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Abstract 14 

For fish, there can be multiple consequences of parasitic infections, including the physical 15 

impacts on swimming and the pathological costs of infection. This study utilised the three-16 

spined stickleback (Gasterosteus aculeatus) and the ectoparasitic fish louse, Argulus foliaceus, 17 

to assess both physical (including form drag and mass) and pathological effects of infection. 18 

Both sustained (prolonged swimming within an open channel flume) and burst (C-start) 19 

swimming performance were measured on individual fish before (Trials 1-2) and after infection 20 

(Trials 3-5). Experimental infection occurred shortly before the third trial, when the physical 21 

impacts of infection could be separated from any subsequent pathology as transmission of adult 22 

parasites causes instantaneous drag effects prior to observable pathology. Despite the relatively 23 

large size of the parasite and corresponding increase in hydrodynamic drag for the host, there 24 

were no observable physical effects of infection on either sustained or burst host swimming. In 25 

contrast, parasite-induced pathology is the most likely explanation for reduced swimming 26 

performance across both tests. All sticklebacks displayed a preference for flow refugia, 27 

swimming in low velocity regions of the flume, and this preference increased with both flow 28 
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rate and infection time. This study suggests that even with large, physically demanding 29 

parasites their induced pathology is of greater concern than direct physical impact. 30 

Introduction 31 

Distinguishing whether parasites are directly or indirectly responsible for changes in host 32 

performance, such as behaviour or energetic ability, is challenging. Observed changes may be 33 

a direct result of infection or host manipulation, or simply a consequence of host damage during 34 

infection (1). When examining the impacts of parasite infection, most studies focus on the 35 

pathological aspects of infection, which include a reduction in available nutrients due to 36 

parasite feeding (2), cytokine driven sickness (3), injected or secreted toxins (4), physical tissue 37 

damage either directly from the parasite or indirectly via inflammation (5), and/or the 38 

redistribution of resources such as upregulation of the immune response (6). The indirect, 39 

physical aspects of parasites are often not addressed, despite their conspicuous appearance as 40 

changes in host shape and size. Host mobility in particular may be hindered by large or heavy 41 

parasites, exacerbated by their positioning on the host. For fish, this could impact their 42 

streamlined profile by increasing hydrodynamic drag and factors such as total mass or mass 43 

distribution, causing an imbalance in stability. Infected fish may also exhibit energetically 44 

costly ‘flashing’ or ‘twisting’ behaviour whereby the fish rubs up against hard substrates or 45 

violently summersaults in an attempt to dislodge parasites (7). In contrast, the pathological 46 

impacts of infection are often harder to discern.  47 

The different impacts of fish parasites on their hosts have been studied extensively (8). The 48 

cestode Schistocephalus solidus, for example, alters host shoaling swimming behaviour and 49 

anti-predator avoidance to improve its transmission (9-16), as well as decrementing host 50 

energetics and nutrition (17, 18). But even for this well-studied parasite, it is unclear whether 51 

these alterations are directly or indirectly caused by the parasite (19). Economically, sea lice 52 

are the most important large ectoparasite of fish. Sub-lethal infections with these lice reduces 53 

Atlantic salmon swimming performance 4-5 weeks post infection (20). The ability to dissociate 54 

whether this impact is due to physical and/or pathological effects is however difficult, 55 

particularly with long-term infections. Additionally, the highly pathogenic nature of sea lice 56 

results in haemorrhaging and widespread damage to the epidermis (21, 22) masking the 57 

physical effects of infection. Similarly, Östlund-Nilsson, Curtis (23) assessed the physiological 58 

impacts of infection with Anilocra apongonae (another large ectoparasitic crustacean) on 59 

Cheilodipterus quinquelineatus and although they suggested that reduced host swimming 60 
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ability was caused by increased drag, this was not tested experimentally, thus the effects of 61 

pathology and mechanical drag were not disentangled.  62 

At a physical level, the drag on standard objects such as cylinders and aerofoils is well 63 

understood (24), but few such studies have been performed on fish given the complex and 64 

highly varied nature of their profile, with some exceptions including shark skin where the 65 

structure of the denticles has been reverse engineered (25). If a parasite is large relative to fish 66 

body size the streamlined hydrofoil of a fish is likely to be compromised, increasing form drag 67 

and altering swimming performance. An estimate of the likely increase in hydrodynamic drag 68 

due to parasite attachment can be calculated using the classical drag force formula:  69 

