.51 +0.60 32.90 £0.25 13.72+0.17 - -
0.7 0.3 16.72 £ 0.14 32.79£0.26 13.75 £ 0.07 +1.24% -0.33%
0.3 0.7 15.48 £0.42 33.20+0.25 15.49+0.16 —6.23% +0.92%

Vehicles also moved faster when considering the optimized traffic lights configuration: the travel times have a significant
improvement from 14.8 min to 11.9 min in the high traffic scenario, and similar improvements for the other traffic patterns.
Results obtained for the high traffic scenario provide a useful insight to understand the main mobility problems and their
possible solutions by applying the proposed methodology for traffic optimization.

Multiobjective optimization analysis. Table 6 reports the results computed by the proposed parallel EA when using different
weights to prioritize the speed of buses or vehicles. Weights were defined according to suggestions by both bus operators
and city administrators, and they allow modeling different priorities for buses and other vehicles in the BRT, which can
be implemented in practice.

The comparative results indicate that choosing different weights has a rather significant influence on the optimization
results. An additional 2% of improvement in the speed of buses can be achieved when optimizing with the proposed parallel
EA for the combination wy = 0.7, wo = 0.3. This improvement comes with a negligible reduction on the speed of other vehi-
cles (results in bold font). Results are statistically significant according to the Kruskal-Wallis test used to analyze the distri-
butions (with confidence level 99%).

5.5. Optimization in a modified scenario

We also performed an experimental evaluation of the proposed traffic lights synchronization using EAs in a modified sce-
nario. The new urban scenario is built considering slight modifications on the locations of the bus stops and an improved
traffic lights management. The main details about the modified scenario and the experimental evaluation are reported next.

5.5.1. The modified scenario for the BRT on Garzén avenue

The main characteristics of the modified scenario are described next.

Alternate bus stops. One of the main problems related to BRTs in general is that, due to their slow acceleration, buses
demand a significant time to reach an acceptable speed after stopping in traffic lights or bus stops. This is a specific incon-
venience that arises in the BRT on Garzén Avenue, where bus stops are located near each other, and all bus stops are shared
by all bus lines. Thus, in addition to optimizing the traffic lights configurations, in the modified scenario we consider alter-
nating bus stops for line ‘G’. Line G is one of the main bus lines traveling across the BRT in Garzén Avenue, and it is operated
by two bus companies: CUTCSA and COETC. We propose a modified scenario alternating bus stops for buses of different com-
panies. As both companies operate the same line, the modification will have a minimal impact on the quality of service for
users. If needed, additional optimization of bus timetabling can be performed to reduce the average waiting times for pas-
sengers in each bus stop.

Fig. 6 presents a description of the bus stop changes performed in the modified scenario: the current stops are marked
with blue circles. We propose eliminating bus stop ‘Casavalle’ (marked in grey) in the original path of line ‘G’ and alternating
every other stop. The resulting new paths for buses consider odd bus stops for COETC (marked with red circles) and even bus
stops for CUTCSA (marked with green circles). The base map/figure for the Garzén BRT in Fig. 6 is from Intendencia de
Montevideo, 2017.

Improved traffic lights management. During the field research we observed that in some intersections where a bus line
traveling through Garzén turns left, the current rules for traffic lights force the vehicles traveling on the right lane to stop,
while vehicles in the central lane has green light to advance. According to a personal communication from administrators
from Intendencia de Montevideo, this rule is applied to make the traffic control easier, because it allows the simultaneous
operation of traffic lights for the lanes on both sides (right and left) of the central lane, reserved for buses. Allowing a sep-
arate operation of these two lanes improves the speed of vehicles circulating on both ways of Garzén Avenue. In the modified
scenario, this modification was implemented and evaluated in three intersections: (i) Garzén and Islas Canarias, where line
409 turns left, in direction to Colén (North); (ii) Garzén and Camino Ariel, where lines 2 and 148 turn left, in direction to Paso
Molino (South); (iii) Garzén and Casavalle, where line 174 turns left, in direction to Paso Molino (South).
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Fig. 6. Description of the modified scenario. Blue circles: original bus stops for line ‘G’; grey: dropped bus stop (‘Casavalle’); red circles: line ‘G'-COETC;
green circles: line ‘G'~CUTCSA. ‘T’ stands for the three junctions where the improved traffic lights management was implemented. The base map for the
Garzén BRT is from Intendencia de Montevideo.

5.5.2. Experimental results for the modified scenario

The main results of the studied traffic metrics for vehicles and buses are reported in Table 7. We analyze the average
speed for vehicles and buses, the average and best fitness values obtained using the proposed parallel EA and the improve-
ments of the results computed by the parallel EA over the baseline scenario (including the optimization), as reported in
Section 5.4.

Results in Table 7 indicate that the parallel EA computes traffic lights configurations that account for accurate speed val-
ues for both buses and other vehicles in the modified scenario. The average speed for buses is over 21 km/h, and a maximum
value of 23.15 km/h is obtained for the instance with low traffic. Regarding the speed for other vehicles, the values are
between 33 km/h and 34.5 km/h in all scenarios. The improvements on the fitness values are between 19.9% and 37.1%,
when compared to the baseline scenario. Furthermore, the best improvements are obtained for the high traffic scenario, indi-
cating that the proposed strategy is useful to speed up vehicle flow and avoid traffic jams and congestions in the studied BRT
in peak hours and under high traffic density.