F = 1
2

CDρU0
2A  70 

where F is the drag force, CD the drag coefficient which is a function of the Reynolds number 71 

and body profile, ρ the fluid density, U the velocity and A is the frontal projected area of the 72 

body (24). Although the relative change in the drag coefficient is unknown, an approximate 73 

estimate of the increase in drag force (hereafter simply referred to as drag) can be calculated 74 

based solely on the increase in the frontal projected area of the fish with the parasite attached 75 

to its body. Furthermore, as external tagging affects fish swimming stability and ability to 76 

remain parallel to the bed, parasites could also alter fish swimming performance (26, 27). A 77 

parasite attached to the tail of the fish will therefore not increase projected area but may have 78 

an impact on buoyancy and stability.   79 

We undertook the current study to partition the physical and pathological impacts of infection 80 

on fish swimming performance and examine how infection detrimentally impacts fish 81 

swimming and predator avoidance. We used the freshwater fish louse Argulus foliaceus (total 82 

length of 3-7 mm) infecting three-spined sticklebacks Gasterosteus aculeatus (typically 30-50 83 

mm standard length at adulthood in the UK) as our model system. Argulids are the freshwater 84 

equivalent of sea lice, but also a major problem in their own right (28). Individual A. foliaceus 85 

occupy a relatively large area of this fish and can be directly transmitted as adults among hosts, 86 

making this an ideal model for maximising physical effects while also reducing the 87 

confounding effect of pathology. The parasite though is a generalist known to infect a large 88 

number of commercially important fish with moderate pathological effects over time at low 89 

infection intensities (28-31). These include localised inflammation and mechanical damage 90 

from the spines and the stylet feeding mechanism, anaemia, weight loss and scale loss, which 91 
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cause lethargy or erratic behaviour (31). Specifically, we compared sustained and burst 92 

swimming ability of hosts before infection, shortly after infection (when confounding factors 93 

such as pathology would be negligible and any disruption of host swimming could be attributed 94 

to the direct physical effects of the parasite), and several days after infection (to assess the 95 

pathological effects of infection).  96 

 97 

Materials and Methods 98 

Fish and parasite origin 99 

Three-spined sticklebacks (Gasterosteus aculeatus) were initially collected from an Argulus 100 

naïve population caught in Roath Brook, Cardiff (ST 18897 78541) on the 2nd July 2015 and 101 

transported to the aquarium facility at Cardiff University. Fish (mean standard length = 31.5 102 

mm, range = 26.1 to 37.3 mm; mean mass = 0.471 g, range = 0.249 to 0.655 g) were maintained 103 

in 30 L tanks at 15°C at a density <1 fish/L on a 18 h light: 6 h dark cycle and fed daily on 104 

frozen chironomid larvae. Prior to performance tests, fish were treated for ectoparasites by 105 

submersion in 0.004% formaldehyde solution for 1 h with a 30 min rest period in freshwater 106 

after 30 min (see 32). These wild caught fish had a low to moderate incidence of Gyrodactylus 107 

gasterostei as per previous surveys of this population (33, 34). Fish were then maintained in 108 

1% salt solution with 0.002 g/L of methylene blue for 48 h to inhibit secondary infection. 109 

Treated fish were checked visually for ectoparasites at least three times under a dissection 110 

microscope with fibre optic illumination by anaesthetising them in 0.02% w/v MS222. Any 111 

remaining ectoparasites were removed with watchmaker’s forceps following the methods of 112 

Schelkle, Shinn (35). Any fish found to have ectoparasites were checked a further three times 113 

to ensure clearance of infection. Sticklebacks were then maintained for 2 weeks prior to swim 114 

performance tests to allow recovery in dechlorinated freshwater. Argulus foliaceus were 115 

obtained from a lab culture using three-spined sticklebacks, see Stewart, Jackson (32), bred 116 

from specimens originally obtained from a carp (Cyprinus carpio) still water fishery in North 117 

Lincolnshire, July 2014. Briefly, one juvenile female was raised to adulthood in isolation and 118 

mated with one male, all offspring were descendants of this pairing. All animal work was 119 

approved by the Cardiff University’s Animal Ethics Committee and conducted under Home 120 

Office Licence PPL 302357. 121 

 122 

Experimental design 123 
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A total of five sustained swimming performance tests (see below), each separated by three 124 

days, were performed on each fish with the first two tests acting as controls and allowing the 125 

fish to acclimatise to trials in the flume (designated trial 1 and 2). The third performance test 126 

(trial 3) was conducted a maximum of 30 min after infection with A. foliaceus (mean mass = 127 

0.08 g, range = 0.05-0.13 g). All A. foliaceus used were full-sized adults to negate the effect of 128 

parasite growth during the experiment and to maximise physical impacts. Infection was 129 

conducted by exposing fish to two individuals of A. foliaceus in 100 ml of water (n=8) with the 130 

controls handled in the same manner but not infected (n=5). All individuals of A. foliaceus had 131 

been starved for 48 h prior to infection to facilitate natural attachment without the use of 132 

anaesthetics, infection success was 100%. Fish were kept individually in 1 L tanks to avoid 133 

cross infection. Infection was then monitored over the course of the trial and detached parasites 134 

allowed to reattach again in 100 ml of water. In cases where Argulus or fish died or were 135 

euthanized prior to the end of the experiment, their data was removed and not reported here. 136 

The remaining two trials (3 and 6 days post-infection, trials 4 and 5) were used to measure the 137 

effects of pathology on swimming performance. Across all infected and uninfected fish a total 138 

of 65 sustained distance performance tests were performed. Burst swimming (C-start) 139 

responses of each fish were additionally recorded 24 h after each sustained distance flume run 140 

(as below). After all trials had been conducted the fish were euthanized in 0.002% MS222 and 141 

standard length, pectoral fin length, caudal fin width and length, mass, sex and gravidity 142 

recorded.  143 

Swimming ability was measured in two ways: ‘sustained swimming’ in a flume where a fish 144 

must swim against an increasing current until it is exhausted and their antipredator escape 145 

(burst swimming) response. Depending on the species of fish anti-predator responses are 146 

characterised by the shape the fish makes in the first few milliseconds of the escape, commonly 147 

a ‘C’ or an ‘S’ shape (36, 37). The velocity of this C-start response in sticklebacks is 148 

proportional to the likelihood of escape and is therefore a good measure of relative host survival 149 

(38, 39).  150 

The Flume 151 

Sustained swimming performance tests were conducted in a unidirectional recirculating open 152 

channel Armfield C4 multi-purpose flume (4 m length, 76 mm width and 150 mm depth) set 153 

with a negative bed gradient of 1/1000. A weir gate at the downstream end of the flume was 154 

used to control the longitudinal water surface profile and the flow depth was set at 105 mm. 155 

Two 20 mm lengths of honeycomb flow straightener were used to contain fish within a 1 m 156 
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length of the flume (Fig. 1). Swimming performance tests were conducted during daylight 157 

hours and water temperature was maintained at 22.9°C (SE±0.18) using ice blocks in the 158 

reservoir to counteract the effects of heating from the pump and the non-temperature controlled 159 

room. Haloex chloride treatment was used at 0.02 ml/L to remove chlorides and additional air 160 

bubbled into the flume reservoir using a mains operated stone aerator. A 20 mm2 measurement 161 

grid was placed along the back sidewall of the flume to facilitate behavioural observations. 162 

Sustained distance swim performance test 163 

Each stickleback was placed into the flume while it ran at 0 L/s for 5 min of acclimatisation. 164 

The flow rate was then increased every 5 min to 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2 to a maximum 165 

of 2.5 L/s at which fish were maintained for 20 min or until fish exhausted. Fish were 166 

considered exhausted when pushed up against the downstream flow straightener and the time 167 

till exhaustion used as a measure of sustained swimming performance. Fish were recorded 168 

using a Swann DVR8-3425 960H resolution CCTV system. The videos for trials 2, 3 and 5 169 

were analysed in JWatcher 0.9 (40) for time spent in the four separate regions of the flume over 170 

each trial (Fig. 1) and assessed for five different behaviours: being pushed backwards 171 