Fig. 7 graphically reports the time (in minutes) needed for buses and other vehicles to travel along Garzén Avenue (total
length 6.5 km). The travel times achieved by the parallel EA on the modified scenario are compared against the baseline sce-
nario. A significant reduction in travel times for buses can be noticed for all traffic patterns. For other vehicles, the best
improvement over the baseline scenario is achieved in the high traffic scenario. The study of the results distribution applying
the Kruskal-Wallis test indicated that the observed improvements against the baseline scenario are statistically significant.

5.6. Computational efficiency analysis

We studied the execution time improvements when applying the master-slave parallel model in the proposed EA. We
evaluated two relevant metrics for performance improvement: speedup and computational efficiency (Foster, 1995). The
speedup metric evaluates how much faster the parallel EA is when compared to the sequential implementation. It is defined

Table 7
Numerical results for the parallel EA on the modified scenario.
Traffic Sp So Fitness Fitness improv.
Average +o Best Average Best
Low 23.15+0.36 3443 +0.33 15.99 + 0.08 16.10 19.1% 19.9%
Medium 21.83£0.50 33.89+£0.22 15.47 £ 0.09 15.65 28.3% 29.8%

High 21.46 £ 0.54 33.41+£0.38 15.24£0.19 15.50 34.8% 37.1%
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Fig. 7. Comparison of travel times (in minutes) between baseline scenario and the solution computed by the EA in the modified scenario.

as the ratio of the execution time of the sequential algorithm (T;) and the parallel version executed on m computing ele-
ments (Tr) (Eq. (1)). The computational efficiency is the normalized value of the speedup. It is the result of dividing the
speedup by the number of computing resources (Eq. (2)).

Sn=1 M
Sn
en =20 @

Fig. 8 reports the execution time analysis for a set of representative scenarios used in the experimental evaluation. The
execution time of the sequential EA (T;) is compared with the execution time when using 32 computing elements (T3,
where one computing element is used for each solution to evaluate). All times are reported in minutes. The comparison
between speedup and computational efficiency values for the parallel and sequential version of the proposed EA is reported
in the graphic on the right.

From the results presented in Fig. 8, we conclude that the parallel EA is 26.9 times faster when using 32 computing
resources. The parallel EA allows executing in 44 min the optimization that requires 20 h of execution time when using
the sequential version. A sublinear speedup behavior is observed, but computational efficiency is 0.84, very close to the ideal
value of 1.
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Fig. 8. Execution time analysis of the proposed parallel EA (minutes).
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The efficiency results demonstrate that the proposed methodology can be applied to compute traffic lights planning based
on real data to be used operationally (for example, to compute a planning to be applied in the next hour).

6. Conclusions and future work

This article presented a parallel EA for traffic lights synchronization to optimize public transport in BRTs.

The proposed solution takes into account several complex features of a real urban zone including real maps and real
mobility data. The devised methodology includes analysis of GPS information, traffic modeling, simulation, and computa-
tional intelligence for optimization. A real scenario is presented as a case study: the BRT on Garzon Avenue in Montevideo,
Uruguay. This is an innovative approach in Uruguay, where urban intelligent systems have not been applied to public trans-
port until now.

The experimental analysis compared the results computed using the proposed parallel EA against a baseline scenario that
models the current reality. Results show that the parallel EA allows computing traffic lights plannings that provide a better
quality of service than the current reality. The optimized traffic lights configuration allows improving up to 15.3% the aver-
age bus speed and 24.8% the average speed of other vehicles. An additional improvement of 2% in the speed of buses is
achieved when assigning a higher priority to the first objective.

Besides optimizing traffic lights configurations, we proposed specific modifications to the current reality in Garzén Ave-
nue to improve travel times, by defining an alternative scenario that alternates bus stops and performs minor changes to
traffic lights rules. Under this modified scenario, the experimental results show that the proposed EA is able to reduce travel
times for buses from 27.3 to 18.2 min and from 14.8 to 11.7 min for other vehicles.

The master-slave parallel model was effective in reducing the execution times needed to compute the traffic lights con-
figurations, achieving speedup values of up to 26.9 when using 32 cores. This model allows reducing from 20 h to 44 min the
execution time, when compared against a sequential version of the algorithm.

Results show that the proposed optimization approach is useful to help authorities with long-term urban planning that
has significant impact in citizens mobility. Software simulation results must be tested before applying the proposed
approach in real scenarios. Our validation results suggest that real improvements on traffic flow and speed can be obtained
indeed. Furthermore, the proposed approach can be applied to optimize other urban scenarios and different problem
variants.

The main lines for future work are related to improve the proposed approach by considering different problem objectives
and an explicit multiobjective optimization method. In addition, we also plan to apply the proposed methodology for traffic
optimization in other urban scenarios.
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