(movement downstream but while facing upstream), swimming downstream, station holding 172 

(head maintained in the same 20 mm2 space of the flume; see Gerstner and Webb (41), 173 

swimming upstream and a twisting or flashing behaviour that appeared to attempts to dislodge 174 

A. foliaceus. In addition, photographs of the anterior/medial (head on) view of each fish were 175 

taken using a Nikon S3600 with a ruler in the frame of reference. These images were imported 176 

into ImageJ (42) to calculate the frontal projected area of the fish with (e.g. Fig. 3C in 32) and 177 

without parasites using the freehand selection tool. ‘Projected area increase’ was calculated as 178 

the percentage increase in area for a fish with a parasite on a trial by trial basis and used as a 179 

proxy for ‘drag force’.  180 

For behavioural observations, the flume was divided into four zones based predominantly on 181 

flume velocity distributions but also on observations of sticklebacks in a preliminary trial, 182 

demonstrating a preference for Zone-3 (Fig. 1 and Appendix 1). Flume velocities were 183 

measured using a Nixon propeller meter with a sampling time of 3 min at 20 mm horizontal 184 

and vertical intervals along the centreline of the flume. Velocity profiles with longitudinal 185 

distance along the flume and for the zones are shown for the flow rate of 1.6 L/s in Appendix 186 

1. In the near-bed zone (Y ≤ 1.5 cm), velocities decreased with increasing longitudinal distance 187 

from the upstream boundary (Appendix 1A). The near-bed zone in the centre of the control 188 

volume (Zone-3) had slightly higher velocities than at the upstream boundary in Zone-4 (see 189 
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Fig. 2B) but did not statistically differ from one another (Appendix 2); determined by a linear 190 

model with velocity (cm/s) as the dependent variable and flowrate (L/s) and zone as 191 

independent variables including an interaction between the two independent variables. As 192 

would be expected, the velocities were higher in the upper part of the water column (Zone-1) 193 

away from the near-bed region (Zone-3 and 4; p<0.001), while the flow accelerates and the 194 

velocities are highest in the zone closest to the downstream boundary (Zone-2), which had a 195 

significantly (p<0.001) higher velocity than the remainder of the flume (Appendix 1B and 2).  196 

 197 

C-start performance test 198 

The C-start response of each fish was conducted in a 300 x 400 mm glass experimental arena 199 

filled with dechlorinated water to a depth of 30 mm, allowing fish to move only along a 200 

horizontal plane. A Nikon D3200 camera was used to film each trial at a frame rate of 50 fps. 201 

Upon introduction to the tank fish were acclimatised for 5 min. A net was then thrust into the 202 

water of the tank 5-10 cm from the head of the fish in order to initiate the response; a 2 min 203 

recovery period was allowed and three trials of C-start conducted (43-45). A frame-by-frame 204 

analysis was performed in Tracker v4.87 (46) with the velocity of the C-start calculated from 205 

the 20 ms preceding initiation of the response; an average of the three C-start velocities was 206 

then taken. The same sticklebacks were used in the C-start responses as in the sustained flume 207 

tests, with C-start tests occurring 24 h after each flume trial.    208 

 209 

Statistical analysis 210 

All data were analysed using R v3.2.2 (47) with the additional use of ‘car’ (48), ‘MASS’ (49), 211 

‘lme4’ (50), ‘lmerTest’ (51) and ‘ggplot2’ (52) packages. All model selection was conducted 212 

using Akaike Information Criterion. Least-squared means were used to compare within any 2-213 

way factorial interactions. Random terms were tested for using a likelihood ratio test. For 214 

clarity, ‘infection group’ refers to the treatment fish were exposed to (a fish in the infected 215 

treatment group would therefore be uninfected at trials 1 and 2) and ‘infection status’ refers to 216 

the actual presence or absence of an infection at any given time.  217 
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To assess the effect of infection on swimming ability (sustained swimming and c-start) Linear 218 

Mixed effects Models (LMMs) were used for the assessment of sustained and burst (C-start) 219 

swimming performance with fish identification used as the random factor and the independent 220 

variables: trial, infection group, ‘trial: infection group’, temperature, fish body condition 221 

(residuals from a regression of mass and length^3), sex, fish length, caudal fin size (principal 222 

component of fin width and length) and pectoral fin size (fin length). Sustained swimming 223 

ability was analysed using time spent in the flume as a proportion of the total possible time (55 224 

min – not including acclimatisation) as the dependant variable with a logit transformation. C-225 

start performance used the mean velocity within the first 20 ms of the escape response from 226 

three repeats within each trial as the dependant variable, with a square root transformation. A 227 

further LMM was used to look for an effect of drag on sustained swimming ability; this analysis 228 

utilised an adjusted version of the sustained swimming ability model with ‘projected area 229 

increase’ used in place of the ‘infection group’ and limited to trials 2 and 3 with no interaction 230 

(data was limited to trials 2 and 3 to remove the confounding impact of pathology). 231 

The preference of fish for certain flume regions was analysed using a Chi-squared test with the 232 

observed as the proportional length of time fish spent in a given zone and the expected as the 233 

relative size of the flume zone (Ratio = Z1(0.784):Z2(0.02):Z3(0.012):Z4(0.184)). Further 234 

LMMs tested which variables altered fish preference for flume zones. Individual models for 235 

each flume zone (to avoid autocorrelation) were used with logit transformed proportional time 236 

as the dependant variable (trials 2, 3 and 5) and the independent variables: flow rate, trial, 237 

infection status, length, condition, sex, ‘trial: Infection status’ and ‘flow rate: infection status’ 238 

with fish identification as a random factor. To confirm the effect of trial on these models as 239 

fish only had a positive infection status from trial 3 onwards, further LMMs were run using 240 

‘infection group’ (comparing the control group to experimental group) in place of ‘infection 241 

status’ (comparing infected individuals to all controls).  242 

The effect of fish positioning in the flume on sustained swimming performance was analysed 243 

using trials 2, 3 and 5. This positional analysis used four models that comprised the minimal 244 

model from the ‘sustained swimming performance’ analysis (ProportionalTime ~ 245 

Trial*InfectionGroup) with the addition of the proportion of time spent in each of the flume 246 

zones as an independent variable (proportional time in each zone was used to account for bias 247 

caused by fish swimming for different time periods). An interaction between each of the flume 248 
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zones and the infection group was also tested but had no impact on the models. Each of these 249 

four models were then compared to the minimal model using a deletion test.  250 

Stickleback swimming behaviour was analysed using individual linear mixed models for each 251 

behaviour, with the dependant variable as proportion of time each fish spent performing a 252 

behaviour (logit transformed) and fish identification as the random variable. Additional 253 

independent variables included the fish behaviour, flow rate (L/s), infection status, temperature 254 

and a ‘flow rate: infection status’ interaction. Argulid removal behaviours, flashing or twisting 255 

in order to dislodge the parasite  (7), were not analysed as only a few individuals exhibited this 256 

behaviour and for very short time periods.  257 

Results 258 

Impact of Argulus on host profile 259 
The mean projected area for three-spined sticklebacks (Gasterosteus aculeatus) infected with 260 

two individuals of Argulus foliaceus increased by 8.4%. When considering only fish with one 261 

or both A. foliaceus individuals attached to the head (47% of infected fish in this study), the 262 

projected area increased on average by 15.3% (range: 9.7-26.5%). For fish with both A. 263 

foliaceus located on the body (53% of infected fish), the projected area did not increase. 264 

However, individual A. foliaceus were motile between trials, the average change in host 265 

projected area between trials was 7.4%. 266 

Effect of infection on sustained and burst swimming ability  267 

Sticklebacks infected with A. foliaceus for 6 days demonstrated a significant reduction in 268 

sustained swimming performance (Fig. 2A). Among infected fish there was a significant drop 269 

in swimming performance between control trials and later trials 4 and 5 indicating an effect of 270 

pathology, while no effect of parasite presence was observed in earlier trials (Table 1). When 271 

comparing the uninfected group to the infected, trials 4 (t.ratio=2.208, p=0.032) and 5 272 

(t.ratio=3.172, p=0.003) differed significantly (Fig. 2A). The burst swimming of these same 273 

infected sticklebacks had also reduced significantly by trials 4 and 5, but not at other time 274 

points (Fig. 2B). Among uninfected fish there were no significant differences between 275 

sustained or c-start tests and independent factors (temperature, flume side, fish length, 276 

condition, sex, pectoral/caudal fin size) had no effects on the models, but individual fish 277 

behaviour was discrete (significant fish identification p=0.01).  278 
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Fish preferences for flume zones 279 

Sticklebacks demonstrated a preference for swimming in Zone-3 (upstream near-bed boundary; 280 

χ2=16.750, p<0.001) but no other zones (p>0.05). Sticklebacks also had an increasing 281 

preference for Zone-3 across five trials in higher flow rate conditions for both infected and 282 

uninfected fish (t=10.011, df=28, p<0.001; Fig. 3A) and this increase in preference was 283 

stronger in the infected fish (t=2.829, p=0.005; Fig. 3A). For infected fish, there was an increase 284 

in time spent in Zone-2 in later trials as they exhausted more quickly (t-value=3.632, df=227, 285 

p <0.001; Fig. 3B), while on average all fish spent less time in this zone with increasing flow 286 

rate (t-value=-6.633, df=21, p <0.001). There was also a drop in fish spending time in Zone-1 287 

(relatively high velocity zone) correlated with the increasing time spent in other zones at higher 288 

flow rates (t-value=-10.417, df=226, p<0.001) and larger fish spent more time in Zone-2 (t-289 

value=2.474, df=9.176, p=0.035). Analysis of swimming position in the flume revealed fish 290 

which spent longer in Zone-3 were able to swim for a proportionally longer time (t-291 

value=4.147, df=26, p<0.001). In all cases, fish identification had a significant effect on the 292 

model (p<0.05).  293 

Behaviour 294 

Overall, fish performed more station holding (χ2=0.707, p<0.05) than other behaviours 295 

(p>0.05). With increasing flow rate more fish performed station holding (t=4.070, df=228, 296 

p<0.001; Fig. 4) and infected fish spent more time holding station in the flume than uninfected 297 

fish (t=2.862, df=232, p=0.005; Fig. 4), although there was no interaction between the two. 298 

These infected fish also had a corresponding drop in time spent swimming upstream at higher 299 

flow rates (t=-2.882, df=228, p=0.004). Sticklebacks also decreased the proportion of time 300 

spent swimming upstream in higher flow rates (t=-3.962, df=228, p<0.001). In all cases, fish 301 

identification had a significant effect on the models (p<0.05). 302 

Discussion 303 

Using sticklebacks infected with Argulus foliaceus in both sustained distance and C-start burst 304 

swimming, we found that A. foliaceus pathology had a significant negative impact on both 305 

forms of swimming. The lack of swimming performance reduction in the third trial performed 306 

immediately post-infection, compared with the first two pre-infection trials and the uninfected 307 

fish, suggests that there was no impact of infection on hydrodynamic drag (no effect of 308 

projected area) or instability (resulting from increased additional and uneven mass i.e. no effect 309 

of parasite presence) on fish swimming performance.  310 
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In comparison to external fish tags, (26, 27) and the previous suggestions that drag from isopod 311 

infections (23) contribute to poor swimming performance, no effect of hydrodynamic drag or 312 

instability was observed in either swimming test in the current study. This is despite the 313 

parasites increasing the projected area of the fish by as much as 26.5% (mean 15.3%). For 314 

comparison, with external tagging the increase in drag force is estimated to be 12-13% for 47-315 

72 cm cod with tags of 1.87 and 4.15 cm2
 frontal area (53). The streamlined profile of A. 316 

foliaceus, holding itself close to the fish’s body, could explain the lack of drag and mass effects; 317 

we also checked to see if neutral buoyancy might be a possible explanation but A. foliaceus 318 

sink at a rate of 4.6 mm/s in a 10 ml glass measuring cylinder. It is also possible that a larger 319 

projected area increase is required to observe these effects in the laboratory, but such high 320 

intensity aggregated infections towards the head are unlikely in nature (54). Additionally, 321 

sticklebacks may be able to compensate for increased drag or instability during the early stages 322 

of infection (when only physical consequences are present), masking the physical effects of 323 

infection. The direct life cycle of A. foliaceus with no intermediate host means that if the host 324 

fish is consumed then the parasite’s germline will also be lost, suggesting that rapid 325 

deterioration of the host is not evolutionarily favourable in this instance. A high impact on fish 326 

physiology is therefore best avoided, at least until the parasite has fed and bred.  327 

The continued presence of A. foliaceus is likely to compound the pathological effect on 328 

swimming performance, with a continued reduction in swimming performance from the point 329 

of infection. This was demonstrated by the greater magnitude of performance reduction at 6 330 

days post-infection compared to 0 or 3 days post-infection. This reduction is likely derived 331 

from the feeding and attachment mechanisms of the argulid, which is reliant on blood feeding 332 

by means of a stylet and cytolytic toxins with attachment by large maxillae suckers and 333 

numerous spines on the ventral surface (55-57). These two mechanisms can cause necrosis and 334 

apoptosis (58-60), either directly or via inflammation, and are likely to be a major cause of fish 335 

swimming performance reduction reducing the fish’s overall health; particularly when 336 

immune-pathological costs such as cytokine driven sickness and nutrient redistribution are also 337 

taken into account. Fish infected with large parasites, such as isopods, also have increased 338 

oxygen consumption and a higher fin beating frequency which may contribute to pathology 339 

and reduce swimming performance (23); such effects may only be observable sometime after 340 

infection when the increased metabolism has used up stored nutrients. A fish in the wild on a 341 

lower calorie intake than within lab conditions may therefore experience a greater detrimental 342 

effect of infection. Such fish would likely have increased swimming stresses resulting in a 343 
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positive pathological feedback loop that increases susceptibility to predators and detrimentally 344 

impacts feeding, swimming and mating.   345 

Although the flow depth was relatively constant along the longitudinal axis of the flume, there 346 

was some variation in the velocity due to the flow straighteners and short length of the flume. 347 

The velocity also varied transversely due to the side walls and with vertical distance from the 348 

bed. Along the bed and sides of an open channel flume, the velocity is reduced due to boundary 349 

friction and the velocity gradient is higher in these zones. Multiple studies have demonstrated 350 

that fish use this boundary layer as a shelter from higher velocities allowing them to attain 351 

higher swim performance (41, 61, 62). The current study also observed a bias in fish behaviour 352 

towards swimming in this lower velocity region of the flume, in a process known as flow 353 

refuging (63). The preference of sticklebacks for this low velocity zone was further enhanced 354 

in increasing flow rate as previously found by Barbin and Krueger (61) in American eels 355 

(Anguilla rostrata). Fish infected with A. foliaceus demonstrated an even greater preference 356 

for this same low velocity region than their uninfected counterparts, as previously reported by 357 

Hockley, Wilson (64). In addition to the energy saving behaviours observed around the 358 

boundary layer, infected fish also spent a greater proportion of their time swimming in a static 359 

position in the flume and not swimming up or down its 1 m length. With the combined 360 

preference for low velocity, low energy swimming infected sticklebacks appear to be 361 

demonstrating heightened energy saving behaviours in order to offset the negative impacts of 362 

infection on swimming performance. Such a response could be comparable to fish or other 363 

animals that become less active when infected with certain parasite taxa (65, 66) as pro-364 

inflammatory cytokines drive lethargy and sickness behaviours. Additionally, we found that 365 

fish with larger pectoral fins spent more time holding station. This particular station holding 366 

behaviour typically involves labriform locomotion (67, 68), which is less energetic than the 367 

subcarangiform locomotion also displayed by sticklebacks, indicating larger finned fish may 368 

be using this form of locomotion as a more energy efficient swimming technique given that 369 

efficiency of this swimming is related to pectoral fin size (69, 70). 370 

In summary, this study has revealed a major impact of parasite-induced pathology on fish 371 

swimming performance, but a perhaps surprising lack of hydrodynamic effect caused by 372 

increased drag or instability due to the relatively bulky A. foliaceus infection. Sticklebacks also 373 

showed a strong preference for low velocity regions of the flume and for energy saving 374 

behaviours, particularly at higher flow rates or when infected. Lastly, fish with larger pectoral 375 

fins spend more time performing stationary swimming using labriform locomotion, also 376 
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attributed to energy saving and the fact that at higher velocities larger fins will give greater 377 

thrust. Despite the size of the A. foliaceus ectoparasites causing significant increases to 378 

projected host area and corresponding increases in the hydrodynamic drag, the pathological 379 

effects are of greater consequence to the fish and result in a shift in fish swimming towards 380 

energy saving behaviours. 381 
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Figure 1: Flume elevation diagram showing the flume used for the sustained swim performance tests 570 
and the characterised flow zones: Zone-1, moderately high velocity that excludes the near-bed low 571 
velocity zone; Zone-2, higher velocity downstream boundary where flow is accelerated and where fish 572 
exhausted; Zone-3, upstream near-bed boundary in which fish were observed to spend a preferential 573 
amount of time; Zone-4, low velocity near-bed boundary. Flume width is 7.6 mm. Not to scale. Vertical 574 
dotted lines indicate flow straighteners and the blue triangle indicates the water surface. 575 

Figure 2: Sticklebacks were infected with Argulus foliaceus or sham infected a maximum of 30 min 576 
before the third flume trial (A) (indicated by red dotted line) and corresponding burst swimming trials 577 
(B) occurring 24 h later. Data are split by infection group rather than infection status; therefore, fish are 578 
only infected from Trial 3 onwards within the infected group. Sustained swimming (A), the length of 579 
time (logit transformed) that infected (n=8) and uninfected (n=5) three-spined sticklebacks 580 
(Gasterosteus aculeatus) were able to maintain sustained distance swimming over a series of trials as a 581 
proportion of the total time per trial (55 min). Points represent the mean and error bars are standard 582 
error extracted from a linear mixed effects model. Burst swimming (B), the velocity of infected (n=8) 583 
and uninfected (n=5) three-spined sticklebacks (Gasterosteus aculeatus) in the first 20 ms of a C-start 584 
escape response. Points represent the mean and error bars are standard error extracted from a linear 585 
mixed model with a square root transformation.  586 

Figure 3: The proportional length of time (proportional to 55 min-logit transformed) three-spined 587 
sticklebacks (Gasterosteus aculeatus), uninfected (n=5) or infected (n=8) with Argulus foliaceus spent 588 
in (A) Zone-3 of the flume with increasing flow rate, and (B) in Zone-2, across Trials 2, 3 and 5 589 
separated by infection group (i.e. all fish are uninfected in trial 1 with the infected group being infected 590 
in the 2nd and 3rd trials). Data are extracted from LMM models, lines are the means with shaded grey 591 
95% confidence intervals (±CI) and points as residuals, plots are on different Y-axis scales.  592 

Figure 4: The proportional length of time (logit transformed) that infected (n=8) and uninfected (n=5) 593 
three-spined sticklebacks (Gasterosteus aculeatus) spent holding station with increasing flow rate 594 
separated by infection status. Lines are the means with shaded grey 95% confidence intervals (±CI) and 595 
points as residuals. 596 

Table 1: Sustained swimming performance of Gasterosteus aculeatus across different trials. Grey 597 
background indicates infected fish; white background is uninfected; bold text highlights significance 598 
(p<0.05); analysis performed using linear mixed effects models.  599 

Appendix 1: Velocity profiles (A) at different longitudinal distances along the flume (taken at the 600 
flume’s centreline) measured from the upstream flow straighter (X = 0 cm) and (B) representative of 601 
each designated zone in the flume. In both graphs; Y = vertical height within flume (with Y = 0 cm the 602 
flume bed), flow rate = 1.6 L/s, blue horizontal dotted line and triangle represent the water surface, 603 
dashed lines represent means and error bars are 95% confidence intervals. 604 

Appendix 2: Measured volume-averaged velocities for different flume zones. Lines represent means 605 
and error bars 95% confidence intervals (±CI). 606 
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